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1 Introduction and summary

Much of the progress that has occurred in string theory and its applications exploits explicit

and tractable background solutions. In the most generic, and realistic, setting of time-

dependent solutions and cosmology, although much has been learned [1–6] it is fair to

say that the most realistic backgrounds with metastabilized moduli that have been studied

such as [7–12] are relatively complicated.1 Especially when it comes to conceptual questions

about how to formulate cosmological observables, interpret horizon entropy, and resolve

singularities, explicit examples would seem to be particularly useful. In some specific classes

of solutions, concrete lessons have emerged about generalizations of string dualities (see

1Nonetheless simple physical mechanisms have been discovered within these systems which are tractable

and phenomenologically useful in themselves [5, 6].
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e.g. [13–19]) and holography (see e.g. [20–25]), but this is just the tip of what promises to

be a much larger iceberg.

In this paper, we revisit the problem of deriving simple solutions realizing accelerated

expansion in string theory, finding an explicit set of tractable models with a discrete dis-

tribution of accelerating equations of state and an approximate scaling symmetry. Rather

than embedding inflation or quintessence into a separate moduli stabilization scenario, we

incorporate the moduli more directly into a rolling scalar solution, making use of various

inflationary mechanisms developed over the years. The leading term in the perturbative

string moduli potential, and the axions that dominate the string spectrum, play an es-

sential role in our first class of solutions. Another set makes use of a leading source of

domain walls to obtain accelerated expansion, with the solution taking into account the

moduli-dependence of their tension.

The resulting sequences of possible equations of state, some of which accumulate near

w = −1, may have application to dark energy (for another recent string theoretic example

see [26]). This variety of equations of state is also interesting for more formal applications

— along with the scaling behavior it enters into the formulas for the entropy and other

aspects of a putative holographic dual description (such as the evolution of couplings on the

branes that describe the approximate Coulomb branch of the dual). For all the accelerating

equations of state, there is a future horizon and future spacelike infinity similarly to pure

de Sitter spacetimes [27], with a gravitational entropy whose microscopic interpretation is

of interest. Here, as in string-theoretic de Sitter, we find that the window of times with

controlled quintessence in our solutions is finite (but large).

The low energy effective action in perturbative corners of the theory contains canoni-

cally normalized scalar fields Φc subject to exponential potential terms of the form

V = V0e
βcΦc (1.1)

A single canonically normalized scalar field with this potential in d spacetime dimensions

generates an FRW solution

ds2 = −dt2 + a(t)2d~x2 (1.2)

with a power-law scale factor

a(t) =

(
t

t0

)K
, K =

4

(d− 2)β2
c

(1.3)

Accelerated expansion occurs for K > 1, equivalently β2
c < 4/(d− 2). This does not occur

for the individual scalar fields corresponding to the dilaton or volume modulus in known

weak coupling and large radius limits of string theory.

Moreover, more general no go theorems for slow roll inflation along certain single-field

directions have been proved in various works such as [28–34], for particular classes of stress

energy sources. These no go theorems are very useful, but of limited applicability for several

reasons. First, they explicitly restrict the stress energy sources to a subset of those arising

in weakly coupled string theory.2 More interestingly, many inflationary mechanisms do not

2For an early example of slow-roll inflation in brane models see e.g. [35].
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require the individual single-field slow roll conditions to be satisfied. These include Assisted

Inflation [36] and related versions of multifield inflation [37, 38], DBI inflation [39], Locked

Inflation [40], Thermal Inflation [41], Trapped Inflation [42], Spiral Inflation [43, 44], and

interesting combinations such as Unwinding Inflation [45, 46]. We will exploit some of

these possibilities in order to reduce the list of stress-energy sources required to obtain

accelerated expansion. Finally, one may obtain explicit perturbative solutions with strong

warping [47–49] in which the scalar sourced by a steep potential of the form (1.1) varies

in an internal spatial direction rather than rolling quickly in time [50]; this mechanism is

also not covered by the existing no go theorems.

In the simplest version of Assisted Inflation [36], for example, one simply considers a

set of N fields Φi, coupling only through gravity, each with a potential of the form (1.1).

By rescaling the fields it is straightforward to show that one obtains power-law inflation,

but now with

Kassisted =
∑
i

4

(d− 2)β2
i

(1.4)

So even if none of the fields would support slow roll inflation individually, that is even if

β2
i > 4/(d− 2), the system can still inflate with a sufficiently large number of fields.

We will find that a generalization of this structure arises in string theory, obtaining

more general scaling solutions which we can analyze as in [38]. In the first set of solutions

obtained in section 2, we require three basic ingredients sourcing two fields — the dilaton

and volume modulus — to obtain accelerating solutions via assisted inflation. This set of

models realizes a wide range of values of K, related to the equation of state, the ratio w of

energy density to pressure, via w = −1 + 2
3K . This sequence of possible equations of state

arise by varying an integer quantum number in the theory. We first illustrate this with a

class of models that accumulate near w = −1/3 from below. Next, we construct a sequence

that accumulates near w = −1; these are potentially interesting for phenomenological

applications, providing a new way of realizing dark energy in string theory. These models

are somewhat similar to the earliest models of de Sitter spacetime in string theory [7, 8],

but differ in important ways: in addition to realizing a wider variety of equations of state,

they are large-radius solutions and more easily controlled including the effects of the large

number of species as we discuss below. In particular, this class of solutions involves the

axion fields the dominate the string spectrum in an interesting way, combining assisted

inflation, monodromy inflation, and N-flation. The second set of solutions described in

section 3 uses a finite density — a domain wall network — to drive accelerated expansion

with 1 < K < 2. Finally, in section 4 we discuss applications of our results as well as other

directions for future work.

2 Sequences of accelerating FRW solutions

Consider string theory in D dimensions with additional matter sources (which will be

orientifolds and fluxes in our examples). The effective action governing the dilaton and
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metric in appropriate solutions is

S =
1

2α′
D−2

2

∫
dDx
√
g e−2φs

(
R− 2

3

c− ccrit

α′
+ 4(∂φs)

2

)
+ Smatter . (2.1)

Here c is the worldsheet matter central charge; this is equal to (3/2)D in the simplest

worldsheet-supersymmetric version of supercritical string theory which is free of destabi-

lizing spacetime tachyons [51]. The string coupling is

gs = eφs . (2.2)

In this section, we present a class of examples of accelerated expansion which arise

immediately in supercritical limits of string theory. Supercritical string limits are con-

nected to the much more widely studied supersymmetric limits of string theory via various

transitions [13–19]. They appear to be the most generic weakly coupled regions of the

full theory, simply because other solutions require turning off the parameter D − Dcrit

and negative curvature of the target space. The vast majority of compact manifolds are

negatively curved, and even in D = 10 these have a supercritical effective central charge

ceff > 10 precisely computed in [13–15]. At a more basic level, D = 10 is also a very special

choice which at low energy amounts to turning off the leading term in the scalar potential.

Low energy supersymmetry, if observed, would require these special choices. However, as

of this writing no such extension of the Standard Model has been detected, although it

remains a viable possibility motivated by various indirect hints from the bottom up. In

any case, our motivation is as much conceptual as phenomenological, and we believe it is

highly motivated to analyze the structure of cosmological solutions in string theory using

the most tractable tools, including those employed in the present work.

There are various microscopic (worldsheet) conditions and choices required to formu-

late this class of theories. One may consider a variety of consistent GSO projections in

this theory, as discussed in e.g. [16–19, 51–54]. The simplest is to make a supercritical

analogue of the type IIA or type IIB GSO projections, choosing D = 10 (mod 16)3 and ei-

ther a left-right asymmetric or left-right symmetric projection on the worldsheet fermions.

This produces a tachyon-free, modular invariant spectrum of single string states. We will

also require consistency conditions between orientifolds and fluxes of various dimensions,

ensuring that the orientifolds not project out the RR fluxes we introduce. On a toroidal

compactification, this condition is very simple to state:

nshared + nunwrapped = −1 (mod 4), (2.3)

where “shared” means wrapped by the O-plane and also threaded by the flux; “unwrapped”

means not wrapped by the O-plane and also not threaded by the flux. This condition is

manifestly invariant under T-duality, and reduces to the standard condition in D = 10.

On more generic manifolds, the fluxes that would be projected out by this condition can

be included, but must live on odd cycles under the orientifold action, and fluxes that are

3This condition is stronger than D = 2 (mod 8) because of spin-statistics. We thank E. Witten for

mentioning this to us.
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invariant according to this criterion must thread even cycles under the orientifold action.

Another basic microscopic condition is Gauss’ law: the orientifold charge must cancel with

anti-orientifolds, branes, or appropriate combinations of fluxes.4 In cases with multiple

sectors of orientifolds, it is convenient to arrange them to intersect on codimension 0 mod

4, to avoid twisted sector tachyons arising in the sector coming from the product of two

orientifold projections.5

As we will review, the simplest solution to the equations of motion derived from this

effective action reproduces the behavior of the string coupling and metric in the standard

linear dilaton background [56–59], which has an exact worldsheet description and a coupling

that becomes arbitrarily weak at late times. With two additional sources of stress energy,

we will obtain solutions with a controlled α′ and loop expansion for a much wider range of

equations of state, with accelerated expansion, as we will explain in detail below.

Let us discuss compactification of the theory. As a brief warmup, consider a rectangular

n-dimensional torus, for which we find the following structure. Let us analyze the d =

(D − n)-dimensional effective theory in terms of the Einstein frame metric ĝµν , related to

the D-dimensional string frame metric via

ds2
D,str = e2D̃ĝµνdx

µdxν +
n∑
i=1

e2φidy2
i (2.4)

where Li = eφi are the sizes of the n circles in string units, and the factor relating the string

and Einstein frame metrics is related to the low energy d-dimensional effective coupling:

e(d−2)D̃ = e2φs−
∑
i φi . (2.5)

We will denote the overall size modulus by

Ln ≡ e
∑
i φi . (2.6)

The kinetic terms of the lower dimensional theory are naturally diagonalized in terms

of D̃ and the φi:

Seff =
1

2
Md−2
d

∫
ddx
√
ĝ

(
R̂ −

n∑
i=1

(∂̂φi)
2 − (d− 2)(∂̂D̃)2 − Veff

)
(2.7)

where

Veff = Vsc e
2D̃ + Vmatter , (2.8)

Vsc ∝ (D−Dcrit)/α
′, Md is the d-dimensional Planck mass, and quantities with ‘hats’ refer

to the d dimensional Einstein frame metric ĝµν .

4The latter involves NS-NS flux, which is an interesting generalization of [55] but along with the RR

flux it introduces axion couplings which lead to richer dynamics in a different class of models; this case is

not included in the present work.
5This is not a strict consistency condition: with a more elaborate construction, such sectors may some-

times be projected out.
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More generally, we can compactify on a manifold of volume proportional to enφ, with

D-dimensional string frame metric of the form

ds2
D,str = e2D̃ĝµνdx

µdxν + e2φ γijdy
idyj . (2.9)

with

e(d−2)D̃ = e2φs−nφ . (2.10)

For these more general spaces, the effective action for the dilaton and overall volume

remains of the form

Seff =
1

2
Md−2
d

∫
ddx
√
ĝ
(
R̂ − n(∂̂φ)2 − (d− 2)(∂̂D̃)2 − Veff

)
, (2.11)

Additional dependence on other fields will generically arise, depending on the sources and

initial conditions. However for the sake of simplicity, we will consider simple setups where

anisotropies do not participate in the dynamics.

2.1 Scaling solutions

Before beginning our analysis of explicit microscopic models, let us discuss some general

properties of the FRW cosmologies that we will find. We focus on isotropic models, de-

scribed by the two fields D̃ and φ above. As discussed above, the potential for φ and D̃

descending from the D dimensional theory is a sum of exponentials,6

Veff =
∑
i

Vi e
αiD̃+βiφ . (2.12)

The exponents (αi, βi), which for now we will take to be arbitrary, are determined by the

choice of sources. The supercritical potential reviewed above has (α, β) = (2, 0).

Other contributions to the effective potential arise from various sources. In the absence

of strong warping [47–49], a simplification we will ensure using the methods developed

in [25], these are straightforward to derive from the higher dimensional theory.7 Internal

curvature gives (α, β) = (2,−2), a D-brane/orientifold wrapping nB internal dimensions

has (α, β) = (d+2
2 , nB − n

2 ) and a p-form RR flux contributes (α, β) = (d, n− 2p).

The simplest solutions that we will obtain are scaling solutions where a(t) ∼ tK and

the scalar fields depend logarithmically on time. To understand how they arise, consider a

potential with just two terms. We have a scaling transformation

D̃ → D̃ − 2
β1 − β2

α2β1 − α1β2
λ , φ → φ+ 2

α1 − α2

α2β1 − α1β2
λ (2.13)

under which the action transforms homogeneously (with an appropriate transformation

of the metric) [38]. This extends to additional terms in the potential if the additional

exponents satisfy

(β1 − β2)αi − (α1 − α2)βi = α2β1 − α1β2 , (2.14)

6It is interesting to include other types of fields such as axions, with power law and sinusoidal contribu-

tions to V , but they will not play a role in the present work.
7For a pedagogical review of these and other terms in the string theory effective potential see [60].
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for i ≥ 3. Assuming that this relation is satisfied, we look for a scaling solution in which

each term in the action evolves like (t0/t)
2. In terms of the FRW scale factor and the scalar

fields, this translates into the ansatz

a(t) =

(
t

t0

)K
, D̃(t) = D0 − 2

β1 − β2

α2β1 − α1β2
log

t

t0
, φ(t) = φ0 + 2

α1 − α2

α2β1 − α1β2
log

t

t0
,

(2.15)

which we plug into the equations of motion

(d− 1)(d− 2)

(
ȧ

a

)2

= (d− 2) ˙̃D2 + nφ̇2 + 2Veff

(d− 2)

(
¨̃D + (d− 1)

ȧ

a
˙̃D

)
+ ∂D̃Veff = 0 (2.16)

n

(
φ̈+ (d− 1)

ȧ

a
φ̇

)
+ ∂φVeff = 0 .

It is useful to proceed analytically and redefine fields to pick out a field Φ along the

scaling direction, and a transverse field σ, as in [38]. The scaling direction Φ and the

orthogonal combination σ are given by

Φ = (d− 2)(β1 − β2)D̃ − n(α1 − α2)φ , σ = (α1 − α2)D̃ + (β1 − β2)φ . (2.17)

This transformation is such that the effective potential depends on the scaling direction Φ

only through an overall factor,

Veff = eβΦ Φ e−γσ

V1 + V2 e
−σ +

∑
i≥3

Vi e
− α1−αi
α1−α2

σ

 (2.18)

and the kinetic terms are diagonal,

(d− 2)(∂̂D̃)2 + n(∂̂φ)2 = ∆−1
(
n(d− 2) (∂̂σ)2 + (∂̂Φ)2

)
. (2.19)

We have defined ∆ ≡ n(α1 − α2)2 + (d− 2)(β1 − β2)2 and the exponents

βΦ = ∆−1 (α2β1 − α1β2)

γ = ∆−1 (nα1(α2 − α1) + (d− 2)β1(β2 − β1)) . (2.20)

In this form it is easy to find the cosmological solution. Changing to the canonically

normalized Φc = Φ/
√

∆ and defining βΦc =
√

∆βΦ, we obtain a scaling exponent for

a(t) = (t/t0)K (1.3),

K =
4

(d− 2)β2
Φc

=
4

d− 2

∆

(α1β2 − α2β1)2
(2.21)

and the scaling direction evolves according to

Φc = Φc,0 −
2

βΦc

log
t

t0
. (2.22)
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Stability of the σ direction requires that

Ṽ ≡ e−γσ
V1 + V2 e

−σ +
∑
i≥3

Vi e
− α1−αi
α1−α2

σ

 (2.23)

admits a minimum, and the value at the minimum, V∗ has to be positive. It is related to

the coefficient Φc,0 by

eβΦcΦc,0(V∗t
2
0) =

1

2
(d− 2)K ((d− 1)K − 1) . (2.24)

In the string-theoretic models that we will present shortly, the first term V1 = D−Dcrit

comes from the supercritical potential (2.8), the intermediate term V2 = −|VO| is negative

and proportional to the orientifold tension, and the third contribution V3 = Q2 comes from

fluxes, with α1−αi
α1−α2

= 2. This potential admits a minimum for σ with positive energy as

long as

1 <
4(D −Dcrit)Q

2

V 2
O

<
(1 + γ)2

γ(2 + γ)
. (2.25)

and the value at the minimum

e−σ∗ =
1

2(2 + γ)

|VO|
Q2

(
1 + γ +

√
1− γ(2 + γ)

(
4
VscQ2

V 2
O

− 1

))
. (2.26)

It is also useful to note that in models where the supercritical potential participates in

the scaling solution (as will be the case in the constructions below), the lower dimensional

effective coupling has a simple power-law behavior,

g2
eff =

g2
s

Ln
= g2

eff,0

(
t0
t

)d−2

. (2.27)

This follows from the scaling of the first term in the potential, e2D̃ ∼ 1/t2, and the definition

of D̃.

Finally, note that if α2β1 − α1β2 → 0 with ∆ finite, K diverges. This corresponds to

a de Sitter solution. The simplest way to see this is to go back to (2.18) and note that

βΦ → 0 in this limit. Therefore, Φ becomes a flat direction, and the stabilization of σ gives

rise to de Sitter with cosmological constant proportional to V∗.

In what follows we will construct string theory examples that lead to stable accelerating

cosmologies of the form we have just derived, with specific results for K (and hence the

equation of state) as a function of integer parameters.

2.2 A warm-up toy model (toroidal compactifictions)

We will present our main sequence of models in section 2.4, 2.5. These will satisfy the

requisite microscopic consistency conditions described around (2.3). Before turning to

these complete models, we will develop some intuition in this section by working out a

sequence of supercritical string-inspired bottom-up models which have some of the essential
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features of our ultimate examples, but do not in themselves respect some of the microscopic

consistency conditions. As will become clear, the basic mechanism at play in these simple

toy models will be used in section 2.4 and 2.5, where we build fully top-down models

satisfying all consistency conditions, with similar results.

First, we notice that for Vmatter = 0 in our potential (2.8), the radii φi are not sourced

and the theory admits an FRW solution expanding linearly with time:

a(t) =
t

t0
, D̃ = log

d− 2√
2Vsct20

− log
t

t0
. (2.28)

That is, the theory without additional sources already admits a K = 1 solution, driven by

the potential and kinetic energy of the d-dimensional effective string coupling. Given that,

it is natural to check whether including the potential Vmatter(φs, φi) can assist in producing

accelerated expansion (K > 1) along the lines of [36].

One of the simplest ways to achieve this in a toroidal compactification is to introduce

orientifold planes wrapping nO directions out of the n internal dimensions, and to include

Qp units of magnetic RR fluxes threading p-dimensional cycles. For simplicity let us

consider the isotropic case, in which we arrange the O-planes and fluxes symmetrically

across all n internal dimensions. Since we are looking for the simplest toy model, we will

for the moment ignore the consistency conditions among the GSO projection, the O-planes,

and the fluxes. We will adjust the model to account for these conditions including all the

effects of the full orientifold group in the complete examples below; in the full models we

will also address angular moduli that are ignored in the present section.

The potential Veff is then of the form (2.12), with three terms given by the supercritical

potential, O-planes, and fluxes. As mentioned before, their (α, β) exponents are

α1 = 2 , β1 = 0 , α2 =
d+ 2

2
, β2 = nO −

n

2
, α3 = d , β3 = n− 2p . (2.29)

The condition (2.14) for a scaling solution becomes

n = p+ nO . (2.30)

We note that this condition cannot be satisfied directly in the microscopic theory for a

very basic reason — the consistency condition (2.3) implies that n − (p + nO) is odd. In

section 2.3 we will introduce a microscopically consistent “flux averaging” technique to

obtain an effective flux quantum number peff that satisfies (2.30). For now, let us proceed

with our toy model, since its behavior as a function of p will be similar to that of complete

models as a function of peff.

As shown generally in section 2.1, it is useful to rewrite the potential in terms of

the fields Φ (which rolls down the potential) and a transverse field σ (which is static) as

in (2.18):

Veff = e(2p−n)∆−1Φ e−n(d−2)∆−1σ
(
Vsc − |VO|e−σ +Q2

pe
−2σ
)
, (2.31)

where as before ∆ is given by

∆ =
1

4
(d− 2)

(
(d− 2)n+ (n− 2p)2

)
. (2.32)
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Therefore, the σ field transverse to the rolling Φ direction may be stabilized by the three-

term structure in (2.31) for coefficients in the window (2.25). For a large number of internal

dimensions, the orientifold tension grows as |VO| ∼ 2n/4 [7, 8], and then (2.25) is satisfied

for fluxes Q ∼ |VO| ∼ 2n/4 (up to factors that do not grow exponentially with n).

The model generates power-law FRW expansion a(t) = (t/t0)K with K given by (2.21).

Plugging in the specific values, we get

K = 1 +
n(d− 2)

(n− 2p)2
. (2.33)

As p approaches n/2, the solution becomes rapidly accelerating and approaches a de Sitter

cosmology. In our complete sequence of solutions below, for which we will establish micro-

scopic consistency and control, we will find a similar formula exhibiting a discrete sequence

of equations of state.

2.3 Microscopic consistency and flux averaging

As we saw above, the toy model we just developed fails to be a complete solution because

the condition for a scaling solution (2.30) cannot be satisfied directly in the microscopic

theory; the flux quantum number p would need to be odd in type IIA and even in type IIB.

The theory provides an elegant way around this difficulty, however, which we will explain

next. We will refer to this as “flux averaging”.

Let us first consider a setup which has two RR fluxes, one threading a p1-dimensional

cycle and another threading an orthogonal p2-dimensional cycle. This potentially intro-

duces an anisotropy between the p1 and p2 directions, so we will include separate size

moduli L1 and L2 for them. The anisotropy between the p1 + p2 directions and the rest on

the internal manifold can be avoided by e.g. symmetrically arranging the p1 +p2 directions

across all internal dimensions. We will do this in the detailed top-down models in the next

subsections.

With these specifications, the flux potential is of the form

Vflux =

(
g2

s

Ln

)d/(d−2)

Ln

(
Q2

1

L2p1
1

+
Q2

2

L2p2
2

)
, (2.34)

where Q1, Q2 are the flux numbers, and the overall size modulus L is defined as Lp1+p2 =

Lp1
1 L

p2
2 . Using this we may rewrite the flux potential as

Vflux =

(
g2

s

Ln

)d/(d−2)

Ln
(

Q2
1

Lp1+p2

Lp2
2

Lp1
1

+
Q2

2

Lp1+p2

Lp1
1

Lp2
2

)
. (2.35)

We see that the combination Lp1
1 /L

p2
2 is stabilized at order Q1/Q2, and the flux potential

becomes

Vflux =

(
g2

s

Ln

)d/(d−2)

Ln
2Q1Q2

Lp1+p2
. (2.36)

Therefore, after stabilizing the anisotropic direction the two fluxes contribute to the po-

tential as if they were both peff -form fluxes with peff = (p1 + p2)/2, effectively averaging

the flux.

– 10 –



J
H
E
P
1
2
(
2
0
1
4
)
0
5
0

It is now clear that we can get peff even if the microscopic theory does not allow a

fundamental RR field strength of this rank. For example, using a pair of p-form and (p+2)-

form fluxes (if they are compatible with other sources such as the orientifolds) in this way,

we may get (p+ 1)-form fluxes. In type IIA, we can get odd peff starting from even p, and

viceversa for type IIB.

We will actually use a slightly generalized version of this flux averaging. Let us consider

two RR fluxes threading a total of n1 + n2 directions. The first flux wraps p11 of the n1

directions and p12 of the n2 directions. Similarly, the second flux wraps p21 of the n1

directions and p22 of the n2 directions. We arrange the p11 directions symmetrically out of

the n1 directions, and do the same for p12, p21, and p22.

The flux potential becomes

Vflux =

(
g2

s

Ln

)d/(d−2)

Ln

(
Q2

1

L2p11
1 L2p12

2

+
Q2

2

L2p21
1 L2p22

2

)
, (2.37)

where Ln1+n2 = Ln1
1 Ln2

2 . Again, this potential stabilizes the combination Lp11−p21
1 Lp12−p22

2

at order Q1/Q2 and gives an effective rank

peff = (n1 + n2)
p11p22 − p12p21

n1(p22 − p12) + n2(p11 − p21)
. (2.38)

As a trivial check, this reduces to (p1 + p2)/2 for n1 = p11 = p1, n2 = p22 = p2, and

p12 = p21 = 0.

2.4 Toroidal orientifold models generating acceleration with w . −1/3

In this section we will construct a family of supercritical models on Rd−1,1 × Tn which

are microscopically complete and similar to the toy models above for the case that the

orientifold planes wrap a large fraction of the torus (nO of order n in the notation of

section 2.2). This yields a sequence of possible equations of state accumulating near w →
−1/3. In the next section we will produce a somewhat more involved sequence of models

with w accumulating near −1, similar to the nO ≈ n/2 toy examples.

We will first describe a class of models in some generality, and then make specific

choices which satisfy all the required microscopic consistency conditions. Let us divide the

n toroidal directions equally into m “blocks”, each block consisting of n′ ≡ n/m directions.

Let there be orientifold planes wrapping mO blocks, chosen symmetrically from the total m

blocks, along with anti-orientifolds separated from them in the internal dimensions. These

are O(d − 1 + nO) planes with nO = mOn
′, introduced by modding out the worldsheet

theory by an action of ΩIn′(m−mO) times and appropriate power of (−1)FL which flips the

sign of spacetime spinors from worldsheet left-movers. Here Ω is worldsheet parity and

Ij indicates reflection on j coordinates transverse to the O-plane. The simplest consistent

models have O-planes which intersect on codimension 0 (mod 4) which means n′ is even.

Therefore nO is even and we are in type IIA for odd d and in type IIB for even d.

We must consider all elements of the orientifold group that we have prescribed. Since

we have distributed the orientifolds symmetrically among the blocks, this includes orbifold

– 11 –



J
H
E
P
1
2
(
2
0
1
4
)
0
5
0

elements I2n′ which invert 2n′ directions, and their products. In order to avoid tachyons in

the twisted sectors of this orbifold group we require n′ to be even. The full orientifold group

as just specified generically also generates additional sectors of O-planes of higher and lower

dimensionality than the original set of O(d− 1 + nO) planes (generated by actions of I2n′

elements transverse to or parallel to a given O-plane). We will be interested in a controlled

large-radius regime, so the O-planes of smaller dimension than d−1+nO will automatically

be negligible in the dynamics. The higher-dimensional O-planes would dominate over lower

dimensional ones at large volume, for models in which they are generated. For the cases

when this occurs we can neutralize this contribution in two ways. One is to include D-

branes which cancel their tension, leading to a stable configuration.8 This mechanism

does not apply to a completely spacefilling orientifold generated by the action Ω with no

reflection. To address that if it is generated by the full orientifold group, we can include

a shift halfway around a direction of the torus with the element Ω and with each element

of the form I2n′ which acts on that direction. This removes the spacefilling O-plane, since

this element of the orientifold group acts freely, but preserves the fixed points introduced

by the original O-planes specified above.

With this distribution of orientifolds, let us next check that the angular moduli of the

torus do not become unstable. With orientifolds, which carry negative tension, wrapping

sub-tori of the Tn , it is energetically favorable for angular moduli to turn on in such a way

as to increase the volume wrapped by the O-planes at fixed volume of the Tn. However,

such angular moduli — which are off-diagonal terms in the metric of the form dx dy, where

x and y are from different blocks — are automatically projected out in our model. The

orientifold group includes Z2 orbifold elements which acts as a reflection on all coordinates

in any two pairs of blocks. Each angular modulus of the form just discussed is projected

out by this group.

To introduce RR fluxes, let us further divide each block into n1 and n2 directions, n′ =

n1+n2. We will denote the radii of these two directions in string units as L1 = eφ1 , L2 = eφ2

as above in section 2.3. Two kinds of RR fluxes are turned on; the first threads p11 of the

n1 directions and p12 of the n2 directions in each block, so it is a p1 = m(p11 + p12) form

flux. The second flux is a p2 = m(p21 +p22) form wrapping p21 of the n1 directions and p22

of the n2 directions. We arrange the pij directions symmetrically out of the nj directions.

As derived in (2.38), we may balance the potential terms from the two fluxes and

obtain an effective peff -form where

peff = mn′
p11p22 − p12p21

n1(p22 − p12) + n2(p11 − p21)
. (2.39)

In order to find a power-law solution, we need to satisfy the scaling condition (2.30),

n = peff + nO. Having done this, we will find results similar to those of the simpler toy

model of section 2.2.

8It is also interesting to note that in high transverse dimensionality (as we will have in our blocks), the

classical forces between masses and charges are suppressed [69].
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We now present a set of solutions along these lines which satisfies our microscopic

conditions. We choose

n1 = n2 = 3k , p11 = 4 , p21 = 0 , p12 = 1 , p22 = 9 . (2.40)

which gives peff = m
k n
′, with n′ = n1 + n2 = 6k. Setting for simplicity m = k, obtains

n = mn′ = 6k2, peff = 6k and nO = n − peff = (m − 1)n′ = 6k(k − 1). The number of

blocks wrapped by the O-planes is mO = m − 1. This means that they cannot generate

higher-dimensional O-planes, and will only generate lower-dimensional O-planes (differing

from these original ones by even numbers of blocks) which contribute subdominantly at

large radii.

Let us check the remaining microscopic consistency conditions. We must make sure

that the orientifold actions do not project out the fluxes we use. For either flux the

condition (2.3) becomes

k = −1 (mod 4) . (2.41)

And finally we need D = d+ n = 10 (mod 16) for our modular invariant GSO projection,

which is satisfied in d = 4 by any k = −1 (mod 4).

Solving for the classical dynamics of this model following the method described above

in section 2.1, we obtain a perturbatively stable solution exhibiting accelerated expansion

a(t) = (t/t0)K with

K = 1 +
10

27(k − 2)2
. (2.42)

In the limit of large k, this sequence of models approaches K = 1, which corresponds to

w = −1/3.

Let us explain how this comes about in some detail. The kinetic terms are as in (2.19),

and the potential is given by

Veff = eΦe−γσ1
[
(D −Dcrit)− |VO|e−σ1−σ2 + e−2σ1(Q2

1e
−γ1σ2 +Q2

2e
−γ2σ2)

]
, (2.43)

with the relation between the dilaton and radii

φs = − 1

k − 2
Φ−

(
1 +

54(k − 2)

27k2 − 108k + 118

)
σ1 −

k

k − 2
σ2

φ1 = − 2

9k(k − 2)
Φ− 12(k − 2)

k(27k2 − 108k + 118)
σ1 +

2

3k(k − 2)
σ2 (2.44)

φ2 = − 1

9k(k − 2)
Φ− 6(k − 2)

k(27k2 − 108k + 118)
σ1 −

4

3k(k − 2)
σ2 ,

and the exponents

γ =
20

27k2 − 108k + 118
, γ1 = 2 +

20

3(k − 2)
, γ2 = 2− 20

k − 2
. (2.45)

We easily find a stable minimum of the potential in the σ1, σ2 directions, which can be

understood rather simply as follows. Since γ is tiny at large k, we can neglect its effects on

the stabilized values of the moduli near the minimum that we will find (although it comes
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into the value of the potential there). Now consider the potential as a function of the two

fields σ+ ≡ σ1+σ2 and σ2. The two flux terms stabilize σ2, near zero if we take for simplicity

Q2
1 ≈ 3Q2

2 ≈ Q2. The remaining potential is then of the form (2.23), and restricting the

parameters to the window (2.25) gives a minimum for σ+ at (2.26). Explicitly, if we choose

the flux numbers Q ∼ |VO|√
D−Dcrit

∼ 2n/4

n1/2 , we obtain a minimum with9

eσ1 ∼ |VO|
D −Dcrit

∼ 2n/4

n
, V∗ ∼ ε(D −Dcrit)M

2
4 , (2.46)

where ε depends on how close the flux is tuned to the lower bound of the window (2.25).

Furthermore, the combination eΦ0t20 that appears in Φ = Φ0 − 2 log(t/t0) is fixed in terms

of V∗ by the relation (2.24).

Replacing these results into (2.44), we finally arrive to the solution for the string

coupling and radial moduli for this class of models (expanded at large k):

gs ∼ 2−
3
2
k2

(V∗t
2)

1
k , L1 ≈ L2

2 ∼ 2−
2
3 (V∗t

2)
2

9k2 , L ∼ 2−
1
2 (V∗t

2)
1

6k2 (2.47)

and the effective coupling (recall that Ln = Lmn1
1 Lmn2

2 )

g2
eff =

g2
s

Ln
∼ 1

V∗t2
. (2.48)

The time-dependence of the effective coupling was derived in (2.27), and can also be seen

directly from the linear combination 2φs −mn1φ1 −mn2φ2 in (2.44).10

The string coupling and radial moduli increase with time, and we will find a window of

large radius and weak coupling. We will explain that in detail below in section 2.6, where

we will first lay out the general criteria required to establish control in our large-D regime

before applying them to our specific sequences of models.

2.5 A sequence approaching w = −1

In this section, we will consider another sequence of models which produces stronger accel-

erated expansion, approaching w → −1 (K →∞) at large D. These give a microscopically

consistent realization of the p ≈ n/2 regime of the warmup models in section 2.2.

To begin, we will consider a family of supercritical models on Rd−1,1 × Tn, with the

same block structure we described at the beginning of section 2.4. In these models, we

will find that the many Ramond-Ramond fields of the supercritical theory contribute large

radiative corrections unless we lift them using additional ingredients (see section 2.6 for a

detailed discussion). We will explain how to do so in a generalization of the model that

combines assisted inflation with axion monodromy on a more general internal geometry.

In particular, it will be interesting to make use of the 2D axion fields which dominate the

string spectrum.

9Recall that V∗ was introduced below (2.23).
10This arises from subleading 1/k contributions not shown in (2.47).
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2.5.1 First attempt

Consider to begin with a discrete family of these toroidal orientifold models parametrized

by an arbitrary even integer k ≥ 2, now with

n1 = 16k + 1 , n2 = 16k − 7 ,

p11 = 16k , p12 = 1 , (2.49)

p21 = 0 , p22 = 16k − 7 .

Then from (2.39) we find

peff =
m

64k2 − 28k − 1
(32k2 − 14k)n′ (2.50)

where n′ = n1 + n2 = 32k− 6. Since the scaling condition n = peff + nO demands that peff

be an integer, we make the simplest choice

m = 64k2 − 28k − 1 (2.51)

which leads to

n = mn′ = (64k2 − 28k − 1)(32k − 6) ,

peff = (32k2 − 14k)(32k − 6) , (2.52)

nO = n− peff = (32k2 − 14k − 1)(32k − 6) .

In particular, this means that the number of blocks wrapped by the O-planes is mO =

2k(16k − 8).

Let us now reiterate and finish checking the various microscopic consistency conditions

for these models. First, for the GSO projection we need d+n = 10 (mod 16). From (2.52)

and the fact that k is even, we easily find n = 6 (mod 16), and therefore d = 4 (mod

16). We will focus on d = 4 below for simplicity. Second, n′ = 32k − 6 is even, which

ensures that the Z2 orbifold elements of the orientifold group do not generate twisted

tachyons. Third, we need to satisfy the consistency condition (2.3) between the O-planes

and RR fluxes. Consider the p = m(p11 + p12) form flux with any O-plane. We have

nshared = mO(p11 + p12) and nunwrapped = (m − mO)(n′ − p11 − p12). Plugging in the

numbers, we find

nshared + nunwrapped = −p11 − p12 + (64k2 − 28k)(16k − 3) ,

and therefore the condition (2.3) becomes p11 +p12 = 1 (mod 4) which is certainly satisfied

by (2.40). Similarly, if we consider the other flux we get p21 + p22 = 1 (mod 4) which is

satisfied by (2.40).

We are now ready to analyze the dynamics of these models. Since each block is divided

into n1 and n2 directions, they can have different size moduli. Let us denote their lengths

by L1 and L2. These lengths are the same for all blocks, because we have arranged all
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sources symmetrically. Therefore, our models have three moduli gs, L1, and L2. The

potential is of the form (focusing on d = 4)

Veff =

(
g2

s

Ln

)2
(

(D −Dcrit)
Ln

g2
s

− |VO|
LmOn1

1 LmOn2
2

gs
+

Q2
1L

n

L2mp11
1 L2mp12

2

+
Q2

2L
n

L2mp21
1 L2mp22

2

)
,

(2.53)

where L is the overall size modulus defined as Ln
′

= Ln1
1 Ln2

2 , and Q1, Q2 are the flux

numbers. We may rewrite this potential in terms of a scaling field Φ and two transverse

fields σ1, σ2, and arrive at a form similar to (2.18):

Veff = eΦe−γσ1
[
(D −Dcrit)− |VO|e−σ1−σ2 + e−2σ1(Q2

1e
−γ1σ2 +Q2

2e
−γ2σ2)

]
. (2.54)

The new fields and exponents γ and γi are uniquely fixed by comparing (2.53) and (2.54),

and requiring that Φ and σi have diagonal kinetic terms. The new and old fields are

related by

φs = 2k(16k − 7)Φ +

(
16k − 16k − 7

16k2(16k − 7)− 4k + 1
− 8

)
σ1 + (4k(16k − 7)− 1)σ2

φ1 =
2k − 1

4(16k − 7)k − 1
Φ +

4k − 2

16k2(16k − 7)− 4k + 1
σ1 +

4k

16k + 1
σ2 (2.55)

φ2 =
2k

4k(16k − 7)− 1
Φ +

4k

16k2(16k − 7)− 4k + 1
σ1 −

4k − 2

16k − 7
σ2 ,

and the exponents γ, γ1, and γ2 are

γ =
512k3 − 352k2 + 48k + 4

256k3 − 112k2 − 4k + 1
,

γ1 =
2048k3 − 1536k2 + 248k + 18

256k2 − 96k − 7
(64k2 − 28k − 1) , (2.56)

γ2 = −(8k − 2)(64k2 − 28k − 1) .

This potential stabilizes σ1 and σ2 and leads to a power-law scaling solution with

K = 4k +
1

64k2 − 28k − 1
. (2.57)

For Q1 ∼ Q2, σ2 has a stable minimum at the origin. The remaining potential for σ1 is then

of the form (2.23) and admits a minimum for a suitable window of the coefficients (2.25).

Taking Q ∼ 1√
D−Dcrit

|VO| ∼ 2n/4

n1/2 obtains

eσ1 ∼ |VO|
D −Dcrit

, V∗ ∼ ε(D −Dcrit)

(
D −Dcrit

|VO|

)γ
M2

4 (2.58)

with γ ≈ 2 at large k and, as before, ε depends on how close to the lower bound of the

window (2.25) the fluxes are chosen. With these results and the change of variables (2.55),

we obtain the time evolution of the original fields gs, L1 and L2,

gs ∼ e16kσ1

(
K2

V∗t2

)32k2

, L1 ≈ L2 ∼ e
σ1

16k2

(
K2

V∗t2

) 1
32k

,
g2

s

Ln
∼ e−2σ1

K2

V∗t2
. (2.59)

– 16 –



J
H
E
P
1
2
(
2
0
1
4
)
0
5
0

As before, the time-dependence of the effective coupling follows from (2.27), and obtaining

it directly from gs and Li requires keeping the exact coefficients presented above in (2.55).

We expect similar sequences of models on other Ricci-flat spaces, although it would be

more difficult to analyze them as explicitly.

We will analyze the behavior of the string coupling and radii in this model below in

section 2.6, finding that we need to lift a significant fraction of the 2D Ramond-Ramond

axion fields in order to obtain a controlled perturbative expansion. In order to achieve this,

we will introduce two additional ingredients: Neveu-Schwarz flux and topology for it to

thread. These elements will complete the model in a way that leaves the potential (2.53)

and the resulting solution with acceleration (2.57) as a good approximation, but with the

additional internal topology the model will no longer be a toroidal orientifold.

2.6 Structure and control of the solutions

In this subsection we will analyze the parameters in our solution and their perturbative

control. We will focus on the limit of large k, for which K � 1; de Sitter is obtained to

very good approximation for k → ∞ as the equation of state approaches w = −1. This

regime is at large total dimension D, where various interesting effects and simplifications

arise.

2.6.1 General requirements

We must arrange the different contributions to the potential so that the radii are large in

string (and Planck) units, the coupling is weak, and the time evolution of the scalars and

metric is controllably small relative to the string scale.

There are various important effects that arise in the regime of large D. First, there

is a large number of RR fields: of order 2D ∼ 2n [7, 8]. On a compactification down to

d = 4 these include of order 2n axions, along with higher harmonics on the internal space.

For our analysis of control it is important to consider two regimes of energy scales: those

below the compactification scale 1/L and those above 1/L.

At scales below 1/L, the interactions are controlled by the effective coupling

geff =
gs

Ln/2
(2.60)

with an enhancement from the number Nlight of light species. If this were a large effect, it

would make an interesting moduli-dependent modification of the potential. In particular,

it would renormalize the Planck mass, and change the form of the factor one obtains in

converting to Einstein frame in d dimensions as a function of L, gs, and other moduli —

this may in particular modify the classical runaway behavior near large volume. It will be

interesting to explore the implications of this new structure for moduli stabilization and

dynamics, since this large number of axion fields is a striking feature of the string spectrum.

However, in the present work we will require for simplicity that the tree level model sat-

isfies

Nlight g
2
eff � 1 (2.61)
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for our solutions to ensure that the dynamics developed above is a good approximation.

In our sequence of models discussed in section 2.5 which approach w → −1, we will need

to introduce additional ingredients, subleading in the classical dynamics, to lift the ∼ 2D

axion fields. In our sequence of models with K & 1, we will find (2.61) to be satisfied with

Nlight ∼ 2D, so in that case we will not require any further ingredients.

At scales above 1/L, interactions are controlled by gs directly, with a species enhance-

ment factor. However, in this regime we also have important D-dependent suppression

factors from the angular part of loop momentum integrals [68], which contributes

C ≡
∫

∂ΩD

(2π)D
=

2−D+1

(2π)D/2Γ(D2 )
, (2.62)

with the radial part of the momentum integrals effectively cut off at the string scale.

This factor C generalizes the loop suppression factor of 16π2 in familiar four-dimensional

perturbation theory. Since powers of g2
s count loops, with of order 2D species running in

the loops, we impose that

2Dg2
s �

1

C
. (2.63)

A similar decoupling happens in classical large-D general relativity at a fixed value of the

gravitational coupling κ: the Newtonian potential between sources is negligible outside a

very small radius [69]. In the work [68] on large-D perturbative quantum general relativity,

κ was rescaled by the inverse of the phase space factor C (2.62) in order to obtain surviving

loop corrections in the large-D limit. Here, we work at large but finite D and will show

that our solutions for gs satisfy (2.63). In fact, the model of section 2.4 will be seen to

satisfy the stronger inequality gs � 1.

Having analyzed the couplings and radii, let us next consider the scale of the curvature

and scalar time dependence in our solutions. First, recall from [70] that at least if we start

from a sufficiently general distribution of initial radii, we can tune the minimum of the

effective potential for σ; i.e. we can tune V∗ in (2.24). To see the utility of this feature in

our explicit models, let us analyze the level time-dependence compared to the Planck and

string scales. Since a(t) = (t/t0)K , we have that the d-dimensional Hubble parameter (in

Einstein frame) is given by

HEinstein =
ȧ

a
=
K

t
(2.64)

This dies to zero at late times, and hence is much smaller than Md at sufficiently late

times. But we would like to also determine the level of α′ corrections generated by the

curvature and scalar time derivatives in our solution. For this, it is useful to return to the

string-frame metric (2.4), which we can write as

ds2
D,str = g

4
d−2

eff,0

(
t0
t

)2
(
−dt2 +

(
t

t0

)2K

d~x2

)
+ L2γijdy

idyj (2.65)

= −dτ2 + a(τ)2d~x2 + L2γijdy
idyj
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with

a(τ) = g
2
d−2

eff,0 exp

(K − 1)
τ − τ0

t0g
2
d−2

eff,0

 (2.66)

where geff,0 is the effective low energy d-dimensional string coupling gs/L
n/2 evaluated at

time t = t0. Here we used the time evolution of the effective coupling given in (2.27).

This reduces to the original supercritical linear dilaton solution for K = 1, for which the

string-frame metric is Minkowski spacetime. In our more general solutions with K > 1, the

string-frame metric undergoes accelerated expansion (as does the d-dimensional Einstein

frame metric).

The curvature and scalar time derivatives in string units are given by

da/dτ

a
=
K − 1

t0g
2
d−2

eff,0

,
dL/dτ

L
=

t

t0g
2
d−2

eff,0

L̇

L
,

dgs/dτ

gs
=

t

t0g
2
d−2

eff,0

ġs

gs
. (2.67)

In order to make these controllably small, we can tune V∗ to be small, hence increasing

t0 while maintaining the solution (2.24) of the rolling scalar equation of motion. This

limit is simpler in some ways than the supercritical linear dilaton solutions, in that the

curvature and scalar field time derivatives can be below the string mass scale (whereas in

the linear dilaton solution the time dependence is of order the string scale, and one controls

α′ corrections by using the exact worldsheet solution).

Finally, we need to check that corrections from localized sources to our effective theory

are negligible. In our case, these arise predominantly from the orientifold planes which,

unlike the supercritical potential or the RR fluxes, are localized in the internal directions.

The effective potential that we have used so far includes the average of the orientifold

tension over the internal space, and corrections from the localization of such sources appear

in the form of gradients
∫

(∇A)2 of the warp factor A(y) [47–49]. As shown in [25], these

effects can be neglected if A� 1 away from the cores of the O-planes.

Next we will implement these conditions for control in the two sequences of models

developed above in section 2.4–2.5.

2.6.2 The models of section 2.4

We now analyze the conditions under which the models of section 2.4 are under perturbative

control. From the time dependence (2.47), we see that gs and L are increasing with time

— although very slowly at large k. As a result, we will find only a finite window of times

during which the solution is under control. To check that there is a large window of

times for which the solution applies, we need to assess the values of the coupling and radii

at some initial time t0, and establish that the conditions for a controlled expansion are

satisfied parametrically. The fact that the window of times is finite is reminiscent of the

fact that de Sitter solutions in string theory decay. It is somewhat intriguing in that our

models provide another, more perturbative, context where accelerated expansion occurs,

but not indefinitely.
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We now check that the control conditions

L1 = L2
2 � 1 , 2n

g2
s

Ln
� 1 , gs � 1 , (2.68)

are satisfied. (Note that we will satisfy the stronger gs � 1, instead of (2.63)). For this, it

is useful to eliminate Φ in terms of L2. Since gs/L
9k
2 ∼ 2−

n
4 and n = 6k2, we find that the

control window is

2
k

3(k−2) � L2 � 2
k
6 . (2.69)

This can be translated into a finite window of times by use of (2.44) and eΦ = K(3K −
1)/V∗t

2.

We also need to check the smallness of time derivatives (2.67) in string units. The

gradients for the scale factor and L are proportional to V
1/2
∗ /k2, while the time derivative

of log gs is proportional to V
1/2
∗ /k. These gradients are time-independent, and can be

made small by taking k large and/or tuning ε� 1 in (2.46).

Lastly, let us check that the warp factor caused by the localized O-planes is small.

There are a total of n1 + n2 directions transverse to each O-plane. Of these there are n1

directions that have size L1, and the remaining n2 directions have size L2. Let us denote

these directions respectively by ~y1 and ~y2. Schematically we have

∇2A(~y1, ~y2) ∼ g2
s

1

gs

∑
~m1, ~m2

δ(n1)(~y1 − ~m1L1)δ(n2)(~y2 − ~m2L2) + other sources , (2.70)

where the first factor g2
s arises from Newton’s constant, the second factor 1/gs is the O-

plane tension, and we sum over a periodic array of images of the O-plane which we have

conveniently put at ~y1 = ~y2 = 0.

The warp factor A halfway in the middle of the O-plane and its images is

A

(
L1

2
~1,
L2

2
~1

)
∼ gs

∑
~m1, ~m2

1[
L2

1

(
~m1 − 1

2
~1
)2

+ L2
2

(
~m2 − 1

2
~1
)2
](n1+n2−2)/2

+ contributions from other sources , (2.71)

where ~1 denotes the vector (1, 1, · · · , 1). As usual, the contributions from other sources

are such that A is the the difference between the sum and integral over ~m1, ~m2. Since our

solution gives L1 = L2
2, a conservative estimate for A that gives an upper bound is

A

(
L1

2
~1,
L2

2
~1

)
<

gs

Ln1+n2−2
2

∼ 2−
n
4L3k+2

2 = 2−
3k2

2 L3k+2
2 . (2.72)

This is small during our entire window of control. Note that it is not important to include

factors such as Γ
(
n1+n2

2

)
∼ k3k which may arise from the sum or integral over the n1 + n2

transverse coordinates ~y1, ~y2.

In summary, for k � 1 this sequence of models is perturbative for a parametrically

large window of times.
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2.6.3 The models of section 2.5

Our second sequence of models will be more subtle and require some modifications to

treat the effects of the many axions, while retaining the original solution for the radii and

couplings as a good approximation.

In general there are about 2n RR axions which may pose a light species problem;

indeed one finds as we will see that in contrast to the previous sequence of models, here we

cannot satisfy (2.61) with 2n light axions contributing to Nlight. Because of that, we will

introduce H3 fluxes to lift (most of) the RR axions, using the terms in the Lagrangian of

the form [58, 59]

|F̃r+3|2 = |Fr+3 + Cr ∧H3|2. (2.73)

There are two types of such terms, (i) ones for which we have prescribed a background

flux, i.e. r + 3 = m(p11 + p12) or r + 3 = m(p21 + p22), and (ii) other values of r. In case

(ii), the term (2.73) gives a mass for the axions.

These fluxes also introduce further D-brane charge tadpoles, generalizing those in [9,

55]. D-branes can cancel these charges without introducing a leading contribution to the

potential energy.

In case (i) the axion Cr is up on a potential hill; we will find a consistent regime of

axion monodromy inflation [61–67] in those directions. The potential for the canonically

normalized axion field φc is of the form

m2(φc − φc0)2 (2.74)

where m and φ0 depend on the moduli. Below we will impose the condition for slow roll in

the φc direction, ensuring that it is slower than the rolling field Φ in our original solution.

As standard in large-field inflation, this occurs for sufficiently large values of (φc−φc0)/MP .

This mechanism for inflation at large field values [5, 6, 61–67] was realized and developed

after the first round of moduli stabilization efforts [1–4]. In the original examples realizing

the mechanism, this was set up within those earlier moduli stabilization scenarios, with

the inflationary mechanism built in as a module. Here we will see that it can participate

in new stabilization and acceleration mechanisms in a less modular, more economical way

as we will see.

In our setup of section 2.5, many of the H3 flux choices on the n-torus are projected

out by the orientifolds. Because of that, we will consider a more general geometry than a

torus, for example a product of Riemann surfaces, and place the orientifolds so that they do

not fix the nontrivial 1-cycles of the Riemann surfaces (see figure 1). As mentioned above,

this means that flux on these cycles is projected in by the orientifold, in either an even or

odd combination. The contribution to the 4d potential energy from the internal curvature

is subdominant to our leading terms in the potential, including the classical supercritical

potential, since the latter goes like D − Dcrit where as the former goes like the inverse

curvature radius squared, ∼ 1/L2 � 1.

Next, we will analyze the contribution of H3 flux to the axion masses (to make sure they

are large enough) and to the potential (insisting that this be subdominant to the original

terms used in our scaling solution). These conditions, along with the condition (2.63)
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Figure 1. In order to preserve sufficient fluxes to lift our axions, we consider a geometry which

generalizes the toroidal model discussed earlier. Here, the orientifold planes (purple) act freely on

the homology cycles, leaving invariant fluxes on odd or even combinations of them.

will be the leading constraints on our parameters, as we will see after assessing all of the

requirements.

Let us first consider the simple case where H3 is completely symmetrized across all

internal dimensions. There are of order n3 three-cycles in the internal manifold, and let us

denote the H3 flux number on each particular three-cycle as N3. First, we would like to

keep the total potential energy from H3 parametrically smaller than other potential terms

that we have considered. Comparing it to the supercritical term, we get

n3N
2
3

L6
� (D −Dcrit) ∼ n ⇒ L� (N3n)1/3 . (2.75)

Note that this is strictly stronger than the condition L� 1.

Next, we analyze how H3 affects the masses of RR axions. These axions come from

the zero mode of Cr, and gain masses from the coupling |Cr ∧ H3|2. So each time this

occurs, the mass squared of a particular Cr gains N2
3 /L

6, which can seen by comparing

the quadratic potential |Cr ∧H3|2 with the kinetic term |dCr|2. To lift an axion we need

to increase its mass squared to at least 1/L2. For any Cr with r ≤ n − 3 there are of

order
(
n−r

3

)
H3 fluxes with nonzero wedge product Cr ∧ H3. Let us choose a threshold

r0 = n− n2/3 and lift all Cr with r ≤ r0. This means(
n− r0

3

)
N2

3

L6
� 1

L2
⇒ L� (N3n)1/2 . (2.76)

There are at most of order (n− r0)
(
n
r0

)
∼ nn

2/3
axions that do not get lifted this way

— these are Cr with r > r0. Therefore we have reduced the number of light species from

2n to at most nn
2/3

. We would like to make sure that the effective coupling (after enhanced

by the species) is small:

nn
2/3 g2

s

Ln
� 1 . (2.77)

We also must satisfy the weak coupling condition (2.63) arising from scales above 1/L,

which requires

L� n1/2 . (2.78)
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Next let us analyze the axions which are away from their minimum in our solution,

those which have a tadpole via the coupling |Fp +Cp−3 ∧H3|2 where Fp is the background

RR flux in our model. We can satisfy the slow roll condition by requiring a large canonical

axion field φc � MP (2.74). For concreteness let us first consider the background flux

wrapping L1 with p1 = m(p11 + p12). In terms of the canonical axion field

φc1 ∼ Ln/2
c1

Lmp11−3
1 Lmp12

2

(2.79)

we can write the effective potential from |Fp−1 + Cp1−3 ∧H3|2 as

Veff ∼ Ln
(Q1 + c1N3)2

L2mp11
1 L2mp12

2

∼ Ln

L2mp11
1 L2mp12

2

(
Q1 +

Lmp11−3
1 Lmp12

2

Ln/2
φc1N3

)2

. (2.80)

Here for simplicity we have chosen H3 to be along the L1 directions, but this does not affect

the final result at leading order. We have a large number of axions from the RR potential

fields Cp−3, the number being of order n3, so the situation is similar to N-flation [37].

In particular, the effective slow roll parameter in the collective direction is suppressed by

1/
√
Ninflaton ∼ n−3/2:

ε = n−3/2M4

|∂φc1Veff |
Veff

∼ n−3/2L
n/2

gs

N3L
mp11−3
1 Lmp12

2

Q1Ln/2
=
N3L

mp11−3
1 Lmp12

2

n3/2gsQ1
. (2.81)

Let us require this slow roll parameter to be much smaller than βc ∼
√

1/K ∼ k−1/2, so

that corrections to our previous solution can be neglected. This means

gsQ1

Lmp11−3
1 Lmp12

2

� N3k
1/2

n3/2
∼ N3

n4/3
, (2.82)

and similarly for the background flux wrapping L2 we have

gsQ2

Lmp21
1 Lmp22−3

2

� N3

n4/3
, (2.83)

We are now ready to solve these conditions by plugging in our solution. The calculation

of the window of control is a bit more subtle than in the previous model, due to large

cancellations when k � 1. It turns out to be convenient to first derive a parametric window

in terms of L, and then translate this into a window of times using (2.59). Eliminating Φ

in favor of L from L ∼ e
1

32k
Φ+ 1

64k2 σ1 , obtains11

gs ∼ L1024k3
e−σ1 ,

gs

Ln/2
∼ L16k−3e−σ1 (2.84)

gs

Lmp11−3
1 Lmp12

2

∼ gs

Lmp21
1 Lmp22−3

2

∼ L3e−σ1 .

11Some of these results appear at subleading order in an expansion in 1/k, so it is best to calculate the

various combinations exactly and only take the large-k limit at the end. Also, recall that σ2 ≈ 0 at the

minimum.
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We also recall that in this class of models n ≈ 2048k3.

Using the scalings at the minimum eσ1 ∼ Q1 ∼ Q2 ∼ |VO| ∼ 2n/4, we find that the

weak effective coupling condition (2.77) reduces to

nn
2/3
L32k � 2n/2 ⇒ L� 232k2

, (2.85)

whereas the slow roll conditions (2.82) and (2.83) become

L3 � N3

n4/3
⇒ L� N

1/3
3 n−4/9 . (2.86)

Even without the N-flation effect we get L � N
1/3
3 n1/18. Combining these inequalities

with (2.75) and (2.78) ((2.76) gives a weaker upper bound), we arrive at

(N3n)1/3 � L� n1/2 , (2.87)

which can be satisfied within a parametrically large window as long as N3 � n1/2.

On the other hand, the time derivatives (2.67) are proportional to (2n/2V∗)
1/2, so

by tuning V∗ � 2−n/2 the corrections from gradients are negligible. From (2.58), V∗ is

already suppressed by |VO|2 ∼ 2−n/2, so the required tuning for ε in (2.58) is power-law

in n. Finally, following steps similar to those around (2.71), one may verify that the warp

factor A� 1, so that corrections from the localization of O-planes can be self-consistently

neglected. In summary, we find that the sequence of models approaching w → −1 is under

perturbative control for a parametrically large window of times

21024k2

n16k
� V∗t

2 � 21024k2

(N3n)32k/3
, (2.88)

with N3 � n1/2 and n = 2048k3.

In summary, in this section we have shown that an elaborated version of the models

of section 2.5 satisfies the various consistency requirements for control. The leading ones

turned out to be the condition that most of the axions are lifted above the scale 1/L, that

the fluxes introduced to accomplish this do not contribute a leading effect to the moduli

potential, and that the microscopic string coupling remain sufficiently small.

3 Accelerated expansion at finite density

There are other broad classes of mechanisms for generating accelerated expansion in which

densities of particles, strings, or higher dimensional defects make leading contributions

to the stress-energy [41, 42]. For example, from the bottom up domain wall networks

constitute a fluid with equation of state parameter w = −2/3, equivalently K = 2. In

string theory, it is not as simple as that — the energy density carried by such sources

depends also on moduli fields, which can evolve in time.

In this section we present a class of examples producing accelerated expansion taking

this into account, with the examples we will derive below producing specific values of K

in the range

1 < K < 2 . (3.1)
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In these models, the expansion is sourced entirely by microscopically consistent domain

walls. We will work here for simplicity in D = 10 on a torus and obtain a finite list of

models, but we expect that such effects may assist inflation much more generally.

This method provides a new way to simplify the construction of accelerating cosmolo-

gies, limiting number of ingredients required. One application is to holography. After

explaining the models, we will comment on holographic examples and their interpreta-

tion below.

At a technical level, the distinction is the following. The models that we presented

in the previous sections are constructed out of objects that wrap the entire non-compact

spacetime. Of course, this is not the only possibility: we may choose to wrap any number

of the non-compact dimensions, leading to a density of extended or point-like objects in

spacetime. In order to preserve isotropy in both the internal space and the d-dimensional

spacetime, we will symmetrize the objects over all of the directions. The effective picture

in the FRW spacetime is then an isotropic network of extended objects (or cosmic strings

in d = 3). For a specific class of models, this turns out to lead to accelerating solutions

without tachyonic moduli.

3.1 Single-term potentials

In string theory, we have two classes of extended objects to choose from. The first consists

of D-branes, which have tension 1/gs. There also exist heavier objects, such as NS5-branes

and (p, q) 7-branes, whose tensions go as 1/g2
s . Fixing the critical dimension for simplicity,

the spacetime effective potentials12 for these two types of objects are

VD−brane =
ρ

a(t)d⊥
e(

d+2
2
−d⊥)D̃+(p+d⊥− d2−4)φ (3.2)

Vheavy =
ρ

a(t)d⊥
e(2−d⊥)D̃+(p+d⊥−9)φ .

Here d⊥ is the codimension of the brane in spacetime, ρ is the density of objects, and p

is the total number of spatial dimensions on the brane. The sources are smeared over all

spatial dimensions, so that the solution is isotropic.

In order to find a scaling solution, it is convenient to consider a slightly more general

potential,

V =
ρ

a(t)d⊥
eαφ1+βφ2 , (3.3)

where φ1 and φ2 are canonically normalized. Since we are dealing with single-term poten-

tials, there is only one linear combination of fields Φ that is sourced by the density. The

combination σ orthogonal to this is a flat direction in the classical supergravity approxima-

tion, which is presumably lifted at higher order in the string coupling. More specifically,

the two canonically normalized scalars are

Φ =
αφ1 + βφ2√
α2 + β2

, σ =
βφ1 − αφ2√
α2 + β2

. (3.4)

12By which we mean the energy density.
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The potential is now simply

V =
ρ

a(t)d⊥
e
√
α2+β2Φ . (3.5)

Next we plug this into the equations of motion (2.16), along with a FRW ansatz with

scale factor a = (t/t0)K . One finds a scaling solution, with

Φ = Φ0 −
2− d⊥K√
α2 + β2

log

(
t

t0

)
(3.6)

K =
2(2d− d⊥ − 2)

(d− 1)(d− 2)(α2 + β2) + 2(d− 1)d⊥ − d2
⊥
,

and Φ0 is determined in terms of the density ρ by

e
√
α2+β2Φ0t2−d⊥K0 =

ρ−1

α2 + β2
(2− d⊥K) ((d− 1)K − 1) . (3.7)

For d ≥ 2, these results give an upper bound on K,

K ≤ 2

d⊥
, (3.8)

which is saturated by a perfect fluid. In order to find accelerated expansion, we will then

focus on domain walls, d⊥ = 1.

We now apply this macroscopic analysis to the case of our microscopic potentials from

string theory. The solution is

KD−brane =
2(2d− d⊥ − 2)

2(d− 1)d⊥ − d2
⊥ + (d− 1)(d− 2)

(
(d+2−2d⊥)2

4(d−2) +
(p+d⊥− d2−4)

2

10−d

) (3.9)

Kheavy =
2(2d− d⊥ − 2)

2d⊥(d− 1)− d2
⊥ + (d− 1)(d− 2)

(
(d⊥−2)2

d−2 + (d⊥+p−9)2

10−d

) .
Scanning through the values of d⊥, d, and p, one finds that D-branes and NS5 branes do

not lead to accelerated expansion. On the other hand, for the case of (p, q) 7-branes with

codimension one, we find

K = 2− 16(d− 1)

d(31− 2d)− 38
, (3.10)

which gives three accelerating models, (d,K) = (3, 42
37), (4, 10

9 ), (5, 70
67). In all three cases, ρ

is positive and is related to Φ0 and t0 by (3.7). It is perhaps intuitive that (p, q) 7-branes

are the most likely to give acceleration, since they are the heaviest and biggest objects in

string theory.

As in the supercritical models presented above, it is necessary to check that there is

a window of time where our solutions are under perturbative control. Inverting (3.4) and

using (3.6), obtains

gs = gs0 , L = L0

(
t

t0

) 1
8

(d−2)(2−d⊥K)

, (3.11)
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and the effective coupling,

g2
eff =

g2
s

Ln
=
g2

s0

Ln0

(
t

t0

)− 1
8
n(d−2)(2−d⊥K)

. (3.12)

Here, the number of internal dimensions is n = 10 − d. Note also that gs refers to the

average string coupling, since the axio-dilaton is not spatially constant, and undergoes a

monodromy around the (p, q)-7 branes. In these accelerating solutions, the string dilaton

is a flat direction and, recalling that K < 2/d⊥, L grows and g2
eff decreases with time. It

follows that the solutions are under control at sufficiently late times.

Finally, we check that there are no large gradients. In string frame, dτ = g
2/(d−2)
eff dt,

the gradients d log a/dτ and d logL/dτ are proportional to g
−2/(d−2)
eff /t, which decreases

with time. Therefore, α′ corrections become unimportant at sufficiently late times.

3.2 Constructing a stable domain wall network

There is an implicit assumption in the above analysis that is crucial to its consistency: we

have taken for granted that there are no perturbative instabilities in the brane network.

Our solutions would not be valid if there were a tachyon between two intersecting branes,

since then the network would evolve in a more complicated way, and the energy density

would no longer take the simple form (3.2). Another source of potential instabilities is

motion collective coordinates of the branes. In this section, we will give an argument for

the existence of perturbatively stable networks of domain walls in the case d = 4.

The general strategy is to isotropize the branes in the internal and noncompact spaces,

while making sure that intersecting branes have no tachyon. Although the full FRW so-

lution is not supersymmetric, we may eliminate tachyons by requiring that branes that

intersect be mutually supersymmetric, since this condition implies that the force between

the branes vanishes. For two orthogonally intersecting branes, one quarter of the super-

symmetries are preserved if

#ND = 4, (3.13)

where #ND is the number of directions that is orthogonal to one of the branes and parallel

to the other. This constraint on the network becomes increasingly stringent as the codi-

mension of the branes decreases, since they become more likely to intersect. In particular,

domain walls must intersect unless they are parallel.

In the case d = 4, let us consider two classes of three (p, q)-7 branes. The first class is

oriented as

0 1 2 3 4 5 6 7 8 9

I X X X X X X X X

II X X X X X X X X

III X X X X X X X X

(3.14)
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where 0, 1, 2, 3 are coordinates on the FRW spacetime. Similarly, the branes in the second

class have orientations

0 1 2 3 4 5 6 7 8 9

I’ X X X X X X X X

II’ X X X X X X X X

III’ X X X X X X X X

(3.15)

It is clear that the branes in each class are mutually supersymmetric among themselves.

However, the branes in the first class are not mutually supersymmetric with their primed

partners in the second class, so we must keep them at finite separation in the FRW space.

In particular, the density ρ cannot be too large in order to lift the tachyon between the

branes. Alternating between the two classes in each noncompact dimension then leads to

a network free of tachyons from (p, q) strings between the branes. Moreover, because the

attractive potential between the separated branes is linear, there is no tachyon from the

motion collective coordinates.

In d = 3 and d = 5 it seems more difficult to construct such a network, due to the

odd number of internal dimensions. We suspect that this may be possible using branes

oriented at angles and/or other internal geometries, but we will not attempt to do so here.

Another possibility is to relax the assumption of isotropy of the internal space; it is not

hard to check that doing so leads to an accelerating and stable network in d = 3.

3.3 Two-term potentials

Let us now explore a more general case where the potential is the sum of two positive

terms,

V =
ρ1

a(t)d⊥1
eα1φ1+β1φ2 +

ρ2

a(t)d⊥2
eα2φ1+β2φ2 . (3.16)

As in the single-term case, there is one linear combination Φ of fields that rolls with

time, and another linear combination σ that remains constant. There are a plethora

of accelerating solutions of this form in string theory, and we will now consider some

interesting examples. We will not analyze them in detail here; in particular the question

of perturbative stability of the scalar fields and the network is more subtle in this case.

First, suppose that we try to add a density of NS5-branes to the solutions with (p, q)-7s

that we found above. The resulting potential is

V =
ρ7

a(t)
eD̃−φ +

ρ5

a(t)d⊥
e(2−d⊥)D̃+(d⊥−4)φ. (3.17)

Plugging this into the equations of motion gives a solution in d = 3 with

K = 1 +
2− d⊥

17 + 4d⊥(2d⊥ − 5)
. (3.18)

It follows that the model accelerates for d⊥ = 0, which is an NS5 brane wrapped on the

entire noncompact space. In fact, this is the unique accelerating model that we have found
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with both NS5 branes and (p, q)-7s.

We can also try to add lighter objects to our original solutions. For example, let us

consider codimension-zero Dp-branes in Type IIB. The potential becomes

V =
ρ7

a(t)
eD̃−φ + VDpe

d+2
2
D̃+(p− d2−4)φ. (3.19)

Again there is a scaling solution, whose exponent in d = 4 is

K =
174 + p(5p− 49)

126 + 4p(p− 9)
. (3.20)

This yields acceleration for the case of D7-branes (for all the others, the solution requires a

physically unacceptable negative density ρ < 0). The resulting K is suppressed compared

to the original solution with no D-branes.

Although we checked above that NS5 branes do not lead to acceleration by themselves,

one might wonder whether they could yield acceleration when combined with other ingre-

dients. This indeed turns out to be the case. For instance, let us consider a model with a

density of NS5 branes and Ramond-Ramond flux Fp,

V =
ρ5

a(t)d⊥
e(2−d⊥)D̃+(d⊥−4)φ + VRRe

dD̃+(10−d−2p)φ. (3.21)

For d = 3 and d⊥ = 2, this leads to an exponent

K = 1 +
2(1− p)

79 + 2p(p− 9)
. (3.22)

We find acceleration in the case of massive Type IIA with F0 flux. Since this model is three-

dimensional, the NS5 branes are particles in the FRW spacetime. This seems promising

for the stability of the network, since if the density ρ5 is small enough, then the particles

are widely separated and have no open-string tachyon between them.

To summarize, we have used brane networks to construct a wide variety of accelerating

solutions in critical string theory. It would be interesting to generalize these models to the

supercritical case, as well as to further analyze the stability of the solutions. Also, we

have chosen to work in the effective lower-dimensional description here; we leave the full

10-dimensional analysis to future work.

4 Applications and future directions

In this paper, we have introduced new classes of string-theoretic models of accelerated

expansion. Our priority has been to obtain explicit examples with a small list of ingredients.

This led us to revisit the many mechanisms for inflation that do not rely on single-field slow

roll dynamics in order to generate accelerated expansion, seeking concrete UV complete

string-theoretic examples. In particular, this allows us to construct inflationary solutions

from basic exponential potentials in string theory without first metastabilizing the moduli.

So far, this led us to two classes of examples: in section 2 a version of assisted inflation for

the radii, string coupling, and axions (generalizing and simplifying previous models [7, 8])
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and section 3 a UV completion of domain-wall driven acceleration. The list of ingredients

is relatively small, and includes the leading sources of stress energy in string theory and the

dominant axion contribution to the spectrum. The models of section 2.4 and section 3.1

are particularly simple. We expect many more sequence of models along the same lines,

for example ones realizing more of the spectrum arising in our warmup toy model (2.33).

Other mechanisms to translate simple terms in the effective action into accelerating

solutions are still in progress [50]. One class includes strong warping along one internal

spatial direction to produce a de Sitter solution starting from an exponential potential with

a tadpole in one higher dimension. Other approaches incorporate axions, locked inflation

at saddle points, or repeated particle production events in different ways.

We hope these models will prove useful for conceptual and phenomenological applica-

tions. In this section we briefly explore some potential implications, leaving a full treatment

for later work.

4.1 Inflation, dark energy, axions

In section 2 we have presented new sequences of models with accelerated expansion, which

come along with the large number ∼ 2D of axion fields that dominate the spectrum of

string theory. Accelerated expansion is well-established in the observed universe, as is dark

matter. The detection of dark energy [71, 72] is extremely significant [73], with contribu-

tions from multiple observational probes. The detection of a small tilt of the primordial

power spectrum [74–77] and other cosmological measurements support the theory of in-

flation and provide some constraints on its phenomenology. In fact, power law inflation

driven by a single exponential potential is ruled out observationally, so although our models

are somewhat more general than that we will focus here on dark energy (it would also be

interesting to explore the axion phenomenology of this type of model).

In this paper, we were led to sequences of models with a variety of equations of state

w = −1 +
2

3K
(4.1)

with K given by (2.42) (2.57) (3.9). The sequence (2.42) arises in our simplest sequence.

In the sequence (2.57) there is an accumulation toward w = −1, but there is no strict

w = −1 de Sitter solution with the ingredients contained in the models of section 2.5.

As discussed above in §2.5, the couplings are weak in our explicit models. In power

law acceleration from the bottom up, interactions of the rolling field Φc are suppressed

at large K (small βc in the potential eβcΦc). There is an approximate shift symmetry

which protects against large corrections to the potential, such as mass shifts. In a realistic

version of the model, the Standard Model will generate corrections that depend on the

moduli, and this contribution combined with near-canceling fluxes [70] would figure into

the assisted inflation mechanism. One possibility is for the Standard Model to respect the

shift symmetry, not coupling directly to Φc.
13 Given a realistic version of the mechanism,

there is one parameter that is tuned, which can be taken to be the time t0 at which the

potential ∝ eβcΦc is of order our present vacuum energy.

13This sort of modular structure arises in various scenarios for string-theoretic particle phenomenology.
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This is just one sequence of models in what is likely to be a much larger collection, as

with previous classes of plausible metastable de Sitter solutions that have been proposed

over the years such as [7–12, 78] and other top-down examples of quintessence such as [26].

Nonetheless it is interesting to contemplate connections to dark energy research. One

key question of observational interest is whether there is any threshold value of w which

distinguishes robust classes of mechanisms, or if there is a preferred value of w.

The value w = −1, corresponding to a metastable minimum of the scalar potential,

is a special case. On the other hand, in order to obtain more general equations of state,

we consider a simplified set of sources, which may be therefore less generic. Having done

so, however, we generate infinite sequences of possible values of w < −1/3. With these

different possibilities, and the limitations of our current knowledge of model statistics,

initial conditions, and other relevant factors, we clearly cannot conclude that w = −1 is

preferred from the point of view of string theory model statistics or from the point of

view of Wilsonian naturalness and fine-tuning, a point also made recently in other top-

down models [26]. However, one has to analyze the conditions under which the distinction

becomes observationally accessible (see e.g. [79–86] for a discussion of this); certainly many

values of w 6= −1 are observationally degenerate with a pure cosmological constant.

It is worth emphasizing that neither traditional metastable landscape models, nor

the models with more general equations of state, have explicit realizations that are fully

realistic. This is simply because both the computation of the Standard Model contribution

to the moduli potential and the tuning of microscopic stress-energy sources that nearly

cancels it are prohibitively difficult. In both the cases w = −1 and w & −1, it seems

plausible that such tuning is possible and that the resulting moduli potential produces

classes of accelerated expansion analogous to those we find in the explicit, but unrealistic,

constructions. But this limitation is another reason that it is not possible (given our current

knowledge) to make a robust prediction for w in the string landscape. As in inflationary

cosmology, the next best thing is to analyze different mechanisms for dark energy and

distinguish them observationally as far as possible.

4.2 Holography

One of our motivations for this work is the prospect of using simpler, more explicit models

to help develop a holographic framework for cosmological spacetimes. In this section, we

make some preliminary comments about this application, something we plan to continue

in future work.

As discussed in [23–25], inflating solutions admit at least a semi-holographic descrip-

tion, in a way that lines up well with the basic structure of string compactifications. The

infrared regions (those near w = 0, π/L) of the warped metric

ds2
dSd

= sin2
(w
L

)
ds2
dSd−1

+ dw2 (4.2)

on the de Sitter static patch correspond to a low energy theory which is cut off at a finite

scale and coupled to d− 1 dimensional gravity.14 In other words, de Sitter spacetime itself

14Similarly in the dS/CFT correspondence [20–22], part of the physics is captured by the dual field theory,

but computation of general observables ultimately involves integration over metrics.
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is a warped compactification, with highly redshifted low-energy regions that admit a dual

holographic description. The explicit models in [25] of large-radius de Sitter spacetime

reproduced this general structure, but are still rather complicated to analyze in detail.

This structure suggests that the dual theory need not be UV complete in itself, since it

does not extend all the way to the deep ultraviolet; it may be analogous to theories with a

Landau pole at high energies (beyond the scale corresponding to w = πL/2 in (4.2)). There

are existing examples15 of dual theories which make sense within a warped compactification

but which would be unstable or non-unitary if extended to the deep UV.

In this dS/dS duality framework — or others such as [20–22, 90–92] — it should be

useful to use explicit models to develop and test these ideas. We will next make some

preliminary comments about this for the two classes of models in this paper.

4.2.1 Scaling solutions as in section 2.5

In flux compactifications such as those we have constructed in section 2.5, we can get some

clues about the putative dual theory in the following way. To explain this strategy, let us

first review a relevant feature of the duality between the N = 4 super Yang-Mills theory

and the type IIB flux compactification on S5. On the Coulomb branch of this system, the

5-form flux threading the S5 is sourced by explicit domain wall D3-branes on the gravity

side. These branes exhibit a spontaneously broken N = 4 supersymmetric U(N) gauge

theory on their worldvolumes, something which might have given a clue about the duality

if it had not already been conjectured.

We can similarly trade the fluxes for branes [60] in more general flux compactifications,

such as those we have developed here, and learn about the content and couplings of the

dual theory in a phase in which its scalar fields are turned on. In the generic case, there

will not be an exact moduli space; these fields will be sourced by a potential and hence be

time-dependent.

Implementing this in the models of section 2.5 gives us stacks of D-branes each with a

Yang-Mills coupling depending in a very simple way under time evolution:

gYM ∼ gYM,0
t0
t
. (4.3)

In particular, there are two types of stacks of branes, corresponding to the two types of

RR flux described in section 2.5. If we work in the approximation L1 ≈ L2 at large k (near

de Sitter), these both behave like

1

g2
YM

∼ e−Φeσ1 ∼ e−ΦVO

D
∼ e−Φ2n/4 ∝ t2

t20
. (4.4)

At large K, i.e. for w approaching −1 (near de Sitter), this is very slow evolution relative

to the scale factor. Power-law time dependent couplings have an interesting RG structure,

changing the effective scaling dimension of the couplings and shifting unitarity bounds [89,

93]. In particular, this scaling (4.3) implies a classically irrelevant coupling in the 3-

dimensional gauge theory on the branes, a feature that may line up with our general

15see e.g. [87–89]
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comments above that the dual QFT need not be UV complete in itself given the finite

ultraviolet scale in (4.2).

From the gravity side, the entropy in the large K (equivalently large k) limit of these

scaling models behaves as

S ∼ M2
4

H2
∼ t2M2

4

K2
∼ M2

4

V∗eΦ(t)
. (4.5)

This simple time-dependence S ∝ t2 (for all the scaling solutions) may be related to the

simple and universal result above for the time-dependence of gYM .

The dependence on the internal dimensionality n is very interesting as well, with

various contributions; in general there is also dependence on the noncompact dimensionality

d = D − n. The branes carry many bifundamental degrees of freedom, and have a large

fermion spectrum from the Ramond sector, with a number of spinor degrees of freedom

of order 2n/2 (as well as a large number of bosonic fields from the NS sector in Neuman-

Dirichlet directions). With the explicit models laid out in this paper, we hope to be able

to test these ideas for deriving the dual degrees of freedom in detail, using the discrete

parameters in the models. We would like to understand if there is a large-D simplification

to the holographic duals and their count of entropy — both at the cosmological horizon

and in D-brane black hole solutions within our new large-radius spacetimes.

Another interesting consequence of the large dimensionality is that the perturbative

expansion parameter in supergravity is weighted by the large suppression factor (2.62).

Our first class of models in section 2.4 did not use this effect (since gs was small by

itself); however, the models in section 2.5 approaching the de Sitter limit made use of this

suppression factor. It would be very interesting to understand the consequences of having

large gs but a small loop expansion coupling, a point that we hope to analyze in the future.

In particular, it will be important to analyze quantum effects on D-brane probes, as well

as nonperturbative corrections to the supergravity action.

4.2.2 Finite density sources as in section 3

Although we had toroidal compactifications in mind in section 3, we could consider a

generalization that is closer to known holographic models. In particular, the d = 5 example

in section 3.1 could be formulated on an S5 Freund-Rubin compactification of type IIB

string theory, with 7-branes wrapping four-spheres within the S5 contributing a domain

wall network in the remaining 5 spacetime dimensions. As long as the density dominates

the dynamics (over the S5 curvature and flux contributions), the system will accelerate as

derived above. It would be interesting to analyze this case more carefully to check this and

assess the fate of potential tachyons.

In general, it is very interesting to consider the holographic interpretation of such

densities. First, recall that densities play a role in some string-theoretic AdS/CMT systems

such as the Lifshitz theories constructed in [94]. In those systems, the density of branes

does not extend all the way to the boundary, since a constant density per unit volume on

the gravity side would translate to an infinite density in the dual field theory. Instead,

the density cuts off at a finite radial position, and supports a solution whose dual field

theory has Lifshitz scaling in the deep infrared but asymptotes to a conformal field theory
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in the deep ultraviolet. In our present application, the gravity solution is an accelerating

cosmology, and as discussed above the dual one infers from the de Sitter static patch does

not extend to the deep ultraviolet. Again, this seems to fit with the fact that a QFT dual

to a uniform density on the gravity side must be cut off at a finite scale. In the Lifshitz

example, it crosses over to a different UV field theory, whereas in the present examples

there is no additional ultraviolet regime.
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