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The low frequency kinetic continuous spectra of shear Alfvén waves (SAW) and ion acoustic 

waves (IAW) in magnetic confinement devices are widely used in identification of frequency 

gaps and discrete modes. In this work, the numerical model of the drift Alfvén energetic particle 

stability (DAEPS) code [1] has been extended to include general axisymmetric geometry. The 

comparison of the numerical code shows that the structure of the low frequency Alfvén 

continua is sensitive to the shaping effect. The comparison of the kinetic and MHD continuous 

spectra also suggests that the structure of the kinetic and MHD continua share a similar 

frequency behavior, while the damping rate of the kinetic continua corresponds to the 

SAW/IAW coupling. It is also suggested that the ion diamagnetic frequency, corresponding to 

the plasma nonuniformity, not only changes the frequency, but also destabilizes the 

KBM/AITG branch near the accumulation point. 

I. Drift Alfvén energetic particle stability code 

The drift Alfvén energetic particle stability (DAEPS) code [1] is an eigenvalue code using finite 

element method (FEM) to study low frequency modes excited by energetic particle (EP) in 

collisionless plasmas, e.g., shear Alfvén wave and drift Alfvén wave physics. The model 

equations, consisting of quasi-neutrality condition: 
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and Schrödinger-like form of vorticity equation: 
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are derived within the general fishbone-like dispersion relation (GFLDR) theoretical 

framework [2, 3], where   = −P
 corresponds to the parallel electric field, ⊥ =  is 

the Schrödinger-like potential corresponding to the magnetic scalar potential, /k k⊥ ⊥= , 
bJ  

denotes the Jacobian of the Boozer coordinate. The mode structure decomposition (MSD) 

approach and asymptotic matching between the inertial/singular layer and ideal regions are 

adopted, which gives the DAEPS code the capability of accurately calculating parallel mode 

structures in the ballooning space, frequency and growth rate, as well as the asymptotic 

behavior. Due to the deep connection with GFLDR theoretical framework, the DAEPS code is 

capable of accurately calculate inertial layer contribution, therefore it can not only calculate the 

unstable mode, but also damping mode, as well as the electromagnetic continuous spectrum. 

The DAEPS code, the Boozer coordinate ( ), ,b br    is used to express the general tokamak 

geometry, where r  is the label of the flux surface. After performing the operator and function 

mapping of ballooning representation, the drift frequency, ignoring the parallel perturbed 

magnetic field B P
, takes the form of: 
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where n  and g  denote the normal and geodesic curvature, respectively. The drift frequency 
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with ( ) ln ,ns r sL r P= −  which shares a same formulation of the well-known s-α equilibrium 

model.  

II. Model equations of low frequency continuous spectrum 

The model equation for the fluid continuous spectrum is based on the ideal MHD equation with 

perturbed plasma displacement expressed by the stream function 
0

s

c

B
⊥ = ξ b . 

Considering the plasma compressibility 0compP P = − ξ , where the   is the ratio of specific 

heats, the vorticity equation and the perturbed parallel force balance equation in the inertial 

region take the form of [4]: 
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where ( )0 0 /compP iB R P k cP =  denotes the normalized perturbed pressure, 

( )2 2 2

0/S i eP n m m q R  =  +   corresponds to the frequency of the sound wave, 
0 /B B=r  , 

1 2r r

−
 =    , and /g r= s  are functions with geometric effect. 

The numerical model for calculating the kinetic low frequency electromagnetic continuous 

spectrum is constructed with well circulating particle model, and performing the Fourier 

expansion, where the gyrokinetic equation can be directly solved, the numerical model of the 

kinetic continuous spectrum, consisting of vorticity equation and the quasi-neutrality condition, 

can be further simplified as: 

 

( )

( )

( )
( ) ( )

*2 4

2

0

22

2 4

, ,2
2 2

0

2 2

2

T

pi

n p n p p n p

p p A

s

n s n n s p

n

n pT
s pds

p

r gq I

q R
     



  



 



− −

− − − − −

−
−  −   + 

+  
=  +  

  

 

  I I

r

r r s

  (6) 

 
( ) ( )0 2

n, n,

1
1 s s p n pT

s s

n

pd



 
−

 
+ −  =  

 
 I I s   (7) 

where 
( )
,

n

l sI  corresponds to the kinetic contribution of the well circulating particles, and 

( )
2

n n = + , with bBknq m = − = PJ  corresponds to the parallel wave vector, which also 

denotes to the inertial layer contribution. 

III. Numerical results of the low frequency continuous spectrum 

The comparison of the fluid low frequency electromagnetic continuous spectrum with n=5 of 

DAEPS and FALCON [5] is shown in Figure 1(a), where the FALCON uses the original 

equilibrium geometric tensor, while the DAEPS uses the analytic s-α model, which suggests 

that the low frequency continuous spectrum is sensitive to realistic magnetic geometry. The 

comparison of the fluid and kinetic continuous spectrum with numerical equilibrium, shown in 

Figure 2(b), suggests that the frequency of the kinetic structure of low frequency spectra is 

consistent with the fluid result due to the small diamagnetic frequency. Figure 2 shows the 

comparison of the frequency and growth rate of kinetic continuous spectrum calculated by 

DAEPS and LIGKA [6] for ITER equilibrium. It is suggested that the frequency of TAE, BAE 

and KBM branches are highly consistent, and the growth/damping are qualitatively consistent, 

while the frequency of BAAE branch is consistent near the accumulation point. 
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(a)                                                                    (b) 

Figure 1. Comparison of the (a) fluid and (b) kinetic low frequency electromagnetic continuous 

spectrum with n=5 calculated with DAEPs and FALCON. 

 

 

(a)                                                                    (b) 

Figure 2. Comparison of the (a) frequency and (a) growth rate of the kinetic low frequency 

electromagnetic continuous spectrum calculated with DAEPS and LIGKA. 
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