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Abstract 

Social isolation has been suggested to increase the risk to develop cognitive decline. However, 

our knowledge on causality and neurobiological underpinnings is still limited. In this 

preregistered analysis, we tested the impact of social isolation on central features of brain and 

cognitive aging using a longitudinal population-based magnetic resonance imaging (MRI) 

study. Assaying 1335 cognitively healthy participants (50-80 years old, 659 women) at baseline 

and 895 participants after ~6 years follow-up, we found baseline social isolation and change in 

social isolation to be associated with smaller volumes of the hippocampus, reduced cortical 

thickness and poorer cognitive functions. Combining advanced neuroimaging outcomes with 

prevalent lifestyle characteristics from a well-characterized population of middle- to older aged 

adults, we provide evidence that social isolation contributes to human brain atrophy and 

cognitive decline. Within-subject effects of social isolation were similar to between-subject 

effects, indicating an opportunity to reduce dementia risk by promoting social networks. 
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Introduction 

Over 50 million humans suffer from dementia today. In just 20 years this number will likely 

double. Already now, dementia’s global annual costs exceed one trillion US$(Prince et al., 

2015) and its detrimental effects on the lives of the afflicted makes it a major contributor to 

the world’s burden of disease(Abbafati et al., 2020). 

Research on pharmacological interventions targeting dementia pathogenesis have not yielded 

any result with a clear clinical benefit yet(Knopman et al., 2021) and available drugs targeting 

cognitive symptoms offer at most a minor alleviation(Knight et al., 2018). Henceforth, 

prevention is of cardinal importance and potentially modifiable risk factors are our most 

promising target(Livingston et al., 2020).  

Systematic reviews and meta-analyses have concluded that social isolation, the objective lack 

of social contact, is such a risk factor for dementia (Kuiper et al., 2015; Penninkilampi et al., 

2018) and its main feature cognitive decline(Evans et al., 2019; Kuiper et al., 2016). 

Assuming causal relationships, Livingston et al. calculated population attributable fractions 

for risk factors for dementia and concluded that 3.5% of cases could be attributed to social 

isolation. This is almost as many as to obesity, hypertension and diabetes 

combined(Livingston et al., 2020).  

Risk factors of later dementia development often affect the structural brain changes dementia 

is characterized by: vascular degeneration, amyloid plaques, tau fibrillary tangles, neural 

degeneration and grey matter loss. Neuroimaging correlates of these brain changes have been 

observed multiple years prior to symptom onset in autosomal dominant dementia(Gordon et 

al., 2018) and can already be detected in cognitively healthy persons using 

neuroimaging(Ewers et al., 2011; Clifford R Jr Jack et al., 2013). Thus, brain magnetic 

resonance imaging (MRI) can be a potent dementia-risk indicator(Wang et al., 2019), might 

offer pivotal guidance to identify patients for intensive dementia prevention(Ten Kate et al., 

2018) and serve as secondary outcome for intervention trials(Stephen et al., 2019). Still, the 

link between brain structure and social connection, the umbrella term encompassing social 

isolation, social support and loneliness, has not received much attention(Wassenaar et al., 

2019). Few studies have linked low social connection to an elevated “brain age” gap 

estimate(de Lange et al., 2021), changes in microstructural(Molesworth et al., 2014; Spreng et 

al., 2020; Tian et al., 2014) and volumetric measures in brain regions including the 

hippocampus and the prefrontal cortex(Blumen & Verghese, 2019; Cotton et al., 2020; Düzel 
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et al., 2019; James et al., 2012; Schurz et al., 2021; Shen et al., 2022; Spreng et al., 2020; 

Taebi et al., 2020), however these cross-sectional designs render conclusions about causality 

difficult. In a longitudinal study using a small sample of 70 participants (37 at follow-up) > 80 

years old, microstructural deteriorations and a larger total white matter hyperintensity volume 

correlated with decreases in predominantly social activities (Köhncke et al., 2016). 

Furthermore, it suggested that white matter changes mediated the positive association 

between social activities and perceptual speed (Köhncke et al., 2016). Mortimer et al. 

conducted a small RCT with older adults and found increased total brain volumes and 

cognitive function in participants after a social interaction intervention compared to a non-

intervention control group(Mortimer et al., 2012). 

Taken together, the current evidence suggests social isolation to have an adverse effect on 

brain health. Still, data from longitudinal studies are required to distinguish between and 

within-participant effects on brain structure and cognitive function and to gain insights into 

temporal dynamics and causal relationships. Furthermore, to pointedly leverage the power of 

such datasets for an improved understanding of the effect of social isolation, conceptual 

clarity regarding the dimensions of social connection is pivotal but still lacking.  

Moreover, no solid evidence on the mechanistic underpinnings of the relationship between 

social isolation and accelerated brain ageing exists. Several mutually non-exclusive, partly 

overlapping theories are used to explain the beneficial effects of social interaction. (Hultsch et 

al., 1999; Kawachi & Berkman, 2001). Amongst them, the stress-buffering hypothesis puts 

forward the beneficial effects of social support in strenuous times on mental, cognitive, and 

immunological health(Kawachi & Berkman, 2001), yet this mediating effect has not been 

explored regarding brain measures. 

Longitudinal population-based neuroimaging studies now offer reliable sample sizes to gain 

knowledge on effect sizes and to disentangle correlation from causation to better understand 

the impact of social isolation on brain and cognitive aging. In this pre-registered analysis, we 

aimed to determine the relationship between social isolation, measured using the Lubben 

social network scale (LSNS-6,(Lubben et al., 2006)), and brain structure and cognitive 

functions, measured using freesurfer segmentations on advanced high-resolution MRI at 3 

Tesla and neuropsychological testings, in a large well-characterized longitudinal sample of 

mid- to late-life individuals (n > 1900) from the Health Study of the Leipzig Research Centre 

for Civilization Diseases (LIFE)(Engel et al., 2022). 
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To this end, we applied linear mixed effects modeling and structural equation modelling to 

predict volume of the hippocampus, a focal point of age-related atrophy and Alzheimer’s 

disease pathology (Rodriguez et al., 2020), by baseline social isolation and change in social 

isolation over time. Analogously, we modeled memory performance, processing speed, and 

executive function, as well as whole-brain vertex-wise cortical thickness. Significance was 

evaluated based on frequentist p-values and Bayes factors, and we adjusted for control 

variables including age in all models. Details on MRI preprocessing and pre-defined statistical 

analyses were preregistered at https://osf.io/8h5v3/.  

We hypothesized that both baseline and change in social isolation would correlate with 

smaller hippocampal volume, cognitive functions (memory, processing speed, executive 

functions) and cortical thickness. Additionally, we hypothesized interaction effects of baseline 

social isolation with change in age in the same direction. Moreover, we aimed to test a 

mediating role of chronic stress as well as hippocampal volume on cognition in these models 

and explored possible gender differences in stratified analyses.  

Results 

We included all individuals equal or over the age of 50 with available neuroimaging of LIFE 

(Engel et al., 2022), due to the accelerated volume shrinkage starting at about 50 years of age 

in the hippocampus (Fjell et al., 2013). To avoid reverse causation, we further excluded 

cognitive impairment or prior brain pathology such as history of stroke, neurodegenerative 

disease or brain tumor. In total, we analysed 1335 participants at baseline and 895 participants 

at follow-up with a mean age of 67 and 73 years, respectively, thereof 49% and 52% women, 

respectively and a ~6 years mean change in age at follow-up. For various sensitivity analyses, 

we reincluded participants that did not meet our preregistered inclusion criteria from the entire 

sample of 1992 participants at baseline and 1409 at follow-up. The sample displayed a high 

prevalence of cardiovascular risk factors, with 60% hypertension and < 20% diabetes, and 11-

13% had no tertiary education (Table 1). 

Individuals exhibited LSNS scores ranging across the whole spectrum, with an average score 

of 16 and 19.7% scoring below the accepted threshold of 12, indicating elevated risk of social 

isolation, similar to other populations (Lubben et al., 2006). Note that for further analyses, 

LSNS values were calculated as 30 – LSNS to make larger values indicate greater social 

isolation and coefficients should thus be interpreted accordingly. Hippocampus volumes 

derived from T1-weighted high-resolution anatomical MRI scans at 3 T (Reuter et al., 
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2012)showed shrinkage with higher age of about -0.75% per year (Fig. 1, left panel), similar 

to previous estimates (Fjell et al., 2013). To test the effects of social isolation on hippocampal 

volume, we conducted hierarchical linear mixed effects models adjusting for confounding 

effects of age, gender and random effects of the individual in a first model (model 1), and 

additionally for cardiovascular risk factors in a second model (model 2). We differentiated 

within and between subject effects(van de Pol & Wright, 2009) of social isolation and 

investigated the interaction effect of baseline LSNS and change in age to test whether 

participants that are socially more isolated at baseline experienced more pronounced age-

related changes. Please see osf.io/8h5v3/and Methods for details.  

Table 1.  

Variable BL, N = 1,992 FU, N = 1,409 

gender (female) 921 (46%) 656 (47%) 

baseline age (years) 67 (7) | 50 | 82 | 0 68 (7) | 50 | 84 | 0 

change in age (years) 0.00 (0.00) | 0.00 | 0.00 | 0 5.89 (1.97) | 0.00 | 9.50 | 15 

baseline LSNS 14.1 (5.2) | 0.0 | 30.0 | 181 13.7 (5.1) | 0.0 | 30.0 | 20 

change in LSNS 0.00 (0.00) | 0.00 | 0.00 | 0 0.38 (4.37) | -21.00 | 18.00 | 115 

HCV (mm³) 3,671 (411) | 2,022 | 4,871 | 83 3,487 (430) | 1,913 | 4,579 | 665 

BMI (kg/m²) 27.9 (4.2) | 16.8 | 46.8 | 0 27.7 (4.1) | 18.1 | 46.5 | 0 

hypertension 1,218 (61%) 830 (59%) 

diabetes 367 (18%) 239 (17%) 

education 255 (13%) 151 (11%) 

CESD 10 (6) | 0 | 48 | 104 10 (6) | 0 | 48 | 62 

memory (SD) 0.03 (0.97) | -8.79 | 1.70 | 84 -0.06 (1.04) | -5.84 | 1.64 | 315 

processing speed (SD) 0.09 (0.92) | -7.80 | 1.73 | 12 -0.14 (1.10) | -7.80 | 1.61 | 214 

executive functions (SD) 0.13 (0.95) | -4.59 | 3.26 | 11 -0.21 (1.04) | -4.43 | 3.29 | 210 

TICS 58 (27) | 0 | 166 | 1,480 56 (27) | 0 | 146 | 825 

pandemic 0 (0%) 412 (31%) 

Descriptive Statistics. Values for categorical variables: n (%) yes; Values for continuous variables: Mean (SD) | 

minimum | maximum | n missing 

HCV, right-left average hippocampal volume; BMI, body-mass-index; LSNS, Lubben Social Network Scale, 

calculated as 30 – LSNS to make larger values indicate greater social isolation; TICS, Trierer Inventar zum 

chroischen Stress; CESD, Center for Epidemiological Studies Depression Scale; SD, standard deviation; 

education, no tertiary education 

 

Social isolation and hippocampal volume 

Accordingly, we found that both, stronger baseline social isolation (values for models 1/2: β = 

−5.5/−5.7 mm3/point on the LSNS (pt), FDR-corrected q-value(q) = 0. 0044/0.0075) and 
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increases in social isolation (β = −4.9/−4.9 mm3/pt, q = 0. 0095/0.0174) significantly predict 

smaller hippocampal volumes independent of confounders (Table 2, Figs 1-3). Furthermore, 

the interaction of baseline social isolation and change in age indicated that stronger baseline 

social isolation led to smaller hippocampal volumes with increasing follow-up time (β = 

−0.56/−0.54 mm3/(pt*year), q = 0.045/0.076). Significance of these findings are further 

underlined by Bayes factors of 15 to 20 for baseline social isolation and of around 3 for 

change in social isolation. The effect size of one point on the LSNS is equivalent to a 2.5-

month difference in baseline age. 

Table 2  

dv Model Predictor Estimate 
95% 

CI 
p-value FDR BF 

Hippo- 

campal 

Volume 

1 

LSNS_base -5.5 
-9.1, -

1.9 
0.0015** 0.0044** 14.61** 

LSNS_change -4.9 
-8.5, -

1.3 
0.0039** 0.0095** 2.9 

age_base -25.8 
-28.6, -

22.9 
   

age_change -27.4 
-29.7, -

25.1 
   

2 

LSNS_base -5.7 
-9.5, -

1.8 
0.0019** 0.0075** 19.51** 

LSNS_change -4.9 
-8.7, -

1.1 
0.0058** 0.0174* 3.31* 

age_base -23.9 
-26.9, -

20.9 
   

age_change -27.7 
-30.1, -

25.3 
   

Adjusted regression coefficients and measures of significance for the effect of social isolation on 

hippocampal volume. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, BF>100; dv, 

dependent variable; CI, confidence interval; FDR, q-values after FDR-correction; BF, Bayes Factor in favour of 

alternative hypothesis; LSNS_base, baseline Lubben Social Network Score; LSNS_change, change in Lubben 

Social Network Score; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

The unit of effect sizes is mm³/point on the LSNS. 

Social isolation significantly predicts hippocampal volume after multiplicity control. Bayes Factors provide 

strong evidence in favour of the alternative hypotheses for baseline social isolation and anecdotal to moderate 

evidence for change in social isolation. The effect size of one point on the  LSNS is equivalent to a baseline age 

difference of around two and a half months. 
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Social Isolation and cognitive functions 

In analogous linear mixed effects models, we tested the effects of social isolation on 

cognition, measured using domain-specific composite scores based on z-scored results of the 

trail-making test (TMT A and B) and the CERAD-plus test battery (CERAD - Consortium to 

Establish a Registry for Alzheimer's Disease, RRID:SCR_003016) assessed under 

standardized conditions(Beyer et al., 2017). Overall, stronger baseline social isolation and to a 

lesser extent increases in social isolation, linked to worse cognitive performance (Table 3, Fig 

1). Specifically, stronger social isolation at baseline significantly predicted lower executive 

functions (β = −0.026/−0.015 SD/pt, q = 1.0e-07/0.0046) and lower processing speed (β = 

−0.018/−0.018 SD/pt, q= 1.0e-05/1.2e-04). The link to lower memory (β = −0.014/−0.008 

SD/pt, q = 0.002/0. 0775) was strong in model 1 but did not survive FDR-correction when 

controlling for additional covariates. Increases in social isolation over time significantly 

predicted lower memory in model 1 (β = −0.013/−0.009 SD/pt, q = 0.045/0.157) and lower 

processing speed in model 2 before FDR correction (β = −0.008/−0.012 SD/pt, q = 

0.163/0.076) but not executive functions (β = 0.003/0.006 SD/pt, q = 0.787/0.856). Very high 

Bayes Factors corroborate and substantiate the evidence for the negative effect of baseline 

social isolation on cognitive functions. Figs. 2-3 allow comparisons of these effects with other 

predictors for the different dependent variables.  

We did not observe interaction effects of social isolation on cognitive performance with age. 

Tables S3-5 provide a comprehensive summary of all LMEs and predictors including 

covariates.  
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Table 3 

 

dv Model Predictor 
Esti-

mate 
95% CI p-value FDR BF 

Executive 

Functions 

1 

LSNS_base -0.026 -0.035, -0.017 8.4e-09**** 1.0e-07**** 1.5e+06**** 

LSNS_change 0.003 -0.011, 0.018 0.6787 0.787 0.08 

age_base -0.020 -0.027, -0.013    

age_change -0.053 -0.063, -0.042    

2 

LSNS_base -0.015 -0.025, -0.006 8e-04**** 0.0046** 43.65*** 

LSNS_change 0.006 -0.009, 0.021 0.7842 0.8555 0.07 

age_base -0.014 -0.022, -0.007    

age_change -0.054 -0.065, -0.043    

Memory 

1 

LSNS_base -0.014 -0.022, -0.006 5e-04**** 0.002** 49.05*** 

LSNS_change -0.013 -0.026, 0 0.0262* 0.0449* 1.12 

age_base -0.036 -0.042, -0.029    

age_change -0.018 -0.027, -0.009    

2 

LSNS_base -0.008 -0.016, 0.001 0.0452* 0.0775 1.25 

LSNS_change -0.009 -0.023, 0.005 0.1046 0.1569 0.48 

age_base -0.033 -0.04, -0.026    

age_change -0.017 -0.027, -0.008    

Processing 

Speed 

1 

LSNS_base -0.018 -0.026, -0.011 1.7e-06**** 1.0e-05**** 9.4e+03**** 

LSNS_change -0.008 -0.021, 0.005 0.1087 0.163 0.39 

age_base -0.038 -0.044, -0.032    

age_change -0.033 -0.043, -0.024    

2 

LSNS_base -0.018 -0.026, -0.01 9.6e-06**** 1e-04**** 2.5e+03**** 

LSNS_change -0.012 -0.025, 0.001 0.038* 0.076 1.33 

age_base -0.036 -0.042, -0.029    

age_change -0.031 -0.041, -0.022    

 

Adjusted regression coefficients and measures of significance for the effect of social isolation on cognitive 

functions. * p<0.05, BF>3;  ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, BF>100; dv, dependent 

variable; CI, confidence interval; FDR, q-values after FDR-correction; BF, Bayes Factor in favour of alternative 

hypothesis; LSNS_base, baseline Lubben Social Network Score; LSNS_change, change in Lubben Social 

Network Score; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

The unit of effect sizes is standard deviation/point on the LSNS 
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Baseline social isolation significantly predicts cognitive functions after FDR-correction and BFs provide very 

strong to decisive evidence in favour of the alternative hypotheses. Only for model 2 of memory evidence is 

weak. No association of change in social isolation with executive functions is detected and evidence for 

associations with memory and processing speed are limited. 
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Figure 1 

Scatterplots with regression lines and 95% confidence intervals for model 1. 

 
Asterisks show frequentist levels of significance. The 1st and 2nd line show values before and after 

FDR, respectively. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. 

Pie charts show bayesian relative evidences. The green and black arc lengths represent the evidence in 

favour of the alternative and the null hypothesis, repectively. 
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Figure 2 

 
Forest plot of predictors’ effect sizes in model 1. For the gender variable and for the education 

variable being women and having at least a tertiary degree were coded as 0, respectively. 

Betas were standardized by the standard deviations of the dependent and independent variable. 

LSNS_base, baseline Lubben Social Network Scale; age_base, baseline age; LSNS_change, change in 

Lubben Social Network Scale; age_change, change in age. 

 

 

Figure 3

 

Forest plot of predictors’ effect sizes in model 2. For the gender variable and for the education 

variable being women and having at least a tertiary degree were coded as 0, respectively. 

Betas were standardized by the standard deviations of the dependent and independent variable. 

LSNS_base, baseline Lubben Social Network Scale; age_base, baseline age; LSNS_change, change in 

Lubben Social Network Scale; age_change, change in age. 
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Social isolation and cortical thickness 

To explore whether social isolation affects regional cortical thickness, we conducted whole-

brain vertex-wise linear mixed effects analyses on Freesurfer-derived 3D cortical 

maps(Reuter et al., 2012). In model 1, we found a total of four clusters of significantly 

decreased cortical thickness associated with stronger baseline social isolation after FDR 

correction with an α-level of 5% (Fig 4). The clusters were located in the left precuneus and 

right supramarginal gyrus, superior temporal gyrus and cuneus. Increases in social isolation 

over time were linked to decreased cortical thickness in 7 clusters in the right middle and 

superior frontal gyri, orbitofrontal and lateral occipital cortex (Fig 5). When controlling 

additionally for cardiovascular covariates (model 2), three of these in the middle/superior 

frontal and lateral occipital gyrus remained significantly associated, with the largest one 

splitting into two smaller clusters. Table 4 lists these clusters, their locations and sizes.  

   

Figure 4 

Whole brain analysis of the effect of baseline social isolation on cortical thickness 

 

Whole brain analysis of the effect of baseline social isolation on cortical thickness. 
Unstandardized betas are the vertex-wise effect sizes of baseline social isolation in mm/point on the 

Lubben Social Network Scale corrected for baseline age, change in age, change in social isolation and 

gender. The first row shows the left hemisphere. Areas in which stronger isolation links to reduced 

thickness are marked in blue, the inverse in red. The right hemisphere is shown below. First and 

second column show the lateral and medial view, respectively. The box on the right shows two 

clusters of lower cortical thickness associated with social isolation in the left precuneus that remained 

significantly associated after FDR-correction and the F-value of each significant vertex. Significantly 

associated FDR-corrected clusters in the supramarginal gyrus and cuneus in the right hemisphere are 

not highlighted.   
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Figure 5  

Whole brain analysis of the effect of change in social isolation on cortical thickness 

    

Whole brain analysis of the effect of change in social isolation on cortical thickness. 
Unstandardized betas are the vertex-wise effect sizes of change in social isolation in mm/point on the 

Lubben Social Network Scale corrected for baseline age, change in age, baseline social isolation and 

gender. The first row shows the left hemisphere. Areas in which stronger isolation links to reduced 

thickness are marked in blue, the inverse in red. The right hemisphere is shown below. First and 

second column show the lateral and medial view, respectively. The box on the right shows clusters of 

lower cortical thickness associated with social isolation in the right superior and middle frontal gyrus, 

and lateral and medial orbitofrontal cortex that were significant after FDR-correction and the F-value 

of each significant vertex. Additionally, we detected another significant cluster after FDR-correction 

in the lateral occipital cortex that is not highlighted in this figure. 
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Table 4 

poi hemisphere cortical region 
maximum p-

value 
size in 

mm² 
NVtxs model 

LSNS_base rh supramarginal 2.1e-05 27.70 73 1 

LSNS_base rh cuneus 5.5e-05 11.49 17 1 

LSNS_base lh precuneus 3.0e-06 201.78 455 1 

LSNS_base lh precuneus 3.6e-06 50.10 94 1 

LSNS_change rh rostralmiddlefrontal 1.9e-07 764.18 1,015 1 

LSNS_change rh lateraloccipital 5.5e-05 91.99 104 1 

LSNS_change rh rostralmiddlefrontal 8.5e-06 90.22 121 1 

LSNS_change rh superiorfrontal 8.1e-05 40.36 58 1 

LSNS_change rh medialorbitofrontal 1.4e-04 21.08 32 1 

LSNS_change rh lateralorbitofrontal 1.7e-04 11.21 34 1 

LSNS_change rh lateralorbitofrontal 1.6e-04 10.89 29 1 

LSNS_change rh rostralmiddlefrontal 1.3e-06 253.31 343 2 

LSNS_change rh superiorfrontal 6.4e-06 113.76 161 2 

LSNS_change rh lateraloccipital 1.4e-05 95.17 104 2 

LSNS_change rh rostralmiddlefrontal 3.9e-05 21.90 29 2 

FDR-corrected clusters of reduced cortical thickness significantly associated with social isolation. poi, 

predictor of interest; MNIX/Y/Z, MNI305 x/y/z coordinates of the maximumn; NVtxs, Number of vertices 

constituting the cluster; LSNS_base, baseline social isolation; LSNS_change, change in social isolation; rh, right 

hemisphere; lh, left hemisphere 

full model 1: cortical thickness ~ LSNS_base + LSNS_change + age_base + age_change + sex 

full model 2: model 1 + hypertension + diabetes + education + depression + BMI  
 

Mediation analyses 

Turning to the stress-buffering hypothesis, we investigated whether perceived stress, 

measured using the Trierer Inventar zum chronischen Stress (TICS)(Schulz & Schlotz, 1999), 

mediated the relationship of social isolation and hippocampal volume. Moreover, we 

investigated whether hippocampal volume mediated the association between social isolation 

and cognitive functions. Specifically, we investigated the indirect path resulting from the 

regressions of follow-up mediator on baseline LSNS and follow-up dependent variable on 

baseline mediator.  
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Neither the mediation analyses with chronic stress as a mediator (n = 62 complete 

observations) nor the mediation analyses with hippocampal volume as a mediator (n = 313-

331) yielded significant results. Due to the requirements of the model design and over 50% 

missingness in the stress questionnaire the sample sizes of the mediation analyses were 

gravely diminished. Details on the mediation analyses are provided in Table S6.  

Sensitivity Analyses 

In addition to these pre-registered analyses, we conducted sensitivity analyses to test the 

robustness of our results on hippocampal volume and cognitive functions. These included 

possible effects of the Covid-19 pandemic, effects related to the definition of exclusion 

criteria or confounder specificities. Analyses accounting for a) potential effects of 

measurements before compared to during the Covid-19 pandemic, b) reducing the exclusion 

criteria (i.e., not excluding cognitively impaired participants, participants taking centrally 

active medication and participants with recent cancer treatment), c) only including 

participants with two timepoints and using mean and within scores, d) using a hypertension 

cut-off of 140mmHg and e) using an MMSE cut-off of <27 confirmed the regression 

coefficients of our models in terms of direction and size (Tables S7-16).  

Of note, neuroscience has historically neglected sex and gender differences, predominantly 

resulting in increased misdiagnoses of and relatively worse treatments for women(Shansky & 

Murphy, 2021). Therefore, we recalculated analyses in gender-stratified samples (n women = 

1125 observations, n male = 1105 observations) to test for differences in the effects of social 

isolation (Table S17). No clear pattern of difference emerged between women and men. A 

minor observable difference was that the interaction of baseline social isolation with change 

in age on hippocampal volume was more pronounced in men.  

In order to further investigate the nature of the correlations, we calculated bivariate latent 

change score (BLCS) models. In these models we simultaneously tested for an effect of 

baseline social isolation on change in cognitive functions or hippocampal volume and vice 

versa (see Fig. S2 for a visualization). The bivariate latent change score models did not 

produce solid evidence regarding directionality (Table S18). As in the mediation analyses, the 

design of the BLCS resulted in smaller sample sizes (n = 333-548 complete observations). 

Discussion 

In this pre-registered study, we investigated the associations of social isolation with brain 

structure and cognition in a large cognitively healthy mid- to late-life longitudinal sample. In 
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line with our pre-specified hypotheses, we showed a significant link between stronger 

baseline social isolation and increases in social isolation over the course of ~ 6 years and 

smaller hippocampal volumes. Both predictors had an effect size per point on the LSNS 

comparable to a two and a half-month difference in baseline age in this age range. Simply put, 

assuming that if everything else remained stable, the difference between having one or 3-4 

close and supportive friends is comparable to a one-year difference in hippocampal aging. 

Furthermore, we found significant associations of stronger baseline social isolation with lower 

executive functions, memory and processing speed. The link to executive functions was 

particularly strong with an effect size larger than a one-year difference in baseline age. For 

increases in social isolation, confidence intervals were wider but effect sizes, except for 

executive functions, were similar in magnitude to that of baseline social isolation. Moreover, 

there was an interaction effect of baseline social isolation with change in age on hippocampal 

volumes indicating accelerated brain aging in more isolated individuals. In multiple 

sensitivity analyses we showed the robustness of these findings. Neither applying less 

exclusion criteria, only including participants with two timepoints, nor controlling for the 

impact of the ongoing pandemic changed our results substantially. Moreover, we found 

clusters of decreased cortical thickness in the cuneus, precuneus, lateral occipital cortex, 

supramarginal gyrus, orbitofrontal cortex and superior and middle frontal gyrus associated 

with social isolation cross-sectionally or longitudinally. Mediation analysis in smaller sample 

sizes testing potential effects of social isolation through lowering adverse effects of stress 

revealed no significant effects. 

Hippocampal volume 

Our findings indicate that social isolation contributes to grey matter loss in the hippocampus, 

a focal point of atrophy in mild cognitive impairment(Devanand et al., 2007) and dementia(N. 

C. Fox et al., 1996).  

Notably, not only baseline social isolation (a between-subject effect) but also change in social 

isolation (a within-subject effect) significantly predicted hippocampal volume. Through the 

employment of statistical LMEs, we were able to distinguish and study effects at these 

different levels(van de Pol & Wright, 2009) and the design helped us to avoid fallacious 

inferences from single level data(Robinson, 1950) to which simple linear regressions would 

have been susceptible. Specifically for the study of social isolation as a risk factor for 

dementia, it is crucial to disentangle between- and within-subject effects. Social isolation has 

both been described as a trait(Noonan et al., 2021), implying it to be an invariant between-
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subject characteristic and as a potential target for interventions(Hussenoeder & Riedel-Heller, 

2018), implying it to be a modifiable within-subject effect. The finding of a significant 

within-subject effect of change in social isolation therefore offers hope for modifiability as it 

implies that the observed associations are not (exclusively) the effect of an invariant trait. 

Thus, our data point towards that reducing social isolation could help to maintain 

hippocampus integrity in aging. 

However, this assumes a causal effect of social isolation. As associations with social isolation 

could also have resulted from reverse causation through health selection, i.e. that participants 

with accelerated brain aging are more likely to become socially isolated, this assumption 

needs careful consideration. On the one hand, our interaction models designed to test the 

temporality of the effect, provided evidence for an interaction of baseline social isolation and 

change in age on hippocampal volume, pointing towards a detrimental effect of social 

isolation. Bayesian statistics, however, imply the absence of an interaction effect for all other 

dependent variables and the bivariate latent change score models did not provide evidence in 

favour of causality in the hypothesized direction. This inconclusiveness might result from our 

reduced follow-up sample size and thus related lower power, especially in the latent score 

models. For example, data from the English Longitudinal Study of Aging from > 6000 older 

adults measured at up to 6 two-year intervals supports the assumed causality of social 

isolation with regards to memory performance(Read et al., 2020). Moreover, the presence of 

considerable effect sizes and the high statistical confidence in these estimates on multiple 

outcomes in this healthy sample without cognitive impairment speaks against the competing 

hypothesis of reverse causality through health selection and in favour of a causal role of social 

isolation. Furthermore, the lack of any strong increase in effect size when including health-

impaired participants corroborates this interpretation. 

Cognitive functions 

Baseline social isolation, and to a lesser extent, change in social isolation, were significantly 

associated with cognitive performance, i.e. executive functions, processing speed and 

memory, all of which undergo decline in (pathological) aging(Blazer et al., 2015). Again, our 

results thus imply a detrimental role of social isolation on cognitive functions. We could 

however not observe that social isolation lowered memory performance through reductions in 

hippocampal volume, a hypothesis raised by considerations of the central role of the 

hippocampus in memory(Buzsáki & Moser, 2013). Similarly, we could not find evidence that 

social isolation affected hippocampal volume through higher chronic stress measured with 
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questionnaires, a hypothesis put forward by the stress buffering theory(Kawachi & Berkman, 

2001). However, these latter analyses suffered from small sample sizes and a limited number 

of timepoints.  

Cortical thickness 

Overall, comparing our brain morphometric results with those of existing cross-sectional 

studies on social isolation, detected brain regions coincide. A rather small-sampled study did 

not find a link between social isolation and grey matter volumes(Lin et al., 2020) but James et 

al. (occipital lobe)(James et al., 2012) and Blumen and Verghese (hippocampus, precuneus, 

superior frontal gyrus,  medial frontal gyrus)(Blumen & Verghese, 2019) and Shen et al. 

(hippocampus, right supramarginal gyrus)(Shen et al., 2022) found decreased volumes in 

regions we detected, too.  

Several of the cortical regions identified in our study (precuneus, orbitofrontal cortex) belong 

to the pattern of exacerbated regional atrophy found in Alzheimer’s disease. Furthermore, we 

detected regions known for increased cortical thinning in the healthy process of aging 

(cuneus, lateral occipital cortex, inferior frontal gyrus) and both in healthy and pathological 

aging (supramarginal gyrus, medial frontal gyrus)(Bakkour et al., 2013; Pini et al., 2016). 

This indicates an aggravating role of social isolation in cortical thinning that may contribute 

to normal and accelerated brain aging processes. However, the findings of lower cortical 

thickness must be interpreted cautiously due to the limited consistency between cross-

sectional and longitudinal effects and the exploratory approach of whole brain analyses.  

Limitations 

A limitation of this study is its uncertain generalizability to the general population because the 

sample was probably affected by selection and attrition bias common to longitudinal studies 

(Chatfield et al., 2005). Attrition bias might have mostly affected the mediation and BLCS 

models that thus offered reduced interpretability, in spite of the comparatively large 

neuroimaging cohort. However, the LMEs were mostly unscathed by this problem due to their 

ability to make use of datapoints of participants with only one full observation. In addition, 

our population represents a WEIRD sample (i.e., western, educated, industrialised, rich, 

democratic) which might skew our understanding of how social isolation affects brain 

health(Laird, 2021). Considering hippocampus segmentations, it has been argued that 

FreeSurfer systematically overestimates volumes compared to manual volumetry, however, 

this difference did barely emerge in participants over the age of 50 (Wenger et al., 2014). A 
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further limitation are ceiling effects in the CERAD word list memory task in healthy adults, 

potentially limiting the sensitivity to detect subtle differences. Additionally, covariance of 

social isolation with other variables such as hypertension or diabetes could have influenced 

the results. However, note that all VIFs were acceptable indicating low reason for concern 

regarding multicollinearity. Lastly, inferences from our results on dementia etiology must be 

made with caution as we did not investigate clinically diagnosed dementia patients. 

In quantitative studies, despite its importance in shaping the research process and conclusions, 

e.g. in functional MRI analysis (Botvinik-Nezer et al., 2020), researchers’ influence is often 

disregarded. In the supplementary text we offer a brief reflexivity section to make relevant 

influences on this study transparent and to shortly discuss the value of reflexivity for 

quantitative science.  

Implications for public health and future work  

This pre-registered large-scale population neuroimaging analysis adds robust support to the 

view that social isolation is associated with accelerated brain aging and cognitive decline in 

non-demented adults in mid- to late-life. Our findings further imply that social contact 

protects from detrimental processes and thereby preserves brain structure and function. 

Henceforth, targeting social isolation through tailored strategies might contribute to 

maintaining brain health into old age. 

While we see evidence converging on social isolation as a causal risk factor for dementia and 

cognitive decline, future neuroimaging studies should pay particular attention to questions of 

temporality in their design to clear up remaining uncertainties. Intervention studies will be the 

gold standard to provide evidence with regards to the causal role and effect size of social 

isolation. Yet, multidomain interventions for dementia prevention justifiably become the 

norm(Stephen et al., 2019), so that effects of reduced social isolation must be investigated as a 

likely contribution to an aggregate effect.  

Illuminating the mechanistic underpinnings of the association should be another focus for 

future research. Studies might prioritise obtaining reliable proxies for the hypothesized 

mediators. As elevated cortisol levels, in line with the stress-buffering hypothesis, may exert 

detrimental effects on cognition and contribute to AD pathology(Ouanes & Popp, 2019), 

using hair cortisol, a reliable measure of chronic stress(Staufenbiel et al., 2013), could be a 

promising choice to further investigate this proposed mechanism. Furthermore, alternative 

mechanistic theories should be investigated. The main-effect theory postulates that social 
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relationships foster beneficial health behaviours, affective states and neuroendocrine 

responses, ultimately protecting neuronal tissue(Kawachi & Berkman, 2001). Others point out 

that socializing is cognitively demanding and requires engagement with complex 

environments. In the “use-it-or-lose-it” theory, this is crucial for the maintenance of cognitive 

function(Hultsch et al., 1999). Promising approaches to answer this research question could 

be interventions specifically targeting one of the hypothesized detrimental processes in 

isolated individuals and mediation analyses of multi-wave studies with larger sample sizes. 

Lastly, reverse causality or simultaneity can not be completely ruled out yet. However, the 

observed solid correlations in our healthy sample and the lack of an increase in effect sizes 

when including participants with dementia or low MMSE scores renders this alternative 

hypothesis to a causal role of social isolation unlikely. 

Moreover, studies investigating social isolation due to lockdown measures and its impact on 

cognitive and brain health will be of great significance.  

In light of the relevance of social isolation for cognitive and general health and 

wellbeing(National Academies of Sciences, 2020), its pervasiveness in the elderly population 

of the global north (Livingston et al., 2020) is alarming. Physical distancing measures have 

caused an unprecedented rise in the attention to the impact of social isolation but social 

isolation has been a grave problem before Covid-19 and it will remain a central public health 

concern thereafter. Existing and future research on the role of social isolation in health and 

disease should provide guidance for the urgently needed development and evaluation of 

tailored strategies against social isolation and its detrimental effects. These should address 

social isolation both through intervention strategies on the individual but also societal level, 

leveraging values like solidarity and communality. 

Methods 

Study Design and Preregistration 

We followed the Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) and Committee on Best Practices in Data Analysis and Sharing (COBIDAS) on 

MRI guidelines in our reporting wherever appropriately applicable. 

The study’s preregistration can be found on https://osf.io/8h5v3/. Please refer to it for 

information on the authors’ previous knowledge of the data and a comprehensive overview of 

our pre-specified hypotheses and models.  
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Study Population 

We used longitudinal data from the “Health Study of the Leipzig Research Centre for 

Civilization Diseases” (LIFE). The study was approved by the institutional ethics board of the 

Medical Faculty of the University of Leipzig and conducted according to the declaration of 

Helsinki. The LIFE-Adult-Study is a population-based panel study of around 10,000 

randomly selected participants from Leipzig, a major city with 550,000 inhabitants in 

Germany. A sub-group of around 2600 participants underwent MRI testing at baseline. The 

baseline examination was conducted from August 2011 to November 2014. Follow-up 

assessments were performed around six to seven years after the respective first 

examinations(Engel et al., 2022). Around 1000 participants of the MRI-subsample returned 

for follow-up testing.  

we included all participants over 50 with MRI data that did not fullfil any of the following 

exclusion criteria: 

- Anamnestic history of stroke  

- any medical condition (i.e., epilepsy, Multiple sclerosis, Parkinson’s disease) / chronic 

medication use that would compromise cognitive testing - (i.e., cancer treatment in the 

past twelve months or drugs affecting the central nervous system) 

- diagnosed dementia or Mini-Mental State Examination (MMSE)-score <24  

- a trained radiologist considered the MRI scans unusable due to brain tumors, or acute 

ischemic, hemorrhagic or traumatic lesions 

If no MMSE data were available, the participants were excluded if their overall performance 

in cognitive tests negatively deviated from the wave’s mean by 2 standard deviations (SDs) 

which is a stricter criterion excluding ~2.6% of the sample compared to ~0.8% excluded 

based on the MMSE. The exclusion criteria were chosen to reduce the potential of reverse 

causality, i.e. dementia symptoms leading to a loss of social connections, as correlations 

observed in this cognitively intact sample should not stem from dementia symptoms. 

MRI Data Acquisition, Processing and Quality Control 

We obtained T1-weighted images on a 3 Tesla Siemens Verio MRI scanner (Siemens 

Healthcare, Erlangen, Germany) with a 3D MPRAGE protocol and the following parameters: 

inversion time, 900 ms; repetition time, 2,300 ms; echo time, 2.98 ms; flip angle, 9°; field of 

view, 256 × 240 × 176 mm3; voxel size, 1 × 1 × 1 mm3. We processed the scans with 
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FreeSurfer (FreeSurfer, V5.3.0, RRID:SCR_001847) and the standard cross-sectional pipeline 

recon-all. FreeSurfer automatically measures hippocampal volume, vertex-wise cortical 

thickness and intracranial volume. To ensure high within-subject reliability, we employed 

FreeSurfer’s longitudinal pipeline on all scans, including those of participants without a 

follow-up scan. Please see(Reuter et al., 2012) for details. Moreover, we smoothed the 

cortical thickness surfaces with a 10mm kernel to improve reliability and power(Liem et al., 

2015). Different Linux kernels and Ubuntu versions constituted the computational 

infrastructure during the data acquisition and processing.  

Visual quality control was based on the recommendations of Klapwijk et al.(Klapwijk et al., 

2019). After the baseline data were acquired, our team visually controlled all results of the 

cross-sectional recon-all pipeline. Additionally, we controlled the outputs of the longitudinal 

stream of all participants with follow-up data and those whose cross-sectional runs required 

editing. If we detected errors in the processed scans, we manually edited them (N=283). We 

excluded participants from analyses using MRI measures if we deemed the processed scans to 

be unusable (n=68). 

Variable Construction 

Social Isolation 

We used the standard Lubben Social Network Scale (LSNS) -6(Lubben et al., 2006) to 

measure the participants’ social isolation. The questionnaire is a suitable tool to measure 

social isolation(Valtorta et al., 2016) has a high internal consistency (Cronbach’s α = 0.83), a 

stable factor structure of the family and non-kin subscale (rotated factor loading comparisons 

= 0.99) and good convergent validity (correlations with caregiver / emotional support 

availability and group activity all 0.2 to 0.46 across multiple sites)(Lubben et al., 2006). In 

order to make larger scores imply more isolation, we subtracted the actual score from the 

maximum score of 30. 

To quantify changes in social isolation, we subtracted the baseline from the follow-up score. 

For all baseline observation change in LSNS = 0. 

Gray matter measures 

We used the hippocampal volume derived from FreeSurfer’s segmentation and averaged it 

over both hemispheres. Furthermore, we adjusted it for intracranial volume according to the 

following formula: 
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HCVadjusted, i = HCVraw, i - β * (ICVraw, i - ICVmean) 

where β is the unstandardized regression coefficient of hippocampal volume (HCV) on 

intracranial volume (ICV) from a linear mixed-effects model (LME)(C R Jr Jack et al., 1998). 

For whole brain analyses we used the FreeSurfer fsaverage template and cortical thickness as 

a vertex-wise outcome.  

Cognitive Functions 

We calculated domain-specific composite scores and calculated them as follows(Beyer et al., 

2017)  :  

Executive functions consisted of phonemic and semantic fluency, combined with TMT B/A: 

executive functions = (z_phonemic fluency + z_semantic fluency + z((TMT B – TMT 

A)/TMT A))/3 

For the memory score, we defined learning as the sum of three consecutive learning trials of 

the CERAD word list (10 words), recall as the sum of correctly recalled words after a delay, 

in which participants performed a nonverbal task, and recognition as the number of correctly 

recognized words out of a list of 20 presented afterwards. memory = (z_learning + z_recall + 

z_recognition)/3 

Processing speed was defined as the negated z-scored TMT part A score. 

Sum-score = z_phonemic fluency + z_semantic fluency + z_sum_learning + z_recall + 

z_recognition + z((TMT B – TMT A )/TMT A) 

Stress 

Trierer Inventar zum chronischen Stress (TICS) is a German questionnaire assessing 

perceived stress (57 items, six sub-scales, 0-4 points per item). Its sum score is our measure of 

participants’ chronic stress. The subscales have acceptable to excellent internal consistency 

(Cronbach’s α = 0.76-.091) and criterion validity of the work overload sub-scale has been 

shown by demonstrating a significant correlation with cortisol levels over the course of a 

work days and its ability to differentiate tinnitus patients from healthy controls(Schulz & 

Schlotz, 1999).   
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Control variables 

Month and year of birth of the participants and the date of the MRIs were recorded and used 

to calculate the age to one decimal point. Age = YOM.MOM – YOB.MOB (YOM/MOM = 

year/month of MRI, YOB/MOB = year/month of birth). If no MRI was available, we used the 

date of the LSNS. 

For follow-up observations, we calculated: change in age = age at follow-up - baseline age. 

For all baseline observations change in age = 0. 

Data on the following variables was only available for the baseline. Henceforth, we used the 

baseline values of these control variables for both timepoints. 

We calculated the body-mass-index (BMI) according to the standard formula: BMI = weight 

[kg] / (height [m])2 

In order to control for hypertension and diabetes, we used dichotomized variables. 

Participants were categorised as hypertensive if they had a previous diagnosis of 

hypertension, took antihypertensive medication or had an average systolic blood pressure over 

160mmHg. The systolic blood pressure was measured three times. The first measurement was 

performed after 5 minutes of rest and 3 additional minutes of rest passed between each of the 

following measurements.  Participants were categorised as diabetic if they had a previous 

diagnosis of diabetes, took antidiabetic medication or HbA1C measured by turbidimetry was 

>= 6%. 

The participants’ education was assessed using an extensive questionnaire(Lampert et al., 

2012) and dichotomously categorized based on prior research on education as a protective 

factor against dementia(Then et al., 2016). Please see the supplementary text for details. 

Participants had to choose their gender in a binary female/male question. Note that the 

German “Geschlecht” does not differentiate between sex and gender. The lack of a 

clarification and other options is lamented by the authors. 

We used the sum-score of the Center for Epidemiological Studies Depression Scale (CES-D) 

to measure depressive symptoms(Radloff, 1977). 

For a sensitivity analysis we created a dichotomous variable coded as 1 if participants 

answered the LSNS questionnaire after March 22nd, 2020 (1st SARS-CoV-2 lockdown in 

Germany).  
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To improve the interpretability of our results, we z-transformed the variables BMI, CESD, 

TICS, executive function, memory performance and processing speed and demeaned the 

variable baseline age.   

Outliers and Imputation 

We excluded outliers for our core variables based on a cut-off of 3 SDs (LSNS-score, 

adjusted hippocampal volume, cognitive functions). Please see Fig. 6 (Flowchart) for the 

limited effect of outlier exclusion on sample sizes of the different models. For further details 

on outlier detection and handling regarding covariates please see the supplementary text. 

To avoid an excessive reduction in sample size due to missing data we performed imputations 

for missing predictor variables using the sample mean, distributions based on existing data, or 

the participant's mean. Please see the supplementary text for information on our procedures of 

the respective measures.    

Furthermore, we used FIML for analyses using structural equation modelling. 

Figure 6 

Flowchart of stepwise application of exclusion criteria  

 

Flowchart of stepwise application of exclusion criteria. Small rectangles show the number of 

participants fulfilling the respective criteria in total and for baseline and follow-up. The large box 

shows how many participants were excluded due to various exclusion criteria in total for baseline and 

follow-up. Missing control variables in model 2 were the Center for Epidemiological Studies 

Depression scores. LSNS, Lubben Social Network Scale; HCV, hippocampal volume; BL, baseline; 

FU, follow-up. 
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Statistical Analyses 

All code can be found on https://github.com/LaurenzLammer/socialisolation. Please see the 

supplementary text for information on the software used for the analyses.  

Statistical Modelling 

Linear mixed effects models 

To investigate the link between social isolation and our outcomes of interest, we employed 

LMEs with individual as a random effect.  

The general structure of the models in the lme4 syntax was: 

Dependent variable ~ baseline LSNS + change in LSNS + baseline age + change in age + 

control variables + (1|participant). Please see the supplementary text for explicit formulations 

of all models. We calculated two models for each hypothesis. In model 1 we included age and 

gender as control variables. Model 2 additionally included education, hypertension, diabetes, 

depressive symptoms and BMI. In model 1 the other risk factors are assumed to mediate the 

effect of social isolation. In model 2 they are assumed to be confounders (see Fig. S1 for a 

visualization). To measure the effect of aging, we controlled for baseline age and change in 

age. Analogously, we differentiated within and between subject effects(van de Pol & Wright, 

2009) of social isolation. Likewise, we calculated the interaction effect of baseline LSNS and 

change in LSNS. With this methodology we regressed hippocampal volume, the three 

cognitive functions, and cortical thickness on baseline LSNS, change in LSNS, and the 

interaction terms. To measure the overall effect of our predictors of interest, we performed a 

full-null-model comparison(Bolker et al., 2009). In addition to standard p-values, we 

calculated Bayes Factors (BFs). The relative evidence was measured by dividing the BF for 

the full model by the BF of the null model(Rouder et al., 2016). This allows us to evaluate the 

evidence in favour of the full-hypothesis compared to the null-hypothesis and thus also 

provide evidence for the absence of an effect(Keysers et al., 2020). We report both measures 

of significance to offer our readers a comprehensive insight into the data, combining the 

familiarity of classical frequentist inference with the additional implications of BFs(Keysers 

et al., 2020). 

Sensitivity analyses 

For the first analysis we added whether participants were tested after the start of lockdown 

measures to all LMEs. In the second analysis we didn’t exclude participants due to the intake 
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of centrally active or cancer medication and cognitive impairment. To probe the reliability of 

the coefficients for LSNS_change, we ran an analysis excluding all participants with only one 

timepoint and used standard mean and within score calculation. Furthermore, we ran two 

sensitivity analysis testing whether using a hypertension cut-off of 140mmHg or an MMSE 

cut-off of <27 as an exclusion criterion would affect our results. Moreover, to test for 

potential differences in the effect of social isolation between women and men, we divided our 

dataset by gender and recalculated the frequentist LMEs with both resulting datasets.  

Statistical inference 

We report one-sided p-values based on the direction of the predictor/path of interest’s 

regression coefficient and the direction of our pre-defined hypotheses. To obtain one-sided 

BFs we sampled 10,000 times from the posterior distribution of our predictor of interest’s 

effect. Then we multiplied the BF by two and the percentage of sampled effects in the 

direction of our pre-defined hypotheses.  

Multiplicity control 

Our threshold for significance for all tests was p < 0.05. To control for multiple hypothesis 

testing we FDR-corrected families of tests and each individual whole brain analysis (see the 

supplementary text for definition of families).  

BFs of 3 to 10 and BFs of 10 to 30 are commonly considered to be moderate or strong 

evidence in favour of a hypothesis. To evaluate these thresholds in light of multiplicity, we 

conducted two simulation studies described in the supplementary text that revealed that using 

a BF threshold of 10.75 rather than 3 would keep α below 5% and that this would not 

substantially decrease power.  

Model assumptions 

To ensure that our continuous predictors are normally distributed, we plotted their histograms. 

We had to log-transform the CES-D-score to obtain a normal distribution.  

To rule out major collinearity, we calculated Variance Inflation Factors (VIFs). The VIFs did 

not surpass the threshold of 10(Myers, 1990) in any model. 

 Furthermore, we tested the stability of our LMEs in R by comparing the estimates obtained 

from the model based on all data with those obtained from models with the levels of the 

random effects excluded one at a time. This revealed the models to be fairly stable. Moreover, 

we visually controlled them for heteroskedasticity with both a histogram and a qq-plot. The 
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qq-plots show a heavy-tailed distribution of the residuals in some models. This is only a 

minor deficit as the models are not intended to make accurate predictions at specific 

points(Gelman & Hill, 2006).  

Fit indices providing further information on the quality of a model fit using structural 

equation modelling can be found in Tables S1-2(Schermelleh-Engel et al., 2003). Fit index 

thresholds were surpassed by multiple mediation models. As the BLCS models are saturated, 

fit indices are uninformative. 
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Supplement 

Supplementary text 

Outliers 

We excluded the datapoints (all measures of the timepoint) of all participants with measures 

deviating from the mean by 3SD for our core variables (LSNS-score, adjusted hippocampal 

volume, cognitive functions). In case of TICS-score deviations by 3SD we replaced the values 

with “NA” and hence did not include them in mediation analyses.   

Considering confounders, highly implausible values (+/- 4 SD) for CES-D-score or BMI were 

treated as missing datapoints and we replaced them with values imputed according to our 

imputation plans listed below in order not to overly reduce the sample size. 

All outlier analyses were conducted separately for baseline and follow-up measurements. 

Imputation 

The data on the control variables education, BMI, diabetes, hypertension, age, and gender 

were complete or mostly complete. Henceforth, we could impute missing datapoints without 

inducing severe bias by using the sample mean for continuous variables or values drawn from 

a distribution determined by the existing data for categorical variables. 

However, CES-D-scores were an exception amongst our control variables because the 

questionnaires often missed a single or a few items. As suggested by Bono et al., we imputed 

up to 4 missing items per participant using the person mean(Bono et al., 2007). Similarly, we 

imputed up to one item in the LSNS and up to six items in the TICS using the person mean. 

If results from one of the cognitive tests required to calculate a composite score for a 

cognitive function was missing, we calculated the score based on the average performance in 

the remainder of available tests contributing to the composite score, if at least two tests were 

available.  

Fig. S3 provides an overview of missingness in relevant variables at different LSNS scores. 

Families of tests 

 

The LMEs with hippocampal volume and the cognitive functions as dependent variables form 

one large family except for models regressing on the interaction of baseline LSNS and change 

in LSNS. In each family, we separately corrected model one and model two analyses resulting 

in two families of twelve tests. Additionally, we FDR-corrected each individual whole brain 

analysis using the sided two-stage adaptive FDR-correction in the FreeSurfer-toolbox.(66) All 

other analyses and the whole brain analyses were considered to be exploratory and must be 

evaluated as such. 

  

Education 

The participants’ education was assessed using an extensive questionnaire and given a score 

ranging from 1 (no degree at all) to 7 (A-levels + master’s degree (or equivalent) or 

promotion) according to prior research(Lampert et al., 2012). The effects of education and the 

significance of different degrees are likely to be culture specific. Fortunately, a recent study 
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examined the effects of education in a population of elderly residents of the city of Leipzig. In 

this study education operationalised as having a tertiary degree or not was found to be a 

significant predictor of dementia incidence(Then et al., 2016). This is approximated with a 

cut-off at a score < 3.6. 

Simulation Studies 

Although it is sometimes claimed that Bayesian Statistics do not require any multiplicity 

control(Gelman et al., 2012), we do not believe that this is the case in our study. A truly 

Bayesian approach would require researchers to adjust the priors to all other tests with non-

independent hypotheses or datasets(Sjölander & Vansteelandt, 2019). This is hardly feasible 

and hence, in practice, Bayesian statistics are usually employed without taking all 

dependencies into account and their results are measured against thresholds similar to those of 

frequentist statistics. Fig. S4 shows how this results in an increasing familywise error rate 

(FWER) with an increasing number of tests in both Bayesian and frequentist statistics using 

an example from Keysers et al.(Keysers et al., 2020). De Jong has provided a solution for this 

problem for ANOVAs that has been implemented in the JASP software(Jong et al., 2019) but 

there is still a great lack of available tools for researchers using other statistical methods. 

Henceforth, we decided to conduct a simulation study to find a Bayes Factor threshold 

adjustment that should control our FWER similar to α-adjustments in frequentist statistics. 

To find the expected number of false positives for a given number of tests and threshold, we 

replaced the variables for baseline social isolation and change in social isolation with random 

normally distributed values with the same SD and kept the original dataset otherwise 

untouched. Then we calculated our 24 LMEs belonging to the families of tests with the 

modified dataset and repeated this process 42 times. At a BF threshold of 3, 14 of the 1008 

tests were false positives and 881 were detected as true negatives. Fig. S5 shows a histogram 

of the resulting Bayes Factors. The study suggests that for the family size of twelve tests in 

our study a threshold of about 10.75 would ensure a FWER below 5%. Table S19 gives an 

overview of the false positives and FWERs.  

Furthermore, we wanted to see how this threshold adjustment would affect the power of our 

study. For this simulation study we generated a dataset that closely resembles the actual 

dataset but has different regression coefficients for baseline social isolation and change in 

social isolation. Instead of the actual coefficients we set the effect size per point on the LSNS 

to 0.1, 0.2 or 0.5 years of baseline age. We simulated a dataset and calculated a Bayes Factor 

for each model and each effect size. As we only calculated the LMEs without interaction 

terms for reasons of simplicity this resulted in a number of 48 Bayes Factors from simulated 

data for each of our 13 runs totalling 624 tests. While our power for the smallest effect sizes 

was generally small (<10%), it was 85.6% for baseline social isolation with an effect size of 

half a year of baseline age. Increasing the threshold to 10.75 would not substantially decrease 

it (81.7%). Tables S20-21 provide an overview of the percentages of false negatives and true 

positives using the thresholds 3 and 10.75.        

Deviations from our Preregistration 

For the most part, we stuck closely to our preregistered plan in this study but departed from it 

at some points for different reasons. 
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We used the function qvalue instead of p.adjust for the FDR correction for the simple reason 

that it provides us with a more comprehensive output. As we set the argument pi to 1, qvalue 

is equivalent to the classic procedure(Storey, 2002). 

We originally intended to first perform a full-null model comparison using an anova and only 

follow this up with the function drop1 in case of a significant value for the respective 

predictor of interest. Our intention was to avoid any multiplicity problems due to testing all 

predictors. Using the scope argument of drop1 solved the problem more parsimoniously. 

Our plan to exclude participants with two or more lesions in their MRI was the result of an 

internal equivocation regarding the meaning of an abbreviation. We excluded participants 

based on the type of lesions but not based on lesion count.  

Furthermore, we used FIML for analyses using structural equation modelling. The similar 

results obtained using our preregistered approach can be found in the pre-print(Lammer et al., 

2021).  

Lastly, we changed from the term sex to gender as it seems more appropriate. 

Software 

We performed most analyses using R (R Project for Statistical Computing, V3.6.1, 

RRID:SCR_001905). For the whole brain analyses we used Matlab (MATLAB, V9.10 

(2021a) RRID:SCR_001622). 

We used the package lme4 (R package: lme4, RRID:SCR_015654) to calculate LMEs in R. 

To obtain reliable p-values, we used the Satterthwaite option from the lmerTest package( R 

package: lmerTest, RRID:SCR_015656)(Kuznetsova et al., 2017). In the whole brain analyses 

we employed the Matlab-toolbox provided by FreeSurfer to calculate vertex-wise 

LMEs(Bernal-Rusiel, Greve, et al., 2013). For mediation analyses and BLCS models we used 

the sem function from the lavaan package(Rosseel, 2012). 

We calculated BFs for all LMEs in R using the BayesFactor package and the functions 

posterior and generalTestBF with default priors(Rouder & Morey, 2012).  

FDR-correction was performed using the qvalue function (R package: Qvalue, 

RRID:SCR_001073) in R and the sided two-stage adaptive FDR-correction in the FreeSurfer-

toolbox(Bernal-Rusiel, Reuter, et al., 2013). 

VIFs were calculated using the package car(J. Fox & Weisberg, 2019). 

Reflexivity 

Reflexivity, a sensitivity to and acknowledgment of the ways in which scientists shape the 

collected data and research findings, is an established hallmark of scientific rigour in 

qualitative research(Mays & Pope, 2000; Sandelowski & Barroso, 2002). The challenges 

addressed by reflexivity are perhaps more pronounced in but by no means exclusive to 

qualitative studies. Nevertheless, (at least in an openly conducted form) it is largely absent 

from quantitative studies(Ryan & Golden, 2006). Methodological reforms in quantitative 

research like preregistrations and registered reports(Nosek et al., 2018; Nosek & Lakens, 

2014) are valuable tools to limit the researchers’ potential to make data fit their prior 

assumptions but their scope is limited. They do not address some of the most fundamental 

issues in epidemiology: Which analogies are used to make sense of the data, which questions 
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are being raised and answered and which theories are chosen to explain phenomena(Krieger, 

2011)? Disclosing personal characteristics, researchers’ values and positionality relative to the 

object of research(Berger, 2013) thus helps readers assess a study and its findings more 

thoroughly. Additionally, an external evaluation of the presence and prevalence of non-

empirical decision vectors(Solomon, 2001) in a field of research can be greatly facilitated. 

Furthermore, as Stephen J. Gould has put it: “It is dangerous for a scholar even to imagine 

that he might attain complete neutrality, for then one stops being vigilant about personal 

preferences and their influences – and then one truly falls victim to the dictates of 

prejudice.”(Gould, 1996)          

Henceforth, I, as the first author, want to expand this study by a brief reflection on influences 

that might have played a role in the formation of this study. I am a medical doctoral student 

with no prior experience in research and conducted this study as the centrepiece of my 

planned dissertation. Thus, I entered this project with little prior knowledge. I believe that this 

both made me more flexible and restricted in my choices. On the one hand I was not 

dedicated to any specific research programme or topic, but on the other hand my reliance on 

the advice and support from more senior researchers made me emulate their work and 

methods in many aspects. Further, my worldview has probably made me tend to 

epidemiological theories (social epidemiology, eco-social theory)(Berkman et al., 2015; 

Krieger, 2014) broader than the study of lifestyle-factors and hence made me choose social 

isolation as my research topic. A further characteristic that might be of interest to readers, is 

that during the course of the research, two of my relatives struggled with dementia. 

Ultimately, this reflexivity is inherently limited, as the use of secondary data precludes me 

from reflecting on the pivotal processes of data acquisition and participant recruitment.    

Explicit equations of all LMEs using the lme4 syntax.  

Variables in bold are dropped in the null model. 

H 1.1 Social isolation is negatively associated with hippocampal volume across individuals. 

Model111: HCV ~ LSNS_bl + LSNS_change + age_bl + age_change + sex + (1|subject) 

Model112: HCV ~ LSNS_bl + LSNS_change + age_bl + age_change + sex + hypertension   

      + diabetes + BMI + CESD + education + (1|subject) 

H 1.3 Social isolation is negatively associated with hippocampal volume within individuals. 

Model131: HCV ~ LSNS_bl + LSNS_change + age_bl + age_change + sex + (1|subject) 

Model132: HCV ~ LSNS_bl + LSNS_change + age_bl + age_change + sex + hypertension   

       + diabetes + BMI + CESD + education + (1|subject) 

H 1.5 Participants that are socially more isolated at baseline will experience aggravated age- 

related changes in hippocampal volume over the follow-up period. 

Model151: HCV ~ LSNS_bl + LSNS_change + age_bl + age_change +  

LSNS_bl*age_change + sex + (1|subject) 

Model152: HCV ~ LSNS_bl + LSNS_change + age_bl + age_change +  
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LSNS_bl*age_change + sex + hypertension + diabetes + BMI + CES.D +  

        education + (1|subject) 

H 2.1 Social isolation is negatively associated with cognitive functions across individuals. 

Model211a: executive function ~ LSNS_bl + LSNS_change + age_bl + age_change + sex +  

       (1|subject) 

Model212a: executive function ~ LSNS_bl + LSNS_change + age_bl + age_change + sex +   

      hypertension + diabetes + BMI + CES.D + education + (1|subject) 

Model211b: memory performance ~ LSNS_bl + LSNS_change + age_bl + age_change +  

            sex + (1|subject) 

Model212b: memory performance ~ LSNS_bl + LSNS_change + age_bl + age_change + sex  

+ hypertension + diabetes + BMI + CES.D + education + (1|subject) 

Model211c: processing speed ~ LSNS_bl + LSNS_change + age_bl + age_change +  

            sex + (1|subject) 

Model212c: processing speed ~ LSNS_bl + LSNS_change + age_bl + age_change + sex +   

      hypertension + diabetes + BMI + CES.D + education + (1|subject) 

H 2.2 Social isolation is negatively associated with cognitive functions within individuals. 

Model221a: executive function ~ LSNS_bl + LSNS_change + age_bl + age_change + sex +  

      (1|subject) 

Model222a: executive function ~ LSNS_bl + LSNS_change + age_bl + age_change + sex +   

      hypertension + diabetes + BMI + CES.D + education + (1|subject) 

Model221b: memory performance ~ LSNS_bl + LSNS_change + age_bl + age_change +  

sex + (1|subject) 

Model222b: memory performance ~ LSNS_bl + LSNS_change + age_bl + age_change + sex  

+ hypertension + diabetes + BMI + CES.D + education + (1|subject) 

Model221c: processing speed ~ LSNS_bl + LSNS_change + age_bl + age_change +  

            sex + (1|subject) 

Model222c: processing speed ~ LSNS_bl + LSNS_change + age_bl + age_change + sex +   

      hypertension + diabetes + BMI + CES.D + education + (1|subject) 

H 2.3 Participants that are socially more baseline will experience aggravated age-related  

changes in cognitive function over the follow-up period.  

Model231a: executive function ~ LSNS_bl + age_bl + age_change + LSNS_bl*age_change 
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       + sex + (1|subject) 

Model231a: executive function ~ LSNS_bl + age_bl + age_change + LSNS_bl*age_change 

     + sex + hypertension + diabetes + BMI + CES.D + education + (1|subject)  

Model231b: memory performance ~ LSNS_bl + age_bl + age_change +  

 LSNS_bl*age_change + sex + (1|subject) 

Model231b: memory performance~ LSNS_bl + age_bl + age_change +  

LSNS_bl*age_change + sex + hypertension + diabetes + BMI + CES.D + education 

+ (1|subject)  

Model231c: processing speed ~ LSNS_bl + age_bl + age_change + LSNS_bl*age_change 

       + sex + (1|subject) 

Model231c: processing speed~ LSNS_bl + age_bl + age_change + LSNS_bl*age_change 

     + sex + hypertension + diabetes + BMI + CES.D + education + (1|subject)  

H 5.1 In people who are socially more isolated at baseline, an increase in social isolation  

from baseline to follow-up will have a stronger negative association with HCV than in  

people who are less socially isolated at baseline.   

Model511: HCV ~ LSNS_bl + LSNS_change +  LSNS_bl*LSNS_change + age_bl +  

       age_change + sex + (1|subject) 

Model512: HCV ~ LSNS_bl + LSNS_change +  LSNS_bl*LSNS_change +  

age_bl + age_change + sex + hypertenison + diabetes + BMI + CES.D +  

        education + (1|subject) 

Explicit equations of all LMEs using the FreeSurfer LME syntax. 

H 1.2 Social isolation is negatively associated with vertex-wise cortical thickness across  

individuals. 

For model 1 we built a matrix consisting of six columns: intercept (all ones), age_bl,  

age_change, sex, LSNS_bl and LSNS_change.  

The corresponding contrast matrix was [0 0 0 0 1 0]. 

For model 2 we built a matrix consisting of eleven columns: intercept (all ones), age_bl, 

age_change, sex, hypertension, diabetes, education, BMI, CES_D, LSNS_bl and  

LSNS_change.   

The corresponding contrast matrix was [0 0 0 0 0 0 0 0 0 1 0]. 

H 1.4 Social isolation is negatively associated with vertex-wise cortical thickness within  
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individuals. 

For model 1 we built a matrix consisting of six columns: intercept (all ones), age_bl,  

age_change, sex, LSNS_bl and LSNS_change.  

The corresponding contrast matrix was [0 0 0 0 0 1]. 

For model 2 we built a matrix consisting of eleven columns: intercept (all ones), age_bl, 

age_change, sex, hypertension, diabetes, education, BMI, CES_D, LSNS_bl and  

LSNS_change.   

The corresponding contrast matrix was [0 0 0 0 0 0 0 0 0 0 1]. 

H 1.6 Participants that are socially more isolated at baseline, will experience aggravated  

age-related changes in cortical thickness over the follow-up period. 

For model 1 we built a matrix consisting of seven columns: intercept (all ones), age_bl,  

age_change, sex, LSNS_bl, LSNS_change and LSNS_bl*age_change. The last term is an  

interaction between baseline LSNS and age_change.  

The corresponding contrast matrix was [0 0 0 0 0 0 1]. 

For model 2 we built a matrix consisting of twelve columns: intercept (all ones),  

age_bl, age_change, sex, hypertension, diabetes, education, BMI, CES_D, LSNS_bl,  

LSNS_change and LSNS_bl*age_change. The last term is an interaction between baseline  

LSNS and age_change.   

The corresponding contrast matrix was [0 0 0 0 0 0 0 0 0 0 0 1]. 
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Fig. S1 

Directed acyclic graphs demonstrating the theoretical underpinnings of model 1 and 2. 

Social Isolation Brain

Hypertension

Social Isolation Brain

Hypertension

In model 1 the additional risk factors are assumed to be mediators and do not have to be controlled for. In model 2 they are

assumed to be confounders. Therefore, they have to be controlled for.  

Model 1 Model 2
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Fig. S2 

Simplified plot of the bivariate latent change score models

 

LSNS, Lubben Social Network Scale; HCV, hippocampal volume; BL, baseline; FU, follow-

up; Δ, change in. 

The blue arrows show our paths of interest. 

 

 

 

 

 

 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2021.12.14.21267787doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.14.21267787
http://creativecommons.org/licenses/by-nc/4.0/


47 
 

 

 

 

 

Fig. S3

 

A) Histogram of LSNS scores by individual observation. B) Heatmap of proportional 

missingness of variables for different LSNS scores. 
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Fig. S4
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Fig. S5 

Histogram of BFs with randomly simulated values for our predictors of interest. 

 

The red lines show the traditional thresholds at 1/3 and 3. 
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Table S1 

fit index 311 ok? 411a ok? 411b ok? 411c ok? 

chisq 3.765  0.842  0.238  0.160  

df 1.000  1.000  1.000  1.000  

p-value 0.052 good fit 0.359 good fit 0.625 good fit 0.689 good fit 

chisq/df 3.765 
unacceptable 

fit 
0.842 good fit 0.238 good fit 0.160 good fit 

rmsea 0.042 good fit 0.000 good fit 0.000 good fit 0.000 good fit 

rmsea_lower 0.000  0.000  0.000  0.000  

rmsea_upper 0.091  0.065  0.053  0.050  

srmr 0.019 good fit 0.003 good fit 0.001 good fit 0.001 good fit 

nnfi 0.945 
unacceptable 

fit 
1.003 

unacceptable 

fit 
1.012 

unacceptable 

fit 
1.021 

unacceptable 

fit 

cfi 0.996 good fit 1.000 good fit 1.000 good fit 1.000 good fit 

Fit indices of mediation analyses of model 1. chisq, chi squared; df, degrees of freedom 

311: Indirect effect of social isolation on hippocampal volume via chronic stress 

411a: Indirect effect of social isolation on executive functions via hippocampal volume 

411b: Indirect effect of social isolation on memory via hippocampal volume 

411c: Indirect effect of social isolation on processing speed via hippocampal volume 
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Table S2 

fit index 312 ok? 412a ok? 412b ok? 412c ok? 

chisq 9.260  0.083  0.958  0.068  

df 5.000  1.000  1.000  1.000  

p-value 0.099 
good 

fit 
0.773 good fit 0.328 good fit 0.794 good fit 

chisq/df 1.852 
good 

fit 
0.083 good fit 0.958 good fit 0.068 good fit 

rmsea 0.023 
good 

fit 
0.000 good fit 0.000 good fit 0.000 good fit 

rmsea_lower 0.000  0.000  0.000  0.000  

rmsea_upper 0.047  0.045  0.066  0.043  

srmr 0.017 
good 

fit 
0.001 good fit 0.002 good fit 0.000 good fit 

nnfi 0.972 
good 

fit 
1.014 

unacceptable 

fit 
1.001 

unacceptable 

fit 
1.026 

unacceptable 

fit 

cfi 0.994 
good 

fit 
1.000 good fit 1.000 good fit 1.000 good fit 

Fit indices of mediation analyses of model 2. chisq, chi squared; df, degrees of freedom 

312: Indirect effect of social isolation on hippocampal volume via chronic stress 

412a: Indirect effect of social isolation on executive functions via hippocampal volume 

412b: Indirect effect of social isolation on memory via hippocampal volume 

412c: Indirect effect of social isolation on processing speed via hippocampal volume 
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Table S3 

dv Model Predictor Estimate 95% CI p-value FDR BF 

Hippo- 

campal 

Volume 

1 

LSNS_base -5.500 
-9.122, -

1.878 
0.0015** 0.0044** 14.61** 

LSNS_change -4.894 
-8.492, -

1.29 
0.0039** 0.0095** 2.9 

age_base -25.755 
-28.582, -

22.929 
   

age_change -27.383 
-29.659, -

25.115 
   

gender -48.683 
-85.261, -

12.107 
   

2 

LSNS_base -5.672 
-9.503, -

1.84 
0.0019** 0.0075** 19.51** 

LSNS_change -4.928 
-8.741, -

1.107 
0.0058** 0.0174* 3.31* 

age_base -23.879 
-26.9, -

20.858 
   

age_change -27.725 
-30.141, -

25.32 
   

gender -47.733 
-85.365, -

10.105 
   

BMI 18.831 
-0.946, 

38.609 
   

CESD 13.369 
-5.716, 

32.455 
   

diabetes -103.777 
-155.724, -

51.827 
   

education -85.695 
-147.143, -

24.244 
   

hypertension -29.051 
-69.373, 

11.27 
   

Executive 

Functions 
1 LSNS_base -0.026 

-0.035, -

0.017 

8.4e-

09**** 

1.0e-

07**** 
1.5e+06**** 
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dv Model Predictor Estimate 95% CI p-value FDR BF 

LSNS_change 0.003 
-0.011, 

0.018 
0.6787 0.787 0.08 

age_base -0.020 
-0.027, -

0.013 
   

age_change -0.053 
-0.063, -

0.042 
   

gender -0.074 
-0.166, 

0.017 
   

2 

LSNS_base -0.015 
-0.025, -

0.006 

8e-

04**** 
0.0046** 43.65*** 

LSNS_change 0.006 
-0.009, 

0.021 
0.7842 0.8555 0.07 

age_base -0.014 
-0.022, -

0.007 
   

age_change -0.054 
-0.065, -

0.043 
   

gender -0.121 
-0.214, -

0.028 
   

BMI -0.079 
-0.128, -

0.031 
   

CESD -0.137 
-0.183, -

0.09 
   

diabetes -0.073 
-0.201, 

0.054 
   

education -0.351 
-0.505, -

0.196 
   

hypertension -0.078 
-0.177, 

0.021 
   

Memory 

1 

LSNS_base -0.014 
-0.022, -

0.006 

5e-

04**** 
0.002** 49.05*** 

LSNS_change -0.013 -0.026, 0 0.0262* 0.0449* 1.12 

age_base -0.036 
-0.042, -

0.029 
   

age_change -0.018 
-0.027, -

0.009 
   

gender -0.381 
-0.465, -

0.298 
   

2 LSNS_base -0.008 
-0.016, 

0.001 
0.0452* 0.0775 1.25 
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dv Model Predictor Estimate 95% CI p-value FDR BF 

LSNS_change -0.009 
-0.023, 

0.005 
0.1046 0.1569 0.48 

age_base -0.033 
-0.04, -

0.026 
   

age_change -0.017 
-0.027, -

0.008 
   

gender -0.424 
-0.51, -

0.338 
   

BMI -0.030 
-0.076, 

0.015 
   

CESD -0.117 
-0.16, -

0.073 
   

diabetes -0.045 
-0.162, 

0.072 
   

education -0.166 
-0.306, -

0.026 
   

hypertension 0.025 
-0.066, 

0.116 
   

Processing 

Speed 

1 

LSNS_base -0.018 
-0.026, -

0.011 

1.7e-

06**** 

1.0e-

05**** 
9.4e+03**** 

LSNS_change -0.008 
-0.021, 

0.005 
0.1087 0.163 0.39 

age_base -0.038 
-0.044, -

0.032 
   

age_change -0.033 
-0.043, -

0.024 
   

gender -0.112 
-0.188, -

0.035 
   

2 

LSNS_base -0.018 
-0.026, -

0.01 

9.6e-

06**** 

1e-

04**** 
2.5e+03**** 

LSNS_change -0.012 
-0.025, 

0.001 
0.038* 0.076 1.33 

age_base -0.036 
-0.042, -

0.029 
   

age_change -0.031 
-0.041, -

0.022 
   

gender -0.135 
-0.214, -

0.055 
   

BMI -0.025 
-0.066, 

0.016 
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dv Model Predictor Estimate 95% CI p-value FDR BF 

CESD -0.024 
-0.063, 

0.016 
   

diabetes 0.022 
-0.086, 

0.131 
   

education -0.161 
-0.29, -

0.031 
   

hypertension -0.048 
-0.132, 

0.036 
   

Adjusted regression coefficients and measures of significance of models without interaction terms. * 

p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, BF>100; dv, dependent variable; CI, 

confidence interval; FDR, p-values after FDR-correction; BF, Bayes Factor in favour of alternative hypothesis; 

LSNS_base, baseline Lubben Social Network Score; LSNS_change, change in Lubben Social Network Score; 

CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

The unit of effect sizes on hippocampal volume and cognitive functions are mm³/point on the LSNS and 

standard deviation/point on the LSNS, respectively.  
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Table S4 

dv 
Mo

del 
Predicto

r 
Estimat

e 
95% CI p-value FDR BF 

Hippo- 

campal 

Volume 

1 

LSNS_bas

e*age_cha

nge 

-0.556 -1.099, -0.014 0.0223* 0.0446* 0.52 

LSNS_bas

e 
-5.033 -8.682, -1.383    

LSNS_cha

nge 
-6.630 -10.591, -2.665    

age_base -25.728 -28.554, -22.902    

age_chang

e 
-19.876 -27.531, -12.217    

gender -48.216 -84.786, -11.649    

2 

LSNS_bas

e*age_cha

nge 

-0.538 -1.107, 0.03 0.0318* 0.076 0.63 

LSNS_bas

e 
-5.211 -9.072, -1.35    

LSNS_cha

nge 
-6.541 -10.702, -2.374    

age_base -23.854 -26.874, -20.834    

age_chang

e 
-20.416 -28.492, -12.334    

gender -47.198 -84.822, -9.579    

BMI 18.804 -0.965, 38.576    

CESD 13.639 -5.442, 32.721    

diabetes -103.725 -155.653, -51.793    

education -85.668 -147.094, -24.239    

hypertensi

on 
-28.670 -68.981, 11.639    
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dv 
Mo

del 
Predicto

r 
Estimat

e 
95% CI p-value FDR BF 

Executive 

Functions 

1 

LSNS_bas

e*age_cha

nge 

0.001 -0.001, 0.003 0.7946 0.7946 0.06 

LSNS_bas

e 
-0.028 -0.037, -0.018    

LSNS_cha

nge 
0.006 -0.01, 0.021    

age_base -0.020 -0.027, -0.013    

age_chang

e 
-0.066 -0.098, -0.033    

gender -0.075 -0.166, 0.017    

2 

LSNS_bas

e*age_cha

nge 

0.002 -0.001, 0.004 0.9062 0.9062 0.07 

LSNS_bas

e 
-0.018 -0.028, -0.008    

LSNS_cha

nge 
0.010 -0.006, 0.026    

age_base -0.014 -0.022, -0.007    

age_chang

e 
-0.076 -0.111, -0.041    

gender -0.122 -0.215, -0.029    

BMI -0.079 -0.127, -0.03    

CESD -0.137 -0.184, -0.091    

diabetes -0.075 -0.203, 0.053    

education -0.352 -0.507, -0.197    

hypertensi

on 
-0.080 -0.179, 0.018    

Memory 1 

LSNS_bas

e*age_cha

nge 

0.001 -0.001, 0.003 0.7214 0.787 0.06 

LSNS_bas

e 
-0.015 -0.024, -0.006    

LSNS_cha

nge 
-0.011 -0.026, 0.003    

age_base -0.036 -0.042, -0.029    

age_chang

e 
-0.027 -0.057, 0.004    
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dv 
Mo

del 
Predicto

r 
Estimat

e 
95% CI p-value FDR BF 

gender -0.382 -0.465, -0.298    

2 

LSNS_bas

e*age_cha

nge 

0.001 -0.001, 0.003 0.7451 0.8555 0.08 

LSNS_bas

e 
-0.009 -0.018, 0.001    

LSNS_cha

nge 
-0.007 -0.022, 0.008    

age_base -0.033 -0.04, -0.026    

age_chang

e 
-0.028 -0.059, 0.004    

gender -0.425 -0.51, -0.339    

BMI -0.030 -0.076, 0.015    

CESD -0.117 -0.16, -0.074    

diabetes -0.046 -0.163, 0.071    

education -0.167 -0.307, -0.027    

hypertensi

on 
0.024 -0.067, 0.116    

Processing 

Speed 

1 

LSNS_bas

e*age_cha

nge 

-0.001 -0.003, 0.001 0.17 0.2266 0.25 

LSNS_bas

e 
-0.017 -0.025, -0.008    

LSNS_cha

nge 
-0.011 -0.025, 0.003    

age_base -0.038 -0.044, -0.032    

age_chang

e 
-0.019 -0.05, 0.011    

gender -0.111 -0.187, -0.035    

2 

LSNS_bas

e*age_cha

nge 

-0.001 -0.003, 0.001 0.2411 0.3215 0.22 

LSNS_bas

e 
-0.017 -0.025, -0.008    

LSNS_cha

nge 
-0.014 -0.028, 0    

age_base -0.036 -0.042, -0.029    
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dv 
Mo

del 
Predicto

r 
Estimat

e 
95% CI p-value FDR BF 

age_chang

e 
-0.021 -0.052, 0.011    

gender -0.134 -0.213, -0.055    

BMI -0.025 -0.066, 0.016    

CESD -0.023 -0.063, 0.016    

diabetes 0.023 -0.085, 0.132    

education -0.160 -0.29, -0.031    

hypertensi

on 
-0.047 -0.131, 0.037    

Adjusted regression coefficients and measures of significance of models with interaction term of baseline 

social isolation with change in age. * p<0.05, BF>3; dv, dependent variable; CI, confidence interval; FDR, p-

values after FDR-correction; BF, Bayes Factor in favour of alternative hypothesis; LSNS_base, baseline Lubben 

Social Network Score; LSNS_change, change in Lubben Social Network Score; CESD, Center for 

Epidemiological Studies-Depression 

full model1: dv~ LSNS_base*age_change+LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 
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Table S5 

dv Model Predictor Estimate 95% CI 
p-

value 
BF 

Hippocampal 

Volume 

1 

LSNS_base*LSNS_change 0.11 -0.61, 0.82 0.6146 0.03 

LSNS_base -5.50 -9.12, -1.88   

LSNS_change -6.30 -16.43, 3.82   

age_base -25.75 
-28.58, -

22.93 
  

age_change -27.25 
-29.69, -

24.82 
  

gender -48.66 
-85.24, -

12.09 
  

2 

LSNS_base*LSNS_change 0.13 -0.62, 0.88 0.6335 0.06 

LSNS_base -5.67 -9.5, -1.84   

LSNS_change -6.67 -17.4, 4.05   

age_base -23.88 -26.9, -20.86   

age_change -27.57 
-30.14, -

25.01 
  

gender -47.73 -85.36, -10.1   

BMI 18.85 -0.92, 38.63   

CESD 13.34 -5.74, 32.43   

diabetes -103.63 
-155.58, -

51.68 
  

education -85.72 
-147.17, -

24.27 
  

hypertension -29.01 -69.34, 11.3   

Adjusted regression coefficients and measures of significance of models with interaction term of baseline 

social isolation with change in social isolation. dv, dependent variable; CI, confidence interval; BF, Bayes 
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Factor in favour of alternative hypothesis; LSNS_base, baseline Lubben Social Network Score; LSNS_change, 

change in Lubben Social Network Score; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

 

 

 

 

 

Table S6 

Mediator dv Model Estimate SE 
z-

value 
p-

value 

TICS Hippocampal Volume 
1 -0.0005 0 -0.56 0.29 

2 -0.0004 0 -0.37 0.36 

Hippocampal 

Volume 

Executive Functions 
1 -0.0010 0 -0.80 0.21 

2 -0.0013 0 -0.94 0.17 

Memory 
1 -0.0010 0 -0.82 0.20 

2 -0.0013 0 -1.00 0.16 

Processing Speed 
1 -0.0002 0 -0.27 0.40 

2 -0.0004 0 -0.38 0.35 

Indirect effects of social isolation on hippocampal volume and cognitive functions. dv, 

dependent variable; SE, standard error; TICS, Trierer Inventar zum chronischen Stress (stress questionnaire) 

model1: corrected for baseline age, change in age and gender 

model2: model1 + hypertension+diabetes+education+BMI+CESD 
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Table S7 

dv Model Predictor Estimate 95% CI 
p-

value 
FDR BF 

Hippocampal 

Volume 

1 

LSNS_base -5.5 -9.1, -1.9 0.0014** 0.0042** 18.65** 

LSNS_change -5.4 -9, -1.8 0.0017** 0.0042** 7.6* 

age_base -25.7 
-28.6, -

22.9 
   

age_change -25.5 
-28.3, -

22.7 
   

pandemic -38.5 -71.2, -5.8    

2 

LSNS_base -5.7 -9.5, -1.9 0.0018** 0.0073** 20.97** 

LSNS_change -5.5 -9.3, -1.7 0.0024** 0.0073** 6.8* 

age_base -23.9 
-26.9, -

20.8 
   

age_change -25.8 
-28.8, -

22.9 
   

pandemic -38.8 -73.5, -3.8    

Adjusted regression coefficients and measures of significance of hippocampal volume models adjusting for 

the effect of lockdown measures. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, 

BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, Bayes Factor 

in favour of alternative hypothesis; LSNS_base, baseline Lubben Social Network Score; LSNS_change, change 

in Lubben Social Network Score; CESD, Center for Epidemiological Studies-Depression; pandemic, 0/1 

answered LSNS before/after beginning of 1st SARS-CoV-2 lockdown in Germany 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender+pandemic 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

The effect sizes hardly change when including whether the LSNS was filled out after the begin of lockdown 

measures in the model. The effect of this control variable itself tends to be associated with smaller hippocampal 

volume but the confidence interval is very broad. 
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Table S8 

dv Model Predictor Estimate 
95% 

CI 
p-value FDR BF 

Executive 

Functions 

1 

LSNS_base -0.026 
-0.035, -

0.017 
7.7e-

09**** 
9.2e-

08**** 
1.7e+06**** 

LSNS_change 0.005 
-0.01, 

0.019 
0.733 0.7911 0.08 

age_base -0.020 
-0.027, -

0.013 
   

age_change -0.060 
-0.073, -

0.048 
   

pandemic 0.133 
0.004, 

0.262 
   

2 

LSNS_base -0.015 
-0.025, -

0.006 
8e-

04**** 
0.0046** 36.51*** 

LSNS_change 0.007 
-0.008, 

0.022 
0.8314 0.9067 0.09 

age_base -0.014 
-0.022, -

0.007 
   

age_change -0.061 
-0.074, -

0.048 
   

pandemic 0.136 
0.001, 

0.27 
   

Memory 1 

LSNS_base -0.014 
-0.022, -

0.006 
5e-

04**** 
0.0021** 49.92*** 

LSNS_change -0.014 
-0.028, -

0.001 
0.0159* 0.0272* 1.89 

age_base -0.036 
-0.042, -

0.029 
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dv Model Predictor Estimate 
95% 

CI 
p-value FDR BF 

age_change -0.009 
-0.02, 

0.002 
   

pandemic -0.170 
-0.29, -

0.05 
   

2 

LSNS_base -0.008 
-0.017, 

0.001 
0.0444* 0.0761 1.33 

LSNS_change -0.010 
-0.024, 

0.003 
0.0698 0.1047 0.85 

age_base -0.033 
-0.04, -

0.026 
   

age_change -0.010 
-0.021, 

0.002 
   

pandemic -0.158 
-0.283, -

0.031 
   

Processing 

Speed 

1 

LSNS_base -0.018 
-0.026, -

0.011 
1.7e-

06**** 
1.0e-

05**** 
9.7e+03**** 

LSNS_change -0.008 
-0.021, 

0.005 
0.1055 0.1582 0.42 

age_base -0.038 
-0.044, -

0.032 
   

age_change -0.032 
-0.044, -

0.021 
   

pandemic -0.020 
-0.136, 

0.097 
   

2 

LSNS_base -0.018 
-0.026, -

0.01 
9.6e-

06**** 
1e-04**** 2.3e+03**** 

LSNS_change -0.012 
-0.025, 

0.001 
0.0366* 0.0732 1.49 

age_base -0.036 
-0.042, -

0.029 
   

age_change -0.030 
-0.042, -

0.018 
   

pandemic -0.020 
-0.14, 

0.1 
   

Adjusted regression coefficients and measures of significance of cognitive function models adjusting for 

the effect of lockdown measures. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, 

BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, Bayes Factor 

in favour of alternative hypothesis; LSNS_base, baseline Lubben Social Network Score; LSNS_change, change 

in Lubben Social Network Score; CESD, Center for Epidemiological Studies-Depression; pandemic, 0/1 

answered LSNS before/after beginning of 1st SARS-CoV-2 lockdown in Germany 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender+pandemic 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 
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The effect sizes hardly change when including whether the LSNS was filled out after the begin of lockdown 

measures in the model. The effect of this control variable itself is inconsistent between the different models. 

 

 

 

 

 

 

 

Table S9 

dv Model Predictor Estimate 95% CI p-value FDR BF 

Hippo- 

campal 

Volume 

1 

LSNS_base -3.9 -7.3, -0.5 0.013* 0.0222* 2.39 

LSNS_change -5.5 -8.5, -2.4 2e-04**** 7e-04**** 32.58*** 

age_base -27.3 
-29.9, -

24.6 
   

age_change -28.6 
-30.6, -

26.5 
   

2 

LSNS_base -3.2 -6.8, 0.4 0.0399* 0.0684 0.97 

LSNS_change -5.7 -9, -2.5 3e-04**** 0.0017** 28.41** 

age_base -25.5 
-28.4, -

22.7 
   

age_change -29.0 
-31.1, -

26.8 
   

Adjusted regression coefficients and measures of significance of hippocampal volume models based on 

datasets with reduced exclusion criteria. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** 

p<0.0001, BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, 

Bayes Factor in favour of alternative hypothesis; LSNS_base, baseline Lubben Social Network Score; 

LSNS_change, change in Lubben Social Network Score; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

Participants were not excluded for intake of cancer or centrally active medication and cognitive impairement 

When applying less exclusion criteria, no major changes occur. For hippocampal volume baseline social 

isolation becomes deemphasized while the absolute effect size for change in social isolation becomes larger. 
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Table S10 

dv Model Predictor Estimate 95% CI p-value FDR BF 

Executive 

Functions 

1 

LSNS_base -0.030 
-0.038, -

0.022 

5.1e-

13**** 

6.1e-

12**** 
1.6e+10**** 

LSNS_change -0.009 
-0.021, 

0.003 
0.0759 0.1138 0.5 

age_base -0.017 
-0.024, -

0.011 
   

age_change -0.051 
-0.06, -

0.042 
   

2 

LSNS_base -0.019 
-0.028, -

0.011 

4.5e-

06**** 

5.4e-

05**** 
4.6e+03**** 

LSNS_change -0.005 
-0.018, 

0.008 
0.2223 0.3335 0.27 

age_base -0.011 
-0.018, -

0.005 
   

age_change -0.052 
-0.062, -

0.043 
   

Memory 

1 

LSNS_base -0.017 
-0.025, -

0.009 

2.6e-

05**** 
1e-04**** 745.27**** 

LSNS_change -0.015 
-0.027, -

0.003 
0.0079** 0.0158* 3.1* 

age_base -0.041 
-0.048, -

0.033 
   

age_change -0.024 
-0.032, -

0.015 
   

2 LSNS_base -0.009 
-0.018, -

0.001 
0.0164* 0.0328* 2.91 
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dv Model Predictor Estimate 95% CI p-value FDR BF 

LSNS_change -0.014 
-0.026, -

0.001 
0.0143* 0.0328* 2.49 

age_base -0.038 
-0.045, -

0.03 
   

age_change -0.025 
-0.034, -

0.016 
   

Processing 

Speed 

1 

LSNS_base -0.015 
-0.022, -

0.008 

6.1e-

06**** 

3.7e-

05**** 
2.6e+03**** 

LSNS_change -0.016 
-0.026, -

0.005 
0.0022** 0.0053** 9.29* 

age_base -0.038 
-0.043, -

0.033 
   

age_change -0.035 
-0.043, -

0.026 
   

2 

LSNS_base -0.012 
-0.019, -

0.005 
5e-04**** 0.002** 58.77*** 

LSNS_change -0.017 
-0.028, -

0.006 
0.0012** 0.0037** 21.76** 

age_base -0.035 
-0.04, -

0.029 
   

age_change -0.033 
-0.041, -

0.025 
   

Adjusted regression coefficients and measures of significance of cognitive functions models based on 

datasets with reduced exclusion criteria. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** 

p<0.0001, BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, 

Bayes Factor in favour of alternative hypothesis; LSNS_base, baseline Lubben Social Network Score; 

LSNS_change, change in Lubben Social Network Score; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

When applying less exclusion criteria, the direction and magnitude of effect sizes tends to stay the same. The 

direction of change in social isolation becomes negative but is still small. Most significances are more 

pronounced. Given the larger sample size, this is to be expected. 
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Table S11 

dv Model Predictor Estimate 95% CI p-value FDR BF 

Hippo- 

campal Volume 

1 

mean LSNS -6.9 -11.3, -2.6 9e-04**** 0.0036** 26.01** 

LSNS within -4.7 -8.3, -1.1 0.0054** 0.0161* 1.92 

mean age -26.1 -29.4, -22.7    

age within -26.5 -28.8, -24.2    

2 

mean LSNS -6.7 -11.2, -2.1 0.0021** 0.0101* 17.76** 

LSNS within -4.6 -8.4, -0.8 0.009** 0.027* 1.87 

mean age -24.6 -28.1, -21    

age within -26.8 -29.2, -24.4    

Adjusted regression coefficients and measures of significance of hippocampal volume models only 

including participants with two timepoints. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** 

p<0.0001, BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, 

Bayes Factor in favour of alternative hypothesis; mean LSNS, subject's mean Lubben Social Network Score; 

LSNS within, within subject variation in Lubben Social Network Score; mean age, subject's mean age; age 

within, within subject variation in age; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

In this sensitivity analysis only participants with two timepoints were included and standard mean and within 

scores rather than baseline and change scores were calculated. In terms of effect size and direction our original 

model is corroborated. Smaller measures of significance in this smaller sample were expectable. 
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Table S12 

dv Model Predictor Estimate 95% CI p-value FDR BF 

Executive 

Functions 

1 

mean 

LSNS 
-0.027 

-0.037, -

0.016 

5.9e-

07**** 

7.1e-

06**** 
2.7e+04**** 

LSNS 

within 
0.005 

-0.011, 

0.021 
0.7316 0.7607 0.08 

mean age -0.014 
-0.023, -

0.006 
   

age within -0.055 
-0.066, -

0.045 
   

2 

mean 

LSNS 
-0.016 

-0.027, -

0.005 
0.0025** 0.0101* 16.1** 

LSNS 

within 
0.005 

-0.012, 

0.021 
0.7176 0.7829 0.11 

mean age -0.008 
-0.016, 

0.001 
   

age within -0.055 
-0.065, -

0.044 
   

Memory 

1 

mean 

LSNS 
-0.010 -0.019, 0 0.0225* 0.045* 2.02 

LSNS 

within 
-0.010 

-0.024, 

0.004 
0.0874 0.1498 0.43 

mean age -0.031 
-0.039, -

0.024 
   

age within -0.018 
-0.027, -

0.009 
   

2 
mean 

LSNS 
-0.006 

-0.016, 

0.004 
0.1243 0.2131 0.66 
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dv Model Predictor Estimate 95% CI p-value FDR BF 

LSNS 

within 
-0.006 

-0.021, 

0.008 
0.2046 0.307 0.3 

mean age -0.027 
-0.035, -

0.02 
   

age within -0.016 
-0.025, -

0.006 
   

Processing 

Speed 

1 

mean 

LSNS 
-0.015 

-0.024, -

0.006 
4e-04**** 0.0027** 58.1*** 

LSNS 

within 
-0.006 

-0.02, 

0.009 
0.2218 0.3305 0.2 

mean age -0.039 
-0.046, -

0.032 
   

age within -0.033 
-0.043, -

0.023 
   

2 

mean 

LSNS 
-0.014 

-0.024, -

0.005 
0.0017** 0.0101* 21.84** 

LSNS 

within 
-0.011 

-0.026, 

0.004 
0.0721 0.1441 0.66 

mean age -0.038 
-0.045, -

0.031 
   

age within -0.031 
-0.041, -

0.021 
   

Adjusted regression coefficients and measures of significance of cognitive functions models only including 

participants with two timepoints. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, 

BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, Bayes Factor 

in favour of alternative hypothesis; mean LSNS, subject's mean Lubben Social Network Score; LSNS within, 

within subject variation in Lubben Social Network Score; mean age, subject's mean age; age within, within 

subject variation in age; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

In this sensitivity analysis only participants with two timepoints were included and standard mean and within 

scores rather than baseline and change scores were calculated. As for hippocampal volume, this sensitivity 

analysis corroborates our original model. 
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Table S13 

dv Model Predictor Estimate 95% CI 
p-

value 
FDR BF 

Hippocampal 

Volume 

1 

LSNS_base -5.5 -9.1, -1.9 0.0015** 0.0044** 19.53** 

LSNS_change -4.9 -8.5, -1.3 0.0038** 0.0091** 2.34 

age_base -25.8 
-28.6, -

22.9 
   

age_change -27.4 
-29.6, -

25.1 
   

2 

LSNS_base -5.7 -9.5, -1.9 0.0018** 0.0073** 17.34** 

LSNS_change -4.9 -8.7, -1.1 0.0055** 0.0164* 3.37* 

age_base -24.2 
-27.2, -

21.1 
   

age_change -27.7 
-30.1, -

25.3 
   

hypertension -15.6 
-57.1, 

25.8 
   

Adjusted regression coefficients and measures of significance of hippocampal volume models using a 

hypertension cut-off of 140mmHg. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, 

BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, Bayes Factor 

in favour of alternative hypothesis; mean LSNS, subject's mean Lubben Social Network Score; LSNS within, 

within subject variation in Lubben Social Network Score; mean age, subject's mean age; age within, within 

subject variation in age; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD  

Social isolation significantly predicts hippocampal volume after multiplicity control. Bayes Factors provide 

strong evidence in favour of the alternative hypotheses for baseline social isolation and anecdotal to moderate 

evidence for change in social isolation. The effect size of one point on the LSNS is equivalent to a baseline age 

difference of around two and a half months.   
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Table S14 
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dv Model Predictor Estimate 95% CI 
p-

value 
FDR BF 

Executive 

Functions 

1 

LSNS_base -0.026 
-0.035, -

0.017 
8.2e-09 

9.9e-

08 
1.5e+06 

LSNS_change 0.003 -0.011, 0.018 0.6775 0.7893 0.08 

age_base -0.019 
-0.026, -

0.012 
   

age_change -0.053 
-0.063, -

0.042 
   

2 

LSNS_base -0.015 
-0.025, -

0.006 
8e-04 0.0047 50.05 

LSNS_change 0.006 -0.009, 0.021 0.78 0.851 0.09 

age_base -0.013 
-0.021, -

0.006 
   

age_change -0.054 
-0.065, -

0.044 
   

hypertension -0.120 
-0.222, -

0.018 
   

Memory 

1 

LSNS_base -0.014 
-0.022, -

0.006 
5e-04 0.002 48.6 

LSNS_change -0.013 -0.026, 0 0.0265 0.0454 1.11 

age_base -0.036 
-0.042, -

0.029 
   

age_change -0.018 
-0.027, -

0.009 
   

2 

LSNS_base -0.007 -0.016, 0.001 0.0501 0.086 1.15 

LSNS_change -0.009 -0.023, 0.005 0.1033 0.1549 0.49 

age_base -0.032 
-0.039, -

0.025 
   

age_change -0.018 
-0.027, -

0.008 
   

hypertension -0.006 -0.1, 0.089    

Processing Speed 1 

LSNS_base -0.018 -0.025, -0.01 2.4e-06 
1.4e-

05 
6.8e+03 

LSNS_change -0.008 -0.021, 0.005 0.1074 0.1611 0.36 

age_base -0.038 
-0.044, -

0.032 
   

age_change -0.034 
-0.043, -

0.024 
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dv Model Predictor Estimate 95% CI 
p-

value 
FDR BF 

2 

LSNS_base -0.018 
-0.026, -

0.009 
1.2e-05 1e-04 1.8e+03 

LSNS_change -0.012 -0.025, 0.001 0.0371 0.0741 1.56 

age_base -0.037 
-0.043, -

0.031 
   

age_change -0.032 
-0.041, -

0.022 
   

hypertension -0.002 -0.088, 0.085    

Adjusted regression coefficients and measures of significance of cognitive functions models using a 

hypertension cut-off of 140mmHg. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** p<0.0001, 

BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, Bayes Factor 

in favour of alternative hypothesis; mean LSNS, subject's mean Lubben Social Network Score; LSNS within, 

within subject variation in Lubben Social Network Score; mean age, subject's mean age; age within, within 

subject variation in age; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD  

Baseline social isolation significantly predicts cognitive functions after FDR-correction and BFs provide very 

strong to decisive evidence in favour of the alternative hypotheses. Only for model 2 of memory evidence is 

weak. No association of change in social isolation with executive functions is detected and evidence for 

associations with memory and processing speed are limited.   
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Table S15  

dv Model Predictor Estimate 95% CI p-value FDR BF 

Hippo- 

campal Volume 

1 

LSNS_base -7.3 -11.2, -3.4 1e-04 4e-04 192.27 

LSNS_change -4.5 -8.2, -0.8 0.0093 0.0223 1.18 

age_base -24.5 -27.5, -21.6    

age_change -27.7 -30.1, -25.3    

2 

LSNS_base -7.1 -11.2, -3 4e-04 0.0042 81.34 

LSNS_change -4.6 -8.6, -0.7 0.0103 0.0309 1.7 

age_base -22.4 -25.6, -19.2    

age_change -27.7 -30.2, -25.2    

Adjusted regression coefficients and measures of significance of hippocampal volume models excluding 

participants with MMSE score < 27. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** 

p<0.0001, BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, 

Bayes Factor in favour of alternative hypothesis; mean LSNS, subject's mean Lubben Social Network Score; 

LSNS within, within subject variation in Lubben Social Network Score; mean age, subject's mean age; age 

within, within subject variation in age; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

Social isolation significantly predicts hippocampal volume after multiplicity control. Bayes Factors provide 

strong evidence in favour of the alternative hypotheses for baseline social isolation and anecdotal to moderate 

evidence for change in social isolation. The effect size of one point on the  LSNS is equivalent to a baseline age 

difference of around two and a half months. 
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Table S16 

Model Predictor Estimate 95% CI p-value FDR BF 

1 

LSNS_base -0.023 -0.033, -0.013 1.9e-06 2.3e-05 9.4e+03 

LSNS_change 0.004 -0.01, 0.019 0.7159 0.7159 0.08 

age_base -0.016 -0.024, -0.009    

age_change -0.058 -0.068, -0.047    

2 

LSNS_base -0.014 -0.024, -0.003 0.0049 0.0194 8.81 

LSNS_change 0.007 -0.008, 0.022 0.8175 0.8384 0.09 

age_base -0.012 -0.02, -0.004    

age_change -0.058 -0.069, -0.048    

1 

LSNS_base -0.014 -0.023, -0.005 0.0011 0.0034 24.53 

LSNS_change -0.013 -0.027, 0.001 0.0308 0.0615 1.08 

age_base -0.033 -0.039, -0.026    

age_change -0.028 -0.038, -0.018    

2 

LSNS_base -0.009 -0.018, 0.001 0.0355 0.0852 1.66 

LSNS_change -0.009 -0.023, 0.006 0.1181 0.169 0.51 

age_base -0.029 -0.036, -0.021    

age_change -0.026 -0.036, -0.016    

1 

LSNS_base -0.016 -0.024, -0.008 1e-04 4e-04 198.61 

LSNS_change -0.007 -0.02, 0.006 0.1509 0.2012 0.31 

age_base -0.038 -0.045, -0.032    

age_change -0.038 -0.047, -0.028    

2 

LSNS_base -0.014 -0.023, -0.005 8e-04 0.005 40.5 

LSNS_change -0.010 -0.023, 0.004 0.0827 0.1418 0.8 

age_base -0.036 -0.043, -0.029    

age_change -0.035 -0.045, -0.025    

Adjusted regression coefficients and measures of significance of cognitive functions models excluding 

participants with MMSE score < 27. * p<0.05, BF>3; ** p<0.01, BF>10; *** p<0.001, BF>30; **** 

p<0.0001, BF>100; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-correction; BF, 

Bayes Factor in favour of alternative hypothesis; mean LSNS, subject's mean Lubben Social Network Score; 

LSNS within, within subject variation in Lubben Social Network Score; mean age, subject's mean age; age 

within, within subject variation in age; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change+gender 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

Baseline social isolation significantly predicts cognitive functions after FDR-correction and BFs provide very 

strong to decisive evidence in favour of the alternative hypotheses. Only for model 2 of memory evidence is 
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weak. No association of change in social isolation with executive functions is detected and evidence for 

associations with memory and processing speed are limited. 
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Table S17 

dv 
Mode

l 

gende

r 
Predictor 

Estimat

e 

95% 

CI 

p-

value 
FDR 

Hippo- 

campal 

Volume 

1 female 

LSNS_base -7.265 

-

12.546

, -

1.984 

0.0036*

* 
0.0142* 

LSNS_change -3.826 
-8.389, 

0.75 
0.0503 0.1006 

LSNS_base*age_change -0.311 
-0.992, 

0.37 
0.1847 0.2463 

LSNS_base*LSNS_chang

e 
-0.026 

-0.865, 

0.812 
0.4755  

1 male 

LSNS_base -4.418 
-9.407, 

0.572 
0.0414* 0.0827 

LSNS_change -5.821 

-

11.462

, -0.17 

0.0218* 0.0655 

LSNS_base*age_change -0.793 
-1.656, 

0.066 
0.0356* 0.0827 

LSNS_base*LSNS_chang

e 
0.426 

-0.831, 

1.696 
0.7466  

2 female 

LSNS_base -9.402 

-

15.042

, -

3.762 

6e-

04**** 

0.0068*

* 

LSNS_change -3.452 
-8.28, 

1.395 
0.0807 0.1614 

LSNS_base*age_change -0.255 
-0.971, 

0.462 
0.2422 0.3229 

LSNS_base*LSNS_chang

e 
0.027 

-0.842, 

0.895 
0.5248  

2 male 

LSNS_base -3.046 
-8.299, 

2.207 
0.1277 0.2554 

LSNS_change -6.344 

-

12.289

, -0.39 

0.0185* 0.1111 

LSNS_base*age_change -0.796 
-1.692, 

0.095 
0.0403* 0.1209 

LSNS_base*LSNS_chang

e 
0.448 

-0.876, 

1.783 
0.7464  

Executive 

Functions 
1 female LSNS_base -0.032 

-0.045, 

-0.018 

1.6e-

06**** 

1.9e-

05**** 
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dv 
Mode

l 

gende

r 
Predictor 

Estimat

e 

95% 

CI 

p-

value 
FDR 

LSNS_change -0.006 
-0.026, 

0.014 
0.2797 0.3357 

LSNS_base*age_change 0.001 
-0.002, 

0.004 
0.7135 0.7135 

1 male 

LSNS_base -0.022 
-0.034, 

-0.009 

4e-

04**** 

0.0022*

* 

LSNS_change 0.013 
-0.007, 

0.033 
0.9021 0.9021 

LSNS_base*age_change 0.001 
-0.002, 

0.005 
0.8056 0.8789 

2 female 

LSNS_base -0.020 
-0.034, 

-0.006 

0.0032*

* 
0.019* 

LSNS_change 0.001 
-0.02, 

0.022 
0.547 0.6564 

LSNS_base*age_change 0.002 
-0.002, 

0.005 
0.8642 0.8642 

2 male 

LSNS_base -0.012 
-0.025, 

0 
0.0293* 0.1173 

LSNS_change 0.012 
-0.009, 

0.033 
0.8653 0.8653 

LSNS_base*age_change 0.002 
-0.002, 

0.005 
0.8482 0.8653 

Memory 

1 female 

LSNS_base -0.011 
-0.023, 

0.001 
0.0345* 0.0827 

LSNS_change -0.017 
-0.034, 

-0.001 
0.0218* 0.0655 

LSNS_base*age_change 0.000 
-0.003, 

0.003 
0.5141 0.5609 

1 male 

LSNS_base -0.016 
-0.028, 

-0.004 

0.0035*

* 
0.0141* 

LSNS_change -0.007 
-0.028, 

0.013 
0.2454 0.4081 

LSNS_base*age_change 0.001 
-0.002, 

0.005 
0.7892 0.8789 

2 female 

LSNS_base -0.004 
-0.017, 

0.008 
0.2417 0.3229 

LSNS_change -0.015 
-0.032, 

0.003 
0.0494* 0.1185 

LSNS_base*age_change 0.000 
-0.002, 

0.003 
0.612 0.6677 
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dv 
Mode

l 

gende

r 
Predictor 

Estimat

e 

95% 

CI 

p-

value 
FDR 

2 male 

LSNS_base -0.010 
-0.022, 

0.003 
0.0644 0.1544 

LSNS_change -0.002 
-0.023, 

0.02 
0.4446 0.5928 

LSNS_base*age_change 0.001 
-0.002, 

0.004 
0.7429 0.8653 

Processin

g Speed 

1 female 

LSNS_base -0.017 
-0.028, 

-0.005 

0.0028*

* 
0.0142* 

LSNS_change -0.009 
-0.026, 

0.009 
0.1632 0.2448 

LSNS_base*age_change -0.002 
-0.005, 

0.001 
0.127 0.2177 

1 male 

LSNS_base -0.020 
-0.03, -

0.01 

6.6e-

05**** 

8e-

04**** 

LSNS_change -0.006 
-0.025, 

0.013 
0.2721 0.4081 

LSNS_base*age_change 0.000 
-0.003, 

0.003 
0.4427 0.5903 

2 female 

LSNS_base -0.016 
-0.029, 

-0.004 

0.0053*

* 
0.0211* 

LSNS_change -0.015 
-0.033, 

0.002 
0.0449* 0.1185 

LSNS_base*age_change -0.001 
-0.004, 

0.002 
0.1922 0.3229 

2 male 

LSNS_base -0.018 
-0.029, 

-0.008 

4e-

04**** 

0.0051*

* 

LSNS_change -0.007 
-0.028, 

0.013 
0.2368 0.4059 

LSNS_base*age_change 0.000 
-0.003, 

0.003 
0.4265 0.5928 

Adjusted regression coefficients and measures of significance of models stratified by gender. * p<0.05 ; ** 

p<0.01; *** p<0.001; **** p<0.0001; dv, dependent variable; CI, confidence interval; FDR, p-values after FDR-

correction; LSNS_base, baseline Lubben Social Network Score; LSNS_change, change in Lubben Social 

Network Score; CESD, Center for Epidemiological Studies-Depression 

full model1: dv~LSNS_base+LSNS_change+age_base+age_change 

full model2: model1 + hypertension+diabetes+education+BMI+CESD 

The unit of effect sizes on hippocampal volume and cognitive functions for non-interaction models are 

mm³/point on the LSNS and standard deviation/point on the LSNS, respectively. For interaction models the unit 

in the denominator is multiplied by year or point on the LSNS. 
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Table S18 

dv predictor estimate se p-value q value 

ΔHCV LSNS_base -0.002 0.005 0.315 0.420 

ΔLSNS HCV_base -0.139 0.175 0.213 0.284 

ΔEF LSNS_base -0.014 0.007 0.029* 0.116 

ΔLSNS EF_base -0.149 0.170 0.189 0.284 

ΔMemo LSNS_base 0.001 0.006 0.576 0.576 

ΔLSNS Memo_base -0.308 0.168 0.033* 0.133 

ΔPS LSNS_base -0.005 0.008 0.250 0.420 

ΔLSNS PS_base -0.102 0.179 0.285 0.285 

Relevant Regressions of Bivariate Latent Change Score Models. *, p < 0.05; dv, dependent variable; se, 

standard error; _base, baseline score of; Δ, change in; LSNS, Lubben Social Network Score; HCV, z-

transformed hippocampal volume; EF, executive functions; Memo, memory; PS, processing speed 
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Table S19 

BFA0 FWER in % n 

15.744 1.18 1 

13.634 2.36 2 

13.139 3.51 3 

10.926 4.66 4 

10.632 5.79 5 

9.196 6.91 6 

8.728 8.02 7 

8.510 9.12 8 

7.749 10.20 9 

7.191 11.28 10 

6.081 12.34 11 

4.746 13.39 12 

4.044 14.42 13 

4.003 15.45 14 

Simulated Bayes Factors above the threshold of 3. BFA0, Sided Bayes factor in favour of the alternative 

hypothesis; FWER, familywise error rate if the threshold would be set just below BFA0 

In the simulation with randomly simulated values for our predictors of interest, 14 BFs exceeded the standard 

threshold of three. Given a family size of 12 tests, a threshold of 10.75 would maintain the FWER below 5%. 
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Table S20 

Category 
BFA0b > 

3 in % 

3 >= 

BFA0b >= 

1/3 in % 

BFA0b < 

1/3 in % 

BFA0c > 

3 in % 

3 >= 

BFA0c >= 

1/3 in % 

BFA0c < 

1/3 in % 
n 

overall 44.23 31.41 24.36 28.85 30.45 40.71 312 

model 1 45.51 30.13 24.36 30.13 30.13 39.74 156 

model 2 42.95 32.69 24.36 27.56 30.77 41.67 156 

effect = 0.1 9.62 38.46 51.92 5.77 24.04 70.19 104 

effect = 0.2 37.50 44.23 18.27 21.15 39.42 39.42 104 

effect = 0.5 85.58 11.54 2.88 59.62 27.88 12.50 104 

Results of Power Simulation of Bayes Factors. BFA0b, Sided Bayes factor in favour of the alternative 

hypothesis of baseline social isolation; BFA0c, Sided Bayes factor in favour of the alternative hypothesis of 

change in social isolation; n, number of simulations in the category; model 1, model with reduced number of 

control variables; model 2, model with full number of control variables; effect, effect size per point in the 

Lubben Social Network Scale in years of baseline age 

Percentages of Bayes Factors giving moderate or stronger evidence in favour of the alternative hypothesis (>3), 

giving anecdotal evidence (3>=BF>=1/3) and giving moderate or stronger evidence in favour of the null 

hypothesis (< 1/3). 
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Table S21 

Category 

BFA0b > 

10.75 in 

% 

10.75 >= 

BFA0b >= 

1/3 in % 

BFA0b < 

1/3 in % 

BFA0c > 

10.75 in 

% 

10.75 >= 

BFA0c >= 

1/3 in % 

BFA0c < 

1/3 in % 
n 

overall 37.18 38.46 24.36 20.83 38.46 40.71 312 

model 1 38.46 37.18 24.36 21.79 38.46 39.74 156 

model 2 35.90 39.74 24.36 19.87 38.46 41.67 156 

effect = 0.1 5.77 42.31 51.92 0.96 28.85 70.19 104 

effect = 0.2 24.04 57.69 18.27 14.42 46.15 39.42 104 

effect = 0.5 81.73 15.38 2.88 47.12 40.38 12.50 104 

Results of Power Simulation of Bayes Factors with adjusted thresholds for a family of 12 tests. BFA0b, 

Sided Bayes factor in favour of the alternative hypothesis of baseline social isolation; BFA0c, Sided Bayes factor 

in favour of the alternative hypothesis of change in social isolation; n, number of simulations in the category; 

model 1, model with reduced number of control variables; model 2, model with full number of control variables; 

effect, effect size per point in the Lubben Social Network Scale in years of baseline age. Percentages of Bayes 

Factors giving moderate or stronger evidence in favour of the alternative hypothesis (>10.75), giving anecdotal 

evidence (10.75>=BF>=1/3) and giving moderate or stronger evidence in favour of the null hypothesis (< 1/3). 
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