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Abstract

We study entanglement entropy (EE) for a Maxwell field in (2 + 1) dimensions. We do
numerical calculations in two dimensional lattices. This gives a concrete example of the general
results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To
evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian
states in canonical commutation algebras to the more general case of algebras with center and
arbitrary numerical commutators. We find that while the entropy depends on the details of
the algebra choice, mutual information has a well defined continuum limit as predicted in [1].
We study several universal terms for the entropy of the Maxwell field and compare with the
case of a massless scalar field. We find some interesting new phenomena: An “evanescent”
logarithmically divergent term in the entropy with topological coefficient which does not have
any correspondence with ultraviolet entanglement in the universal quantities, and a non standard
way in which strong subadditivity is realized. Based on the results of our calculations we propose
a generalization of strong subadditivity for the entropy on some algebras that are not in tensor
product.

1 Introduction

In a recent paper [1] we have analyzed the problem of defining a local entropy for gauge fields. The
inconveniences caused by the constraint equations of the physical degrees of freedom pointed to a
natural setting within an algebraic approach for states and local algebras.

The entropy on a region V of the space is usually understood as the von Neumann entropy of the
density matrix reduced to the degrees of freedom on that region. From the algebraic point of view,
this is the entropy which results from the density matrix on a local algebra AV associated to the
region. In general, this algebra may have a center Z = AV ∩A′

V , a set of operators that commutes
both with the operators in the algebra and its commutant A′

V . Typically, the center is produced by
the constraint equations. Only the case with trivial center admits a bipartition of the Hilbert space
as tensor product HV ⊗HV̄ of subspaces of inner and outer degrees of freedom, and in this case the
local entropy is an entanglement entropy for a global pure state.

Of course, there is not a unique way to assign a local algebra to a region and different assignations
give rise to ambiguities in the entropy. Even if these ambiguities are present in all theories, when
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the elementary excitations are not point like or more precisely, the operators are attached not to
vertices but to links in the lattice, the standard prescription of identifying the region with the
subset of operators attached to vertices within the region has to be revised. This is the case in
lattice calculations for gauge fields, where the local gauge invariant algebra is generated by the
electric link operators and Wilson loops along closed paths. The constraint equations give extra
relations among the variables. A particular choice of local algebra with electric center has been
discussed previously in the literature in a way unrelated to the algebraic formulation [2].

In this paper we show how this general scheme applies in a specific example. We consider a
Maxwell field theory in 2 + 1 dimensions. In order to evaluate the entropies for general algebraic
prescriptions for the local algebras we generalize the formulas for Gaussian states in canonical
commutation algebras to the case where the the commutators are arbitrary matrices and the algebras
have center. The techniques can be used for free (uncompactified) gauge fields (and more generaly
massive or massless tensor fields) in any dimensions. We avoid using Wilson loop variables for this
free model.

We are able to show in detail the main prediction of [1]: The large ambiguities in the entropy
introduced by the uncertainties of the algebra choice and the universality of the mutual information
in the continuum limit. This universality is a consequence of the fact that mutual information
is ordered by inclusion of algebras. More technically, in the cases with center, we also show the
classical Shannon term is not relevant for the continuum limit of the mutual information, and the
calculation can be reduced to a unique arbitrary sector in the central decomposition.

Hence, the continuum limit eliminates the ambiguities in the relation between algebras and re-
gions. In a certain sense, a geometric region has only meaning in terms of the content of the model
once the continuum limit has been achieved.

We also study some universal terms that can be obtained from the entropy itself, as the usual
logarithmically divergent term due to the corners on the region boundary in 2 + 1 dimensions. We
find the logarithmic coefficient has also a curious additional contribution proportional to the number
of connected components of the region. This should be regarded as related to the peculiarities of the
gauge field in three dimensions. Surprisingly, this term is at the same time ultraviolet divergent and
non local. However, we argue the ultraviolet nature of this term is not captured by any universal
quantity in the model, i.e., the short distance behavior of mutual information. A related logarithmic
term for the compactified Maxwell field in the limit of decompactification has been discussed in the
literature in relation with the F -theorem [3, 4].

This three dimensional model is dual to a “truncated” scalar field. The algebra generated by the
electric and magnetic physical operators coincides with the one of time and space like derivatives
of the scalar field, where the field operator itself has been removed. We compare several universal
terms of the gauge field (and truncated scalar) model with the model of a full scalar field.

Even if with some specific choices of generating operators the local algebras have trivial center, the
constraints reappear in other interesting phenomena. For example, the usual geometric expression
of strong subadditivity (SSA) property has to be reinterpreted in algebraic terms and generalized
with respect to its usual form.

We conclude with some discussion. In particular we revisit the issue of defining a topological
entanglement entropy in a lattice using Levin and Wen [5] prescription in an algebraic way. This is
connected with our discussion of strong subadditivity.
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Figure 1: The magnetic field is assigned to the center of the plaquette and the electric fields to the
links.

2 Lattice Maxwell field in 2 + 1 dimensions

The physical operators Ē and B of the (2 + 1) dimensional Maxwell theory are written as

Ei = ∂iA0 − ∂0Ai = Fi0 , (1)

B = ∂1A2 − ∂2A1 = ǫij∂iAj = F12 , (2)

in terms of the tensor field Fµν = ∂µAν − ∂νAµ. The canonical commutation relations (in Lorentz
gauge)

[Aµ(x), Ȧν(x
′)] = igµνδ

2(x− x′) , (3)

give the gauge invariant commutation relations

[B(x), Ej(x
′)] = iǫjk∂kδ

2(x− x′) , [Ei(x), Ej(x
′)] = [B(x), B(x′)] = 0 . (4)

The Hamiltonian in terms of E and B is

H =
1

2

∫

dx1dx2(E
2 +B2) . (5)

Now, we discretize the model in a square lattice. The standard procedure for a gauge field is to
assign the electric field variables to the links of the lattice and elementary Wilson loop operators
to the plaquettes. For the non-compact Maxwell field we can consider directly the magnetic field
operator (corresponding to the magnetic flux on the plaquette) and associate it to the dual lattice
vertices in the middle of the plaquettes as shown in figure 1. Using directly the electric and magnetic
variables allow us to profit from the Gaussianity of the model.

More precisely, we define the electric operators E1, E2 associated to horizontal and vertical links
respectively, as E1

(ij,i+1j) and E2
(ij,ij+1), where (ij, i′j′) are the coordinates of the initial and final

points of the link. This notation is useful but redundant since we can define the electric variables
named by the initial vertex of the vector,

E1
ij ≡ E1

(ij,i+1j) , (6)

E2
ij ≡ E2

(ij,ij+1) . (7)

The magnetic operator Bij is denoted by the left down corner (i, j) of the plaquette (see figure(1)).
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Hence, there are twice as many electric variables than magnetic variables. However, half the
electric variables are redundant because of the constraint equations of electric flux (Gauss law) in
two dimensions. This gives the relations

∑

b

Eab = 0 , (8)

where the sum is over all links (ab) with common vertex a. In this equation, it is assumed that
the electric field component is the corresponding one to the link direction and also that links have
orientation which changes the sign of the electric field attached to it Eab = −Eba.

In the lattice theory, the commutation relations become
[

Bij , E
1
(i′j′,i′+1j′)

]

= −i
(

δi,i′δj,j′ − δi,i′δj+1,j′
)

, (9)
[

Bij , E
2
(i′j′,i′j′+1)

]

= i
(

δi,i′δj,j′ − δi+1,i′δj,j′
)

. (10)

Finally, the Hamiltonian writes

H =
1

2

(

∑

v

B2
v +

∑

l

E2
l

)

, (11)

where the sum is over the vertices for the magnetic variables and over the links for the electric ones.
In contrast to the lattice Hamiltonian for a scalar field, this Hamiltonian is trivial as a bilinear form
in the variables. All the dynamics is hidden in the constraint equations and non trivial commutation
relations.

2.1 Maxwell-scalar field duality in the lattice

In (2 + 1) dimensions, the Maxwell theory is dual to the theory of the derivatives of a massless
scalar φ. The duality is written

∂µφ =
1

2
ǫµνρF

νρ , (12)

giving the following identifications

∂0φ = B , (13)

∂iφ = −ǫijEj . (14)

This gives a complete one to one map between the theories, including the commutation relations
and Hamiltonians. Note however, that the electromagnetic fields do not capture the full scalar
theory but only the derivatives of the field. Hence the algebra of operators is strictly smaller than
the one of the full scalar which includes φ.

The discrete version of the above relations is expressed defining the scalar field variables on
the sites of the dual lattice as shown in figure (2). The electric link operators are related to the
differences of the scalar field operators in the orthogonal direction in the dual lattice

φĩj̃ − φĩj̃−1 = E1
(ij,i+1j) , (15)

φĩ−1j̃ − φĩj̃ = E2
(ij,ij+1) , (16)

and the magnetic operators are given by the corresponding momentum operators

Bij = πij . (17)
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Figure 2: Dual lattices: The magnetic field coincides with the momentum operator of the scalar
field, and the electric field E in some link is equal to a difference of scalar fields across the link in
the dual lattice which is perpendicular to the one corresponding to E.

2.2 Truncated scalar theory

The duality relations (15) and (16) show it is equivalent to consider the gauge fields or the gradients
of the scalar. We find convenient this later expression of the model for the entropy calculations.
Summarizing, this model consists of the subalgebra of the scalar field algebra (truncated scalar
algebra) generated by

φ̂1
i,j = φi,j − φi+1,j , (18)

φ̂2
i,j = φi,j − φi,j+1 , (19)

πij = φ̇ij . (20)

The commutation relations
[

φ̂1
ij , πi′,j′

]

= i
(

δi,i′δj,j′ − δi+1,i′δj,j′
)

, (21)
[

φ̂2
ij , πi′,j′

]

= i
(

δi,i′δj,j′ − δi,i′δj+1,j′
)

, (22)

are equivalent to (9) and (10). The constraint equations for the electric field are mapped to the
evident property

∑

l∈p

φ̂l = 0 , (23)

where the sum is over the links l on a plaquette p, with the same orientation along a curve encircling
the plaquette.

The lattice Hamiltonian for the scalar field is

H =
1

2





∑

ij

πij + (φ̂1
ij)

2 + (φ̂2
ij)

2



 . (24)
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Figure 3: Some algebra choices for a square region. The upper three figures correspond to the gauge
model and the ones at the bottom to the truncated scalar representation of the same algebras. Links
with dashed lines mean the corresponding electric operator does not belong to the algebra. Marked
dots correspond to magnetic operators in the algebra in the gauge model, and momentum operators
in the scalar one. The left panel shows the electric center choice, where all electric and magnetic
operators on the square belong to the algebra. Because of constraints the algebra also automatically
contains the links coming out of the square, and there are more independent electric generators than
magnetic ones. The central panel shows a trivial center choice, with balanced number of electric
and magnetic degree of freedom. The panel on the right shows the magnetic center choice. Here, all
electric operators on the boundary are missing and there is one more magnetic degree of freedom
than the number of electric degrees of freedom.

From this Hamiltonian, the vacuum correlation functions for the field and momentum operators are
found to be [6]

fi,j = 〈φ00, φij〉 =
1

8π2

∫ π

−π
dx

∫ π

−π
dy

cos(ix) cos(jy)
√

2(1− cos(x)) + 2(1− cos(y))
, (25)

pi,j = 〈π00, πij〉 =
1

8π2

∫ π

−π
dx

∫ π

−π
dy cos(ix) cos(jy)

√

2(1− cos(x)) + 2(1 − cos(y)) . (26)

The correlators for the new variables φ̂ij and πij can be easily written in terms of the ones of the φ
variables, for example

〈

φ̂1
00, φ̂

1
ij

〉

= 2fi,j − fi−1,j − fi+1,j . (27)

These correlators are equivalent to correlators for lattice electric and magnetic fields and play an
important role in the EE calculation we discuss later in Section 4.

3 Local algebras and regions

A “region” in the lattice has to be defined by the physical content of the model. That is, we must
choose an algebra of local operators that defines it. In this sense, the assignation of algebras to
regions is subject to ambiguities and several choices are possible. In the case the lattice operators
are attached to vertices (such as a scalar field), a natural election seems to be to choose the local
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algebra associated to the region as the one generated by the operators attached to vertices within
the region. Of course, this is just one possible choice. As we will discuss later, even in this case, we
can think in different possibilities for the local algebra.

In the case of gauge fields, we study three possible choices defined in [1] which are shown in figure
(3): The algebras with electric, trivial, and magnetic center. Figure (3) also shows the equivalent
description of these algebras in terms of the dual truncated scalar algebra.

In the electric center choice, we keep all the operators, inside and along the boundary. The
constraints applied to the sites on the boundary show the electric fields normal to the boundary
are automatically included in the algebra. As they commute with the rest of the operators on
the algebra, they form the center. The electric center choice coincides with some constructions
developed in the literature to define entropies in gauge theories [2].

The trivial center case, consists in choosing all the electric and magnetic operators within the
region and only one electric link operator along the boundary. This corresponds to remove the
link operators along a boundary maximal tree [1]. This election provides a good partition as
tensor product between inside and outside degrees of freedom, giving place to a purely quantum
entanglement entropy. However, this is not unique, we still have the possibility to vary the position
of the electric field chosen at the boundary.

The magnetic center choice corresponds to the case where all the links along the boundary are
removed. The center then, consists in the boundary Wilson loop, or equivalently the sum of the
magnetic operators living in the interior plaquettes.

For the truncated scalar algebra, we have analogue cases. The electric center, where the center is
given by all the boundary links, the trivial center case, where the number of links and momentum
operators are the same, and the magnetic case, with a one variable center given by the sum of all
momentum operators on the region.

4 Entropies of Gaussian states in terms of correlation functions

In a general algebra, the center produces superselection sectors which cannot be changed by the
local operators. The global state is then reduced into these sectors to give a block diagonal density
matrix

ρA =







p1 ρA1

. . .

pn ρAn






. (28)

The entropy associated to the algebra A has a precise definition given by [7]

S(V ) = −tr(ρA log ρA) = H({pk}) + SQ(A) , (29)

where the first term corresponds to the classical Shannon entropy

H({pk}) = −
∑

k

pk log(pk) , (30)

of the probability distribution {pk} of the variables which simultaneously diagonalize the operators
in the center. The second term SQ is an average of the corresponding purely quantum contributions

SQ =
∑

k

pk S(ρAk
) . (31)
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In the following, we are going to compute explicitly these entropies for the case of Gaussian states in
algebras of coordinate and momentum operators. Hence, we consider cases with center containing
operators with continuum spectrum (for example q) and the above formulas are generalized by
converting the sum over discrete sectors k into integrals.

4.1 Algebra of canonical conjugated variables

In order to calculate the EE for the models discussed, we need to generalize the method (see [8, 6])
for the case of Gaussian states and canonical conjugated variables qi, pj with trivial center,

[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0 , (32)

with i, j ∈ V . In this case, the entropy can be calculated in terms of the correlators

〈qi, qj〉 = XV
ij and 〈pi, pj〉 = P V

ij , (33)

as
SV = tr ((Θ + 1/2) log(Θ + 1/2) − (Θ − 1/2) log(Θ− 1/2)) , (34)

where Θ =
√
XV .P V , and XV , P V are the correlators matrices (restricted to the algebra).

4.1.1 Algebra of canonical conjugated variables with non trivial center

The entropy of algebras with center formed by operators with continuous spectrum suffers from
ambiguities due to the lack of a mechanism to fix the field normalization. However, mutual infor-
mation between two algebras in tensor product (corresponding to two separated regions in a lattice
model for example) [1] is free from these ambiguities. Here, we deduce the general expressions for
a set of coupled harmonic oscillators which we will use later in Sections 5 and 6 to calculate the
mutual information between two sets for a scalar and a Maxwell field.

Consider a set of harmonic oscillators with variables qi, pi, i ∈ V = {1, . . . , n}. We choose the
algebra as the one generated by all the qi operators but only a subset of the momentum operators
pi with i ∈ B = {k + 1, ..., n}. Hence this algebra has a center formed by the field qi with
i ∈ A = {1, ..., k}.

We want to compute the entropy on this algebra for a state in V that we assume is a Gaussian
state. Then, it is convenient to write the density matrix in V in a basis which simultaneously
diagonalizes all elements in the center. In this case, we choose the coordinate basis. We have for a
Gaussian state

ρ(q, q′) = c e−
1
4
(qiMijqj+q′iMijq

′
j+2qiNijq

′
j) , (35)

where c is a normalization constant, and due to hermiticity, M and N are real symmetric. The
relation of these matrices with correlation functions on V follows from

〈O(qi, pj)〉 =
∫

∏

i∈V

dq
∣

∣O(qi,−i∂qj )ρ(q, q
′)
∣

∣

q=q′
. (36)

We have

〈qiqj〉 ≡ XV
ij = (M +N)−1

ij , (37)

〈qipj〉 =
i

2
δij , (38)

〈pipj〉 ≡ P V
ij =

1

4
(M −N)ij . (39)
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All higher point functions are obtained by Wick’s theorem for a Gaussian state. Inversely, we have

M = (2XV )−1 + 2P V , (40)

N = (2XV )−1 − 2P V . (41)

Now, the probability density of a particular value q̃A for the variables qA on the center is again
fixed by the correlation of the field in this region A,

P(q̃A) = det((2π)XA)−
1
2 e−

1
2
q̃Ai (XA)−1

ij q̃Aj . (42)

The reduced density matrix in B corresponding to this value of the variables on the center follows
from (35) by fixing these values for the fields q, q′‖A = q̃A on A, and a change on normalization,

ρ(q, q′) = c′ e−
1
4
(qBi MBB

ij qBj +2q̃Ai MAB
ij qBj +qB′

i MBB
ij qB′

j +2q̃Ai MAB
ij qB′

j +2qBi NBB
ij qB′

j +2q̃Ai NAB
ij qB′

j +2qBi NBA
ij q̃Aj )

(43)

Changing variables

qB → qB − (MBB +NBB)−1(MBA +NBA)q̃A , (44)

qB′ → qB′ − (MBB +NBB)−1(MBA +NBA)q̃A , (45)

we get the density matrix

ρ(q, q′) = c′′ e−
1
4
(qBi MBB

ij qBj +qB′
i MBB

ij qB′
j +2qBi NBB

ij qB′
j ) . (46)

Evidently, this change of variables does not change the entropy. Very conveniently, the density
matrix (46) is independent of the values of the field at the center. Hence, the average of the
quantum entropy in B over the values of the field q̃A on the center is trivial, and we get for the
quantum part of the entropy

SQ(V ) = tr ((Θ + 1/2) log(Θ + 1/2) − (Θ− 1/2) log(Θ− 1/2)) , (47)

Θ =
√

X̃P̃ (48)

X̃ = (MBB +NBB)−1 = (X−1
V

∣

∣

B
)−1 , P̃ =

1

4
(MBB −NBB) = PB . (49)

The matrices MBB and NBB are just the restriction to B of the matrices M and N which are in
turn functions of the correlation functions in the region according to (40) and (41).

The whole entropy S(V ) = SQ(V ) +H(A) contains also a classical Shannon term H(A) due to
the center probability distribution (42)

H(A) = −
∫

(Πi∈Adqi)P({q}A) log(P({q}A)) =
1

2
tr
(

1 + log
(

2πXA
))

. (50)

This classical Shannon term can only have unambiguous meaning in relative entropy quantities, for
example the relative entropy of two states or a mutual information between two regions for the same
state. This is because the normalization of the fields in the center are not fixed by the commutation
relations. For example, choosing the field q/λ instead of q we get

1

2
tr
(

1 + log
(

2πXA
)

− 2 log(λ)
)

. (51)
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The mutual information between two regions V and V ′, with centers formed by the fields in
A ⊆ V , A′ ⊆ V ′, is given by

I(V, V ′) = S(V ) + S(V ′)− S(V V ′) = H(A,A′) + IQ(V, V
′)

=
1

2
tr
[

log(XA) + log(XA′

)− log(XAA′

))
]

+ SQ(V ) + SQ(V
′)− SQ(V V ′) . (52)

This gives the desired expression for the mutual information of two algebras with center purely in
terms of the correlation function matrices.

4.2 Generalization for arbitrary commutators and constraints

In the case the variables satisfy canonical commutation relations and the algebra has a trivial center,
the entanglement entropy associated to a region V , can be calculated in terms of the correlators
restricted to V according to eq. (34). In the case the algebra has a non trivial center the entropy is
given by the sum of the quantum (47) and classical (50) parts. In this section, we show how these
formulas can be extended to the case of conjugated variables having general numeric commutators.
This is the case of the physical variables E,B in Maxwell theory, or the variable φ̂, π in the truncated
scalar model.

Consider an operator algebra with non canonical commutation relations

[qi, pj ] = iCij , (53)

and correlators

〈pi, pj〉 = Pi,j (54)

〈qi, qj〉 = Xi,j (55)

〈qi, pj〉 =
i

2
Cij . (56)

Suppose we are interested in a subalgebra without center {qi, pi} with i ∈ V . We can define new
canonical variables q̂i, pj , using

q̂i = (CV )−1
ik qk . (57)

The correlation functions restricted to the region will be

〈q̂i, q̂j〉 ≡ (CV )−1XV
(

(CV )−1
)T

, (58)

〈q̂i, pj〉 =
i

2
δij |V , (59)

〈pi, pj〉 ≡ P V . (60)

The entropy is then calculated in terms of Θ =
√

〈q̂, q̂〉 . 〈p, p〉 as (34).

It is important to notice that the entropy is a function of the algebra and the global state. Hence,
if instead of the variables qi, pj, we take arbitrary linear combinations of these, we end up with the
same entropy, as long as we consistently change the correlation matrices and commutators. The
same can be said for the case where there are constraints. For example, we can have more variables
q than p because some combinations of the q variables are zero, as happens for the electromagnetic
field and the truncated scalar.1 We can eliminate the redundant variables in many different ways
and keep an equal number of coordinate and momentum variables, and then compute the entropy
as described above. The entropy is invariant under these “gauge fixings”. See figure 4.

1Redundant variables appear also if we choose to express the entropies in terms of correlation functions in spacetime
(as opposite to space) as was recently proposed [9]. In this case, the equations of motion play the role of the constraints
on the operators of the algebra.
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Figure 4: A circle on a square lattice. A maximal tree of links inside the region gives all linearly
independent link variables in the truncated scalar model. We keep only variables in an arbitrary
maximal internal tree to make actual computations. Analogously, in the gauge model we have to
keep only the electric fields that are orthogonal to this tree in the dual lattice.

4.2.1 The case with center

The general case in gauge theories involves algebras with center and non trivial commutators. The
previous discussion about the entropy can be generalized to this case. Consider the algebra generated
by qi, pj, with i ∈ V = {1, . . . , n} and j ∈ B = {k + 1, ..., n} with B ⊂ V . We assume [qi, pj ] = 0
for i ∈ A = {1, ..., k}, j ∈ B, in such a way that qi, i ∈ A span the center of the algebra. Using
again the transformation (57) we arrive at the case studied in (4.1.1) and we find the quantum
contribution to the entropy is given by

SQ(V ) = tr ((Θ + 1/2) log(Θ + 1/2) − (Θ− 1/2) log(Θ− 1/2)) , (61)

Θ =
√

X̃P̃ (62)

X̃ = (X−1
V

∣

∣

B
)−1 = (CT

V BX
−1
V CV B)

−1 , P̃ = PB . (63)

Here CV B is the commutation matrix (53) between qi with i ∈ V and pj with j ∈ B. The classical
contribution has the same form as before

H(A) =
1

2
tr (1 + log (2πXA)) . (64)

The case for a center formed by pi with i ∈ A = {1, ..., k} is analyzed in the same way, interchanging
P ↔ X.

4.3 Correlators for the vacuum state

We are interested in vacuum entropies. Here, we show how to compute the correlators for simple
quadratic Hamiltonians relevant for the Maxwell field.

The vacuum correlators for Gaussian states can be directly calculated from the kernel of the
quadratic Hamiltonian [6] for the free scalar field. It is easy to show that this result can be gener-
alized for the case of variables with non canonical commutation relations. Consider a theory with
Hamiltonian

H(q, p) =
1

2





∑

i

pi
2 +

∑

i,j

qiMijqj



 , (65)
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for the canonical conjugated variables q̂, p, with

q̂i = (C)−1
ik qk , (66)

and C defined in (53). Changing variables, the Hamiltonian takes the form

H(q̂, π) =
1

2





∑

i

pi
2 +

∑

i,j

q̂iM̂ij q̂j



 , (67)

where
M̂ = CT .M.C . (68)

The two point correlation functions for the fundamental state are given in terms of C and M as
[6],

〈pi, pj〉 =
1

2

(

M̂1/2
)

ij
, (69)

〈q̂i, q̂j〉 =
1

2

(

M̂−1/2
)

ij
, (70)

〈q̂i, pj〉 =
i

2
δij . (71)

This gives for the original variables

〈pi, pj〉 =
1

2

(

(

CT .M.C
)1/2

)

ij
, (72)

〈qi, qj〉 =
1

2

(

C.
(

CT .M.C
)−1/2

.CT
)

ij
, (73)

〈qi, pj〉 =
i

2
Cij . (74)

In the case M is the identity matrix, which is relevant for the Maxwell field, we have

〈pi, pj〉 =
1

2

(

(

CT .C
)1/2

)

ij
, (75)

〈qi, qj〉 =
1

2

(

C.
(

CT .C
)−1/2

.CT
)

ij
=

1

2

(

C.CT
)1/2

ij
, (76)

〈qi, pj〉 =
i

2
Cij . (77)

In section (2.2) we showed how correlation functions for the Maxwell field in 2+1 dimensions are
obtained from scalar correlation functions. Of course, this coincides with the above formulas when
applied directly to the gauge field. These formulas can be used to obtain the lattice correlators
of electric and magnetic fields in other dimensions. Notice that formulas (75) and (76) for the
correlators do not have singularities for non invertible correlator matrix. This means we can use
them for the gauge fields directly without necessity of solving for the constraints. Indeed we have
M = 1 for the Maxwell Hamiltonian expressed in the variables E and B where the constraints have
not been used. Then, the commutator matrix is in general rectangular, but this does not affect the
validity of (75) and (76).
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A

Ã

Aφ,π

Figure 5: We compute the mutual information for two squares with different algebra choice. Upper
panel: Trivial center, where operators φi and πi are attached to each vertex (black dots). Empty
dots are shown with the purpose to describe the position of the squares in the lattice and no operator
are attached to them. Middle panel: Non trivial center. Operators φi and πi are attached to black
vertices. At gray vertices the corresponding π operators are removed in Aφ and the φ operators are
removed in Aπ. The center is generated by operators remaining at gray vertices. Lower panel: The
algebra Ã is the full algebra of the central square of size n− 2 points.

5 Some examples with a massless scalar field

Before considering the gauge field and the truncated scalar, we exemplify the methods discussed
above with a massless scalar fiels and several different algebra choices.

We consider a simple case of two square regions V and W of size n lattice points, separated by
the same number n of lattice sites, and compute the mutual information for four different algebras
for each square as shown in figure (5):

a) The full algebra A of the squares of size n with trivial center, already studied in [10].

b) The algebra Aφ which results by removing all the πi operators from the boundary with a center
formed by the remaining φi along the boundary.

c) The opposite case where the removed fields are the φi and we have an algebra Aπ with momentum
center.

d) The algebra Ã resulting from the elimination of all operators of the boundary (that is, we consider
squares of side n− 2 in the center of the original squares).

We have for these algebras
A ⊃ Aφ , Aπ ⊃ Ã . (78)

The mutual information is monotonously increasing with the algebra. Hence, we expect to have

IA(V,W ) ≥ IAφ(V,W ), IAπ (V,W ) ≥ IÃ(V,W ) , (79)

where V and W are the two squares.

In figure (6) we show the numerical calculation of the mutual information between two squares
of the same size n and separated by a distance n, being n the number of vertices, for the different

13
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Figure 6: Mutual information between two square regions of size n and separation distance n for
four different algebra choices, from top to bottom A, Aφ, Aπ and Ã. The curves corresponding to
algebras with center Aφ and Aπ are in between the ones for the full algebras A and Ã. Fitting
the curves with an expansion in inverse powers on n all four curves lead to the same n → ∞ limit
I(V,W ) ≃ 0.0330.

algebra choices. Here, we use the correlators (25), (26) and formula (52) to calculate the mutual
information. The figure shows the ordering relations (79) are obeyed. We expect a convergence
of the mutual information for large n to the continuum limit. In fact, the limit values I0 of the
mutual information obtained by a fit of the form I(V,W ) = I0 + I1n

−1 + I2n
−2 + I3n

−3 are
0.03299, 0.03302, 0.03304 and 0.03308 for the algebras A, Aφ, Aπ and Ã, respectively, showing
a remarkably fast convergence to a common constant value already for sets of size n = 35. This
mutual information is a very small number, approximately 1/20 bit for infinitely many degrees of
freedom in the continuum limit. This reflects the locality of the theory.

Figure (6) illustrates our general argument [1] on why mutual information must have a unique
continuum limit disregarding the details of the algebra choice for the region. This is because some
prescription for algebra choice (in this case Aφ and Aπ) can be bounded above and below by another
prescription with slightly different size for the regions (in this case A and Ã). As the continuum
limit is reached, necessarily, all these prescriptions lead to the same values.

On the other hand, regarding the entropy, different choices of local algebra result in dramatic
changes. In (2 + 1) dimensions, we expect the entropy for massless theories and polygonal sets to
have the following form as a function of the overall size n,

S = c1n+ clog log n− c0 +O(n−1) . (80)

The coefficient clog is universal and comes from a sum over the corners v of the region [10, 11], and
for each corner it depends on the vertex angle θv,

clog = −
∑

v

s(θv) . (81)

For a square region and a massless scalar field, we have

a) Trivial center - full algebra

clog = −0.0472 ⇒ s(π/2) = −clog
4

= 0.0118 , (82)

c1 = 0.309, c0 = −0.0881 ,
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Figure 7: Mutual information between two equal sized square regions separated by a distance equal
to the squares sides. From top to bottom: Electric, trivial, and magnetic center choices.

where we have allowed for an additional n−1 term in the fit and taken squares of size up to n = 35.
The presence of a center and in consequence, a classical contribution to the total entropy, results in
relevant changes on the constant and area terms while the only preserved term is the logarithmic
one. This can be seen in the coefficients we find for two different center choices,

b) Center of φ

clog = −0.04706 , c0 = 2.36 − 2 log(λ/
√
2πe) , c1 = −2.39− 2 log(λ/

√
2πe) . (83)

c) Center of π

clog = −0.04703 , c0 = −0.058 − 2 log(λ/
√
2πe) , c1 = −0.014 − 2 log(λ/

√
2πe) , (84)

where λ is the normalization constant in the formula for the Shannon entropy of the center (51).

Clearly, the area and constant terms suffer large changes with the change of algebra prescription.
Of course, these non universal terms suffer other ambiguities in the continuum limit, for example,
they are not rotational invariant. It is remarkable the area term (and hence the full entropy) can
easily turn to be negative due to the choice of the center prescription. Negative entropies were found
for non minimally coupled scalars and gauge fields in early calculations using the replica trick [12].
The classical center hints to a natural explanation for these puzzling results.

6 Entropy and mutual information for the gauge model

We consider now the gauge model and calculate the entropies and mutual information for different
geometries. Calculations are equivalently done in the dual model of a truncated scalar described in
Section 2 using the tools developed in Section 4.

First, we calculate the mutual information between two squares of equal sizes separated by a
distance equal to the squares size for the three different algebra choices of figure (3). The result is
shown in figure (7). As expected, the electric center has larger mutual information than the trivial
center, and this is in turn larger than the magnetic center, in agreement with the monotonicity
property of mutual information and the fact that the algebras in figure (3) are ordered by inclusion.

We fit the mutual information as I(V,W ) = I0 + I1n
−1 + I2n

−2 + I3n
−3 + I4n

−4. As claimed in
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Figure 8: Classical mutual information between the centers of two squares in the electric center
(upper curve) and magnetic center (curve at the bottom). The horizontal line is the continuum
limit of the full mutual information of the squares.

[1], we find the same continuum limit for all of them, as shown in figure (7) with

IE0 = 0.000923 , (85)

IT0 = 0.000924 , (86)

IM0 = 0.000924 , (87)

for the electric, trivial, and magnetic centers respectively.

The contribution of the classical Shannon term to these universal numbers is shown in figure
(8). We have that H(V,W ) goes to zero both for the electric and magnetic centers. It falls much
faster for the magnetic center because it contains only one degree of freedom in contrast to the
electric center which contains an area increasing number of degree of freedom. This also confirms
general expectations that H(V,W ) has zero continuum limit [1] because it is bounded above by
the mutual information of regions on the boundary with lattice spacing (cutoff) width and fixed
distance in the continuum interpretation. Hence, the Shannon term does not seem to have physical
meaning in the continuum limit. This, together with the fact that all the superselection sectors for
a given center give place to the same entropy (as shown in section 4) leads us to the conclusion that
mutual information can be computed in the continuum limit from the reduced density matrix for
just only one arbitrary sector, for example a fixed arbitrary normal electric field at the boundary in
the electric center choice.

Note the numerical value for the gauge field mutual information is around 35 times smaller than
the one corresponding one to the same two squares for the scalar field, I = 0.033. In fact, the gauge
model is (locally) identical to a subalgebra of the scalar field, the one generated by the gradient
field. Hence, we expect the mutual informations for any two regions always satisfy

Igauge(V,W ) ≤ Iscalar(V,W ) (88)

in d = 3.

We can learn more about the similitudes and differences between the scalar and gauge models by
studying two limits on the mutual information.

First, when two regions with parallel phases approach each other, mutual information will diverge
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Figure 9: Log log plot of the mutual information for two squares of side R separated by a distance
l, as a function of l/R. The curve at the top is the mutual information for the scalar and the lower
one in the mutual information of the gauge model. The dashed lines are asymptotic behaviors.
For small l/R we expect I(V,W ) ∼ .0397R/l for both models, while for large distances we expect
I(V,W ) ∼ (l/R)2 for the scalar and I(V,W ) ∼ (l/R)6 for the Maxwell field.

with the inverse of the distance. For two squares we have [13, 6]

I(V,W ) ∼ k
R

l
+ ...

l

R
≪ 1 . (89)

This is an area term for the mutual information in the coincident limit. Now, we can argue that
the constant coefficient k must be the same for the scalar and the gauge fields, as follows. The
calculation of (89) for a scalar starts by realizing that in the small l limit the term (89) is extensive
in the direction of the coordinate y parallel to the two nearby sides of the squares. Therefore, we
can replace the two squares by two half-spaces for the sake of this computation. Then, we can
compactify the space in a circle with large radius in the y direction without changing the extensive
part of the entropies (see [6] for details). Decomposing the scalar into Fourier modes

φ(x, y, t) = eipyyφ̃(x, t) (90)

in the large direction, the mutual information I(V,W ) turns into a sum over the mutual informations
of massive 1 + 1 dimensional scalar fields, where the mass is produced by the momentum in the
transverse direction, m2 = p2y. We have

kscalar =
1

π

∫ ∞

0
dxC(x) ≈ 0.0397 , (91)

where C(rm) = rdS(r,m)/dr is the entropic C-function of a massive scalar in d = 2, and S(r,m)
is the entanglement entropy for an interval of size r and a field of mass m. Now, for the truncated
scalar we can do the same calculation. For any mode with py 6= 0 in (90) the 1+ 1 model produced
by the truncated scalar is the same as the one of the full scalar. This is because for non-zero
momentum the operators φ̃(x, t) in (90) belong to the truncated algebra as well, since the integral
of these modes on the y direction is exactly zero. Hence, the coefficient k for the truncated scalar
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and the gauge field are given by the same integral (91), differing only in a measure zero set at m = 0,
and we have

kgauge = kscalar ≈ 0.0397 . (92)

The second limit we want to look at is when the two regions V and W have large separations. For
two squares this is the limit of l/R ≫ 1, with l the separation distance. In this case we have that
mutual information falls as the square of the correlation function of the lowest dimension operator
[14] (see also [6] for the scalar case). This is φ for the scalar model and Fµν for the gauge field.
Thus, we expect

Iscalar ∼ as

(

l

R

)−2

,
l

R
≫ 1 , (93)

Igauge ∼ ag

(

l

R

)−6

,
l

R
≫ 1 . (94)

We can confirm these expectations for two squares in figure (6), where we have plotted mutual
information against l/R. The short and long distance behavior nicely approach (89) and (93), (94).
For two squares we can get the coefficients in (93), (94) approximately as as ∼ 0.09, ag ∼ 0.021.

Summarizing, the mutual information for the scalar is always larger than the one for the gauge
model. At short distances they have the same leading ultraviolet divergent term (area law) because
they have the same ultraviolet modes, while at larger distances the scalar field has much larger
mutual information. This is because the gauge field does not contain the scalar “center of mass”
mode,

∑

i∈V φi, which controls the largest share of mutual information for large distances.

6.1 Logarithmic term in the entropy

Let us compute the logarithmic terms on the entropy for different choices of center. These are
generally universal terms, and we have seen they do not depend on the center for the scalar field.
Again we calculate the entropy for squares as in figure (3) and fit with a function of the form
S = c1n+ clog log(n) + c−1n

−1 + c−2n
−2 + ... with squares of size up to 35 points. We get for the

trivial center case (see figure 10)

clog = 0.4521 , (95)

clog − cslog = 0.4521 + 0.0472 = .4993 ≈ 1

2
, (96)

where cslog is the logarithmic coefficient for a scalar. Surprisingly, for the gauge model we get 1/2
plus the logarithmic coefficient for the scalar on the square. For the electric and magnetic centers
we get similarly

cElog = 0.4519 , (97)

cMlog = 0.4517 . (98)

Thus, the logarithmic term is independent of the center choice. We have also checked it is rotational
invariant in the lattice (that is, it does not change for rotated squares).

However, as we have pointed out, the entropies for algebras with continuum center are not
well defined, in the sense that its classical contribution (64) can vary with field normalizations.
To understand the validity of these results for the logarithmic term we notice that a change in
normalization by a factor λ changes the entropy of the square by −DC log(λ), where DC is the
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Figure 10: Left panel: Entropy of a square of size n where the linear term in a fit S = c1n +
c0 + slog log(n) has been subtracted. The logarithmic term is shown with a solid line. Right panel:
Entropy of circles of radius n in the square lattice, computed with 1/10 steps for the radius. The
linear term has been subtracted. Both figures are for a trivial center.

number of degrees of freedom in the center. This grows with the area in the electric center and
is just one for the magnetic center. Hence, no changes in the logarithmic term are expected if we
change the normalization by a factor independent of the number of points in the square. Changing
the normalization by a factor depending on n does not seem to be fair, in the sense that it would be
a prescription for doing computations which includes information a priori on the object on which
one wants to compute the entropy.

In this regard, it is interesting to note that the classical entropy of the center for the electric choice
does indeed give a non zero contribution to the logarithmic term (this is in fact a large fraction of
the logarithmic term). Hence, even if the mutual information does not depend on the classical terms
in the continuum limit, the logarithmic term in the entropy is sensible to the classical contributions.

To discern how is this contribution related to the presence of angles in the square, we have
computed the logarithmic term for several other shapes illustrated on figure 11. Here, we list the
results for clog for the different regions and compare with the cslog coefficient for the same regions in
the full massless scalar theory (which is always a sum over the contributions of the different angles):

a) Entropy of two equal squares separated by a distance of the size of the square:

clog = 0.9044 , (99)

clog − cslog = clog + 8 s(π/2) = 0.999 ≈ 1 . (100)

b) Square of size 3n, with a centered square hole of size n:

clog = 0.4052 , (101)

clog − cslog = clog + 8 s(π/2) = .4996 ≈ 1

2
. (102)

c) Square of size 3n with a removed corner square of size n:

clog = 0.4294 , (103)

clog − cslog = clog + 6 s(π/2) = 0.498 ≈ 1

2
. (104)
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(c)(b)(a)

Figure 11: Different regions with different topologies and different numbers of corners. Both of
these features contribute to the logarithmic term for the gauge model.

In figure (10) we also show the logarithmic term in the entropies of circles in the square lattice.
In this case, no angle term is expected and we get Slog = 0.504 log(n) for circles of radius up to
n = 30. Of course, we have considerable noise for circles, but still the logarithmic term is clearly
seen and can be extracted from the data with good precision.

From the above results and many other checks, including triangular regions with angles different
from π/2, we conclude the general form of the logarithmic coefficient is

clog =
Nc

2
+ cslog =

Nc

2
−
∑

v

s(θv) , (105)

where Nc is the number of connected components in the region, and s(θv) is exactly the same function
giving the logarithmic coefficient due to the angles in the full scalar theory. The presence of the
same ultraviolet logarithmic term depending on the angles as in the scalar case can be explained by
the same argument as for the coefficient k in the mutual information (previous subsection). This is
because the coefficient s(θ) is computed by dimensional reduction in spherical symmetry [10] and
all relevant dimensionally reduced modes for the scalar coincide with the ones for the truncated
scalar.

On the other hand, the new contribution is topological and "counts" the number of components
of the region independently of the shape. This contribution to the entropy is rather puzzling in two
respects. The first one is that this is a term proportional to log(R/ǫ) and hence apparently has
an ultraviolet origin, but at the same time it does not look local on the boundary on geometrical
grounds.2 However, it is important to realize that this term is only apparently ultraviolet, and no
short distance entanglement consequence of this term can be seen in the universal mutual informa-
tion. In general we expect that divergent terms in the entropy can be re-obtained, in a regularization
independent way, using the mutual information between the region V and an external region W
that surrounds V , in the limit of small distance δ between these two regions. For example, for the
scalar we have

I(V,W ) = k
R

δ
+ 2 log(δ)

∑

v

s(θv) +O(δ0) , (106)

where R is the region perimeter. For the truncated scalar we should have the same formula, with
the same coefficients, plus the term − log(δ)Nc. However, this last term is clearly impossible, since

2A dimensionless quantity which is a local integral on the boundary is −

1
2π

∫
∂V

ds γ(s) = 2Nc − Nb, where

γ(s) = η(s). d
2(x(s))

ds2
is the local oriented curvature of the boundary curve, x(s) parametrizes the curve by length,

and η(s) is the outwards pointing normal unit vector at the boundary. Here Nb is the number of disjoint boundaries
of the region. It is interesting to note this means the number of connected components we find in the logarithmic
coefficient is then equivalent, up to local terms, to the number of boundaries [15]. This resembles the topological
entanglement entropy dependence on the region. We thank Tatsuma Nishioka for this comment.
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Figure 12: Two horseshoe like regions intersect each other. The operators
∑

φ̂ summed along each
of the two lines joining the two marked points are equal due to the constraint relation (telling the
sum of φ̂ along any closed curve is zero).

the mutual information of the truncated scalar is bounded above by the one of the scalar, and this
term would violate this inequality for small enough δ. A direct check of this on the lattice is difficult
because we have to go to the small δ limit but having first reached the continuum limit. We will
say a bit more about this topic and its possible relation with the c-theorem in d = 3 [3, 4] in the
discussion section.

The second puzzle is the positive sign of the logarithmic term Slog = Nc/2 log(R/δ). This is
rather startling because the negative sign for the logarithmic terms coming from the vertices in
d = 3 (see for example formula (82)) is a general property imposed by strong subadditivity. We left
for the next section the solution of the paradox on how strong subadditivity is preserved against all
odds for this entropy function.

7 Strong subadditivity and algebras

Historically, SSA was first proposed in order to prove the stability of the matter through concavity
of the entropy function in translation invariant systems [16]. It was formulated for the case of
Hilbert spaces that can be written as tensor products. Consider H = H1 ⊗H2 ⊗H3, then [17]

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) , (107)

where S(ρ12) = −TrH12ρ12 log ρ12, etc.. In general this is supposed to give place to the geometric
inequality

S(A) + S(B)− S(A ∪B)− S(A ∩B) (108)

for the entropy of regions. However, we have to be more careful in the gauge field case, since the
tensor product decomposition may not be possible.

The Maxwell field in 2+1 dimensions gives a clear example. Suppose we have two horseshoe-like
regions A and B, intersecting in two disjoint squares, and having an annulus shaped union as in
figure (12) and (13). According to the previous discussion, the entropy for these regions has some
divergent terms: An area term, a logarithmic term which is a sum over the different angles, and a
logarithmic term proportional to the number of connected components. The first two terms cancel
in the combination (108), while the last one would give

S(A) + S(B)− S(A ∪B)− S(A ∩B) = −1

2
log(R/ǫ) + const < 0 , (109)
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for some macroscopic size R, violating strong subadditivity.

The first problem with this argument is again the ambiguities in the assignation of algebras to
regions. What are the algebras corresponding to the different regions in (108) and how they are
related to each other? With the usual assignations of the algebras for regions there is no way to
choose the local algebras for the regions in (109) to eliminate the remaining logarithmic term. This
term comes with the wrong sign, and SSA in this form does not hold.

As it happens, what is wrong here is the idea that strong subadditivity can be applied to algebras
assigned to regions as in the left hand side of (109). Instead of that, the set operations of intersection
and union have to be applied to the algebras themselves. We propose the inequality

F (AA,AB) = S(AA) + S(AB)− S(AA ∨ AB)− S(AA ∧AB) ≥ 0 . (110)

Here AA∧AB is the intersection of algebras (which is another algebra) and AA∧AB = (AA∪AB)
′′

is the algebra generated by the two (the smallest algebra containing the two). In the present form,
strong subadditivity holds for the two horseshoe regions. The reason is that the intersection of the
two algebras of the horseshoe regions is the algebra of a region with two square components but
there is an additional extra long distance link φ1 − φ2 on the algebra of the intersection (in the
truncated scalar formulation, see figure 13), where φ1 and φ2 are any two field operators localized
in each of the two separated squares forming the intersection. This is because the two strings of
fields shown in figure (12) are the same operator due to the constraint equations. Therefore, this
string belongs both to AA and AB. In the gauge formulation the long link represents the global
flux of electric field normal to the line. Because of this extra link, the intersection effectively looses
one component, and in fact the calculation of the logarithmic term gives the same result than for a
one component region. As a consequence, divergent pieces cancel exactly in (110), and it turns out
the combination is positive.3 This is shown in figure 14 where this quantity is calculated for A and
B with the magnetic, trivial and electric center algebras. As shown in the figure 14, all cases have
the same continuum limit. Fitting the curves we obtain the constant limit 4

F (AA,AB) = 0.08583, electric center , (111)

F (AA,AB) = 0.08575, trivial center , (112)

F (AA,AB) = 0.08579, magnetic center . (113)

For SSA in the usual form (107) the relation (110) is clear since all algebras involved are in tensor
products. The SSA relation for algebras with center but still in tensor products is shown in [7].
But the crucial point in this example, is that given the algebras of AA and AB in the gauge model,
with any of the possible choices, we get F (AA,AB) ≥ 0, even if the tensor product decompositions
in three algebras as in (107) cannot be achieved.

We could not find in the literature the statement (110) for strong subadditivity and naturally
wonder about the conditions for its validity. It is clear it is not valid in full generality as shown by
the example of two canonical variables, where AA = {q1, p1}, AB = {q1+ ǫq2, p2+ ǫp2}, AA∨AB =
{q1, p1, q2, p2} and AA∧AB = 1. In this case if the first pair of canonical variables are in a pure state
decoupled from the second pair, and this second pair has large entropy, we have S(AA) ∼ S(AB) ∼ 0,

3Note that for theories with charges the intersection does not contain the flux of the electric field on a line joining
the two regions. This is because the constraint has an additional piece of the charge contained inside the closed loop
which effectively decouples the two fluxes on the two horseshoe algebras. According to the present discussion, this
means no divergent term proportional to log(R/ǫ) can appear for charged theories.

4Note in the electric center case the center is formed by boundary links, but the center of the union has an
additional large distance link connecting the two boundaries.
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Figure 13: The figures at the top show two horseshoe regions A and B, and their union and
intersections A∪B, A∩B (once A and B became superimposed as in figure 12). The figures at the
bottom show the algebras AA, AB, AA∨AB and AA∧AB in the truncated scalar model (magnetic
center in this example). The intersection of the algebras contains an additional non-local link with
respect to the algebra corresponding to the intersection A∩B. This non-local link crossing between
the two components makes the intersection of the algebras an effective one component set.

S(AA ∨AB) is large and S(AA ∧AB) = 0. Then (110) does not hold. Another example is given by
time like separated regions in QFT. We want to exclude these cases.

A possible condition is as follows. The case of tensor products (107) is characterized algebraically
by the fact that the following “commutator” algebra5 is trivial

C(AA,AB) ≡ (AA ∨ AB) ∧ (AA ∨ A′
B) ∧ (A′

A ∨ AB) ∧ (A′
A ∨ A′

B) = 1 . (114)

This is not the case of our lattice algebras nor of the above example with two canonical pairs.
However, for the example with two canonical variables we get

C(AA,AB) = AA ∨ AB . (115)

For the algebras of our lattice simulations, we get a milder modification of (114), namely that

C(AA,AB) = Z , (116)

with Z a commuting algebra. For the lattice algebras, Z is in fact generated by operators localized
at the boundaries of A and B which commute to each other (however they do not necessarily belong
to the center of AA and AB , which can be full algebras). Hence, in certain sense, the modification
of the conditions for SSA is again a detail at the boundaries, and in algebraic terms the condition
(116) should be read as equivalent to the condition for regions A and B (as represented in the
model by their algebras) to be lying in the same Cauchy surface, or not to be time-like to each
other. Hence, we are tempted to propose (116) as the mathematical condition of validity of SSA in
the form (110).

5This is the terminology in the theory of orthomodular lattices [18], which has strong connections with von
Neumann algebras and the relations between causal regions in spacetime [19, 20]. In the orthomodular lattice of
causal regions the relation analogous to (114) means that the causal sets A and B have a common Cauchy surface
[20].
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Figure 14: F (AA,AB) = S(AA) + S(AB) − S(AA ∨ AB) − S(AA ∧ AB) for the configuration of
figure 13 as a function of the overall size in the lattice (here the side n of the big square for the
union of the two regions). The curves are for algebras with magnetic, trivial, and electric center
(from top to bottom).

8 Final comments

We have shown that it is possible to make numerical computations of entanglement entropy for free
gauge fields in a lattice with the same computational complexity as for a scalar field.

Our main general conclusion is that ambiguities on the algebra choice in the gauge model disap-
pear in the continuum limit for the same terms in the entropy that are universal for other fields.
We have also seen the classical Shannon term is not relevant for the continuum limit of mutual
information. In fact, at least for the free models, the calculation of quantities of the continuum, can
as well be reduced to the quantum term on a single arbitrary sector in the central decomposition
of local algebras with center.

We were compelled to propose a form of strong subadditivity which is written in algebraic terms.
We conjecture some particular condition for this relation to be valid, with generalizes the usual
strong subadditive inequality for tensor products. Note that the proof of the existence of an entropy
density for translational invariant states [16], which was the historical motivation to introduce SSA,
would need of this enlarged form of SSA to be freely applied to gauge fields.

Topological entanglement entropy

The discussion of strong subadditivity for the two horseshoe like regions in section (7) has close
connections with the topological entanglement entropy [5, 21]. This geometric arrangement was
used to define the topological entanglement entropy by Levin and Wen,

S(A) + S(B)− S(A ∪B)− S(A ∩B) = γtopo (117)

for gapped models in 2+1 dimensions. However, as we have seen, the quantity on the left hand side,
has to be defined in an algebraic way as F (AA,AB). We compute this quantity in a topological Z2

gauge model following our previous calculations [1] (see also [22, 2]). We find that for all prescriptions
of the local algebras we get F (AA,AB) = 0, essentially because the number of degrees of freedom in
the centers of AA and AB are equal to the ones in AA∨AB and AA∧AB. This suggests topological
entanglement entropy needs UV degree of freedom to be well defined (see however [23]). That is,
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Figure 15: The region W encircles V at a distance δ. The large radius ΛIR is used as an infrared
cutoff.

we need some degree of freedom in the UV which allow the continuum limit to be taken. If the
topological model is a long distance limit of some other theory at the UV we expect F (AA,AB) to
give the topological entropy for large regions.

Logarithmic term and c-theorem

We have found a logarithmic term 1/2 log(R/ǫ) in the entropy with topological coefficient. However,
this term is not reproduced by the mutual information, see figure 15. In this calculation, we have the
region V surrounded by the region W at a distance δ, acting as an UV cutoff, and W has a maximal
size ΛIR acting as an infrared cutoff. As δ → 0, we found that there cannot be any ∼ − log(δ)
term in the mutual information, since mutual information of the gauge model is bounded above by
the one of the scalar, which does not have such term (while it has the same coefficient for the area
term). We expect however, the behavior 1/2 log(R) to be reproduced in the mutual information at
least as the infrared size ΛIR goes to infinity. This is the geometric regularization of (twice the)
entropy by mutual information [24]. Since the only finite available sizes in this construction are R
and ΛIR we expect to have a term

I(V,W )log ∼ log(R/ΛIR) . (118)

Note that as ΛIR ≫ R this term is negative. Hence, we have to take δ ≪ R,ΛIR for this to make
sense. Taking the limit of large ΛIR at fixed δ, this term cannot appear because it would make
mutual information negative.

Eq. (118) would nicely fit with the results of [3]. There, the authors computed the entropy for a
disc and a compactified Maxwell field and found a logarithmic term 1/2 log(Rg2), with g the gauge
coupling constant, in the entanglement entropy, in the limit of Rg2 ≪ 1. This can be thought as a
large positive term in the c-function RS′(R)− S(R) of the d = 3 c-theorem [25] (see also [26]). As
pointed out in [4] a logarithmically divergent term in the c-function in the limit of uncompactified
Maxwell field (Rg2 ≪ 1) is necessary for the validity of the c-theorem due to a possible running of
the Maxwell theory at the UV to a Chern Simmons theory in the infrared.

This is also consistent with the observation [27] that the correct definition of the c-function is in
terms of the constant term in the expansion of mutual information in powers of δ, I(R − δ/2, R +
δ/2) ∼ 2c1

R
δ −2c0+.... The large ΛIR limit has to be taken after the small δ limit (though in general
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we expect these limits to commute). Note c0 cannot be directly extracted from the entropy by the
formula c0 = RS′(R)−S(R) in this particular model, because it contains a large but negative term.

Unfortunately, to check these expectations with some precision in the square lattice seems to be
difficult. We left for a future work the relevant calculation in a radial lattice.
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