
Impurity-induced pairing in two-dimensional Fermi gases

Ruipeng Li,1, 2, ∗ Jonas von Milczewski,1, 2, ∗ Atac Imamoglu,3 Rafa l O ldziejewski,1, 2 and Richard Schmidt1, 4

1Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse 1 , 85748 Garching, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany

3Institute of Quantum Electronics ETH Zurich, CH-8093 Zurich, Switzerland
4Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany

(Dated: November 23, 2022)

We study induced pairing between two identical fermions mediated by an attractively interacting
quantum impurity in two-dimensional systems. Based on a Stochastic Variational Method (SVM),
we investigate the influence of confinement and finite interaction range effects on the mass ratio
beyond which the ground state of the quantum three-body problem undergoes a transition from a
composite bosonic trimer to an unbound dimer-fermion state. We find that confinement as well as a
finite interaction range can greatly enhance trimer stability, bringing it within reach of experimental
implementations such as found in ultracold atom systems. In the context of solid-state physics our
solution of the confined three-body problem shows that exciton-mediated interactions can become
so dominant that they can even overcome detrimental Coulomb repulsion between electrons in
atomically-thin semiconductors. Our work thus paves the way towards a universal understanding
of boson-induced pairing across various fermionic systems at finite density, and opens perspectives
towards realizing novel forms of electron pairing beyond the conventional paradigm of Cooper pair
formation.

I. INTRODUCTION

Frequently, the relevant physics of a many-body sys-
tem is determined by the properties of its few-particle
correlators, and thus a deep understanding of a many-
body problem often comes only after carefully examining
its few-body counterpart. An excellent example is given
by the discovery of Cooper pair formation as the key in-
gredient leading to superconductivity [1, 2]. No matter
the type of a superconductor, be it s-wave, p-wave, d-
wave or other like charge-4e superconductors [3–12], the
phenomenon requires electrons to be bound into bosonic
compounds. While, for conventional superconductors,
the binding originates from phonon-mediated attraction,
a variety of bosons —partially originating from collective
excitations of the electronic system itself— have been
considered as the mediating particle [13–16].

More generally, quantum impurity-mediated pairing
of fermions in the so-called mass-imbalanced 1 + N
fermions problem has been scrutinized extensively in re-
cent years [17–28]. The vast majority of theoretical ef-
forts have focused on non-interacting fermions and point-
like impurity-fermion attraction that can be studied ex-
perimentally with ultracold gases [29–31]. Interestingly,
in the unconfined case, the system easily supports cluster-
bound states whenever fermions are sufficiently heav-
ier than the quantum impurity. The mass ratios re-
quired for a specific cluster creation depend on the dimen-
sionality of the system, being more favourable (smaller)
in two dimensions (2D) compared to three dimensions
(3D) [32, 33].
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A recent twist to the quantum impurity problem in
2D emerged with the advent of atomically-thin van der
Waals materials, particularly semiconducting transition
metal dichalcogenides (TMDs) [34, 35]. In TMDs, exci-
tons (bosons) can be either employed as an experimen-
tal probe of the many-body physics exhibited by elec-
trons (fermions), ranging from Mott physics [36], exci-
tonic insulators [37] and the fractional Quantum Hall ef-
fect [38] to the recent observation of Wigner crystalli-
sation [39, 40], or they can be viewed as novel con-
stituents of Bose-Fermi mixtures [34, 41, 42] potentially
supporting superconductivity [43–45]. Importantly, in
this case strong Coulomb repulsion is present between
the fermionic electrons and the impurity-fermion inter-
action itself is characterized by a substantial range [46].
So far, little is known about the existence and character
of bosonic cluster-bound states in such a scenario.

Recent advances in controlling 2D external confine-
ment in ultracold setups [47, 48] and TMDs [49] open an
exciting possibility of exploring the physics of the quan-
tum impurity problem in a fermionic background in a
controlled bottom-up approach [50–52]. Specifically, an
alternative interpretation of the confinement potential is
that of imitating a finite bath density found in many-
body problems like the Fermi polaron problem [53–56].
As such, the change of the confinement (∼ R, see Fig. 1)
could be regarded as a primitive means of tuning the
bath density (nF ∼ 1/R2 ∼ k2F ), realising a few-body
analogue of the full many-body problem.

In this work, we significantly refine the previous un-
derstanding of a 2D system of one impurity and two
identical fermions (i.e., the smallest possible Fermi sea)
by studying the effects of a finite-range impurity-fermion
potential, confinement and strong inter-fermion repulsion
on the ground state properties using a Stochastic Varia-
tional Method (SVM). As a key result, we show that the
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FIG. 1. Schematic diagram of the system and the main ef-
fects under study. Panel (a) shows the interacting three-body
system with one impurity (“I”) and two fermions (“F”) in a
two-dimensional spherical box of size R. On the right, we
show the qualitative effect of (b) the interaction range r0
and (c) the effective density ( inversely proportional to the
inverse of the box size R) on the critical mass ratio of the
dimer-trimer transition. Both interaction range and effective
density enhance trimer formation and can become so domi-
nant that they can even overcome the detrimental Coulomb
repulsion (VFF) between the fermions.

critical mass ratio of the dimer-to-trimer transition (in a
TMD signified as the transition from a fermionic trion to
a bosonic p-wave bound state of two electrons glued to-
gether by an exciton) strongly departs from previous find-
ings obtained for the simpler case of ideal fermions and
zero-range impurity-fermion attraction. Remarkably, for
TMDs, we find that the trimer formation, comprising
two identical electrons and an exciton, is robust against
Coulomb repulsion for a vast range of parameters. More-
over, we find that the stability of emerging bosonic p-
wave composite electronic state is enhanced by confine-
ment suggesting that direct exciton-mediated p-wave su-
perconductivity may be well in reach in solid state sys-
tems.

II. THE MODEL

We consider an interacting system of two fermions and
a quantum impurity confined in a two-dimensional spher-
ical box, see Fig. 1a. This could represent two electrons
interacting with an exciton in a quantum dot within
a TMD, as well as two degenerate ultracold fermionic
atoms interacting with an atom of a different quantum
number within an oblate optical trap. Using an effec-
tive mass approximation, the Hamiltonian for this system
reads

H =− ~2

2mI
∇2

1 −
~2

2mF
∇2

2 −
~2

2mF
∇2

3 +

3∑
i=1

Vconf(ri)

+ VFI(r1 − r2) + VFI(r1 − r3) + VFF(r2 − r3).
(1)

Here r1, r2 and r3 denote the positions of the impurity
and the two fermions, respectively, while mI and mF

are their masses. The fourth term in the Hamiltonian
represents the external confinement potential which is
modeled by an infinite potential well [57]. To account
for finite range effects the fermion-impurity interaction
is modeled via a square well potential

VFI(r) =

{− V0, |r| ≤ r0
0, |r| > r0

, (2)

of depth V0 and range r0. Additionally, to study the
influence of Coulomb interactions, we include the simple
Coulomb potential

VFF(r) =
e2

4πε0ε

1

|r| , (3)

where e is the electron charge and ε the dielectric con-
stant of a given material. Note that in cold atoms this
direct interaction is absent (VFF = 0) while for TMD
it is a good approximation at large distance scales. At
short range this interaction can be modelled using the
Rytova-Keldysh potential [58, 59]. However, to capture
the essential physics of the interplay of Coulomb repul-
sion, confinement and electron-exciton attraction, we re-
strict ourselves to the use of the pure Coulomb potential
(3) which, on the one hand, allows for efficient numerics
and, on the other hand, does not complicate the analy-
sis by introducing additional physical tuning parameters,
such as the screening length.

III. METHOD

Apart from the task of solving the quantum mechanical
problem of three interacting particles, this system brings
with itself the challenge of the additional confinement
potential which is however crucial to imitate the effect
of a finite fermion density nF in many-body systems,
nF ∼ 1/R2 ∼ k2F where kF denotes the Fermi wavevector
of the fermions. The confinement breaks translational
symmetry and thus is not susceptible to momentum space
approaches using conventional variational wave functions
or quantum field theory and diagrammatic approaches.

To solve for the ground state and its energy, we employ
the SVM [60]. To this end, the Hamiltonian H is diag-

onalized with respect to a set of wavefunctions {Φn}Nn=1
which is successively extended by drawing from a mani-
fold of trial functions. In every extension step N → N+1
the choice of the new wavefunction ΦN+1 is optimized in
a stochastic random walk, minimizing the lowest-lying
eigenstates of the Hamiltonian H with respect to the

vector space spanned by the set {Φn}N+1
n=1 . During the

optimization, we first draw a set of independent samples
from the manifold of trial functions and then perform
a random descend walk around the best proposal state.
Having performed an extension step, the Hamiltonian H
is diagonalized with respect to the vector space spanned



3

by the {Φn}N+1
n=1 . The resulting i-lowest eigenstate Ψi is

then given by a superposition of these basis states, i.e.

Ψi =
∑N+1
n=1 c

i
nΦn, where i = 1, ..., N + 1 and the eigen-

states {Ψi}N+1
i=1 are mutually orthogonal.

In many applications of SVM, trial functions are gen-
erated from explicitly correlated Gaussians (ECG)[60,
61]. These are parametrized as Φ(r1, r2, r3) =

P exp
(
− 1

2

∑3
i,j=1Aijri · rj

)
, where A is a positive defi-

nite, symmetric 3×3 matrix and P is an antisymmetriza-
tion operator. The advantage of using this trial function
is threefold. First, it is easy to find the analytical so-
lution to the matrix elements of the Hamiltonian with
these basis functions [61, 62]. Second, it can achieve a
high accuracy in the energy. Finally, the ECG contain
the relevant physical states (dimers, trimers and scatter-
ing states in our system) and as such have been used
to calculate exciton, trion and even biexciton energies in
solid state systems with high precision [63–66]. For more
detail on the optimization algorithm and the sampling
from the ECG manifold, we refer to Appendix A.

IV. GROUND STATE

In this section, we calculate the ground state using the
SVM. As the 2D system features binding via the fermion-
impurity potential VFI for any potential depth [67], states
composed of a dimer and a further fermion in a scatter-
ing state are expected to play a vital role [68]. Moreover,
for sufficiently light impurities the formation of a trimer
is expected in which two fermions and the impurity bind
together by the mediating force of the impurity [28]; sim-
ilar to the three-dimensional case where a p-wave trimer
and eventually Efimov states appear for sufficiently light
impurities [17, 19, 21]. In the limit of a vanishing inter-
action range r0 → 0 and infinite system size R → ∞ a
ground state transition from a dimer to a trimer state is
predicted to occur as the mass ratio α = mF /mI is tuned
across the critical value αc ≈ 3.34 [23, 32, 33]. Having
this known, limiting case of the system under study as a
benchmark, in the following we investigate the effect of
interaction range r0 and confinement (determined by the
system size R) on the position of this transition, which
manifests as a crossover in our system of a finite size.
Specifically, we study how the ground state characteris-
tics and energy changes as we tune α, r0 and R and as
a result how the critical mass ratio varies with r0 and
R. In the following, we will refer to the two-body bound
state appearing in a two-body problem consisting of the
impurity and a fermion as the vacuum dimer and its
binding energy as the vacuum dimer energy E∞2B . The
terms dimer and trimer will refer to states in the three-
body problem, where the term dimer refers to a two-body
bound state of an impurity and a fermion along with a
fermion in a scattering state, while the term trimer de-
notes a three-body bound state consisting of an impurity
bound to the two fermions.

To this end, we vary α, r0 and R while keeping the
non-trapped (R → ∞) vacuum dimer energy E∞2B con-
stant and operate in units where the fermion mass is set
to mF = 0.5. We define a corresponding length scale
rB = 1/

√
2mFE∞2B , which we will refer to as binding

length in the following. Note, however, that we set this
length by the fermion mass and not the reduced mass in
order to have a fixed value of rB as α is changed and thus
it is merely proportional to the physical interpretation of
a binding length. The required solution for the ground
state of the two-body Hamiltonian of one fermion and
one impurity interacting via VFI for R → ∞ can be ob-
tained exactly (see Appendix B; in Appendix C we show
for comparison the vacuum dimer energies obtained for
R <∞ using the SVM). From this solution the potential
depth V0 is obtained as a function of α and r0. We begin
by considering the system without Coulomb interactions
(VFF = 0). Thus, after establishing the trimer forma-
tion in our system, we will turn to studying the effect of
Coulomb interactions (VFF > 0).

A. Non-interacting fermions

In Fig. 2, we show the energy of the SVM ground state
as function of the mass ratio α for different r0 and R.
Here, r0 and R are varied in terms of the dimension-
less quantities r0/rB and R/rB . The ground state ener-
gies are all located in vicinity of E∞2B . For fixed r0/rB
and R/rB , the ground state energies first increase slightly
with the mass ratio and then show a drop at some critical
mass ratio. Beyond the critical mass ratio, the ground
state energy decreases steadily and takes on an almost
linear dependence on the mass ratio E ∝ −α [23, 32, 33].
One can see that r0 and R have a strong influence on
the energies as well as the critical mass ratio at which
the qualitative change in the ground state energy, rep-
resented by the drop, occurs. For a fixed system size
R/rB , upon increasing r0/rB , both the ground state en-
ergies and the critical mass ratio decrease. On the other
hand, fixing the interaction range r0/rB while increasing
system size R leads to a decrease of the energy while the
critical mass ratios increases.

We now turn to a detailed discussion of the qualitative
change observed in the ground state energy. This change
signifies a transition of the ground state of the system,
where for values of α smaller than a critical value, the
system is composed of a bound dimer plus an unbound
fermion. In contrast, beyond the critical value of α the
ground state energy falls below the corresponding dimer-
fermion scattering threshold signifying the emergence of
a three-body bound state, the trimer, similar to the un-
confined system [23, 32, 33]. While the energy is a good
indicator of a qualitative change, a reliable identification
of the nature of the ground state, can be obtained by a
direct analysis of the corresponding wave function. In
the following, we will study two measures, angular mo-
mentum and density distribution, from which the dimer
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FIG. 2. Energies E/E∞2B (top panels) and angular momentum expectation values 〈L2
tot〉 (bottom panels) of the ground state

as a function of mass imbalance α for r0/rB = 0.2 (black dots), 0.5 (purple triangles), 0.8 (red squares), 1.2 (orange crosses)
and 2 (yellow diamonds) at R/rB = 10, 20, 50 and 100. The energies are located around E∞2B with upward shifts mainly due to
the confinement contributions to the kinetic energy of the particles, and additional contributions due to the interaction range.
The crossover from the dimer to the p-wave trimer bound state is clearly visible in the angular momentum which crosses over
from close to 0 to approximately 1. This crossover is similarly reflected in a drop of the ground state energy that turns into
an almost linear dependence on α beyond a critical value. For increasing r0/rB (R/rB) this crossover region moves to lower
(higher) mass ratios α. For R/rB → ∞ the crossover becomes a sharp transition which for r0/rB → 0 occurs at αc ≈ 3.34
[23, 32, 33]; remnants of this are visible for R/rB = 100.

and trimer states can be clearly distinguished.

First we focus on the analysis of angular momentum
(see lower column of Fig. 2). Here we introduce the rel-
ative coordinates R2 = r2 − r1 and R3 = r3 − r1 where
R2 and R3 denote the positions of the fermions relative
to the impurity. The total angular momentum relative
to the impurity particle is then given by Ltot = L2 + L3

where L2 = R2 × P2 and L3 = R3 × P3, with P2 and
P3 the momentum operators of R2 and R3, respectively.
In this frame, due to the fermionic statistics, the trimer
has to have odd, finite angular momentum 〈Ltot〉 = ±1,
while the dimer state has 〈Ltot〉 = 0 [23, 28, 32, 33, 69].

However, as a result of the ECG functions we use, the
basis functions are real and hence any measured value of
〈Ltot〉 has to vanish. Thus the ground state wavefunction
of a trimer state obtained from the SVM is an equal
superposition of degenerate ground states with 〈Ltot〉 =
1 and 〈Ltot〉 = −1; resulting in the expectation value
〈Ltot〉 = 0. For this reason, we consider the expectation
value 〈L2

tot〉 which allows us to distinguish the dimer and
trimer state (for more details, we refer to Appendix D).

In the lower column of Fig. 2 we show the value of
〈L2

tot〉 of the ground state. As one can see, 〈L2
tot〉 sharply

increases from values close to 0 to approximately 1 as
the mass ratio is varied beyond a critical value. The
region in which this qualitative change occurs coincides
with the critical mass ratio at which the drop in energy is
observed. Akin to the behavior of energy, tuning r0/rB
and R/rB the crossover region moves in the same direc-
tion. While for smaller system sizes the transition region
is larger, with increasing system size the transition re-
gion becomes more narrow, indicating that the crossover
found for a finite system turns into a sharp transition for
an infinite system size.

From the behavior of energy and angular momentum a
simple physical picture of the crossover from a dimer to
a trimer arises. At small mass ratios α, the ground state
is given by a dimer along with a fermion in a delocalized
scattering state. Thus for large system sizes, the en-
ergy approaches the two-body energy E∞2B . However, for
smaller system sizes the confinement induces exchange-,
correlation- and confinement-energies between the two
fermions increasing the energy above E∞2B . This increase
in energy is larger for smaller system sizes, and fea-
tures an additional weak dependence on mass ratio which
can be understood already from the non-interacting sys-
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FIG. 3. Critical mass ratio for the dimer to trimer transition
as function of the interaction range r0/rB for R/rB = 10, 20,
50, 100 determined using different criteria. The criteria are: i.
energy drop (black dots); ii. 〈L2

tot〉 ≈ 1 (purple triangles); iii.
〈L2

tot〉 ≈ 0 (red squares); iv. 〈L2
tot〉 ≈ 0.5 (yellow crosses). As

described in the main text, the critical mass ratio increases
with R/rB and decreases with r0/rB . The different criteria
obtain different values with the 〈L2

tot〉 ≈ 0 criterion consis-
tently giving the lowest mass ratio and the 〈L2

tot〉 ≈ 1 crite-
rion giving the highest. With increasing R/rB the crossover
region becomes narrower which also decreases the dispersion
of the different methods.

tem where the confinement energy is given by Econf =
z201/2mIR

2 + z211/mFR
2 = (z201α/2 + z211)/mFR

2 with
z01 and z11 the first zero of the Bessel functions J0 and
J1. Beyond a critical mass ratio, the ground state is de-
scribed by a trimer state and its energy starts to decrease
close to linearly with mass ratio, as also obtained in the
continuum case [23, 32, 33].

We now turn to a more detailed analysis how the sys-
tem size R and interaction range r0 affect the critical
mass ratio αc (see Fig. 3). Decreasing the system size has
a stronger effect on the dimer state than on the trimer
state as the unbound fermion in its delocalized scatter-
ing state feels the confinement stronger than a fermion
bound tightly to the impurity. Thus the trimer state is
subject to a confinement energy contribution less than
the dimer state. Consequently, decreasing system size
moves the transition to smaller mass ratios.

Conversely, increasing the interaction range r0 affects
the trimer state stronger than it affects the dimer state
because for R � r0 the average distance between the
fermions in a trimer state is related to the short distance
scales rB and r0 while in the dimer state (including the
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FIG. 4. Reduced density distributions of a dimer (α = 2)
and trimer (α = 3) state. The plot shows u2(r) for a dimer
(black, solid) and a trimer (red, dashed) state for R/rB = 20
and r0/rB = 0.8. The exponential decay of the trimer distri-
bution is clearly visible while the dimer holds a fermion that
is delocalized at the length scale of the system size. The inset
shows u1(r, θ) for the trimer (left) and the dimer state (right).
The exponential decay and the delocalized tail, respectively,
are visible and in both cases a slight tendency towards anti-
parallel orientation of the fermions is present.

unbound fermion) it is related to R. Thus, increasing r0
lowers the Pauli-repulsion within the trimer state, mak-
ing the trimer favorable and lowering the critical mass
ratio. This intuitive picture is reflected in the numerical
results presented in Fig. 3. In this Figure, we addition-
ally analyse the increasing sharpness of the transition as
the system size is increased by showing the critical mass
ratio as obtained from different criteria imposed on the
energy and the angular momentum. As one can see for
R/rB = 100 all criteria give nearly identical results and
only a dependence on the scale r0 remains.

As can be seen from the lower panel in Fig. 2, the
impact of the interaction range and system size on the
dimer and trimer state is also reflected in the angular
momentum. Due to the confinement, the free fermion
in the dimer state is forced to take on a finite angular
momentum state, resulting in a nonzero value of 〈L2

tot〉.
As the system size is increased, the free fermion is less
affected and 〈L2

tot〉 approaches zero. The trimer, on the
other hand, is hardly affected by the finite system size as
long as R� r0 and thus 〈L2

tot〉 is very close to 1. This be-
haviour shows that the critical mass ratio of 3.34 obtained
in the limit r0 → 0, R→∞ [23, 32, 33], potentially fea-
tures only a small window of universality because it has a
strong dependence on r0 andR. We note, that the critical
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mass ratios in Fig. 3 for R/rB = 100, r0/rB = 0.2 tend
to lie slightly higher than the asymptotic value of 3.34.
This is most likely due to the stochastic nature of our
method in which, close to the transition, the energetic
difference between dimer and trimer particles becomes
small. As a result, especially for larger system size and
shorter interaction range, a suitable trimer wavefunction
can only be found for a high number of proposed wave
functions. In Appendix A, we describe the used sampling
method which speeds up this process by finding trimer
wavefunctions more efficiently.

To further confirm the presence of two- and three-body
bound states via the spatial localization of the fermions
—or the lack thereof — around the impurity, we study
the spatial structure of the ground state wavefunction.
To this end, we consider the reduced density distribution,
for in the trimer state the two fermions are both close
to the impurity while in the dimer state one fermion is
close to the impurity and the other is in a scattering
state. Given the three-body wavefunction Ψ, we define
the functions u1(r) and u2(r, θ)

u1(r2, θ2) = r2

∫
d2rd2r3|Ψ(r, r + r2, r + r3)|2, (4)

u2(r2) =

∫
dθ2u1(r2, θ2), (5)

where r2 = |r2| and θ2 denotes the angle with respect to
r3. From this definition, one can see that the reduced
density distribution u1 is obtained by integrating out the
coordinates of the impurity and of one of the fermions.
Performing the additional integral over the angle θ2 in
the definition of u1, one then obtains a measure of the
probability of finding one fermion at a distance r2 from
the impurity. In Fig. 4, the density distributions are
shown for exemplary trimer and dimer states. For the
trimer state, the density distribution u2 indeed exhibits
an exponential decay in line with the expectation that
both fermions are closely-bound to the impurity. In con-
trast, for the dimer state u2 does not decay exponentially
with r2 but features a tail that corresponds to one of the
fermions being situated in a scattering scattering state.
The density plots of u1 in the inset of Fig. 4 further il-
luminate this. They show that beyond the radial depen-
dence, the fermions tend to slightly prefer anti-parallel
configurations in the trimer state thus maximizing the
inter-fermion distance within the bound state. For very
short distances, the distributions approach 0 due to Pauli
repulsion and the geometrical factor of r2 in their distri-
bution. For an additional analysis of the spatial structure
of the ground states, we refer to Appendix E, where the
reduced density distribution with respect to the radial de-
pendencies after integrating out all angular coordinates
is shown.

1 2 3
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0.0

0.2

0.4

〈r
B
/|

r 2
−

r 3
|〉

r0/rB = 0.5

1 2 3

α

r0/rB = 1.2

R/rB = 10
R/rB = 20
R/rB = 50
R/rB = 100

FIG. 5. Expectation value of rB/|r2− r3| of the ground state
wavefunctions obtained in Section IV A, for r0/rB = 0.5 (left)
and 1.2 (right) and R/rB = 10 (black dots), 20 (purple tri-
angles), 50 (red squares), 100 (orange crosses). The crossover
from dimer to trimer state is visible in the expectation value.
Increasing the box size R and decreasing the interaction range
r0 moves the crossover to higher α, consistent with our previ-
ous results. Moreover, the expectation values increase as the
box size becomes smaller because the closer vicinity of the
fermions results in a larger Coulomb energy.

B. Coulomb interaction

We now consider the impact a direct interaction be-
tween the two fermions (VFF > 0) has on the dimer-
trimer transition. In particular, we focus on Coulomb
interactions present in 2D semiconductors (see Eq. (3)).
In the trimer state, both electrons bind to the exciton
bringing themselves closer together. Intuitively, this can
give rise to a considerable increase in the total energy
of the cluster. Consequently, if the Coulomb energy be-
comes larger than the energy gap between the trimer and
dimer states, the ground state is thus expected to unbind
into a dimer and free electron state.

To estimate roughly the impact of the Coulomb en-
ergy on the total energy, we first calculate the expectation
value of the Coulomb interaction (up to constants) of the
ground state of the system without Fermi-Fermi interac-
tion, namely 〈rB/|r2 − r3|〉. We stress again (see Sec-
tion II) that, in the following, we shall use the Coulomb
potential instead of a more accurate approximation of
2D interactions between charges given by the Keldysh
potential. In any case, since the Coulomb interaction is
more extreme than the Keldysh potential at short range,
we expect our choice to be more restrictive than the
Keldysh interaction. In Fig. 5, the expectation value
of rB/|r2 − r3| is shown. We find a transition in the
expectation value of rB/|r2 − r3| while increasing the
mass ratio. For dimer states, two electrons are relatively
distant, rendering the value of 〈rB/|r2 − r3|〉 small. In
contrast, for trimer states, this value is considerable and
increases as the mass ratio rises. This simple estimation
of the Coulomb energy in the trimer state already sug-
gests the existence of a dimer-to-trimer transition even



7

−0.90

−0.85

−0.80

E
/
E
∞ 2
B

R/rB = 10

−1.06

−1.04

−1.02

−1.00

R/rB = 100

q = 0.1
q = 0.2
q = 0.3
q = 0.4
q = 0.5

1 2 3

α

0

0.5

1

〈L
2 to

t
〉

1 2 3

α

0

0.5

1

FIG. 6. Energies and expectation values of L2
tot of the ground

state of the system with Coulomb interaction with r0/rB =
0.8 and R/rB = 10 (left) and 100 (right) for q = 0.1 (black
dots), 0.2 (purple triangles), 0.3 (red squares), 0.4 (orange
crosses), 0.5 (yellow diamonds). As in Fig. 2, the energy drop
shows the crossover from a dimer to a trimer state which
moves to higher α upon increasing the box size R and the
effective charge q.

with non-zero Coulomb interaction.
Motivated by the above, we solve for the ground states

of the system including the Coulomb interaction (3) by
applying the SVM for different values of a dimensionless
effective charge q defined by the square root of the ratio
of Coulomb repulsion to dimer binding energy

q =

√
VFF(rB)

E∞2B
=

√
2mFrB
4πε0ε~2

e. (6)

From the SVM, we calculate the energy and the expec-
tation value of L2

tot for an interaction range r0/rB =
0.8 and box sizes R/rB = 10 and R/rB = 100, see
Fig. 6. Depending on the effective charge q, the ener-
gies drop for some critical mass ratio while the corre-
sponding L2

tot rapidly increase signaling a dimer-trimer
crossover, similar to the case without Coulomb repul-
sion. The larger the effective charge q, the larger the
critical value αc becomes. Conversely, the larger the den-
sity nF (∼ 1/R2 ∼ k2F ), the smaller the critical value αc
which suffices for the dimer-to-trimer transition to occur.
Notably, the dimer-to-trimer transition remains robust
upon the strong, long-range Coulomb repulsion. While
Coulomb interaction weakens trimer formation (increas-
ing the critical value), it does not inhibit it as we have
observed a transition to a trimer state for all effective
charges we considered [70]. Simultaneously, one can off-

set the detrimental effects of Coulomb repulsion on form-
ing a trimer by tighter confinement (i.e. larger effective
electron density) or a larger interaction range.

Similar to Fig. 4, we show the reduced density distri-
bution for the system with Fermi-Fermi interaction in
Fig. 7. The effective charge and mass ratio were chosen
to illustrate both dimer and trimer states as in Fig. 4. As
can be seen, both states feature a localized part, while the
dimer again exhibits the additional contribution of a de-
localized scattering state. As before, a tendency towards
anti-parallel fermion configuration in the trimer state can
be seen. Increasing the effective charge q, the density
distribution of the trimer decays at a larger length-scale
showing clearly that the Fermi-Fermi repulsion tends to
favor a larger Fermi-Fermi distance, while still accommo-
dating for a trimer state. Similarly, on the dimer state
this has the effect of moving the scattering tail away from
the impurity-fermion bound state.

Experimentally, one could control the critical mass ra-
tio αc by tuning the effective electron charge, e.g. by
changing a dielectric constant of the system [71]. For typ-
ical parameters and energy scales in TMDs, i.e. ε ≈ 4.4,
mF ≈ 0.5me, where me indicates the bare electron mass,
and |E∞2B | ≈ 30 meV (trion binding energy) [46], one ar-
rives at q ≈ 2.6. This value is consistent with the exper-
imental observations of trions (corresponding to dimers
in our work) as the ground state. While at first sight
this might suggest the absence of the p-wave trimer state
for typical TMD realizations, this estimate is obtained
assuming a electronic system at vanishing density. In
this regard, it is important to note that, as we also find,
confinement naturally decreases the role of Coulomb in-
teraction. In turn, regarding the increase in confinement
as an increase in the effective electron density, our re-
sults suggest that at sufficiently high fermion densities,
p-wave bosonic trimers could indeed be stabilized as the
actual ground state in the system already for the typical
experimental parameters.

V. DISCUSSION AND OUTLOOK

In this paper, we have studied the influence of confine-
ment and finite interaction ranges on the formation of
ground-state trimers in confined three-body systems of
two identical fermions interacting with a mobile quan-
tum impurity. We have shown that the position of
the dimer-to-trimer transition previously characterized in
Refs. [23, 32, 33] varies significantly under these effects
and that leveraging these effects can, in principle, lead
to the observation of p-wave trimers in atomically-thin
semiconductors and ultracold quantum gases. While in
two-dimensional cold atom systems already a great vari-
ety of mass ratios is available, trimer formation could be
further enhanced using trapping confinement. In TMDs,
such mass ratios are not readily available (unless flat
bands are considered). However, our results show that
the finite exciton-electron interaction range along with
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dashed) state for R/rB = 100, r0/rB = 0.8 and q = 0.3
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tail, respectively, are visible and as before a slight tendency
towards anti-parallel orientation of the fermions is present.

confinement enhance and stabilize trimer formation. Fur-
thermore, we have argued that, given a suitable TMD,
such trimers can, in principle, survive Coulomb repulsion
as long as the effective charge, given by material param-
eters such as the dielectric constant, remains below a
critical value.

In regards of the interpretation of confinement as a
means to imitate finite bath density in many-body prob-
lems, the remarkable robustness of the dimer-trimer tran-
sition we find under moderate confinement, suggests
that bosonic p-wave trimers might already appear as the
ground state of typical TMD setups. Our work thus high-
lights that experiments may already now be close to the

point of exploring exciton-induced p-wave electron pair-
ing, opening up the avenue to study novel mechanisms
of boson mediated p-wave superconductivity in van-der
Waals materials.

Moving forward from our work, there are several fur-
ther exciting paths to pursue. For one, it has been shown
that for systems with a greater number of bath particles
also higher-order bound states may play an important
role, which could outcompete the trimer state. The in-
fluence of confinement and finite range on these states
is unexplored and might drastically change the position
of ground state transitions as well as the occurrence of
these transitions in the first place. Furthermore, mov-
ing beyond 1 + N type systems, the phase diagram of
Bose-Fermi mixtures at a given density imbalance of the
constituent species might be studied in few-body systems
with comparable density ratios. In this regard, the oc-
currence, nature, and dynamics of interesting phenomena
such as phase separation in the many-body regime could
be illuminated by corresponding observations in a few-
body system. For example, in a system of type 2+3, one
might compare the formation of a four or five-particle
bound state to the coexistence of a dimer with a trimer.

In this pursuit, cold atom systems offer a wealth of tun-
able parameters such as mass ratio, bound state energy
and confinement. Coulomb repulsion in turn may find
an analogue in the repulsion between dipolar molecules,
highlighting the possibility of cold atom systems as a
platform to gain new insights into the physics of the
exciton-electron mixtures in two-dimensional van der
Waals materials.
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[44] O. Cotleţ, S. Zeytinoǧlu, M. Sigrist, E. Demler, and
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Appendix A: DETAILED DESCRIPTION OF THE
SVM ALGORITHM

In this appendix, we seek to provide more information
on the optimization process undertaken in every step of
the SVM. For the results shown in the main text, we
perform 10 independent calculations for every data point.
In each of these calculations 100 basis states are found.
In the following, we refer to each one of these calculations
as a run and the combination of 10 runs makes up a single
data point.

To compile a list of 100 basis states {Φn}100n=1 in a sin-
gle run, we successively increase the list of basis states
by drawing from the manifold of trial wavefunctions de-
scribed in the main text. In a step N → N + 1, we draw
proposal states {Φα} independently. From these propos-
als, we choose the state Φβ which produces the lowest-
lying eigenstate of the Hamiltonian H with respect to the

vector space V Nα spanned by the states {Φn}Nn=1 ∪ Φα.
Specifically,

V Nα = span
(
{Φn}Nn=1 ∪ Φα

)
(A1)

{λNα,1, ..., λNα,N} = σ(H|V Nα )) (A2)

β = min
α

[
min
i

({λNα,i}i)
]
, (A3)

where σ(H|V Nα )) denotes the spectrum of the Hamilto-

nian H restricted to the vector space V Nα and the min-
imization over i chooses the lowest eigenvalue of H|V Nα ,
while the minimization over α optimizes the proposal
state.

Next, we perform a random descent walk in the vicinity
of Φβ , for which every step is accepted so long as it lowers
the lowest eigenvalue.
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A straight-forward method to draw independently
from the ECG manifold is to draw proposal states Φα
as

mα =
1

R

x11 x12 x13
x21 x22 x23
x31 x32 x33

 (A4)

with

Aα = mT
αmα (A5)

where the xij are drawn from a uniform distribution in
the interval xij ∈ [−1, 1]. The corresponding (unrenor-
malized) basis state is then given as Φα(r1, r2, r3) =

P exp
(
− 1

2

∑3
i,j=1Aα,ijri · rj

)
. In the second part of the

optimization, we then update the proposal as

m′β = mβ + δx

x11 x12 x13
x21 x22 x23
x31 x32 x33

 (A6)

with

A′β = (m′β)Tm′β , (A7)

where a value of δx = 1 has shown to yield good results.

As the manifold of trial functions is fairly large, a
large number of such random proposals is necessary in
every step of the algorithm to ensure convergence. While
this choice of sampling quickly yields reliable results for
molecule states, for trimer states convergence is much
slower and especially close to the molecule-trimer tran-
sition, it can occur that no trimer state is obtained. To
reduce the number of required steps and improve stabil-
ity of the algorithm, we leverage the physical intuition,
that a trimer state should feature all the particle con-
fined within a length scale of the interaction range from
each other. As the matrices A−1α carry the meaning of
a covariance matrix, this thus suggests a covariance ma-
trix of close to constant value (proportional to the mean
distance squared of the particles from the center of the
trap) with fluctuations around this value of the order of
the interaction range. We thus introduce a further sam-
pling method described as

B = 5Rx0 + 2r0

x11 x12 x13
x21 x22 x23
x31 x32 x33

 ,

A−1α =
B +BT

2
, (A8)

where x0 ∈ [0, 1], xi,j ∈ [−1, 1] and the corresponding

random walk method is given by

B′ = B + dx

x11 x12 x13
x21 x22 x23
x31 x32 x33

 ,

(A′α)−1 =
B′ + (B′)T

2
. (A9)

Here, the value of 5R as a sampling range for the mean
distance squared of the particle from the center of the
trap was chosen, because it ensured reasonably conver-
gence. The range of 2r0 for the interparticle distances
was picked due to the physical picture that the confine-
ment of particles to the each other should be on the order
of the interaction range. We thus alternate between these
two sampling methods in the optimization procedure.

While especially the latter sampling method is very
biased, we would like to highlight that these type of states
are usually also found using the former sampling method,
however many more sampling steps are necessary for this.
Furthermore, due to the large number of sampling steps,
about 15 thousand independent samples and 15 thousand
local descents, repeated twenty times for every run, the
exact form of the sampling coefficients used in Eqs. (A4)
and (A9) plays a less dominant role.

After we have performed 10 different runs, each yield-
ing 100 basis states, we then combine the results of these
different runs to obtain a basis set of 1000 basis states
{Φn}1000n=1 . Finally, the Hamiltonian is diagonalized with
respect to these 1000 states and the physical quantities
are extracted from the resulting ground-state. These re-
sults are shown in the main text.

Appendix B: EXACT SOLUTION OF THE
TWO-BODY PROBLEM

We consider an impurity (with mass mI) interacting
with a single fermion (with mass mF ) via VFI(r) =
−V0θ(r0 − |r|) where θ(x) is Heaviside function. The
Schroedinger equation in the relative coordinate reads

− ∇
2

2µ
ψ(r) + VFI(r)ψ(r) = E∞2Bψ(r) (B1)

where µ = mFmI/(mF + mI) is the reduced mass of
impurity and fermion. Notice that the wavefunction ψ(r)
can be decomposed into a radial part and an angular
part, i.e. ψ(r) = u(r)eimθ withm the angular momentum
of the state. For the ground state we have m = 0, thus
the equation for the radial wavefunction is

r2u′′ + ru′ + 2µ[E∞2B + V0θ(r0 − r)]r2u = 0. (B2)

This equation can be solved analytically and the ground
state energy E∞2B satisfies
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√
−2µE∞2BJ0

(√
2µ(E∞2B + V0)r0

)
K1

(√
−2µE∞2Br0

)
−
√

2µ(E∞2B + V0)K0

(√
−2µE∞2Br0

)
J1

(√
2µ(E∞2B + V0)r0

)
= 0

(B3)
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FIG. 8. 3-body ground state energy (dots, solid lines) and 2-
body ground state energy (crosses, dashed lines) with r0/rB =
1.2 and R/rB = 10 (black), 20 (purple), 50 (red) and 100
(orange). The 2-body ground state energy increase linearly
with mass ratio α, which coincide with the behavior of the
3-body ground state energy below the critical mass ratio.

with J0, J1 Bessel functions of the first kind and K0, K1

modified Bessel functions of the second kind.

Appendix C: TWO-BODY PROBLEM IN
CONFINEMENT

In this appendix, we study the influence of confinement
on the solution of the two-body problem presented in Ap-
pendix B. As such, we consider a two-body system con-
sisting of one impurity (with mass mI) and one fermion
(with mass mF ) in a 2D spherical box. The Hamiltonian

then reads

H = − ~2

2mI
∇2

1 −
~2

2mF
∇2

2 +

2∑
i=1

Vconf(ri) + VFI(r1 − r2),

(C1)
where we have used the same notation as in Appendix B
and employed the SVM described in the main text to
solve the problem.

In Fig. 8, we show the two-body ground state en-
ergy as well as the three body ground state energy for
r0/rB = 1.2 and different values of R as a function of
α. The vacuum dimer energies lie slightly higher than
−E∞2B due to the confinement, while for larger system
sizes the energies approach −E∞2B . Additionally, a close
to linear increase of the energies with mass ratio α is
visible which decreases as R increases. This observation
is well in-line with an interpretation of as the two body
confinement energy Econf = z201/2mIR

2 + z201/2mFR
2 =

z201(α + 1)/2mFR
2 where z01 is the first zero of Bessel

function J0. Comparing the three-body energy with the
two-body energy, we can see that the three body energy
below the critical mass ratio also increases linearly with
α and the increase is larger for smaller box size. Ad-
ditionally, especially for smaller system sizes the three-
body energies below the critical mass ratio lie consider-
ably higher than their two-body counterparts due to the
confinement energy of the fermion in a scattering state
as expected from our analysis in section IV A.

Appendix D: ANGULAR MOMENTUM

The total angular momentum of the (2+1) system in
the relative coordinate is given by Ltot = L2 + L3 =
R2 × P2 + R3 × P3, where R2, R3, P2, P3 are the
position and momentum of the two fermions in rela-
tive coordinate. Because our variational wavefunctions
are always real functions, the expectation value of Ltot

with the wavefunction must vanish. In fact, 〈Ltot〉 =
−i(〈R2 × ∇R2

〉 + 〈R3 × ∇R3
〉) = ir where r is a real

number. On the other hand, 〈Ltot〉 is real because Ltot

is a hermitian operator. Therefore, we have 〈Ltot〉 = 0.
In order to capture the transition from the dimer state

(with 〈Ltot〉 = 0) to the trimer state (with 〈Ltot〉 = ±1),
we calculate the expectation value of L2

tot instead. Given
two gaussian functions |A〉 and |B〉, one can prove that
the matrix element of L2

tot is
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〈A|L2
tot|B〉 =

8π3√
det (A+B)

(Tr(f1(A)(A+B)−1)Tr(f1(B)(A+B)−1)/4 + Tr(f1(A)(A+B)−1f1(B)(A+B)−1)/2

+ Tr(f2(A)(A+B)−1)Tr(f2(B)(A+B)−1)/4 + Tr(f2(A)(A+B)−1f2(B)(A+B)−1)/2

+ Tr(f1(A)(A+B)−1)Tr(f2(B)(A+B)−1)/2 + Tr(f1(A)(A+B)−1f2(B)(A+B)−1)).
(D1)
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r 2
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FIG. 9. Reduced density distribution u3(r1, r2) for a dimer
(α = 2, left) and a trimer (α = 3, right) state for r0/rB = 0.8
and R/rB = 20. For the trimer state, u3(r1, r2) attains its
largest values when r1 and r2 are both small, which shows
that both fermions are close to the impurity, while the dimer
state u(r1, r2) achieves its maximum on the x- and y-axis.

The functions f1(A) and f2(A) are defined in the fol-
lowing way. Given a 6 × 6 symmetric matrix A, it can
always be expressed as

A =

A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 A33

 , (D2)

where Aij (i ≤ j) are 2 × 2 matrices. Let R =

[
0 1
−1 0

]
,

f1(A) and f2(A) then read

f1(A) =

 0 −A12R 0
AT

12R 0 A23R
0 −AT

23R 0

 , (D3)

f2(A) =

 0 0 −A13R
0 0 −A23R

AT
13R AT

23R 0

 . (D4)

Appendix E: REDUCED DENSITY
DISTRIBUTION WITH r1 AND r2

To further study the anatomy of the dimer and trimer
states with respect to their radial distribution, we define

the reduced density distribution u3(r1, r2) as

u3(r1, r2) =

∫
|Ψ(r, r + r1, r + r2)|2d2rdθ1dθ2, (E1)

where the vector r1 and r2 are parametrized as r1 =
(r1 cos θ1, r1 sin θ1), r2 = (r2 cos θ2, r2 sin θ2). This func-
tion measures the probability of simultaneously finding
one electron at the distance r1 and another electron at
distance r2 from the impurity. In Fig. 9, we show the den-
sity distribution for a dimer and a trimer state. For the
dimer state, the density distribution u3 almost vanishes
along the diagonal and achieves its maximum at approx-
imately (r1/rB , r2/rB) ≈ (0, 12) because one fermion is
closely bound to the impurity while another fermion is
more delocalized. For the trimer state, u3 attains its
largest values when r1 and r2 are both close to 0 and
vanishes rapidly for larger r1 and r2, which shows that
both fermions are tightly bound to the impurity.

Appendix F: COULOMB INTERACTION

The Coulomb interaction between two charged parti-

cles is VC(r) = q2

r , where we set the Coulomb constant
k = 1 and the particles have equal charge q. We use the
fact that for any potential V (r)

〈A|V (r2 − r3)|B〉 =

8π3√
det (A+B)

a

2π

∫
V (r) exp(−ar2/2)d2r

(F1)
with a = 1/((A + B)−122 + (A + B)−133 − 2(A + B)−123 ).
The matrix element of the Coulomb potential between
the two fermions is then

〈A|VC(r2 − r3)|B〉 = q2
8π3√

det (A+B)

√
πa

2
. (F2)


