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The structure of the density-potential mapping
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The Hohenberg–Kohn theorem of density-functional theory (DFT) is broadly considered the conceptual basis for a full

characterization of an electronic system in its ground state by just the one-body particle density. Part I of this review

aims at clarifying the status of the Hohenberg–Kohn theorem within DFT and Part II at different extensions of the theory

that include magnetic fields. We collect evidence that the Hohenberg–Kohn theorem does not so much form the basis

of DFT, but is rather the consequence of a more comprehensive mathematical framework. Such results are especially

useful when it comes to the construction of generalized DFTs.
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I. INTRODUCTION

The theorem of Hohenberg and Kohn [1] is usually pre-

sented as the theoretical justification of density-functional the-

ory (DFT). It states that the one-body particle density uniquely

(up to an additive constant) determines the scalar potential

of a non-relativistic many-electron system in its ground state.

The Mathematical analysis of ground-state DFT was pioneered

by Lieb [2], using tools from convex analysis. In it, some

important problems, especially in relation with differentia-

bility of the involved functionals that map densities to ener-

gies, were left unanswered and remained as open questions.

a)Electronic mail: andre.laestadius@oslomet.no

Lammert [3] then demonstrated that the key functional of DFT

is indeed non-differentiable, but it remained unclear to what

extend this threatens the foundations of DFT and its algorith-

mic realization, the Kohn–Sham scheme employed for practi-

cal calculations. Regularization as a means to overcome non-

differentiability has been applied to DFT [4] (Section IX) and

its extension, current DFT (CDFT) [5; 6]. The existence of

functional derivatives through regularization also avoids the

problem of v-representability that usually haunts DFT, i.e., that

not every reasonable density is the solution to a certain poten-

tial (Section III).

A central result in this work is a very convenient and novel

formulation of the Hohenberg–Kohn (HK) theorem that re-

structures it into two sub-theorems, HK1 and HK2 (Sec-

tion IV):

• (HK1) If two potentials share a common ground-state

density then they also share a common ground-state

wave function or density matrix.

• (HK2) If two potentials share any common eigen-

state and if that eigenstate is non-zero almost every-

where (a property that is guaranteed if the the unique-

continuation property (UCP) holds; see Section V) then

they are equal up to a constant.

Combining HK1 and HK2, one obtains the classical

Hohenberg–Kohn theorem and with it a well-defined density-

potential mapping. The proof of HK1 will be shown to be im-

mediate from just the formulation of “ground-state energy”.

Consequently, it is also easily attainable in an abstract or ex-

tended formulationof DFT (Section X). The situation for HK2,

on the other hand, is more complicated but, as will be demon-

strated, it holds true with certain restrictions in the standard

DFT setting. It is known not to hold in paramagnetic CDFT [7]

and has, to the best of our knowledge, an unknown status in to-

tal CDFT. In Part II of this review, we will exemplify how dif-

ferent DFTs follow this structure and, maybe more importantly,

pinpoint why this route might fail.

After analyzing its basic structure, the status of the HK the-

orem within DFT is scrutinized. If only the ground state of a

system is the matter of interest, a constrained-search approach

seems to be sufficient for the formulation of DFT, and the usual

type of constrained-search functional even implicitly includes

HK1 (Section VI). Then, in order to be able to define the Kohn–

Sham scheme (Section VIII), one actually demands more then

http://arxiv.org/abs/2211.16627v1
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just the HK result, relying on differentiability of the energy

functional that in turn would imply the whole HK result (Sec-

tion VII). Consequently, in a (Moreau–Yosida) regularized set-

ting, the Kohn–Sham scheme can be rigorously formulated and

even proven to converge in finitely many dimensions [8–10],

and HK becomes just a by-product.

Although we will do our best to orient the reader within the

rich subject that is DFT, the scope of this review is limited.

We will mainly focus on, in our opinion, matters closely re-

lated to the Hohenberg–Kohn mapping and properties of the

exact functional(s). Many excellent reviews and textbooks are

available on the subject [11–16]. We also point out the very re-

cent interested reader to a rather unique round-table structured

article [17].

II. PRELIMINARIES

Density-functional theory is a tool to describe particles that

obey the laws of quantum mechanics, but that avoids their full

description by a wave function and instead switches to reduced

quantities like the one-particle density. In its basic form dis-

cussed here, the focus is solely on the ground-state properties

of the quantum system. For the configuration space of a single

particle we always choose R3 with the additional spin degree-

of-freedom for spin- 1
2

particles. The Hamiltonian comprises

three parts,

H [v] = T +W + V [v],

relating to the kinetic energy, the Coulomb repulsion, and the

external scalar potential, respectively. The internal parts will

be collected as H0 = T +W . The kinetic-energy operator is

T = − 1
2

∑N
i=1 ∇2

i in standard DFT, where atomic units are

employed. Notation-wise, we use small letters for one-body

objects. The external potential contribution V [v] is always de-

fined from a one-body potential v(r) and is of an additive form,

V [v](r) =

N
∑

i=1

v(ri),

where r = (r1, . . . , rN ). For later reference we also define

σ = (σ1, . . . , σN ) for the spin degrees-of-freedom. The full

quantum-mechanical description of a system in its ground state

is achieved by determining the eigenstate ψ0 of H [v] that has

the correct symmetry and the lowest eigenvalue E0 (ground-

state energy),

H [v]ψ0 = E0ψ0. (1)

If such a lowest eigenstate is not unique, we speak of degener-

acy, a case that will often appear in the discussion below and

that leads to several complicacies. Then a valid ground state

can also be given as a statistical mixture of the pure ground

states ψk in the form of a density matrix Γ =
∑

k λk|ψk〉〈ψk|
with λk ∈ [0, 1] and

∑

k λk = 1. It is natural to require states

of finite kinetic energy,

〈ψ|T |ψ〉 = 1

2

N
∑

i=1

∑

σ

∫

R3N

|∇iψ|2 dr < +∞,

and we define the basic set for wave functions

W = {ψ | ψ anti-symmetric, 〈ψ|T |ψ〉 < +∞}.

In cases where density matrices Γ are considered, we require

ψk ∈ W for all their components.

The one-particle density of a given ψ as the basic variable

of standard DFT is

ρψ(r1) = N
∑

σ

∫

R3(N−1)

|ψ|2 dr⊥, (2)

where we used the shorthand notation r⊥ = (r2, . . . , rN ), and

it is ρΓ(r) =
∑

k λkρψk
(r) for a given mixed state Γ. Since Γ

already includes the squared wave function from Eq. (2), the

mapping Γ 7→ ρΓ is linear. Note that whenever we talk about a

“density”, this will be assumed to be a map ρ : R3 → R≥0 that

is normalized to the particle numberN ,
∫

ρ(r) dr = N , like it

is automatically the case for ρψ and Γψ if ψ,Γ are normalized

to 1.

The density alone suffices to give an expression for the po-

tential energy contribution. The resulting integral over the

single-particle configuration space will be written like an in-

ner product 〈·, ·〉, to wit,

〈ψ|V [v]|ψ〉 =
N
∑

i=1

∑

σ

∫

R3N

v(ri)|ψ|2 dr

= N
∑

σ

∫

R3

v(r1)

∫

R3(N−1)

|ψ|2 dr⊥ dr1

=

∫

R3

v(r)ρψ(r) dr = 〈v, ρψ〉.

(3)

The notation 〈v, ρ〉 thus expresses a dual pairing between two

Lp spaces or a combination of such, one for densities and the

other one for potentials. These density and potential spaces

are the topic of the next section. Without going into technical-

ities, the space Lp(Rn), 1 ≤ p ≤ ∞, can be thought of as all

functions f(r) that have a finite Lp norm

‖f‖Lp =

(
∫

Rn

|f(r)|p dr
)1/p

<∞,

where in the case p = ∞ a supremum norm is employed in-

stead.

III. REPRESENTABILITY OF DENSITIES

The notion of “representability” is ubiquitous and concep-

tually important in DFT. It generally refers to the situation that

any density of a certain class comes from a well-defined con-

struction. Such a construction can simply be how a density

is calculated from an N -particle wave function of finite ki-

netic energy following Eq. (2) and we then call the density

“N -representable”. Or one demands that the density should be

that of an actual ground-state solution of a Schrödinger equa-

tion with some given external potential v and one calls it “v-

representable”. However, this definition of v-representability

is a bit naive since the set of permitted potentials to choose
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from was not even specified [3]. One could argue that any po-

tential that can be put into the Schrödinger equation should be

considered, but then the dual pairing 〈v, ρ〉 appearing in Eq. (3)

between the spaces of densities and potentials might be “lost”,

which has consequences for the density functionals defined

later in Section VI. So in order to talk about v-representability,

we will first have to choose a basic density space that includes

the N -representable densities.

The task of determining N -representable density classes

was originally tackled by Gilbert [18] and Harriman [19]. In

the first work, differentiability of the density was required,

whereas in the second work no further conditions on the den-

sity were assumed. Here, we rely on the version by Lieb [2,

Theorem 1.2] that gives the following class ofN -representable

densities,

N -rep =
{

ρ | ρ(r) ≥ 0, ∫ ρ dr = N,∇√
ρ ∈ L2(R3)

}

.

The benefit of the additional constraint ∇√
ρ ∈ L2 is that one

can always find a wave-function that not only gives the desired

density but also has finite kinetic energy and is thus in W (and

in addition is properly normalized). Lieb [2] further showed

that N -rep is convex and included in X = L1(R3) ∩ L3(R3).
This spaceX is the basic density space in terms of Lp spaces,

so by Eq. (3) this automatically yields a corresponding poten-

tial space that is its dual, X∗ = L3/2(R3) + L∞(R3). Any

element v ∈ X∗ can thus be written as v = v1 + v2 with

v1 ∈ L3/2(R3) and v2 ∈ L∞(R3). Potentials of Coulomb

type, v(r) = Cr−1, r = |r|, are for example elements of this

X∗ (by virtue of
∫ R

0
|v(r)|3/2r2 dr < ∞ for any finite R > 0

and |v(r)| <∞ for r > R).

The issue of “v-representability” is much more profound.

To date there is no explicit description for the set of all v-

representable densities v-rep. This issue is known as the “v-

representability problem”. We already noted that v-rep should

contain all densities that are a ground-state density for some

potential v ∈ X∗. For a glimpse of what densities have to

be included in this set we refer to the illustrative construction

of Englisch and Englisch [20]. At this point one has to dif-

ferentiate between several levels of v-representability. We de-

fined v-rep as coming from a ground state of a Schrödinger

equation with some given external potential v. Within DFT

we usually consider two settings, the full system that con-

tains a (Coulomb) interaction W and the Kohn–Sham system

that does not. So whenever we talk about v-representability,

this can be amended by the attributes “interacting” or “non-

interacting” and it is not obvious at this point if the two classes

are equal, overlap, or are even disjoint. After all, the sets are

not explicitly known. Within each class we also have the pos-

sibility of ground-state degeneracy. Then, instead of ground-

state wave functions, the more general concept of density ma-

trices comes into play. The resulting notions are then “pure-

state v-representability” and “ensemble v-representability”. In

the second case such a density ρ is then the convex combina-

tion of pure-state v-representable densities ρk that come from

the degenerate ground-states ψk of H [v], i.e., ρ =
∑

k λkρk
(λk ∈ [0, 1],

∑

k λk = 1). In the first case only densities from

pure states are allowed, but they might still individually come

from a set of degenerate ground-state wave functions. It was

demonstrated by Englisch and Englisch [20] by giving explicit

examples that there are N -representable densities that are not

ensemble v-representable (an obvious example is a density that

vanishes on a set of positive measure, however, for more elab-

orate examples we refer to Section 3.2 in Ref. 20). Levy [21]

and Lieb [2] gave arguments that an ensemble v-representable

density does not have to be pure-state v-representable. An ex-

plicit example for such a density ρ ∈ v-repens \ v-reppure was

found within a finite-lattice system of cuboctahedral symmetry

[22]. So we can symbolically note that

v-reppure $ v-repens $ N -rep $ X. (4)

In Garrigue [23] it was demonstrated that the set v-reppure
is path-connected. There are further topological relations be-

tween the sets appearing in Eq. (4) that are worth mention-

ing. Since every ρ ∈ v-repens is a convex combination ρ =
∑

k λkρk with ρk ∈ v-reppure, it holds

v-repens j conv v-reppure $ N -rep $ X,

where conv is the convex hull of a set. So while v-reppure
is definitely not convex because of the mentioned counterex-

amples, v-repens might still be (to our understanding this is

not known). Lastly, N -rep is the closure of v-repens within

L1∩L3, which means that any ρ ∈ N -rep can be approximated

arbitrarily by densities in v-repens when distance is measured

in the L1 ∩ L3-norm [2, Theorem 3.14]. With the notion of

the “subdifferential” from Section VII, this result can be estab-

lished as a direct consequence of the Brøndsted–Rockafellar

theorem [24, Corollary 2.44]. Still, potentials that lead to den-

sities that are arbitrarily close could be very far apart in the po-

tential spaceX∗. On the other hand, it has been suggested that

v-reppure is not dense inN -rep (see Conjecture 3.8 in Ref. 25).

IV. THE HOHENBERG–KOHN THEOREM

The classical HK theorem [1] states the existence of a well-

defined density-potential mapping for ground states. For a

given potential v,

E[v] = inf {〈ψ|H0 + V [v]|ψ〉 | ψ ∈ W , ‖ψ‖ = 1}
= inf {〈ψ|H0|ψ〉+ 〈v, ρψ〉 | ψ ∈ W , ‖ψ‖ = 1} (5)

is the ground-state energy by the Rayleigh–Ritz variation prin-

ciple. If a minimizer exists then ψ and ρψ are the correspond-

ing ground state and ground-state density that might not be

unique in the case of degeneracy. If a minimizer does not ex-

ist, there is still always a sequenceψi in W with ‖ψi‖ = 1 such

that 〈ψi|H0+V [v]|ψi〉 converges to E[v]. In Eq. (5), v should

be selected from a class that makes E[v] bounded below. See

Reed and Simon, Section X.2, for an extensive discussion on

such potentials [26]. A further demand on v will later be that it

guarantees a ground state that is non-zero (almost everywhere),

a property needed in the proof of the second part of the HK the-

orem (HK2) below.

In Eq. (5) the problem of solving a partial-differential equa-

tion, the stationary Schrödinger equation (1), has been trans-

formed into a variational problem: finding a minimizer for

Eq. (5). The route backwards is also feasible and any such

minimizer is also a distributional solution to the Schrödinger

equation [27, Theorem 11.8].
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We will now demonstrate that simply by virtue of the struc-

ture of E[v], where density and potential are combined in the

term 〈v, ρ〉 that makes no explicit reference to the wave func-

tion while the remaining part 〈ψ|H0|ψ〉 (or Tr(H0Γ), if den-

sity matrices are used to describe the state) does not depend on

v, we can already define a mapping from ground-state densities

to ground-state wave functions or density matrices. This, then,

is already half of a Hohenberg–Kohn theorem, that we will al-

ready give in a variant for ensemble v-representable densities.

Theorem 1 (HK1). Let Γ1 be a ground state ofH [v1] andΓ2 a

ground state ofH [v2]. If Γ1,Γ2 7→ ρ, i.e., if these states share

the same density, then Γ1 is also a ground state of H [v2] and

Γ2 is also a ground state H [v1].

Proof 1. Since we assumed the existence of ground states

Γ1,Γ2 for the potentials v1, v2, the infimum in Eq. (5), when

varied over density matrices, is actually a minimum. Further,

the potential-energy contribution 〈v, ρ〉 is fixed because ρ is

given and can be taken out of the minimum,

E[v1] = min
Γ′

1 7→ρ
Tr(H0Γ

′
1) + 〈v1, ρ〉

= Tr(H0Γ1) + 〈v1, ρ〉 (6a)

E[v2] = min
Γ′

2 7→ρ
Tr(H0Γ

′
2) + 〈v2, ρ〉

= Tr(H0Γ2) + 〈v2, ρ〉 (6b)

For completeness, we also give the same expression for a gen-

eral v in case the state is pure.

E[v] = min
ψ 7→ρ

〈ψ|H0|ψ〉+ 〈v, ρ〉 (7)

Here, the notation “Γ 7→ ρ” and “ψ 7→ ρ” means variation

over all states in W with density ρ. But the remaining minima

in Eq. (6) are then completely determined by the fixed ground-

state density and we can always choose Γ′
1 = Γ′

2 as a valid

ground state. Thus the density alone already defines the ground

state, irrespective of the potential v1 or v2.

As highlighted before, the above proof relies purely on the

specific structure of the energy function E[v] that allows the

potential part to be taken as a separate, additive contribu-

tion that depends solely on the density. This idea is due to

Lammert [28]. In contrast to this, the usual proofs of this part

of the HK theorem additionally depend on the linear struc-

ture of the density-potential pairing. Moreover, such proofs are

almost always performed indirectly (reductio ad absurdum),

with a few notable exceptions [29; 30]. For completeness, we

will give an additional, more traditional proof, yet one that is

direct and does not work by raising a contradiction.

Proof 2. By the variational principle, we have

E[v1] = Tr(H [v1]Γ1) ≤ Tr(H [v1]Γ2),

E[v2] = Tr(H [v2]Γ2) ≤ Tr(H [v2]Γ1).

Exploiting the shared density ρ, this may be written as

E[v1] = Tr(H0Γ1) + 〈v1, ρ〉
≤ Tr(H0Γ2) + 〈v1 + v2 − v2, ρ〉
= E[v2] + 〈v1 − v2, ρ〉

and analogously as

E[v2] ≤ E[v1] + 〈v2 − v1, ρ〉.

Combining the inequalities gives

E[v1]− E[v2] = 〈v1 − v2, ρ〉

and from

Tr(H [v2]Γ1) = Tr(H [v1]Γ1)− 〈v1 − v2, ρ〉

that Tr(H [v2]Γ1) = E[v1]. So Γ1 is also a ground state of

H [v2]. Likewise,Tr(H [v1]Γ2) = E[v2], soΓ2 is also a ground

state of H [v1], as required.

HK1 holds generally for mixed or pure ground states. The

same proofs remain valid when the theorem is specialized to

a statement about pure states Γi = |ψi〉〈ψi|. An immediate

but maybe surprising consequence that is often referred to as

the basis of DFT is that a ground-state density ρgs alone al-

ready determines a ground state. This result has been coined

a weak Hohenberg–Kohn theorem before [31] and it will be

used to define the HK1 functionals on v-reppure and v-repens
in Eq. (9) below. The ground state (assoiated with ρgs) is

pure if ρgs ∈ v-reppure but has to be an ensemble if ρgs ∈
v-repens \ v-reppure. Any state that is a minimizer in Eq. (6)

is really a ground state for all potentials that share the same

ground-state density. That all those potentials are in fact equal

(up to a constant) is then the statement of HK2, the second

part of the Hohenberg–Kohn theorem. It will be formulated

for eigenstates, in case of an ensemble we are free to just take

any of its components.

Theorem 2 (HK2). If two potentials share any common eigen-

state and if that eigenstate is non-zero almost everywhere, then

the potentials are equal up to a constant.

Proof. If v1, v2 share a common eigenstate ψ it holds

(H0 + V [v1])ψ = E[v1]ψ,

(H0 + V [v2])ψ = E[v2]ψ.

Subtraction of the two equations and moving all potential parts

that do not depend on r1 to the right-hand side gives

(v1(r1)− v2(r1))ψ = (E[v1]− E[v2])ψ

−
N
∑

i=2

(v1(ri)− v2(ri))ψ.
(8)

Since we assumed ψ non-zero almost everywhere, we can then

divide byψ and get v1(r1)−v2(r1) = constant (almost every-

where) because the right-hand side does not depend on r1.

Since HK2 states that sharing any common eigenstate for

two potentials means that they are equal (up to a constant),

this of course implies that the potentials share all eigenstates

because they yield exactly the same Hamiltonian (up to an

additive constant that just shifts the spectrum). The special

requirement that the wave function is non-zero (almost ev-

erywhere) is guaranteed for a large class of potentials by the

unique-continuationproperty (UCP) from sets of positive mea-

sure. This property will be further discussed in Section V. That
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zeroes (nodes) in the wave function are still allowed on a set

of measure zero is important here, since the fermionic many-

particle wave functions will exhibit nodal surfaces when parti-

cle positions agree. Outside of the continuum setting, for ex-

ample in finite-lattice systems, such a UCP is not at hand and

there are actual counterexamples to HK2, were two different

potentials share a common eigenstate [22].

The complete HK result is then obtained by combining the

two theorems above. We will assume here that the potential

is from the mentioned class that guarantees a non-zero ground

state. We should remember that such or similar restrictions will

always come into play if we want to show validity of a density-

potential mapping in other settings. The statement will be for-

mulated for densities in v-repens, so it automatically holds for

v-reppure as well.

Corollary 3 (HK). If two potentials share a common ensemble

v-representable ground-state density, then they are equal up to

a constant.

Proof. By HK1 there is a density matrix Γ =
∑

k λk|ψk〉〈ψk|
that is a ground state for both potentials. Since at least one

λk 6= 0 and since the correspondingψk is a ground-state wave

function for both Hamiltonians, the proof can be completed by

HK2.

This structuring into two separate theorems was already

used in Kohn, Savin, and Ullrich [32], just in the reverse or-

der, for a brief argument about DFT with magnetization. His-

torically, the HK theorem was first given only for the non-

degenerate case and was only later extended to include degen-

eracy [20]. The proof presented here does not suffer from any

limitation to non-degenerate ground states.

A final note is directed towards more general DFTs that will

be briefly discussed in Section X and especially in the forth-

coming Part II of this review. For other types of potentials,

like vector potentials, the statement in the HK theorem would

not necessarily be that the potentials are equal “up to a con-

stant”, but for example “up to a gauge transformation”. The

set of gauge transformations that are possible without affecting

the physical properties of the system then have to be specified

within the respective theory.

V. THE UNIQUE-CONTINUATION PROPERTY

In this section, we summarize some important results on

the unique-continuation property (UCP) of solutions to the

Schrödinger equation that is heavily used in the context of

(mathematical formulation of) HK-type theorems. The current

understanding is that the UCP cannot be avoided in a rigor-

ous proof of a HK-type theorem. The setting will be slightly

more general than before and allow for dimensionality d of the

spatial part of the single-particle configuration space Rd. The

N -particle configuration space is then Rn with n = dN .

Roughly speaking, the desired UCP result states that under

certain conditions on the potentials building up the operators

V and W and if a solution ψ to the (distributional) equation

H [v]ψ = 0 vanishes on a set of positive measure, then ψ van-

ishes everywhere. That the right hand side is zero comes as

no restriction here, since the energyE can always be absorbed

into the scalar potential v. The usual literature on the UCP

shows strong UCP, which means that ψ is assumed to vanish

to infinite order at a point r0 ∈ Rn and then the statement

follows. A function f(r) is said to vanish to infinite order at

r0 ∈ Rn if for all k ≥ 1 there is a ck such that

∫

|r−r0|<ǫ

|f(r)|2 dr < ckǫ
k

for every 0 < ǫ < 1. Now a very convenient result by

Regbaoui [33] shows that the UCP on sets of positive mea-

sure actually follows from such a strong UCP if the poten-

tials are in L
n/2
loc . This work apparently built on de Figueiredo

and Gossez [34] that again rests on an early estimate for

general Sobolev spaces by Ladyzenskaya and Ural’tzeva [35,

Lemma 3.4]. The result and its proof have been repeated in

Lammert [36]. For us that means that any strong UCP can also

be used as a UCP on sets of positive measure which is the one

needed for the proof of HK2. Yet the traditional strong UCP

results, like most notably in Jerison and Kenig [37], also give

dimension-dependent constraints on the potentials like L
n/2
loc ,

which approachesL∞ for growing particle number and is thus

too restrictive for our use where singular potentials need to be

considered. The saving idea recently came from Garrigue [30]

and was also extended to more complex systems [38; 39]: To

take the specialN -body structure of the potentials into account

and thus avoid any dependence of the constraints on the parti-

cle numberN .

Theorem 4 (Garrigue’s UCP). Suppose that the potentials are

in Lploc(R
d) with p > 2 for d = 3 and p = max(2d/3, 2) else.

If a solution ψ to the Schrödinger equation vanishes on a set of

positive measure or if it vanishes to infinite order at any point,

then ψ = 0.

The most relevant case here is obviously d = 3 which means

that the potentials need to be in Lploc(R
3) with p > 2 but ex-

actly p = 2 is not enough yet. This clearly does not fit our po-

tential space X∗ = L3/2(R3) + L∞(R3), so while this UCP

result is the best one available, it cannot be used for a HK2 the-

orem that covers the whole potential space of DFT in the for-

mulation discussed here. Lieb [2] also remarked on the UCP

in the context of the HK theorem, which “is believed to hold”

for potentials in X∗, however in a weaker form that is not suf-

ficient for the current purpose. So whenever we state that the

HK holds in standard DFT, we actually mean under the given

restrictions on the potentials.

VI. HIERARCHY OF DENSITY FUNCTIONALS

The first part of the Hohenberg–Kohn theorem, HK1, anal-

ogously holds in many different varieties of DFT (that will be

explored in Part II), simply because its validity just depends

on the form of the energy functional. HK1 then ensures that

we can map from pure-state v-representable ground-state den-

sities ρgs,pure to ground-state wave functions ψ[ρgs,pure] and

from ensemble v-representable ground-state densities ρgs,ens
to ground-state density matrices Γ[ρgs,ens]. This makes it pos-
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sible to define the HK1 functionals

FHK1,pure[ρgs] = 〈ψ[ρgs]|H0|ψ[ρgs]〉 on v-reppure (9a)

and

FHK1,ens[ρgs] = Tr(H0Γ[ρgs]) on v-repens (9b)

as the energy contribution only from the internal parts H0 of

the Hamiltonian. So it is possible to determine also the inter-

nal energy contributions for any state with density ρgs just from

ρgs. To get the total ground-state energy (5) with the help of

the functional above, it is enough to vary over v-representable

densities alone, instead of the much larger set of wave func-

tions. We can write

E[v] = inf{〈ψ|H0|ψ〉+ 〈v, ρψ〉 | ψ ∈ W , ‖ψ‖ = 1}
= inf

ρ′gs
{〈ψ[ρ′gs], H0ψ[ρ

′
gs]〉+ 〈v, ρ′gs〉}

= inf
ρ′gs

{FHK1,pure[ρ
′
gs] + 〈v, ρ′gs〉} on X∗,

(10)

or equivalently with FHK1,ens. We see already that there is a

certain ambiguity in which density functional to use in the def-

inition of E[v]. The other density functionals presented here

will all have the property that they give the correct ground-state

density when applied in Eq. (10) which makes them all admis-

sible functionals [40]. Yet, they will differ with respect to their

mathematical properties and we thus aim for the one with the

best features.

The first problem here is that the densities to be considered

in the variational problem are limited to those that are actual

ground-state densities (v-rep), because else FHK1[ρgs] is left

undefined, and we already learned in Section III that v-rep is

not an explicitly characterized set. Apart from that, HK1 just

states the existence of a map ρgs 7→ ψ or Γ without giving any

hints towards a constructive scheme. A first step to overcome

these problems is to inspect Eq. (7). This suggests the defini-

tion of another pair of density functionals that goes under the

name of “constrained search”,

FCS,pure[ρ] = inf
ψ 7→ρ

〈ψ|H0|ψ〉 on N -rep and (11a)

FCS,ens[ρ] = inf
Γ7→ρ

Tr(H0Γ) on N -rep. (11b)

The domain is now the larger, convex, and explicitly defined

N -rep in both cases. Note that the literature mostly denotes

those functionals as FCS,pure = FLL (“Levy–Lieb” [2; 41])

and FCS,ens = FDM (from “density matrix” [2]). A re-

cent, comprehensive study of these functionals can be found

in Lewin, Lieb, and Seiringer [42]. Since the density is lim-

ited to the set N -rep that guarantees finite kinetic energy, the

infima in Eq. (11) are always attained, though not necessarily

by a possible ground state (if ρ is not v-representable), and can

thus be replaced by minima in both cases [2, Theorem 3.3].

The convex combination of pure-state projections into density

matrices translates to the functionals, so thatFCS,ens is the con-

vex envelope of FCS,pure [22, Proposition 18, the article treats

DFT on a lattice but the statement and the proof of proposition

remains exactly the same in the continuum case.]. This auto-

matically ensures that FCS,ens is convex, a fact that can also be

concluded from observing that Γ 7→ ρ linear [2, Section 4.B].

Since these density functionals appear in the optimization

problem that determines the ground-state energy and density,

like in Eq. (10), convexity is of great importance because only

for a convex functional can we be sure that identifying any local

minimum also means that a global minimum has been found.

So while we now know that FCS,ens is convex, the previous

functional FHK1,pure does not even have a convex domain and

therefore cannot be convex. Levy [21] and Lieb [2] also gave

arguments for the non-convexity of FCS,pure. Since FCS,ens =
convFCS,pure, any density where FCS,ens[ρ] 6= FCS,pure[ρ]
already shows non-convexity of FCS,pure. But this is equiva-

lent to saying that ρ is ensemble v-representable while it is not

pure-state v-representable, so ρ ∈ v-repens \ v-reppure [22,

Proposition 21].

Note especially, that HK1 was necessary to defineFHK1, but

is not needed any more for the constrained-search functional

FCS. Being able to define a universal constrained-search func-

tional, one that is independent of the potential like in Eq. (11),

already fully facilitates the proof of HK1 and thus implies

this result. A potential-independent constrained-search func-

tional already implicitly includes HK1. This implication was

proven by Levy [41] along the lines of the usual HK proof

and is mentioned in textbooks like Parr and Yang [16, after

their Eq. (3.4.4)] and Tsuneda [43, after Eq. (4.5)]. Speaking

generally though, a constrained search is just as feasible if the

constrained-search functional also depends on the external po-

tential v (although it would not be universal), so indeed this

approach is more general than relying on HK1. Such a case

turns up in CDFT when the current variable is the total current

that itself depends on the vector potential (see Part II of this

review for more on this).

By employing the constrained-search functional, the

ground-state energy from Eq. (5) can now be rewritten again

as

E[v] = inf{〈ψ|H0|ψ〉+ 〈v, ρψ〉 | ψ ∈ W , ‖ψ‖ = 1}
= inf{FCS,pure[ρψ] + 〈v, ρψ〉 | ψ ∈ W , ‖ψ‖ = 1}
= inf

ρ
{FCS,pure[ρ] + 〈v, ρ〉} on X∗,

or equivalently with FCS,ens, where minimization is now per-

formed over N -rep.

When looking at non-interacting systems, the definitions of

FHK1, Eq. (9), and FCS, Eq. (11), involve only the kinetic-

energy operator T instead of H0. We will then denote these

functionals with a zero superscript, F 0
HK1, F

0
CS, etc., that in-

dicates that non-interacting systems are considered. A further

functional then comes into play that is defined like FCS,pure,

but where only Slater determinants are considered as wave

functions. We define on N -rep,

F 0
SD[ρ] = inf

φ 7→ρ
{〈φ|T |φ〉 | φ is a Slater determinant} .

The usual name in the literature is F 0
SD = TS . This functional

is of importance because it is the one used in Kohn–Sham the-

ory which will be discussed in Section VIII. In their original ar-

ticle, Kohn and Sham [44] implicitly set F 0
SD = F 0

HK1,pure for

all non-interacting pure-state v-representable densities, which

has been noted to be wrong because of possible degeneracy [2,

Section 4.C]. On the other hand, for non-degenerate ground

states φ, which by necessity are always determinants in non-

interacting systems, it holds that F 0
SD[ρφ] = F 0

CS,pure[ρφ] =

F 0
HK1,pure[ρφ], and else F 0

SD ≥ F 0
CS,pure. Nevertheless, for
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practical purposes, F 0
SD usually takes up the role of the den-

sity functional when defining the energy functional in a non-

interacting setting.

The transformation from any density functional F• for an

interacting system from above to the energy functional,

E[v] = inf
ρ
{F•[ρ] + 〈v, ρ〉} on X∗, (12)

is called the convex conjugate or Legendre–Fenchel transfor-

mation [24, Section 2.1.4]. There is also a way to reverse the

transformation and we define

F [ρ] = sup
v
{E[v]− 〈v, ρ〉} on X. (13)

This F is the famous Lieb functional [2], yet another density

functional, but this time the last one to be defined in standard

DFT. It is the biconjugateof anyF• considered before. Defined

this way, bothE andF are lower-semicontinuousandE is con-

cave while F is convex and hasF ≤ F• [24, Proposition 2.19].

Actually, as a biconjugate, F is the largest convex and lower

semicontinuous functional that fulfills F ≤ F• which makes

it the convex envelope of F•. The domain is now the whole

X = L1(R3) ∩ L3(R3), but automatically F [ρ] = ∞ for all

densities that are not in N -rep [2, Theorem 3.8], while at the

same time F [ρ] < ∞ if ρ ∈ N -rep [2, Theorem 3.9 and the

following Remark]. Let the effective domain ‘dom’ of a con-

vex functional be the elements from its domain where it is fi-

nite, then this means that domF = N -rep. Having reached

F , it does not matter any more which (admissible) functional

has been used in Eq. (12), which means the convex envelopes

of all the functionals above agree. Conversely, the Legendre–

Fenchel transformation can also be utilized to go back from F
to E [24, Theorem 2.22],

E[v] = inf
ρ
{F [ρ] + 〈v, ρ〉}. (14)

We already noted that F is convex and lower-

semicontinuous, which are both important properties if we

want to use the variational problemE[v] = infρ{F [ρ]+〈v, ρ〉}
to find a minimizing density. The same properties come into

play when defining the minimizers by differentiation in

Section VII. From the definition of F it follows directly that

E[v] ≤ F [ρ] + 〈v, ρ〉,

a version of the Young inequality. Equality in the above esti-

mate holds if the density is the ground-state density ρgs for the

potential v,

E[v] = F [ρgs] + 〈v, ρgs〉.

For FCS,pure the converse holds too: If E[v] = FCS,pure[ρ] +
〈v, ρ〉 then ρ is a ground-state density within v-reppure for

the potential v and further FHK1,pure[ρ] = FHK1,ens[ρ] =
FCS,pure[ρ] = FCS,ens[ρ] = F [ρ] [2, Theorem 3.10]. But what

about using the more general functional F for the variational

principle like in Eq. (14)? Can we find a real ground state like

this or will this variational principle yield additional artificial

solutions because it is too general? Because it is the convex

envelope of the other functionals, it cannot produce a func-

tional value below the ground-state energy, but it could pro-

duce a minimizing density where there are no v-representable

ground-state densities! The problem is solved if we allow for

ensembles of ground states: An “amusing fact” in Lieb [2,

Eq. (4.5)] gives F = FCS,ens on N -rep, which effectively

means F = FCS,ens since we can just set FCS,ens[ρ] = ∞
outside of its domainN -rep to achieve equality globally onX .

So any minimizer of F + 〈v, ·〉 is also one of FCS,ens + 〈v, ·〉
and it is further the convex combination of ground states for the

potential v. Consequently, when talking about ground states in

the context of the functional F , we will always actually mean

ensembles of possibly degenerate ground states.

When comparing the functionals on X , we just set them to

∞ whenever we are outside their domains. The following hi-

erarchy can be set up and is further laid out in Table I.

F = FCS,ens ≤ FCS,pure(≤ F 0
SD)

FHK1,ens
≤ FHK1,pure.

Here, F 0
SD appears in parentheses since it only comes into play

in the non-interacting setting where we can perform the same

type of transformations and have F 0[ρ] and E0[v].

F• convex domain convex

FHK1,pure no v-reppure no

FHK1,ens ? v-repens ?
⇓ cl

FCS,pure no
⇓ conv

N -rep yes

FCS,ens yes N -rep yes

F yes L1 ∩ L3 yes

TABLE I. The table shows the relations between the functionals dis-

cussed in Section VI. From FHK1,pure to FHK1,ens the domain gets

extended to v-repens while they agree on v-reppure. From FHK1,ens

to FCS,pure the domain gets closed (cl) within L1 ∩ L3 and from

FCS,pure toFCS,ens the functional itself gets convexified (conv) while

the domain remains the same. Finally, F is just equal to FCS,ens on

N -rep.

VII. DENSITY-POTENTIAL MAPPINGS FROM
DIFFERENTIALS

In the previous section it was stated that in order to get the

ground-state density of any system we have to find a solution

to the variational problem

E[v] = inf
ρ
{F [ρ] + 〈v, ρ〉}, (15)

now relying on the density functionalF from Eq. (13). To find

the global minimum of a convex and lower-semicontinuous

functional we can perform differentiation, i.e., demand that the

differential of F [ρ] + 〈v, ρ〉 with respect to ρ must equal zero

at the position of a ground-state density ρgs.
The suitable notion of differentiation here is the subdifferen-

tial ∂F that gives the set of all linear continuous tangent func-

tionals to a convex functional F at a given density ρ,

∂F [ρ] = {v ∈ X∗ | ∀ρ′ ∈ X : F (ρ) ≤ F (ρ′) + 〈v, ρ− ρ′〉}.

It is always well-defined, since the set ∂F [ρ] can contain many

elements, in case the functionalF has a kink (like the example

shown in Fig. 1), or can even be empty. Finally, if it contains
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ρ
ρ0

∞

FIG. 1. Example of a convex and lower-semicontinuous function with

a discontinuity at ρ0 and some elements from the subdifferential dis-

played as linear continuous tangent functionals at ρ0, represented by

dashed lines.

exactly one element, we found a unique potential yielding that

ground-state density. In any case, the variational problem (15)

has a minimizer ρgs if and only if the following condition is

fulfilled [24, Proposition 2.33],

∂(F [ρ] + 〈v, ρ〉)|ρ=ρgs ∋ 0 ⇐⇒ 〈v, ·〉 ∈ −∂F [ρgs]. (16)

In what follows, we identify v with the functional 〈v, ·〉 when-

ever the context implies a functional on density space instead

of a potential on configuration space, so Eq. (16) can be writ-

ten v ∈ −∂F [ρgs]. The potential as the subdifferential of the

density functional means that potentials v are from the dual of

the space of densities like already noted in Section III. This

general principle is not always respected in more complex ver-

sions of DFT, as we will see in Section X and discuss further

in Part II of this review.

If the set ∂F [ρgs] is non-empty then there is at least one po-

tential v ∈ X∗ that yields the given ground-state density. The

set of all densities where ∂F [ρgs] 6= ∅ is called the domain

of the subdifferential, so it follows that dom∂F = v-repens.

Note that by a theorem of convex analysis [24, Corollary 2.44],

dom ∂F is dense in domF , so v-repens is dense in N -rep, a

fact already expressed withN -rep being the closure of v-repens
in Section III.

The meaning of a valid HK theorem for a class of densi-

ties is that they can all be mapped as ground-state densities

back to a unique potential (modulo a constant) and conse-

quently −∂F [ρgs] = {v + c | c ∈ R}. By eliminating the

(physically unimportant) constant potentials from the poten-

tial space, the subdifferential of a v-representable density is

precisely −∂F [ρgs] = {v} if the HK theorem holds. If, on the

other hand, F is assumed differentiable, then the directional

derivative − δ
δρF [ρgs] = v anyway always maps to a unique

potential. One thus has a well-defined map from densities in

v-rep to the correspondingpotentials, exactly the content of the

HK theorem! But where did it enter? The HK theorem is here

a consequence from the assumption of differentiability of F [ρ]
at v-representable densities. The situation will be summarized

diagrammatically in Section XI.

Because any potential v that we determine by Eq. (16) will

also be the maximizer in the conjugate variational problem

F [ρgs] = sup
v
{E[v]− 〈v, ρgs〉},

we can just as well say the same with the superdifferential of

the concave functionalE,

∂(E[v′]− 〈v′, ρgs〉)
∣

∣

v′=v
= 0 ⇐⇒ ρgs ∈ ∂E[v]. (17)

The right hand side, ρgs ∈ ∂E[v], means to find a density

(or possibly many) that comes from a wave-function that mini-

mizes the total energy including v. It is thus a conceptual short-

cut to map from potentials to ground-state densities without

any reference to an underlying wave function or Schrödinger

equation. The situation of a set ∂E[v] with more than one el-

ement is known from degeneracies of the Hamiltonian H0 +
V [v], where different linearly independent ground states with

eventually different densities all have the same eigenvalue.

We showed in this section the important role of the general-

ized concepts of sub/superdifferentials in the context of DFT,

because indeed the functionals from Section VI can not be as-

sumed differentiable as van Leeuwen [45] has demonstrated

for the FHK1 functionals and Lammert [3] for FCS. The rea-

son for non-differentiability even of FCS is that at any ρ the

functional F [ρ + δρ] is infinite for various, arbitrarily small

shifts δρ that lead out of N -rep, even if the normalization of

the density is kept constant. This happens by infinitely increas-

ing the internal energy through tiny oscillations of the density.

A possible way to prevent that is to limit the density spaceX so

that such shifts δρ are not possible any more and Lammert [3]

actually shows this for the Sobolev space H2(R3) when ρ is

also assumed v-representable. Another way is to establish a

coarse-grained model for DFT in which F really becomes dif-

ferentiable and every density is ensemble v-representable [46].

In the following section, in accordance with the vast majority

of the literature, we will assume functional differentiability of

F and consequentlyv-representability. This strong assumption

can be justified a posteriori, as discussed later in Section IX,

when a regularization procedure is applied.

VIII. LINKING TO A REFERENCE SYSTEM: THE
KOHN–SHAM SCHEME

In Section VI it was noted that a functional might be in-

troduced for an interacting or a non-interacting system. This

means the respective Hamiltonian has the internal part T+λW
with λ ∈ {0, 1}. We will now write F 1 and F 0 to differenti-

ate clearly between those two situations. We then introduce the

difference functionalFHxc = F 1−F 0, which just corresponds

to the internal-energy difference between the interacting and

the non-interacting system and that will later be linked to the

Hartree-exchange-correlation potential vHxc. This potential

effectively compensates for the Hartree-mean-field interaction

as well as ‘exchange’ and ‘correlation’ effects. The idea be-

hind introducing this auxiliary non-interacting system is that

the energy difference between the (numerically tractable) non-

interacting system and the (numerically unfeasible) interacting

system is small and can be efficiently approximated. Since the

reference system is non-interacting, F 0
SD can be employed for

F 0 if degeneracy for the ground state does not have to be taken

into account, like it was mentioned in VI, and this switchover is

performed in most practical situations. Then the energy func-
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tional for the full system is

E1[v] = inf
ρ
{F 1[ρ] + 〈v, ρ〉}

= inf
ρ
{F 0[ρ] + FHxc[ρ] + 〈v, ρ〉}

= inf
φ
{〈φ|T |φ〉+ FHxc[ρφ] + 〈v, ρφ〉}.

In the last step the variation is changed from N -rep densi-

ties to single Slater determinants φ, the minimizer – if it ex-

ists – is then the Kohn–Sham Slater determinant. In order

to link this to a partial differential equation for the orbitals

ϕi constituting φ, the Kohn–Sham equation, variation of the

energy expression above with respect to ϕi is performed un-

der the constraint that all the ϕi stay normalized. This means

ρφ(r) =
∑N
i=1

∑

σ |ϕi(rσ)|2 always stays in N -rep, but gen-

erally the issue of non-differentiability from Section VII re-

mains. The resulting equation is a one-particle Schrödinger

equation with effective potential vs and eigenstates ϕi,

(

− 1
2
∇2 + vs(r)

)

ϕi(rσ) = εiϕi(rσ). (18)

On the other hand this approach does not lead to the effective

potential vs for the Kohn–Sham equation right away, but re-

quires the additional, computationally challenging step of ex-

tracting the effective potential from the variation of FHxc with

respect to the orbitals (OEP integral equation[47]).

To have a well defined FHxc[ρ] = F 1[ρ]−F 0[ρ], the ρmust

be both, interacting and non-interacting v-representable. Both

systems then share the same ground-state density ρ when the

different external potentials

v ∈ −∂F 1[ρ] and vs ∈ −∂F 0[ρ] (19)

are assigned to them. That the density ρ is simultaneously

interacting and non-interacting v-representable is tacitly as-

sumed here, else one of the subdifferentials above is empty.

This means that actually the v-representability problem from

Section III shows up at this point. A purported solution [48–

50] rests on an ill-founded notion of differentiability where the

functionals are extended to distributions, but with an incorrect

application of the calculus of distributions (see, e.g., Eq. (0.24)

in Gonis [48]).

The usual rationale of DFT is to assume that the potentials

from Eq. (19) exist and are unique (modulo a constant; after

all the latter is the content of the HK theorem). The differ-

ence vHxc = vs − v is then known as the Hartree-exchange-

correlation potential: what needs to be added to the fixed ex-

ternal potential v in order to simulate all interactions in an non-

interacting system. Note that such missing effects from interac-

tions do not stem exclusively from theW -term in F 1, but also

from the different kinetic energy contributions between the in-

teracting and non-interacting system. Nevertheless, the usual

understanding is that most of the kinetic energy contributions

can already be captured by a non-interacting system (with an

uncorrelated wave function) and that they thus practically can-

cel between F 1 and F 0 when we calculate

vHxc[ρ] = vs − v ∈ ∂F 1[ρ]− ∂F 0[ρ]. (20)

At this point a problematic discrepancy is introduced, since

the subdifferential is not linear and thus vHxc and ∂FHxc need

not match. If vHxc cannot be determined as ∂FHxc we are left

with the necessity of individually solving the inverse problems

ρ 7→ v and ρ 7→ vs in Eq. (20) for both systems, interacting

and non-interacting. In practice this means one cannot benefit

from finding good approximations to FHxc which are the most

important elements of applied DFT.

A possible circumvention lies in a conceptual shift from de-

scribing a system in terms of energies to forces. The ground

state is then characterized by a certain force-balance equation

that can be equally found in non-equilibrium settings, just with

an additional dynamical term [51; 52]. At a density that is si-

multaneously interacting and non-interacting v-representable

and where the wave function has a sufficient regularity, the

force-balance equation can be employed to derive vHxc as the

solution of a Poisson equation instead of a functional deriva-

tive [53]. An alternative derivation for this was already given

earlier using line integrals describing the work it takes to move

an electron from infinity against the force field of the exchange-

correlation hole charge [54; 55].

Yet, we will proceed here for the sake of argument by assum-

ing differentiability for now. Since the functional derivative δ
δρ

is linear and it holds

vHxc[ρ] = vs − v = − δ

δρ
F 0[ρ] +

δ

δρ
F 1[ρ]

=
δ

δρ
(F 1[ρ]− F 0[ρ]) =

δ

δρ
FHxc[ρ].

(21)

Also, several important properties that the Hxc potential needs

to have are automatically fulfilled when they are functional

derivatives [56], which is especially relevant for functional ap-

proximations to vHxc.

The KS scheme is now introduced in order to find an un-

known ground-state density ρgs of an interacting system by

starting from an initial guess ρ0 and by using vHxc (in prac-

tice a suitable approximation to it) as the connection between

the interacting system and a non-interacting reference system.

To this end, rewrite Eq. (19) with assumed differentiability as
δ
δρF

1[ρgs] + v = 0 and δ
δρF

0[ρgs] + vs = 0 and set the two

equations equal,

δ

δρ
F 1[ρgs] + v =

δ

δρ
F 0[ρgs] + vs.

Now, apart from the fixed external potential v of the interacting

system, all variables in this equation still remain generally un-

known: the effective potential of the non-interacting system vs
and, especially, the density ρ of both systems that we would like

to determine. The trick lies in introducing sequencesρi → ρgs,
vi → vs and define an update rule,

vi+1 = v +
δ

δρ
F 1[ρi]−

δ

δρ
F 0[ρi] = v + vHxc[ρi]. (22)

We see immediately that if ρi has converged to the correct

ground-state density ρgs of the interacting system, then v +
δ
δρF

1[ρi] = 0 and the remaining equation tells us that indeed

vi+1 is the potential that gives the same density ρgs in the non-

interacting system. The next step after Eq. (22) in the Kohn–

Sham iteration lies in determining the density ρi+1 that comes

from vi+1 in the non-interacting system (which is compara-

bly easy achieved by solving the corresponding Kohn–Sham
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equation (18)) and then iterate. Convergence problems are

a big issue within this iteration scheme and have been dealt

with by either damping the iteration step from ρi → ρi+1 to

ρi → ρi + µ(ρi+1 − ρi), µ ∈ (0, 1), or mixing several of

the previous steps {ρi} into the result ρi+1 [57–59]. Guaran-

teed convergence has been studied and proven for the finite-

lattice case [8–10] by combining an optimal damping step and

a regularization technique [4; 10], the latter truly making F
differentiable and E a strictly concave functional. This solves

the problem of defining vHxc in Eq. (21) and yields a curva-

ture bound on F that is needed for guaranteed convergence.

The regularization method is briefly explained in Section IX

below. For the Kohn–Sham iteration in continuum DFT the

convergence is still an open problem, a direct generalization of

the finite-lattice case has been found to be insufficient [60].

IX. DENSITY-POTENTIAL MIXING AND REGULARIZED
DFT

The full HK theorem guarantees a unique inversion from

densities to potentials, but the whole discussion, especially re-

garding the necessary conditions for showing HK2, probably

already made us a little bit sceptical about its validity in dif-

ferent settings. We will thus introduce a method that always

guarantees a bijective mapping, not between densities and po-

tentials, but between quasidensities (called pseudo-densities in

the original work on regularization [4]) and potentials. The

basic idea is simple: If for some reason we cannot guarantee

a unique (injective) mapping from potentials to ground-state

densities v 7→ ρ[v], meaning that different v 6= v′ map to

the same ρ[v] = ρ[v′], then let us try it for v 7→ ρε[v] =
ρ[v] − εv, where at least in the previous example we would

have ρε[v] 6= ρε[v
′] for sure. One could argue that this could

just as easily introduce new problems for injectivity, like hav-

ing v 6= v′ such that ρε[v] = ρε[v
′], but we will show in the

following that this cannot be the case for the functionals con-

sidered here. Remember that the mapping v 7→ ρ[v] can be

defined by the superdifferential of E, ρ[v] = ∂E[v], as ex-

plained in Eq. (17). So what is the corresponding functional

Eε such that ρε[v] = ρ[v] − εv = ∂Eε[v]? The superdiffer-

ential retains the linear nature of a derivative if only concave

functionals are added, so we can look for a convex functional

φ such that ∂(−φ)[v] = −∂φ[v] = −v. In a general space,

such a question proves hard [60], but it is easy to see that in the

usual space L2 of square-integrable functions the norm square

gives exactly what we need, φ[v] = 1
2
‖v‖2 = 1

2
〈v, v〉. In any

case, we have established Eε = E − εφ and ρε[v] = ∂Eε[v]
with such a convexφ. But in many cases, not only for the men-

tionedL2 space, the functionalφ is not only convex, but strictly

convex, meaning that any local minimizer is not only global

but even unique. But this feature transfers to Eε if −εφ, as a

strictly concave functional, is added toE. Consequently,Eε is

also strictly concave and any maximizing potential in

Fε[x] = sup
v
{Eε[v]− 〈v, x〉} (23)

is necessarily unique (not just up to a constant). This means

we can always uniquely map v 7→ x = ρ[v] − εv and back.

We wrote x now to make clear that this is a quasidensity, a

mixture between a density and its associated potential. As such

it is neither necessarily normalized nor positive, just a general

element of the density space, x ∈ X . By what we learned

in Section VII, the quasidensity-potential mapping can also be

directly defined by −∂Fε[x] = {v} for all x without any “v-

representability” restriction for x. Consequently, the mapping

is defined for all x in the density space X and thus bijective.

The whole maneuver of passing from F to Fε corresponds

to a regularization strategy called Moreau–Yosida regulariza-

tion [4; 10] by which not only the concave E transforms into

a strictly concave Eε, but also the Fε defined by Eq. (23) is

finally differentiable if the spacesX,X∗ have some additional

properties [5, Theorem 9]. The only problem is that this re-

quires the space X to be reflexive, which it is not in our cur-

rent formulation as introduced in Section III, since it includes

the non-reflexive L1 in its definition. So a different choice for

the basic spaces, like X = L2 on a bounded domain [4] or

X = L3 as a larger alternative to our space[5] has to be taken.

This section demonstrated how such a regularization that fa-

cilitates a unique (quasi)density-potentialmapping can be used

to fully circumvent any reference to the HK theorem. But to

avoid confusion we will not say that in a regularized setting

the HK theorem “holds” even though a unique and well-defined

(quasi)density-potential mapping exists.

X. ABSTRACT DENSITY-POTENTIAL MAPPING

The presented form of HK1 allows for an abstraction and

thereby for generalizations. Therein, the density is generalized

to any system-inherent quantity that seems suitable to describe

other system parameters that we are interested in. This could

be the density together with the spin density, a current-quantity

etc. On the other side, we select a generalized form of the po-

tential that enters the Hamiltonian and that is able to steer the

“density-quantity”by coupling to it. Such a frameworkwas de-

veloped in Laestadius et al. [5], building on Banach spaces and

their duals for density and potential quantities. This enables us

to employ the regularization technique from Section IX to ob-

tain a well-defined Kohn–Sham iteration scheme.

In order to be more concrete, letx be the density quantity de-

scribing a state that will in general include many components,

like different densities, currents etc., andv the collection of ex-

ternal potentials acting on them. At this point we do not even

assume that x and v have the same number or type of com-

ponents like a dual structure between densities and potentials

would impose. Instead of a linear pairing 〈v,x〉 for the cou-

pling to the external potential we can introduce an arbitrary

functional f [v,x]. Then the only necessary condition left for

an abstract HK1 is that the ground-state energy expression has

the form

F̃ [x] = inf
ψ 7→x

{〈ψ|H0|ψ〉} ,

E[v] = inf
x

{F̃ [x] + f [v,x]}. (24)

Since F̃ [x] is independent of v, the critical argument in the

first proof of HK1 still holds and thus two potentials that share

a common x in the ground state will also share a common

ground-state wave function or density matrix. Consequently,

HK1 is secured in any such formulation of DFT, while the sit-

uation for HK2 quite generally is more problematic. Even if
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the coupling between v and x that enters the energy functional

in Eq. (24) is linear like in f [v,x] = 〈v,x〉, the critical step

(8) in the proof of HK2 will involve more degrees-of-freedom

on the potential side and the argument may fail.

In the literature, the presented situation with linear cou-

pling corresponds to what Schönhammer, Gunnarsson, and

Noack [61] call {a}-functional theory. Similarly, Higuchi and

Higuchi [62; 63] allow for a more general choice of basic vari-

ables in DFT next to the usual density. This allows to extend

DFT and the Kohn–Sham scheme systematically to predict fur-

ther system parameters, if good approximative functionals can

be found.

A first example would be the spin-resolved functional that

has the usual one-particle density ρ = ρ↑ + ρ↓ and the spin-

density ρ↑−ρ↓ as basic variables, x = (ρ↑+ρ↓, ρ↑−ρ↓). An

alternative possible choice would clearly be x = (ρ↑, ρ↓) [16,

Section 8.1]. The energy functional is E[v] = infx{F̃ [x] +
〈v, ρ〉}, with v just the usual scalar potential that couples to

the one-particle density ρ. The involved spaces for densities

and potentials are not dual in this example, since they involve

a different number of components. But by choosing anFHxc[x]
that depends on the spin-resolved density, the Hxc-potential as

its derivative (and with it the effective potential of the Kohn–

Sham system) must be from the dual space of x and thus in-

clude components that act on the different spin-components

individually.

A second example is CDFT and its variants that will be thor-

oughly discussed in Part II of this review. The paramagnetic

current density of a given state ψ ∈ W is defined as

j
p
ψ(r1) = N

∑

σ

∫

R3(N−1)

Im {ψ∗∇1ψ} dr⊥.

Then the amended density quantity is x = (ρ, jp) which cou-

ples linearly to v = (v + 1
2
|A|2,A) [64]. Since by this

the potential-energy contribution amounts exactly to the lin-

ear pairing f [v,x] = 〈v,x〉 that allows to define a potential-

independent constrained-search functional, HK1 holds.

This means one can continue along the lines started in this

work and try to generalize many concepts and results from

above to such extended DFTs. This includes the definition of

representable densities (Section III), different functionals (Sec-

tion VI), functional differentiability (Section VII), setting up a

Kohn–Sham scheme (Section VIII), as well as regularisation

(Section IX), since also there the existence of a full HK theo-

rem was hardly ever assumed.

XI. SUMMARY

We will give a brief summary of the structure of the density-

potential mapping and its relation to the Hohenberg–Kohn the-

orem. Following the last section on abstract DFTs, at least the

HK1 result does not only hold for standard DFT that maps one-

particle densities to scalar potentials, but they hold for all vari-

ants of DFTs that offer the required structures. This will be

especially useful with foresight towards CDFT, the topic of the

second part of this review.

In standard DFT, with a setting that yields the unique-

continuation property that in turn prevents the ground-state

density from being zero on a set of non-zero measure (Sec-

tion V) and due to the simple relation (8) in the proof of HK2,

a full HK result can be established. In any higher DFT this

proof strategy potentially fails. The status of HK1, on the other

hand, is much less critical, since this result holds automatically

whenever a potential-independent (“universal”) constrained-

search functional can be set up. But also in cases where the

constrained-search functional depends on the external poten-

tial, a valid statement like in the HK theorem, that two poten-

tials that share a common ground-state density are equal up to

gauge changes, is still possible in general. The more general

way how to think and talk about a HK result is by calling it

a “unique density-potential mapping” and we explained how

such a mapping can be established as the subdifferential of the

density functional F at v-representable densities. If the po-

tentials in the resulting subdifferential are equal up to a gauge

transformation, then this is just the HK result again. Assuming

full differentiability of F implies a one-element subdifferen-

tial, so there would not even be any room for gauge changes,

and a unique density-potential mapping would be the result

once more. This property of differentiability of the density

functional F is desirable also in the context of Kohn–Sham

theory in order to be able to link the functional FHxc to the

Hxc potential like in Eq. (21).

But since differentiability is not a property of the usual

DFTs, a regularization strategy was devised and briefly ex-

plained in Section IX. This yields a unique quasidensity-

potential mapping, where quasidensities are actually mixtures

between ground-state densities and their potentials. The mix-

ing parameter ε could be set to zero to retrieve the unregular-

ized theory together with the problem of non-differentiability.

The whole structure is laid out diagrammatically in Figure 2.

XII. OUTLOOK

It is interesting to note which useful structures of DFT carry

over to “higher” theories, and in Part II we will discuss density-

functional theory for systems involving magnetic fields. While

one of its flavours, paramagnetic CDFT, already briefly dis-

cussed in Section X, still allows for a constrained-search func-

tional (HK1), the realization of a full density-potential map-

ping is highly problematic. For this reason, in the classical

formulation of paramagnetic CDFT [65] the HK2 result that

different potentials lead to different ground states was just tac-

itly assumed with the words: “Letψ andψ′ be the two different

ground states corresponding to the two sets of fields [(v,A)
and (v′,A′)].” Later, Capelle and Vignale [7] even found

counterexamples to HK2 which shows that a density-potential

mapping cannot be constructed in paramagnetic CDFT. But

this clearly does not mean that in different versions of CDFT

the density-potential mapping is impossible to achieve in gen-

eral. A formulation utilizing the total current will be studied as

well, but here the constrained-search functional would depend

on A and thus HK1 is not available in the fashion as it was pre-

sented here. So while for paramagnetic CDFT the HK2 fails,

for total (physical) CDFT already HK1 does not hold. Over-

all, the existence of a well-defined density-potential mapping

in CDFT is still an open issue that will be considered in the

second part of this review.
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F differentiable Fε from

at ρ ∈ v-rep regularization

⇓ ⇓

−∂F [ρ] = {v + c}
⇐⇒ HK ⇐⇒

unique density-
=⇒

unique quasidensity-

at ρ ∈ v-rep potential mapping potential mapping

m

︷ ︸︸ ︷

HK1 HK2

⇑ ⇑

potential-independent UCP result

constrained-search fctl.

FIG. 2. Logical implications between the different statements relating to a “unique density-potential mapping” and the Hohenberg–Kohn theorem

in standard DFT.
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