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CHAPTER 1 INTRODUCTION

The effectiveness of a supply chain network can be judged by tracking how well it

keeps costs to a minimum while guaranteeing service and drives up efficiency over time.

Just-in-Time (JIT) practices enabled by modern information and communication technol-

ogy allowed the supply chain profession over the past several decades to reach higher levels

of operational excellence by allowing facilities to build and deliver goods to customers at

the expected time, while minimizing waste and inventory holding costs. However, global-

ization of production/distribution networks and single sourcing practices combined with

increasing risks from natural disasters (e.g., due to global warming and pandemics) and

man made events (e.g., labor strikes, accidents) are creating a so called ‘new normal”

environment where unexpected events and disruptions have become too routine and the

norm.

In 2011, a massive and fatal earthquake and tsunami in Japan halted factories and

several assembly plants that provided critical electronic parts for the automotive indus-

try [19]. In 2018, Ford Motor Company suspended the F-150 truck production line, their

most profitable product, for seven days due to a massive fire at a supplier plant, and spent

millions to return to normal [54]. The ongoing COVID-19 pandemic has delivered mas-

sive shocks to supply chains across all industries around the world. Even after more than

20 months into the pandemic, the consequences are quite severe. The 2020–21 global

‘chip‘ shortage is an ongoing crisis in which the demand for integrated circuits (commonly

known as semiconductor chips) is greater than the supply, affecting numerous industries

including the automotive industry, and forcing plant closures, lower levels of production,

and even product redesign to mitigate the impact [55]. According to Wikipedia, the cause
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of the chip crisis is a combination of different events with the snowball effect of the COVID-

19 pandemic being one reason and other causes attributed to the China–U.S. trade war and

the 2021 drought in Taiwan. Going forward, according to a recent McKinsey Consulting re-

port, companies across industries can expect supply chain disruptions for a month or longer

every 3.7 years; it means the most severe events are happening more frequently [78]. This

is leading to unintended consequences for JIT strategies because the supply chain ecosys-

tem is not designed and managed to react effectively to disruptions and recover quickly to

its normal operation status.

All this suggests that the supply chain management practice needs to consider

features such as growing supply network complexity, various types of risks/disruptions,

and improve visibility throughout the network. Researchers and industry analysts are

looking to develop more practical and effective resilience strategies that are compatible

with current-day supply networks.

Resilience was first introduced as a descriptive ecological term by Holling’s study

on ecosystems in 1973. The author defined ‘resilience‘ as the property of ecological sys-

tems responsible for keeping the ecosystem in a regular manner when it faces changes

in system variables or parameters [51]. In the last 40 years, resilience has expanded in

various ways from psychology to supply network management [72]. Most supply network

research provides several definitions of resilience to propose a practical framework for re-

silience in the supply network by optimizing given objective functions. In most research,

network resilience has been considered as an inherent ability of a network that can re-

store the network’s operation to a stable or normal level when any disruption (expected

or unexpected) occurs [13, 22, 53]. Other studies consider resilience as the ability of the
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system to recover from external and internal disruption events and reach acceptable or

optimal operational or service levels [17,36,124]. Overall, a supply chain network can be

deemed reliable and resilient when preventing, adapting, and recovering from disruption

events. Therefore, supply chain managers need to first assess resilience to investigate if the

resilience level needs to be improved by implementing appropriate resilience management

strategies.

Different quantitative and qualitative approaches have been introduced to assess

the resilience of the supply chain network in the literature. For instance, design surveys to

find network resilience is a type of qualitative aspect. Research in 2013 proposed a survey

to understand how firms and organizations within various industries can handle and get rid

of disruption events such as loss of suppliers or shipping delays to keep their operation at

an acceptable level in competitive markets [40]. Other studies designed a survey to define

and review factors that can improve supply chain resilience [73,121]. Furthermore, most

qualitative studies can help decision-makers list factors with a high-rank impact on supply

chain resilience. In addition, quantitative methods exist to measure the resilience score or

levels [65]. The quantitative methods define various performance indexes such as service

level, demand coverage, capacity level, shipment delay, and recovery duration to develop

a quantitative measurement [31, 38, 50, 53, 111]. Recently, a new point of view has been

added to assess the resilience of supply chain network, considering network ‘structures‘,

and integrating qualitative and quantitative methods with social network analysis.

Most research studies in resilience assessment that consider social network analysis

rely on static ‘network analysis’ techniques and metrics such as ‘centrality’ and ‘density’ to

measure and evaluate the performance of a supply chain network [67, 82, 114, 117, 134,
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135]. This type of analysis and view in resilience assessment can propose some interesting

insights at a macro level. For instance, R. C. Basole [10] discuss how the role of network

structure can be effective in supply chain risk assessment and verify the value of deep-tier

visibility in risk mitigation for the electronics industry. Another study demonstrates the

relationship between network structure and a firm’s performance in a non-related supply

chain context in several industries while considering a number of control variables such as

firm size [11]. However, such static analyses, without considering supply chain operation

indexes, are generally not adequate for providing actionable guidance to individual firms

in managing the resilience of supply networks for individual products or commodities

[20, 30]. For example, warehouses would by their very purpose maintain high in- and

out-degree centrality, and assemblers would maintain higher in-degree centrality due to

their various roles within supply networks. The network structure can also vary based on

facility locations and regions.

There is a gap in the literature regarding comprehensive resilience assessment

methodology to cover all complexities and features in the supply network. A resilience

assessment framework should account for supply chain characteristics such as network

structure, inventory policies, logistics, demand variability, and most importantly, the relia-

bility of the operations and activities across the supply network. The methodology should

also account for different disruption possibilities and expected recovery profiles. Finally,

the framework needs to consider the multi-dimensional nature of supply chain resilience

and evaluate all potential performance indexes. To the best of our knowledge, no quan-

titative study in the supply chain resilience domain have adequately addressed resilience

assessment accuracy and the need for increasing deep-tier transparency. This study over-
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comes this research gap by proposing a comprehensive multi-dimensional framework to

evaluate supply network resilience.

Research studies and industry practices verify that organizations can be more reli-

able and resilient against the various disruptions by adopting optimal mitigation strategies

such as dual sourcing, increasing inventory levels, and maintaining surplus capacity. To

achieve optimal mitigation strategies, quantitative modeling, simulation, and optimization

techniques are needed [26]. Various approaches and methodologies have been introduced,

including system dynamics [129], stochastic optimization [39, 92], agent-based simula-

tion [85], scenario approach [94], nonlinear programming model [95], game theory [89],

and network theory [44]. These methods have offered recovery or mitigation strategies

by optimizing and tracking various performance metrics. However, no studies consider

the deep-tier visibility with all forms of complexity typical to supply chain networks to

optimize the resilience. As we noted earlier, most disruptions come from tier-2, tier-3

suppliers, and according to real industry practices, supply chain managers must consider

maximum transparency and visibility to design optimal strategies.

This research study employs simulation-based optimization for resilience manage-

ment because digital simulation models of supply networks can provide adequate accuracy

for modeling uncertainty and disruption scenarios [119]. The related objective function

can be minimizing cost of doing business or shipment delays or maximizing service level

(or a combination) and need to be optimized based on digital simulation model output.

Another advantage of this method is assessing resilience levels through the supply net-

work to ensure that we have proper strategies for the given network. This research study

uses the automotive industry as a real case study to evaluate our resilience assistance and
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management framework when exposed to operational (frequent) disruptions. The main

mitigation strategies are reserved capacity at primary and secondary suppliers or contracts

with back suppliers for reserving extra capacity. These strategies are acceptable for auto-

motive industries, and without loss of generality, we consider cost as an objective function

that needs to be minimized.

1.1 Research Objectives

The primary objective of this research is to develop a practical and effective re-

silience assessment and management framework for supply networks with different ranges

of complexity (tiers, nodes, edges, scale, and structure). The framework should account

for supply chain parameters (e.g., inventory policies, logistics, and demand variability),

network structure, and disruption scenarios (e.g., severity, frequency, duration, and recov-

ery profiles). The overall research objectives can be summarized as follows:

1. Resilience Assessment: A resilience assessment framework should be developed to

meet the following objectives:

• Improve the fidelity of supply network resilience assessment methods by map-

ping deep-tier networks and using secondary data sources to extend network

visibility. The framework should characterize the role of supplementary infor-

mation in improving network resilience assessment for generalizable insights.

• The framework should integrate social network analysis, supply chain parame-

ters, and discrete-event simulation for improving assessment accuracy. Analysis

of variance techniques should be employed for identifying significant generaliz-

able factors that most influence network resilience.
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• The framework should establish a mechanism for identifying critical nodes, arcs,

and regions of the network that most impact supply network resilience.

• The resilience assessment framework should support different types of supply

networks, representative of various automotive commodities and their diverse

structures and complexities.

• The framework is to be validated using several case studies and secondary

databases considering regional risks.

2. Resilience Management: Here the objective is to develop a robust decision support

framework to optimize the resilience during network reconfiguration and design. Re-

silience management will employ efficient simulation-based optimization techniques

while considering the strategic allocation/distribution of safety buffers (e.g., capac-

ity, inventory, dual-sourcing) across the network (e.g., supplier selection, location,

mode of transportation). Proposed method should also allow sensitivity analysis and

effectively manage disruption scenario planning.

1.2 Research Scope

In this study, we will particularly focus on studying deep-tier automotive supply

networks which due to their sheer scale, complexity, and heterogeneity, can lead to very

different network dynamics/resilience in comparison with simpler supply networks from

other industries. The goal is to develop an efficient framework that can assess and improve

network resilience. Specifically, in this proposal, we will focus on mapping the upstream

deep-tiers of the supply network (e.g., suppliers of suppliers of direct tier-1 suppliers) and

assembly plants for few representative commodities. Considering that this work cannot
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be done without a sufficient understanding of a distinct actual automotive supply net-

work and the operations performed within that network, the proposed research will be

carried out in the context of real-world case studies. Network resilience being a multi-

dimensional concept, a comprehensive and representative set of metrics will be tracked,

including inventory and back-order levels, order lead-times, and lost-production, to name

a few metrics.

The remainder of the dissertation is organized as follows: Chapter 2 describes the

proposed resilience assessment framework informed by secondary data sources, Chapter 3

provides an effective resilience management framework to optimize the mitigation strate-

gies for supply chain network with deep tier visibility, and Chapter 4 offers summary and

conclusion of this dissertation and proposes the future research directions.
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CHAPTER 2 RESILIENCE ASSASSMENT FRAMEWORK

2.1 Introduction

Operations in modern supply networks have become increasingly intricate and

entail complex interactions between customers, retailers, suppliers, and manufacturers.

In recent decades, a growing number of organizations have been affected by unforeseen

supply network vulnerabilities and disruptions, in industries ranging from pharmaceuti-

cals and consumer goods to electronics and automotive. At the heart of these crises is a

common theme the lack of robust processes to identify and successfully manage growing

supply network risks as the world becomes more interconnected [107].

Globalization due to emerging markets and efficiencies that stem from low-cost

sources has further exacerbated the challenge of supply network risk management. This

increased complexity has brought with it more potential failure points and higher levels

of risk. According to McKinsey Consulting, the progress in addressing these risks has been

slow. Their 2010 survey of 639 executives covering a range of regions and industries,

revealed that 71 percent feel that their companies were more at risk from supply network

disruption than previously and 72 percent expected those risks to continue to rise [107].

The current COVID-19 situation and the resulting struggles for managing steady supply

for even the simplest healthcare supplies creates a stark example of the urgent need for

a uniform and proven methodology for assessing and monitoring risks in a way that truly

minimizes business disruption due to man-made or natural disasters, the focus of this

dissertation.

The suppliers themselves as well as the different actors within the supply logistics
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network (from transporters to warehouses and ports) present their own vulnerabilities and

risks to downstream players. New regulations, geographical locations and the associated

risks (e.g., hurricanes or earthquakes), and geopolitical factors are other sources of disrup-

tions which fall outside the realm of manufacturers and the core supply network [104].

For instance, with thousands of suppliers around the world, the re-negotiation of NAFTA

in North America and Brexit has caused massive concerns for automakers. Regulations

can be changed overnight, but automakers are unable to react quickly and need time to

respond by defining new strategies. [104]. The consequences of supply-chain disruptions

can take many forms, including halted production lines, delayed deliveries, unmet de-

mand, lost revenues, and loss of brand reputation and market share. When it comes to the

automotive industry, the supply networks are extremely global with deep-tiers, presenting

even further challenges in terms of scope and scale of risks as well as visibility for the

deep-tiers.

When it comes to the automotive industry, the target industry of this dissertation,

the supply network resilience assessment by Original Equipment Manufacturers (OEMs)

is generally limited to just the tier-1 (immediate) suppliers with no real consideration for

the deep-tiers of the supply network (e.g., suppliers of suppliers of direct tier-1 suppliers).

They are no exception in lacking visibility into their upstream tiers. Yet, it is established

that this limited visibility results in additional vulnerabilities and could impose massive

costs in the tens of millions of dollars [30]. In addition, it is reported that half of all supply

chain disruptions typically stem from problems at tier-2 and tier-3 suppliers [6]. The lack

of visibility into deep-tier suppliers is often attributed to confidentiality issues or apparent

cost. However, our own research reveals that a lack of visibility into the deep-tiers of
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the network can significantly distort the accuracy of supply network resilience assessment

and a false sense of security. Therefore, seeing beneath the surface and mapping tier-N

supplier relationships can enrich the supply network performance by allowing appropriate

risk mitigation actions [20,30].

A common approach to expand supply network visibility is to request information

from tier-1 suppliers regarding their suppliers and so on, but this methodology has been

proven to be not so practical [29]. Public databases like Bloomberg [15], Marklines [83],

and IHS Markit [57] provide some vital information, in particular, for select regions of the

world. Other approaches entail using machine learning methods [128] to extract supply

network maps from the news [27, 29]. Besides lack of visibility into upstream suppliers,

another problematic practice (at least in the academic literature) is the reliance on simplis-

tic supply network analysis techniques for characterizing the resilience of the automotive

supply networks [67, 135]. Nodes (firms, facilities, suppliers) can vary in in-degree and

out-degree centrality simply because of their roles (e.g., ports) and are not adequate for

identifying sources of risk. In addition, network structure/logistics can vary based on fa-

cility locations/regions. Most of the extant literature compares basic network metrics such

as centrality and shortest path to characterize the resilience level for different network

structures (scale-free, random, etc.) [67, 82, 134]. However, sheer scale, complexity, and

heterogeneity across the automotive supply networks can lead to very different dynam-

ics/resilience in comparison with supply networks from other industries.

The vast majority of the literature employs qualitative metrics to assess network

resilience, using terms such as agility, visibility, flexibility, collaboration, and informa-

tion sharing [53]. Literature reveals that supply network resilience can be quantified
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by defining objective metrics and introducing a dynamic system performance function

[135]. A practical resilience assessment and management framework would stem from

informed strategic allocation/distribution of safety buffers (e.g., capacity, inventory, and

dual-sourcing) across the network (e.g., supplier selection, location, and transportation

mode) and not by applying a simple/static set of rules independently for all nodes or

arcs. In the following chapter, the proposed resilience assessment framework informed

by secondary data sources for a deep-tier supply chain network has been introduced and

evaluated by a real case study.

2.2 Literature Review

2.2.1 Visual and Network Analysis of Supply Networks

Recently, there has been a growing recognition of significant benefits of adopting net-

work analytics in the supply chain since the traditional linear supply chains are being

replaced by complex and dyadic networks. Rahul C. Basole [8] visualized the fast-moving

electronic industries network in three time-steps with their inter-firm collaboration to com-

pare their topological characteristics with their performance level. This study demon-

strated that the companies with high performance levels like Apple and Dell have complex

collaboration networks with a power-law shaped degree distribution. It suggests that a

combination of visualization, network metrics, and performance analysis can help a sup-

ply network to highlight the critical nodes and edges and also map inventory, information,

and risk flows.

Kim et al. [68] examined the structure of six automotive networks (Accord, Acura, and

Grand Cherokee) with two types of connections between nodes (material and financial
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flows) while considering social network concepts. The authors utilized the role of social

network analysis to qualitatively improve the network performance. For instance, the au-

thors highlighted which firm is critical and which strategy can be appropriate to enrich

the performance level of a specific network with known characteristics. Basole and Bel-

lamy [10] described how visualization and network analysis could help decision-makers

to assess and mitigate risk in electronic industries. They provided a visual supply net-

work dashboard to facilitate risk assessment tasks through each firm (internal risk) and

network (external risk) level by investigating network metrics (betweenness and degree

centrality). Other studies show the role of social network analysis and visualization to map

potential risks of a supply chain network. The authors [93] mapped three different prod-

uct platforms with material and contractual as connection types. They explored network

indicators like product complexity, producer diversity, supply chain length, and potential

bottlenecks to assess each network, and finally, they discussed how risks can be recognized

and managed by combination of social network and scenario analysis.

An increasing number of studies that employ social network tools to model [12], an-

alyze [11, 14, 69], assess risk [90], and design network [67, 82] show a new stream in

supply network analysis.

2.2.2 Supply Network Resilience Assessment

In today’s turbulent environment, the supply chain system can face disruptions or un-

predictable events. Hence, supply chain strategies to withstand disruption, as well as

efficient recovery plans with minimal costs, are critical keys for the entire system [72].

The supply chain resilience literature provides various definitions for resilience, and we

summarize them in this section.
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The research defines supply chain resilience as ‘the ability of a system to return to its

original state or new and more desirable state after being disturbed ’ [22]. Low proba-

bility and high impact risks have been considered in supply chain resilience management

while high probability with low impact has been addressed in risk management concepts.

Another definition is ‘a firm’s ability to absorb disruptions or enable the supply chain net-

work to return to normal state’ [109]. Further definitions include the following: ability of

the supply chain to proactively plan and design the network while anticipating unexpected

disruptive events, and responding adaptively to disruptions while maintaining control over

the structure, and transcending to a robust state of operations [101]; and ‘a network-level

attribute to withstand disruptions that may be triggered at the node or arc level’ [67]. All

these definitions point to the following key parameters to describe supply chain resilience:

predicting unforeseen disruptive events, coping with their consequences, creating an ap-

propriate structure for responding quickly, defining an effective strategy for recovering

from disruptions, and returning to a steady or more desirable state [53].

In the following section, the extant literature in resilience metrics and assessment

methodologies is reviewed. Most papers provide qualitative metrics with a few quan-

titative measures introduced for network resilience assessment. One early study of re-

silience improvement is by Priya et al [102] which focused on production and distribu-

tion with demand variability by providing an agent-based framework. A new dynamic

and time-dependent qualitative network resilience metric is illustrated by Henry and Mar-

quez [49]. Most prevalent resilience metrics to characterize supply chain networks are

service level [102], costs [124], delay delivery, and demand ratio (fill rate) [123]. Some

researchers have addressed the resilience assessment problem by exploring network topol-
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ogy and social network metrics. For instance, Kim et al. [68] demonstrated how under-

standing network density, complexity, and discovering the critical nodes can affect supply

chain performance. The literature states that the combination of social network concepts

with traditional supply network performance measurement is unique and affords more

practical applications to supply chain.

2.2.3 Simulation for Supply Network Resilience Assessment

Simulation has been considered as a powerful tool in supply chain resilience and risk

analysis [19, 59, 81, 96] due to its well established structure to describe and explore the

operation management field. Discrete event simulation is a practical technique to evaluate

the supply chain operational performance during and after a disruption. In resilience

assessment studies, researchers face challenges in accessing the empirical data. Therefore,

using simulation techniques can be more notable for overcoming this obstacle. Simulation

parameters and algorithms need to follow the research framework to achieve desirable

results. The realistic simulation design can provide data to evaluate and redesign the

research framework [25, 81, 92]. In this section, supply chain resilience studies using

simulation tools to evaluate their framework are reviewed. The focus is on studies that

have focused on simulation techniques to assess supply resilience and mitigate potential

risks.

A recent study [81] developed a methodology to define the critical factors that can

reduce or increase the impact of direct and indirect disruption on a supply network. The

authors combine the structured experimental design with a discrete simulation. The study

shows that inter-arrival time, connectivity, and buffering of stocks are essential factors

to alleviate any disruptions. Simulation models have been developed in the literature
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to evaluate the supply chain resilience level and provide the optimal recovery strategies;

for instance, a three-tier automotive supply network using real data has been simulated

to evaluate two recovery strategies regarding six given disruption scenarios [49]. The

authors demonstrate how these disruptions scenarios and mitigation strategies can impact

each supply chain entity’s performance. Two performance metrics, lead-time ratio and

total cost for each entity are used to measure the resilience level. Also, in another study,

a pharmaceutical supply chain has been simulated to analysis the resilience and detect

the trade-off between three recovery strategies, which can be a function of disruption

parameters (such as its severity and duration). The authors tracked the resilience level by

measuring out of stock inventory and unsatisfied demand [76]. Dmitry Ivanov [59, 60]

observes and predicts the behavior of the supply chain during disruption using discrete

event simulation models. The author states that additional information (such as disruption

features or regional information) can be useful to optimize the supply network. For the

entire supply chain, it is critical to evaluate and analyze the whole supply network instead

of considering simple dyadic relationships between suppliers and manufacturers. A few

studies have integrated the simulation and network analysis to improve the accuracy of

supply resilience assessment [122,135]. To fill this gap, social network analysis techniques

and discrete-event simulation are used to assess the level of a sophisticated supply chain.

2.3 Resilience Assessment Framework

In this section, we present details about the proposed supply network resilience assess-

ment framework along with preliminary results from an illustrative case study informed

by a real-world automotive supply network. The section includes the description of simu-
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lation settings and resilience assessment.

This research seeks to propose an effective resilience assessment framework for deep-

tier supply networks utilizing historical data and secondary data sources. The proposed

methodology, shown in Fig. 12 with six main components, aims at assessing the resilience

of supply chain networks representing various industries and commodities with diverse

structures and complexities when exposed to disruptive events. First, network compo-

nents, regional risk, operational, and historical disruption data combined with informa-

tion from domain experts (data acquisition) are injected to ‘Supply Network’ and ‘Scenario

Planning’ modules. In the data acquisition phase, any available historical recorded data

is combined with secondary data sources from third-parties and guidance from domain

experts to reach a more accurate resilience assessment framework. The ‘Supply Network’

module creates the appropriate network structure based on the input data regarding supply

network structure and policies. Disruption sources and parameters, including frequency,

intensity, and duration for scenarios planning are also acquired using historical and sec-

ondary data. The ‘Scenarios Planning’ component is responsible for identifying the optimal

set of scenarios for carrying out the resilience assessment, and notifies the disruption sim-

ulator to carryout the necessary simulations. The task of the ‘Disruption Simulator’ is to

efficiently carryout the necessary simulations and pass the observed outcomes to the ‘Re-

silience Assessment’ module. Finally, the ‘Resilience Assessment’ module utilizes both op-

erational metrics as well as impact assessment data to characterize overall supply network

resilience, considering its multi-dimensional perspective. The ‘Global Sensitivity Analysis’

of the uncertain parameters is critical to prioritize additional data collection efforts and

provide more actionable guidance to supply chain managers.
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Figure 1: Resilience assessment methodology

An overview of the notation used throughout this paper is provided in Table. 6.

2.3.1 Supply Network Structure & Policies

A supply network is a collection of temporal and spatial processes carried out at facility

nodes and over distribution links. It adds value for customers through manufacturing and

delivery of products. The types and numbers of supply network components can make

it complex to employ more accurate analysis for resilience assessment. In the first step

of our method, the supply network component maps a deep-tier network, consisting of

links and nodes denoted by E and N , indexed by e and n, respectively. The network

includes different types of nodes: focal firm, denoted by F , located in the center of the

network, suppliers, warehouses, distribution centers, and ports located in different up-

stream and down-stream tiers. The focal firm sources parts and materials from tier-1

nodes. Each tier-1 node, in turn, sources intermediate parts and components from tier-2;

and this repeats through other tiers. For a given node n in the network, In represents a

set of direct supplier nodes, and Un represents a set of customer nodes. The granularity

of supply network representation should depend on the size of the network, quality and
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Sets

N Set of nodes for a given network, indexed by n ∈ N
E Set of edges for a given network, indexed by e ∈ E
In Set of customer nodes for node n, indexed by i ∈ In
Un Set of supplier nodes for node n, indexed by u ∈ Un
W Set of supply chain tiers, indexed by w ∈W
T Set of simulation time slots within the planning horizon, indexed by t ∈ T

Variables

xunt Inventory level of part supplied by supplier u for node n, in time t
aunt Quantity of part shipped by supplier u to node n, in time t
bunt Backorder level of part supplied by supplier u for node n, in time t
yunt Quantity of order placing from node n to node u at time t
zn Demand resilience level for node n

Parameters

θ Number of simulation replications
cn Total inventory cost for node n
pn Total Backordered cost for node n
oun Inventory cost per day per part from supplier u at node n
vni Backordered cost for customer i of node n
ϕun Initial inventory level of part supplied by supplier u at node n
sn Finished good safety stock for node n
le Shipment lead time of edge e
he Shipment frequency of edge e
mun Periodic review policy of part supplied by supplier u for node n (days)
dFt Daily demand for focal firm at time t
kint Demand from customer i for node n at time t
γun Usage rate of part from supplier u at node n
gun Restocking level of part supplied by supplier u at node n
αn Disruption duration for node n
qn Disruption intensity for time disruption (αn) for node n
fn Disruption frequency for node n
rn Regional risk index for node n

Network components

Snw Supplier n in tier w
F Focal firm

Table 1: Nomenclature
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ease of information sources, and planning/modeling resources available for assessment.

Generally, one can expect diminishing benefits from increasing the granularity of modeling

beyond a certain level. For the purposes of supply network resilience assessment, at a

minimum, each node n should be characterized by target raw material inventory level (onu)

and finished goods inventory (sn), as well as processing cycle time. Also, links between

nodes are unidirectional to denote the one-way flow of products. Links have attributes

such as shipment mode, lead time (le) and shipment frequency (he).

2.3.2 Disruption Scenarios

The supply chains are not immune from disruptions, which are the unfavorable changes

in the regular operations. Without any disruption, on-hand inventory will generally be

adequate to meet demand at any node within the supply network. So, the disruption

scenarios component lies at the center of our framework. The inputs are network topology

and settings for generating disruptions, and the output is scenario settings. Simulator

receives scenario setting as its input, such as the numbers of nodes/linked need to be

disrupted, disruption intensity qn, frequency fn, and duration αn for each of the nodes

in network based on their regional risk (rn). Then, disruption scenarios are simulated

through a specific planning horizon.

2.3.3 Resilience Assessment

The resilience curve which is illustrated in Fig. 2 is adopted by various research studies

including inventory control theory [127], transportation system [47], power system [133],

and information security [71]. A system performance indicator P (t) is used to quantify

the system resilience level during a time period t. As shown in the Fig. 2, the resilience

curve possesses four transition stages describing the system behavior over time. A brief
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description of these stages is as follows:

• Reliability (S1): This is the stage when there is no disruption and the network or

system operates in a healthy state.

• Unreliability (S2): This is the stage of degradation, when a disruption(s) accrues in

the period [td, tr] and system performance drops to Pv due to partial loss of function-

ality.

• Recovery (S3): This is when the network or system starts to recover its performance,

relying on any appropriate recovery policies.

• Recovered (S4): The system reaches a stable level in te depending on the disruption

severity and duration. The system can recover to original performance, sustain per-

manent deterioration, or can reach improved performance due to corrective actions.

The impacted area (IA) shown in Fig. 2 captures in aggregate the severity of disruption

events combined with the effectiveness of recovery policies and guides us in characteriz-

ing system resilience. The supply chain studies have endorsed various performance mea-

sures including service level, network capacity, delivery time, inventory level, and system

throughput for resilience assessment [53]. Without any disruption, on hand inventory will

generally be adequate to meet demand at any node within the supply network. But in

the presence of a disruption, the orders can be backlogged and demand may not be fully

satisfied due to deterioration of system functionality.

If one were to employ demand satisfaction/coverage as the metric of interest, we can

quantify the resilience level (RSL) of each node (or firm) by integrating and averaging
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Figure 2: Resilience curve illustrates system performance under disruption and its stages.

coverage over all data collection time steps as follows [47]:

RSL =

∑T
t=0(1−

LoDt

ToDt
)

T
. (2.1)

Here LoDt and ToDt represent lost and total demand at the particular node of interest

for each time unit t (e.g., day or week), respectively, and the quantity LoDt

ToDt
represents

the impacted area (IA). The data collection window could involve multiple disruption

and recovery cycles and T is duration of the data collection period (RSL ∈ [0, 1]; t ∈

[0, T ]). Note that this approach could also be employed for characterizing supply network

resilience for any given node even if we were to employ simulation for evaluating different

supply network designs/configurations.
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2.3.4 Deep-Tier Network Visibility

Given that majority of supply chain disruptions stem from deep-tier suppliers and not

the tier-1 suppliers [6], any resilience assessment scheme should carefully investigate the

impact of deep-tier network visibility on the true network resilience. Without the loss of

generality, we recommend four visibility scenarios:

• Full Visibility(SC0): Visibility to all major tiers of the supply network. Further up-

stream suppliers are assumed to be perfectly reliable and do not experience disrup-

tions.

• Limited Visibility (SC1): Network visibility limited to tiers-1 & 2; Assumes upstream

suppliers are perfectly reliable.

• Typical Scenario (SC2): Network visibility limited to tier-1 suppliers.

• No-risk Scenario (SC3): Assumes that the entire supply network is immune to dis-

ruptions.

2.3.5 Identifying Deep-Tier Suppliers

As noted earlier, it is reported that over half of all supply chain disruptions indeed

stem from tier-2 and tier-3 suppliers [6]. A common approach to overcome this visibil-

ity limitation is to request tier-1 suppliers to share information regarding their supply

base [29]. While most suppliers tend to guard such information carefully, contracts can

be set up to require suppliers to share critical information. For instance, after the March

2011 earthquake and the devastating supply disruptions, Toyota leveraged its strong sup-

plier relationships to acquire critical information to develop the REinforce Supply Chain
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Under Emergency (RESCUE) system [120]. This system maintains parts information for

around 650,000 supplier sites to diminish disruption damages for all key commodities. If

any disruption occurs, Toyota can rapidly detect which suppliers and parts are at risk and

deploy contingency actions [7]. An alternative would be to work with third-party informa-

tion aggregators such as Bloomberg Supply Chain Database [15], Marklines [83], and IHS

Markit [57] that provide vital information regarding deep-tier supply networks for select

industries and regions of the world. The information available through secondary sources

for suppliers across various industries can include the number of production sites and their

geographical locations for different product families, customer firms for different product

families, quality of production and distribution infrastructure, socio-political and economic

data, and overall regional risk indexes. The quality of these databases and their resolution

could vary based on industry and region. For example, while Marklines covers over 50k

automotive parts supply companies, it provides much better supplier coverage within Asia.

It also provides information on who supplies who for around 300 major components like

automatic transmissions, air conditioners, seats, and navigation systems in Japan, Europe,

the U.S., China, India, and more.

As for the automotive OEM case study discussed in the manuscript, besides data from

the OEM, secondary data from IHS Markit [57] and World Port Source [125] were used to

map and model supply network resilience. See additional details in Table 2.

2.3.6 Sensitivity Analysis

Multiple parameters can be uncertain during supply network (re-)design, and decision-

makers try to obtain more information to understand the implications of these uncertain-

ties. In the context of supply network resilience assessment, Sensitivity Analysis (SA) can
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Information Type Data Source Note

Suppliers OEM Details regarding all tier-1, -2, and -3 suppliers along with
their locations and capacities.

Transportation OEM Modes of transportation (including truck, rail, boat, air) for
each arc of the supply network, frequency of shipments and
their lead-times.

Regional Risk Scores IHS Markit The frequency and severity of disruptions expected from
the different supplier facilities within the case study are
based on regional risk scores identified by IHS Markit
(details in section 4.2). While facilities within a region can
exhibit different levels of resilience, the case study strictly
relied on risk scores from IHS Markit.

Shipping Ports World Port Source The exact locations of the shipping ports were identified
using information from the World Port Source.

Table 2: Summary of data used to map and model the deep-tier automotive supply net-
work

help us in quantifying the impact of uncertain parameters (denoted by X, the vector of

uncertain inputs) on the variance of performance metrics (denoted by Y ). Uncertainty

could be around regional risks, operating policies of upstream suppliers, and so on. Any

effective supply network resilience assessment scheme should incorporate proper SA to

prioritize additional information collection efforts and reduce overall risk and uncertainty.

Overall, SA serves three primary purposes in supply network resilience assessment: 1)

identifying the key supply network’s topological features; 2) identifying the relationship

(positive or negative) between different key parameters/factors on the network perfor-

mance; and 3) determining the most important parameters (e.g., suppliers and operating

policies).

While the literature offers several methods for SA, we recommend variance-based

and moment-independent approaches due to their computational efficiency and effective-

ness [106]. The variance-based SA approach is a technique that decomposes the output

variances into fractions that can be attributed to inputs or set of inputs. The main advan-

tage is computing the “Total Sensitivity Index" obtained from the sum of all the sensitivity
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indices involving any particular variable. Variance-based importance measures are defined

as follows in eq.(2.2) [52,58,97]:

SIi =
VY − EXi

[VY |Xi]

VY
= 1− Exi [VY |Xi]

VY
, (2.2)

where Xi denotes the ith uncertain input parameter, Y the output metric of interest, VY

represents the output variance, Exi [VY |Xi] is the conditional expected value of VY given

Xi, and SIi is the sensitivity index of each uncertain parameter.

For conducting the sensitivity analysis without relying on any particular moment of

output Y , the moment-independent SA techniques have been introduced [16, 100]. The

moment-independent sensitivity, which is called Delta (δ), is defined as follows:

δi =
1

2
Exi [s(Xi)],s(Xi) =

∫
|fY (y)− fY |Xi

(y)|dy, (2.3)

where s(Xi) measures the distance between fY (y) and the conditional density function

of Y , given one of the inputs.

2.3.7 Simulation Model

As discussed earlier, discrete-event simulation is employed as the primary methodology

for resilience assessment. Details for the significant simulation steps and the order of

events are provided in Algorithm 2. Once the network is configured (Step 1) and initialized

with a starting state (Step 2) and assigned proper operating (Steps 3 & 4) parameters,

under any given scenario, the full supply network is simulated for T=700 days with a
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warm-up period of 3 months (90 days), representing roughly 2-years of operation. As

noted earlier, the final focal firm F production volume is assumed to be exogenous and

follows a normal distribution. During the simulation, disruption frequency and intensity

for each node are obtained based on their regional risk index (Step 4). Ordering process

and shipments are simulated (Step 5) with tracking the product flows, delays, and costs in

detail on a daily basis for supply network resilience assessment.

To study the impact of deep-tier network visibility on resilience assessment, we evalu-

ated the case study supply network under all the visibility scenarios. For improved assess-

ment accuracy, each simulation scenario is replicated ten times and all the results reported

in the rest of the manuscript are averages.

SimPy is used for implementing discrete-event simulation and NetworkX is utilized to

generate and analyze the network. A personal computer with Intel Core i5-6300U CPU (2.4

GHz) with 8.00 GB RAM has been used for our case study. In the following subsections,

we first discuss results from different visibility and other scenarios, followed by a brief

discussion of significant managerial insights obtained from our study.
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Algorithm 1: Supply Network Simulation Model

1 Step 1: Load supply network configuration: Nodes (N) and edges (E).

2 Step 2: Load inventory policy for each node n: Raw material initial inventory

(ϕun) and finished good safety stock (sn), restock level (gun) for part u follows:

gun = (
∑

i∈I
∑mun+le

t=mun
kint + sn)γun e ∈ ∀[n, i].

3 Step 3: Load transportation parameters for each edge e: Shipment lead time (le)

and shipment frequency (he).

4 Step 4: Load disruption parameters for each node n: Regional node risk (rn),

disruption intensity (qn), disruption frequency (fn), and disruption duration (αn).

5 Step 5:For t ∈ T

6 Observe daily demand for focal firm: dFt = N (µ, σ2).

7 For n ∈ N

8 For u ∈ Un: Simulate disruption process:

9 If t%fn = 0 and qn ≥ 0:node n is disrupted for duration αn

10 Else no disruption and qn = 0:

11 Simulating ordering process (periodic review):

12 a) If time for ordering and xunt ≤ gun:

13 place orders for each supplier, yunt = (gun − xunt)

14 b) If Order receive from supplier u and aunt ≥ 0:

15 update inventory level at node n, xunt = xunt−1 + (1− qi)aet,

e ∈ [u, n]

16 simulating transportation:

17 If time for shipping (t%he = 0, e ∈ [u, n]) and yunt ≥ 0: perform

shipping from each supplier u to node n

18 update inventory level at supplier u:

xunt = xunt−1 − (1− qn)aet, e ∈ [u, n]

19 End for Calculate back-orders and shipment delays

20 End for Calculate demand fulfillment resilience level zn

21 End for

22 Step 7: Calculate costs for each node n: Holding cost cn =
∑

u

∑
t onψxunt, and

back-order cost pn =
∑

u

∑
t νnibunt.
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2.3.8 Disruption Modeling

In the absence of detailed disruption models or data for the different node facilities and

transportation arcs of the case study supply network, the following logic is employed to

model and simulate disruptions for supply network resilience assessment:

• Risk index for specific facilities within a region are assumed to follow a distribution

centered around the regional risk index data obtained from IHS Markit. In particular,

overall risk scores are calculated as equally weighted averages of the six aggregate

risk factor categories outlined in Fig. 3. Overall, the IHS Markit risk index is scored

on a 0.1-10 logarithmic scale. The overall range is split into four bands, ranging from

low to extreme risk (Fig. 5).

Political Economic Legal Tax Operational Security

Government
instability
Policy in-
stability

Recession
Inflection
Currency
Capital
transfer
Sovereign
default

Expropriation
State alteration

Tax in-
crease
Tax insta-
bility

Corruption
Regulatory bur-
den
Labor strikes
Infrastructure
disruption

Protests
Terrorism
Interstate
war
Civil war

Table 3: Risk factors considered by IHS Markit in estimating regional risk index. (Source:
IHS Markit 2020)

• Given the facility’s risk index based on the regional risk index, disruption frequency

and intensity can be estimated for example by interpolating the risk matrix. Horizontal-

axis frequency value of 1% could correspond to an average disruption once every

100 weeks, and 10% corresponds to an average disruption once every ten weeks. As

for interpolating frequency and intensity parameters from the given risk index, here

is an example. Suppose for a given node risk index (rn) is 4 (falls into ‘High Risk’
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Figure 3: Risk Matrix of the four risk categories to obtain disruption frequency and inten-
sity.

yellow section of Fig. 3 with an index range of [3.3-6.4]) with horizontal-axis disrup-

tion frequency support of [0.5%-5%] and vertical-axis disruption intensity spanning

[30%-100%]. We first calculate the disruption index ratio λ as a function of given

risk index score for index support (i.e., [3.3-6.4]):

λ = rn−3.3
6.4−3.3

= 0.22

Given the disruption index λ, disruption frequency and intensity for the specific node

can be interpolated as follows:

fn = (0.05− 0.005)× λ+ 0.005 = 0.015

qn = (1− 0.3)× λ+ 0.3 = 0.45

Disruption duration (αn) can be short or long. In our case study, we assumed that

short and long-duration disruptions follow a uniform distribution with parameters

U[4,7] and U[8,14] days, respectively.
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2.4 Case Study Setting

The supply network for an automotive climate control system (Fig. 4) has been cho-

sen to demonstrate the applicability of the proposed deep-tier approach in the automotive

industry. The network is mapped with different types of nodes: assembly plants/focal

firm (white), warehouses (white), tier-1 suppliers (black), tier-2 suppliers (blue), tier-3

suppliers (yellow), and ports (white) with different transportation modes. The network

possesses 21 nodes and 20 edges, and shipping information (shipping time / shipment fre-

quency) are reported on the edges. Node connectivity and geographical locations are also

reported in the figure. For instance, the link between supplier S17 and the focal firm has

the shipping information (1
2
H/32D), meaning that shipping frequency is 32 times a day

with a half-hour delivery time, or shipments between S13 and focal firm (3D/1D) happens

once in a day, and each shipment takes three days. Nodes (or firms) are located in differ-

ent geographical zones, and the geographical distance (in miles) between two connected

nodes is used as the “weight" for the edge. The supply network contains two suppliers who

are located in France and South Korea that deliver parts via ship and truck (multi-modal).

Other nodes are located in Mexico and the USA, which deliver their products by truck in a

range of half hour to six days. Part names for each supplier are also reported in the figure.

For example, the compressor and Hex pipes are shipped by suppliers S33 and S22, respec-

tively. Final assembly plant demand is estimated based on historical data. Final assembly

plant and its suppliers (tier-1, -2, and -3) and assumed to employ (s,S) inventory policy.

During simulation, the inventory levels at suppliers, assembly facility, warehouses, ports,

or in transit is recorded for each time step for analysis. See Appendix.A for full details
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about inventory policy parameters, transportation lead-times and safety stock.

Figure 4: Case study supply network for an automotive climate control system.

FR: France, KR: South Korea, MX: Mexico, BR: Brazil, TX: Texas-US, NC: North Carolina-US, OH: Ohio-US
H: hours, D: days, W: weeks, M: months.

A “risk index" is incorporated into our study to address the overall supply risk imposed

by nodes located in challenging regions. Based on geographical location and its corre-

sponding geopolitical, legal, and economic changes, regional risk indices are available

from several sources. For illustrative purposes, here we employ the risk indices available

from global information provider IHS Markit and reported in (Fig. 5) [57]. Nodes of case

study are located in France, South Korea, Mexico, Brazil, and the USA with risk index 1.7,

1.5, 2.7, 2.5, and 1.6, respectively (lower the index, lower the risk). These indices are

employed for emulating disruptions during simulation as explained earlier.
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Figure 5: IHS Markit’s unique country risk - Last updated for Q2-2020

2.5 Experimental Results and Analysis

To test the hypotheses outlined earlier, we simulated the case study supply network

under each of the four scenarios (SC0, SC1, SC2, and SC3) for 700 days (T=700 days)

and with 10 replications.

2.5.1 Impact of Visibility on Resilience Assessment

Table 4 and Fig. 6 report the estimated average node resilience levels across replica-

tions under the different scenarios (i.e., different levels of deep-tier visibility). Resilience

assessment is carried out here by employing Eq.2.1.

Several observations can be made from Table 4. Under limited upstream visibility,

we can significantly overestimate node resilience and develop a false sense of security.

For the focal firm, the estimated resilience jumps to 70.75% and 85.36% from 63.86%,
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Node Focal Firm S11 S12 S13 S14 S15 S16 S17 S21

RL

SC0 63.86 71.17 86.57 89.85 87.89 74.75 75.74 68.49 96.03

SC1 70.56 83.45 89.92 94.77 90.63 79.84 80.41 72.34 100

SC2 85.36 97.91 96.94 100 97.9 87.91 88.03 97.91 NA

DC 7 5 4 1 1 1 1 2 2

Node S22 S23 S24 S25 S26 S27 S28 S29

RL

SC0 86.83 92.32 92.66 86.26 79.78 87.65 92.44 81.10

SC1 100 97.66 95.21 98.53 87.07 96.72 97.22 95.54

SC2 NA NA NA NA NA NA NA NA

DC 1 1 1 2 2 2 1 2

RL (Resilience Level); SC (Scenario); DC (Degree Centrality)
Base Scenario (SC0): Visibility to all three tiers of the case study network.
First Scenario (SC1): Visibility to just tier-1 and tier-2 suppliers.
Second Scenario (SC2): Visibility limited to just tier-1 suppliers, typical of most companies.

Table 4: Estimated node resilience under different levels of upstream visibility.

when we restrict visibility to just tier-2 and tier-1 suppliers, respectively. Scenario ‘SC0’

represents the complete supply network containing 21 nodes and 20 edges (tiers-1, -2,

and -3 suppliers), whereas ‘SC1’ scenario network carries not tier-3 suppliers and their

connections (possesses 17 nodes and 16 edges). Finally, the ‘SC2’ scenario network has

only tier-1 suppliers and their corresponding connections.

Extant supply network assessment literature does highlight the importance of node

degree centrality in identifying network vulnerabilities. Unfortunately, degree centrality

can vary a great deal based on the function of the node (e.g., warehouses by definition

tend to carry very high centrality). While correlation between centrality and estimated

resilience should be expected, node centrality measure is not adequate for proper resilience

assessment. Degree centrality for each node of the case study network is also reported

in Table 4. It shows that supplier S11, with the highest degree centrality, does exhibit

significant differences in estimated resilience under different visibility scenarios. Supplier

S23 exhibits the lowest degree centrality with the highest resilience changes, followed by
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Figure 6: Estimated node resilience for focal firm and tier-1 suppliers under different
levels of upstream visibility. [Full Visibility Scenario (SC0), Limited Visibility Scenario
(SC1),Typical Scenario (SC2)]

Supplier S24. It can be concluded that nodes with a high degree of centrality are critical

and vulnerable. However, comparing the resilience level of S17 and S21 with both carrying

2-degree centrality shows that other factors can also impact resilience. Two suppliers with

the same degree of centrality exhibit two different behaviors; supplier S17 demonstrates

more resilience changes than supplier S22. It indicates that supply chain parameters such

as inventory policy, shipment modes, and shipment frequency of each node need to be

considered. Just employing simple static network analysis metrics is not adequate for

reaching good resilience assessment accuracy.

Fig. 7 reports sample estimated order service level history for focal firm, tier-1 supplier

S11 with high centrality, and tier-1 supplier S13 with low centrality under different levels

of deep-tier visibility from a particular simulation run. Under limited deep-tier visibility,

we significantly overestimate order service level both for the focal firm as well as the tier-1
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suppliers. It also shows that the focal firm and supplier S11 with high centrality experience

more volatility in the service level.

2.5.2 Impact of Deep-Tier Visibility on Supply Cost and Responsiveness Assessment

Supply network resilience requires exploring multidimensional metrics. The structural,

operational, and resilience levels require to be investigated to develop a comprehensive

analysis. Making a decision-based all potential factors such as cost, shipment delay, lead

time, backordered, and profit margin could benefit the supply chain network and mitigate

disruption consequences. Developing the overall view of supply chain performance can

provide more practical solutions and strategies. This section analyzes holding and back-

order costs estimated for the focal firm under different levels of deep-tier visibility. We also

track on-time order delivery performance by each of the tier-1 suppliers under different
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Figure 7: Sample estimated order service level history for focal firm, tier-1 supplier S11

with high centrality, and tier-1 supplier S13 with low centrality under different levels of
deep-tier visibility. [Full Visibility Scenario (SC0), Limited Visibility Scenario (SC1), Typi-
cal Scenario (SC2)]
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Figure 8: Sample estimated holding and back-order cost history for focal firm under dif-
ferent levels of deep-tier visibility. [Full Visibility Scenario (SC0), Limited Visibility Sce-
nario (SC1), Typical Scenario (SC2)]
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Figure 9: Estimated order shipment delays by tier-1 suppliers under two different visibil-
ity scenarios. [Full Visibility Scenario (SC0), Typical Scenario (SC2)]

levels of visibility.

Fig. 16 tracks the estimated back-order and inventory holding costs for the focal firm

under three levels of deep-tier visibility for each quarter (three months) during one simu-

lation run. It is clear that costs are significantly underestimated when assessment is carried

out with reduced deep-tier visibility.

Fig. 9 reports the distributions for the order delivery lead-time delays experienced un-



38

der different levels of upstream visibility. For example, supplier S11 can have a maximum

of 12 days delay on delivery parts to the focal firm when we map and consider all three

tiers. Under limited visibility to just tier-1 suppliers, the maximum delay delivery is esti-

mated to be just 6 days. Other tier-1 suppliers show similar behaviors as well. Deep-tier

visibility can lead to a more realistic assessment of delivery performance for improved

management.

2.5.3 Impact of Consideration for Regional Risk on Resilience Assessment

To demonstrate the importance of accounting for differences in regional risks, we now

compare the results from two scenarios: SC0 - Accounts for differences in regional risks;

SC3 - Assumes that all nodes of the supply network carry similar and reasonably low risk.

Fig. 10 reports the differences in resilience assessment results from the different simulation

runs under the two scenarios. Ignoring regional risk differences causes us to overestimate

resilience for the focal firm by about 6%. We also see significant differences for several

suppliers. The increase can be attributed to consideration differences in regional risks as

well as the interaction of the resulting disruption patterns on operation policies of the

supply chain, as listed in Table 5.
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Risk index %RL Comment

Focal Firm 2.5 17.31% Risk: Six suppliers located in Mexico with risk index 2.5
and 1 US supplier with risk index 1.6.

T11 2.5 9.13% Risk: Two suppliers located in Mexico with risk index 2.5
and 2 US suppliers with risk index 1.6.
Performance: 5 days of delay in delivery from T34 to T11.

T12 2.5 8.23% Risk: Two suppliers located in Mexico with risk index 2.5
and one US supplier with risk index 1.6.
Performance: 6 days of delay in delivery from T31 to T12
with lack of adequate inventory at T12.

T14 2.5 6.22% Risk: One supplier located in Mexico with risk index 2.5.
Performance: Very low shipment capacity and inventory.

T17 2.5 17.62% Risk: One supplier located in Mexico with risk index 2.5.
Performance: 9 days of delay in delivery from T33 to T17
with low inventory level for T17.

Table 5: Summary of reasons for major changes in estimated resilience level under con-
sideration of regional risk indices.

Figure 10: Differences in assessed resilience level with and without consideration for dif-
ferences in regional risk indices (Scenarios ‘SC0’ vs ‘SC3’) along with node degree cen-
trality.

These results confirm that network resilience assessment should be performed by care-

fully considering deep-tier visibility, regional/firm risk differences, and impact of supply
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chain operational policies. Thus, the supply manager should utilize this guidance to de-

sign a network to minimize cost and obtain acceptable resilience levels.

2.6 Sensitivity Analysis

Multiple parameters can be uncertain in supply chain problems and decision-makers

try to obtain more information to reduce the uncertainty. As noted earlier, SA aims to en-

rich the proposed resilience assessment framework by capturing the factors that influence

simulation output.

Here, for illustrative purposes, we particularly investigate the sensitivity of focal firm’s

resilience as a function of uncertainty in regional risk indices for the different suppliers.

The regional risk indices for individual suppliers are considered random parameters and

we hold the other supply network parameters to be constant during SA. In particular,

the regional risk indices are allowed to follow a normal distribution with a coefficient of

variation of 0.5 (i.e., σ/µ) and the mean (µ) is set to be regional risk indices available from

IHS Markit.

Results from both the variance-based sensitivity index (SIi) as well as the moment-

independent Delta (δi) techniques are reported in Fig. 11. While the results from the two

methods vary a bit, they are directionally very consistent in identifying suppliers S11, S17,

S12, S13, and S25 to be key for effective network resilience for the focal firm. Such an anal-

ysis can help supply chain managers prioritize their efforts and devote more resources for

studying the key suppliers, data collection and parameter estimation. The critical suppli-

ers, such as S11 and S12, possess a high centrality degree, which confirms they need to be

considered essential suppliers. Suppliers S17 and S25 are connected to overseas tier-2 and
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tier-3 suppliers, located in a risky geographical location, and are also vulnerable to long

transportation lead-time delivery cycles.
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Figure 11: Comparison of sensitivity analysis measures for the focal firm in the case study
supply network.

The rankings obtained by the sensitivity measures give the decision-makers directional

guidance in which suppliers they must focus their attention and collect information. Miti-

gation strategies require to be defined for critical suppliers for possessing a high resilience

network.

2.7 Conclusion

We proposed an effective framework for resilience assessment within deep-tier supply

networks. The framework relies on discrete-event simulation informed by primary and

secondary data sources and global supply risk assessment/metric databases for improv-

ing resilience assessment. We also demonstrated the importance of deep-tier visibility for

an efficient resilience assessment using a case-study informed by a real-world automotive

supply network.A supply network has been mapped by considering real-world data with

deep tiers transparency and regional risk to enhance the network resilience level’s accu-

racy. We explore the number of lost demands for evaluating our approach and assess the
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operational metrics: holding and backorder costs and delivery delays.

The results indicate that the typical approach of considering tier-1 suppliers alone leads

decision-makers to overestimate supply network resilience and misjudge operational per-

formance. The results confirm that having deep-tier transparency and regional risk data

can improve resilience assessment and can lead to better supply network design or re-

design. In the sensitivity-analysis, the most critical suppliers in the network are ranked

according to two different sensitivity measures. This provides further direction for the

necessity of collecting additional data and allocation of resources within the network.

A potential challenge with the framework is collecting data for supply chain mapping

from a public secondary database (IHS MARKIT) and validating it. However, with better

processing of data, the proposed assessment framework provides feedback for the state of

the supply chain within a firm. This can further help obtain better resilience management

techniques. Especially, the recommendations from the framework are essential for prac-

ticing managers to evaluate the vulnerability of their supply chain network. Subsequently,

requiring better planning strategies to improve their resilience.
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CHAPTER 3 RESILIENCE MANAGMENT FRAMEWORK

3.1 Introduction

The modern supply chains are large-scale and complex systems with hidden vulner-

abilities due to the intricacy of supplier interaction, global competition, and escalating

customer expectations. Supply chain networks and all their components, such as retailers,

manufacturers, suppliers, etc., cope with many unforeseen events. According to McKin-

sey research, global supply chain shocks with high severity occur more frequently; for

instance, the unexpected disruptions with a duration of one month or more happen every

3.7 years, resulting in high financial loss of around 45 percent of one year‘s company earn-

ing [43]. The coronavirus outbreak [3] immediately decelerated the global supply chain

flows and activities in 2020 and caused a global shortage of critical parts such as semi-

conductors. This shortage created severe anxiety for the majority of firms; for example,

automakers had to halt their production in several factories across North America [34].

Other examples are Texas winter storm caused unexpected long shipping delays through

the supply network for a couple of months [110]. Japan earthquake and tsunami in March

2011 forced many companies to reduce their production [37], and the explosion at the

BASF factory in Germany in 2016 makes the considerable shortage of raw materials in the

global supply chain [80].

Globalization and an unstable environment put resiliency on the agenda of every indus-

try’s strategy planning step because resilient companies can quickly respond and return to

their original state when a disruption event happens. McKinsey survey verified that 93%

of supply chain leaders are expected to increase resilience across the supply chains by
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considering dual sourcing, increasing inventory level, and nearshoring strategies [4]. The

COVID19 pandemic highlighted that boosting the visibility on both the demand and supply

chain sides can enable organizations to minimize disruptions while improving productiv-

ity [43]. [116] presents that deep-tier visibility plays a critical role in an effective resilience

assessment of an automotive supply network. In the research studies, there is a trend of

assessing and managing deep-tiers supply chains resilience with defining proper recovery

or mitigation strategies [9,87].

Addressing resilience management from a supply chain point of view is drawing atten-

tion from both academics and industries [35, 39, 66, 77, 103, 116]. [118] illustrates that

pre-disruption mitigation strategies can be considered to design a resilient supply network

and alleviate the negative consequences of disruptions. In addition, supply chains can de-

sign contingency strategies to do intended actions after disruption’s occurrence [21, 36].

However, many organizations are unable to create proper and dynamic procedures for the

post or pre disruption management [39]. In addition, COVID 19 illustrates that a compre-

hensive view of the supply network through deep tier visibility is crucial to identify hidden

risks and mitigate disruption outcomes. McKinsey’s research reported that a limited num-

ber of large firms cooperate with their tier-1 suppliers to gather the detailed information of

large tier-2 suppliers to categorize critical inputs whether they are shipped from high-risk

suppliers [79]. In a fast-changing and complex environment, it is time to reimagine re-

silience management by considering high transparency to minimize the risks with minimal

cost.

Numerous methods have been proposed for supply chains resilience management, and

they can be categorized into two classes based on quantitative resilience approaches em-
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ployed: optimization [48] and simulation [113]. In recent years, the research studies

have benefited from the combination of two methods mainly because of its sustainability

to address risks. In supply chain resilience management, employing simulation-based op-

timization can allow business leaders to develop the range of possible scenarios they may

face. Furthermore, business leaders can implement stress tests through the deep-tier sup-

pliers’ network to ensure their strategies can succeed in a range of future scenarios [119].

However, the implication of simulation-based optimization methods is still scarce in supply

chain resilience management, and there are open opportunities to extended this area.

The key contributions of this study include the following: 1) providing a dynamic

resilience management framework for deep-tier supply chains; 2) developing a discrete

simulation-based optimization leveraged by historical and secondary data sources to assess

and optimize the focal firm resilience; 3) introducing an effective surrogate model based on

generating regressions model for each tier-1 suppliers, and 4) evaluating the performance

of proposed framework by running regular and operating disruption scenarios for tier-1,-2,

and -3 suppliers. We validate the framework relying on experiments derived from a real-

world dataset from a leading global original equipment manufacturer (OEM). The results

demonstrate the critical role of high transparency and deep-tier supply chains visibility on

dynamic and efficient resilience management, leading companies to reduce the disruption

cost and recovery time. Our framework is general and can be adjusted to various supply

networks ranging from pharmaceuticals to electronics and automotive industries, where

the goal is to optimize network resilience with affordable cost.

The rest of this study is organized as follows: Section 3.2 reviews the related literature

in the scope of supply chain resilience management. Section 3.3 describes the proposed re-
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silience management framework. Section 3.4 illustrates the details on the surrogate model

to optimize supply chain resilience combined with regression and discrete event simulation

with proper disruption settings.Section 3.6 presents results from a real-world case study.

Finally, section 3.8 provides some conclusions and directions for future research.

3.2 Literature Review

Resilience is a multi diminutions notation that has been expanded in supply chain man-

agement and comes from psychology, social, organizational science and ecology [41, 74,

99]. It refers to a system’s capacity to anticipate and recognize unanticipated events and

risks before they have a negative impact, and it illustrates how a system can quickly recover

to a stable or improved condition when a disruption occurs [131]. [121] summarizes the

critical dimensions of supply chain resilience as the timely capacity to plan, respond, and

revert to an original or more favorable state. According to some researchers, supply chain

resilience is a network-level construct that arises in non-linear and dynamic ways through

interacting suppliers’ adopting behavior and connections [46, 126]. Resilience can cate-

gorize into two perspectives: static and dynamic; static perspective refers to a resilience

system if it can absorb disturbance and return to its original equilibrium state when shocks

occur [13]. On the other side, the dynamic perspective is the ability of a system to evolve

and move over time to original or improved states [19,84].

Various supply chain resilience strategies, either proactive, reactive, or both, have been

used in the literature to reduce risks and increase efficiency [73]. Contracting with back

suppliers, increasing inventory and capacity levels, leveraging openness with information

sharing and supplier relationships, and implementing accurate demand forecasting are the
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most relevant resilience strategies [45, 53, 63]. Several empirical studies have been con-

ducted and demonstrated the efficacy of resilience strategies; they found that as resilience

capabilities grow and supply chain vulnerabilities decrease, supply chain resilience im-

proves [1]. Therefore, the supply chain resilience assessment is critical for leaders to

evaluate the current resilience strategies and make future actions or improvements. The

resilience triangle has been introduced by [49] to measure the resilience of a system and

conducted in supply chain management frameworks. For instance, [133] applied the re-

silience triangle to quantify resilience for the designed network by defining the nonlinear

function to describe the restoration behavior and finally introduced a resilience-based de-

sign optimization formulation.

To design/redesign the resilience supply chain, more research studies utilized simula-

tion [42, 88, 105] or analytical models [28, 64, 73] following optimizing techniques. Ac-

cording to supply chain management studies, quantitative and qualitative indicators have

been highlighted to design a resilience network. For example, [18] developed a mixed-

integer linear model to build a robust network by adding 11 quantitative indicators. [112]

proposed 10 qualitative resilience indices to configure a resilience network through the

game theory model. In addition to establishing an efficient approach for supply chain

resilience management, simulating random and targeted scenarios has been considered

by scholars through the optimization model [1, 61, 114]. [45] proposes a comprehensive

stochastic optimization to enhance the resilience level of the food supply chain by defin-

ing the number of resiliency strategies with generating plausible scenarios to evaluate

their model. [5] evaluates multiple resilience strategies to design/redesign the resilience

retail supply chain by modeling a stochastic optimization and considering post and pre-
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disruption scenarios. They demonstrate a meaningful trade-off between resilience and

cost efficiency by evaluating the impact of random and targeted disruption scenarios on

their framework running simulation combined with optimization.

Simulation-based optimization is an appealing combined strategy approach and a valu-

able tool for decision-makers who wish to determine which combination of parameters and

input configurations will result in the optimal system performance [132]. In the recent

review paper, [119] highlighted the benefit of employing simulation-based optimization

methods in supply chain resilience management. The author listed considering hybrid ap-

proached and surrogate models combing with simulation and machine learning as future

research opportunities. In addition, [85] presented a unique approach for dealing with

supply chain management in the face of demand uncertainty, concentrating on optimizing

a large-scale mixed-integer nonlinear problem utilizing discrete event simulation-based

optimization. However, there are scarce studies implementing simulation optimization for

designing resilience supply networks by running different scenarios.

Motivated by these studies, this paper extends the literature to address the following

gaps. First, we consider the deep-tier visibility to resilience management and optimize the

recovery and mitigation strategies informed by secondary data sources. Second, we assess

the resilience of the supply network by integrating discrete event simulation and optimiza-

tion formulation. Finally, we demonstrate how utilizing the secondary data sources with

deep–tier visibility can generate a more actionable and resilient network with minimal

cost.
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3.3 Methodology

This research study proposes an effective resilience management framework to opti-

mize the mitigation strategies for a deep-tier supply chain network. The simulation-based

optimization has been used in the proposed framework, shown in Fig.12. The resilience

management framework’s main steps are as follows: Step 1: Formulate optimization prob-

lem, specify the objective function and decision variables related to our network structures,

and gain optimal values. Step 2: Generate initial sample points by implementing the De-

sign of Experiment method (DOE) [70, 75]. Step 3: Simulate a deep tier supply chain

network to assessing the resilience level for current optimal values from step 1, and all

initial sample points are collected from step 2. If the focal firm’s resilience level does not

satisfy the resilience target, the current mitigation strategies need to be improved, and we

go to step 4 to develop the surrogate model. In step 4, the relationship between the value

of decision variables (output of step 1) – resilience levels (output of step 3) is created for

Figure 12: Simulation-based optimization framework
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each tier 1 supplier by using a linear regression model (see section 3.5). Step 5: The linear

regression models are added to the optimization problem, and then the updated optimiza-

tion problem is solved. In step 5, we will have new optimal values of decision variables,

and we jump to step 3 to assess the resilience level. Finally, these framework steps will be

continued till we reach to target resilience level.

3.3.1 Supply chain network

Recent research studies [32, 33, 62, 115] highlighted how a high level of transparency

and visibility through supply chain networks could improve resilience management and re-

duce the negative consequences of disruption with affordable cost and acceptable recovery

time. Therefore, In this study, we analyze and simulate a deep-tier supply chain network

based on a real-world automotive industry informed with secondary data sources. Sup-

ply chain network structures consisting of a focal firm (OEM), three tiers’ suppliers, their

connections, and related policies following the same networking setting suggested by the

study [116]. The focal firm can be a global automotive original equipment manufacturer

(OEM) or final assembly plant for this research study. The tier-3 supply network includes

suppliers, warehouses, transportation modes, inventory, and shipping policies information.

The nature of supply chain resilience management is multi-dimensional and different

ways have been provided to measure and assess the impact of short- or long-term dis-

ruptions [19, 133]. The proposed resilience management framework is well suited for all

available performance metrics such as service level, lead time, capacity utilization, etc. In

this research study, the lost demand (fill rate) frequently cited in the literature has been ap-

plied as the performance metric [24,116]. Disruption in supplier location, production, and

transportation may reduce the availability of the final product for the customer, and the
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final focal firm such as OEMs and retailers could not satisfying customer demand. Let Rn

and Rn(t) denote the total resilience and the resilience at time t for each network compo-

nent; since the performance metric describes the ratio of lost demand at each component,

then Rn for each component can be expressed as follows:

Rn(t) = 1− LDn(t)

TDn(t)
, ∀n ∈ N, t ∈ T. (3.1)

Rn =

∑T
t=0Rn(t)

T
, ∀n ∈ N. (3.2)

3 In the above equations (3.1,3.2) T is the duration of the data collection period and N is

Set of nodes for a given supply network. In Eq. 3.1, LDn(t) and TDn(t) describe the lost

and total demand at supplier n and time period t.

3.3.2 Strategies

Companies and automotive industries usually run the market analysis to determine the

potential suppliers and then keep two suppliers offering more competitive unit and tooling

costs and quality. Finally, the company will choose one supplier with appealing pricing and

quality. In addition, the company can prefer to have single sourcing and sign a contract

with one supplier to take advantage of Just In Time (JIT). However, when any disruption

occurs in the future, the company will be exposed to the risk of satisfying demand due to

single supplier delay delivery or temporarily shutting down. Therefore, the company can

opt for different mitigation strategies. The proposed resilience management framework

incorporates the following mitigation strategies which enable a resilient network:
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• The company can mitigate disruption at the primary supplier location by holding an

extra capacity regardless of single or dual sourcing. However, there is a limitation to

keep extra hold excess inventory at the primary supplier location.

• The company can sign a contract with a secondary supplier and order parts only

when the primary supplier is disrupted. It means when the primary supplier fails to

deliver parts, pre-qualify secondary supplier can cover the backordered as much as

its capacity permits. Just secondary supplier needs time to the preparation and starts

production.

• The company can sign a contract with a backup supplier. For instance, the company

can invest in working with a more reliable supplier with minimum risk. When the

primary supplier’s operation is disrupted, and the secondary supplier could not cover

the backordered, the backup supplier can deliver the required parts after preparation.

3.4 Implementation

This section presents details on simulation-based optimization steps to develop a dy-

namic supply network resilience management in practice.

3.4.1 Optimization Formulation

Based on the proposed framework description in section 3.3, in this section, the mathe-

matical formulation for risk mitigation is developed to minimize total strategy costs of the

whole supply chain network. An overview of the notation used throughout the proposed

model is present in Table 6.
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Min
∑
k∈K

∑
j∈J

(fkjvjk + qkjlkj) +
∑
k∈K

rkψkDak+

∑
k∈K

ckek +
∑
k∈K

bkzk +
∑
k∈K

hksk

Subject to:

Sets

K Set of distinct parts, indexed by k ∈ K
J Set of discount breakpoints, indexed by j ∈ J .
Variables

xk Capacity for part k at primary supplier, as a fraction of D
sk Safety Stock for part k at primary supplier, as a fraction of D.

(D expected daily demand for the planning horizon)
ek Binary variable indicating the selection of a secondary supplier for part k
yk Capacity for part k at secondary supplier, as a fraction of D
zk Binary variable indicating the selection of a back-up supplier for part k
tk Target inventory level for part k
ak Capacity for part k at backup supplier as a fraction of D
vkj Auxiliary variable to link the primary supplier capacity quantity to

the piece-wise linear capacity cost.
lkj Auxiliary variable to link the secondary supplier capacity quantity to

the piece-wise linear capacity cost.
nkj A binary variable: if wj ≤ ψkDxk ≤ wj+1 then njk = 1, otherwise njk = 0.
okj A binary variable: if wj ≤ ψkDyk ≤ wj+1 then ojk = 1, otherwise ojk = 0.

Parameters

fkj Unit cost of reserving capacity for part k from primary supplier at the break point j.
hk Unit cost of holding inventory capacity at primary supplier for part k .
ck Fixed cost of selecting secondary supplier for part k (include tooling and contract cost)
qkj Unit cost of reserving capacity for part k from secondary supplier the break point j.
bk Fixed cost of selecting backup supplier for part k
rk Unit cost of reserving capacity for part k from backup supplier
mk Maximum surplus capacity for part k from primary supplier
gk Maximum reserved capacity for part k from secondary supplier
pk Maximum reserved capacity for part k from backup supplier
wj The capacity on breakpoint j
D Expected daily demand for final product during the planning horizon
ψk Usage rate of part k in final product

Table 6: Nomenclature
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xk + yk = 1 ∀k ∈ K (3.3)

ψkDxk ≤
∑
j∈J

wjvkj ∀k ∈ K (3.4)

vk1 ≤ nk1 ∀k ∈ K (3.5)

vkj ≤ nkj−1 + nkj ∀k ∈ K, j ∈ 2, ...J − 1 (3.6)

vkJ ≤ nKJ−1 ∀k ∈ K (3.7)∑
j∈J

vkj = 1 ∀k ∈ K (3.8)

∑
j∈J

nkj ≤ 1 ∀k ∈ K (3.9)

ψkDyk ≤
∑
j∈J

wjlkj ∀k ∈ K (3.10)

lK1 ≤ oK1 ∀k ∈ K (3.11)

lKj ≤ okj−1 + okj ∀k ∈ K, j ∈ 2, ...J − 1 (3.12)

lKJ ≤ oKJ−1 ∀k ∈ K (3.13)∑
j∈J

lkj = 1 ∀k ∈ K (3.14)

∑
j∈J

okj ≤ 1 ∀k ∈ K (3.15)

ek ≤ 1 ∀k ∈ K (3.16)

zk ≤ 1 ∀k ∈ K (3.17)

xkψkD ≤ mk ∀k ∈ K (3.18)

ykψkD ≤ gkek ∀k ∈ K (3.19)

akψkD ≤ pkzk ∀k ∈ K, (3.20)

(3.21)
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sk > 0 ∀k ∈ K (3.22)

xk, yk, ak ∈ [0, 1]; zk, ek, vkj, lkj, nkj, okj ∈ {0, 1}; sk ∈ R (3.23)

The objective function (Eq.3.3) minimizes the total cost is consisted of: reserve ca-

pacity at primary and secondary supplier location, fixed cost of the singing contract with

secondary and back up suppliers, cost of purchasing parts from backup suppliers, and total

cost of holding of safety stock at primary supplier location.

Constraint 3.3 grantees a percentage of capacity is reserved as primary or secondary sup-

pliers or both of them. Constraints 3.4-3.15 are related to piece-wise linear reserving

capacity at primary suppliers with unit piece price fkj and secondary suppliers with piece

price qkj. Constraint 3.16 ensures that at most one secondary supplier is chosen for part

k. Similarly, constraint 3.17 makes sure that at most one backup supplier is chosen for

the part k. Constrain 3.18 guarantees that the level of regular capacity reserved at the

primary supplier does not exceed the maximum capacity level of the primary supplier.

Constrains 3.19 and 3.20 ensures that the total amount of reserve capacity from secondary

and backup suppliers is not greater than the maximum allowed reserved capacity. Finally,

constraints 3.22 and 3.23 represents bounds on decision variables.

The optimization model has been used to find the optimal mitigation strategies for a given

supply chain network. Then, this strategic plan will be considered as input for the simula-

tion step to verify the model.
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3.4.2 Simulation

In this section, simulation framework is developed to assess the supply network re-

silience and verify the performance of mitigation strategies (section 3.4.1).

3.4.3 Design of Experiment

The experiments are a crucial part of the engineering and simulation process because

they help decision-makers and managers to understand how systems and processes work.

The validity of simulation outcomes and decisions are dependent on how the experi-

ments are conducted; for this reason, we employ the Design of Experiment (DOE) method

[70, 75] . We generated 14 initial sample points of decision variables, including primary

capacity (xk), secondary capacity (yk), backup capacity (zk), and safety stocks (sk) for tier-

1 suppliers by applying a two-level factorial with center points. We have chosen the initial

sample points that satisfy the following conditions:

3xkD + ykD ≥ λαψkD, ∀k ∈ K. (3.24)

For this study in Equation 3.24, α = 0.95, which is equal to network service level and

λα can obtain by looking at standard normal distribution (N(0, 1)). All initial sample

points have been considered as input settings for the deep tier supply network. Then the

given network has been simulated based on regular disruptions and other policy settings.

Finally, the resilience is estimated and considered as output for the linear regression model

for each initial sample point.
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3.4.4 Supply Network Simulation

The automotive industry is a complex dynamic network consisting of diversified bill

of materials, various nodes with different roles, and diverse connections between them

such as material, financing, and information flows. This supply chain network is not easily

controllable and predictable in facing disruption events due to its high level of complex-

ity. Therefore, automotive supply chain managements are looking to provide an effective

decision support system to plan, design, and control the whole network to improve its

resilience and efficiency. In the literature [98, 130], simulation, especially Discrete Event

Simulation (DES), is an appropriate method to tackle the complexity and other outstand-

ing issues such as failing to provide the analytical analysis. Thus, the DES model would be

the most appropriate approach to assessing complex networks’ resilience when disruption

events can halt production. Mainly, decision-makers can include the dynamics and the

simplicity of modeling through the supply chain system analysis by employing DES [2].

Ultimately, DES can capture the uncertainty and complexity and is well-suited for complex

supply chain studies. There are several commercial DES software. We used the Simpy

(Python package) [86] because it gives us the flexibility to generate different network

structures by integrating with the NetworkX package [91], defining various random dis-

ruptions, and designing valuable Performance Indexes dashboard using available Pythons

features. This study follows the same steps of the current study by [116] for implement-

ing DES simulation through the supply chain network with considering inventory policies,

shipment policies, and demand generation for each supplier located in different tiers. All

results related to the real case study in the section are obtained from the DES simulation
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algorithm using python Packages.

3.5 Surrogate Model

As noted earlier, supply chain resilience management is multi-dimensional in nature,

and decision-makers need to optimize all key performance metrics such as capacity utiliza-

tion, costs, lead times, service levels, and so on. Our resilience management framework

establishes a surrogate model in the optimization section by generating linear regression

for each tier-1 supplier. Algorithm 1 describes how surrogate model is created and opti-

mization model is updated during resilience management framework.
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Algorithm 2: Surrogate Model

1 Step 1: Define the initial optimization formulation refer to Equations 3.3-3.23 and

solve the model.

2 Step 2: Run network simulation (see section 3.4.4) for initial sample points and

optimal values of decision variables to estimate the resilience (section 3.3.1) of

each tier-1 supplier.

3 Step 3: Generate the regression models based on simulation results (see section

3.5.1) for each tier-1 supplier.

4 Step 3: Add new/updated constrains to initial optimization formulation

(Equations 3.26-3.29).

5 Step 4: Solve the updated optimization problem and obtain the optimal values of

decision variables.

6 Step 5: Run network simulation for new optimal value of decision variables and

estimate the resilience levels.

7 If Rf = R̄F :

8 the optimal mitigation strategies for each tier-1 supplier has been defined.

9 Else Move step 3.

3.5.1 Linear Regression Model

In the regression model, tier-1 suppliers resilience levels are considered as dependent

variables, and the amount of reserve capacity at primary(xk), secondary(yk), and backup

suppliers(zk), and safety stock (sk) has been considered as independent variables. To

define the surrogate model for our framework, we have k ∈ K suppliers with different

resilience levels (Rk) obtained from simulation step, and a set of independent variables:

Xk = xk ∗D ∗ ψk, Yk = yk ∗D ∗ ψk, Zk = zk ∗D ∗ ψk, sk. The goal here is to maximize the
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values of focal firm resilience with considering its multi-dimensional nature such as mini-

mizing cost or delay delivery. We can update the our optimization problem as following:

1) Regression: generate a linear relationship between resilience levels and other indepen-

dent variables. The linear regression is employed for modeling, the result is:

Rk = fRk
(Xk, Yk, Zk, sk) = β0 + β1Xk + β2Yk + β3Zk + β4sk + ϵRk

k ∈ K

RF = fRF
(R1, R2, ....., Rk) = γ0 + γ1R1 + γ2R2 + .....+ γkRk + ϵRF

k ∈ K

2) Optimization:

Our dependent and independent variables are (mostly) continuous and we have k + 1

dependent variables. Our primary interest is minimizing cost, while satisfying value of RF

and Rk, k ∈ K to reach the target focal resilience level R̄F (Eq. 3.2).

Min Cost (Eq.3.3) (3.25)

RF ≥ R̄F (3.26)

|RF − (γ0 + γ1R1 + γ2R2 + .....+ γkRk)| ≤ θσ̂ϵRF
(3.27)

|Rk − (β0 + β1xk + β2yk + β3zk + β4Ik)| ≤ θσ̂ϵRk
∀k ∈ K (3.28)

RF , Rk ∈ R+ (3.29)
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The accuracy and robustness of the results rely on how the regression models are per-

fect with high accuracy. Since the regression models are not guaranteed to be perfect,

we added slacks to our regression models to cover the imperfection. The slack defines as

θ ∗σ, where σ represents the regression model standard error, and a smaller value of θ will

create the strict constraints. Finally, Equations 3.2 - 3.29 will be added to optimization

model.

3.6 Results & Managerial Implications

3.6.1 Automotive Supply Network Setting

We demonstrate the capability of the proposed deep tier resilience management frame-

work on a real supply network for an automotive climate control sub-system. A tier-3

supply chain network belonging to a global automotive original equipment manufacturer

(OEM) located in North America has been designed. The network consists of different sup-

pliers located in various locations with different regional risk Indexes (for details, refer to

Table 7). In Table 7, regional risk indexes are obtained from the IHS Markit website [57],

a distinguished secondary database. Daily production volume related to the final assembly

plant follows the normal distribution N (µ = 410, σ2 = 100), and the (s,S) inventory policy

has been considered for all tier-1,-2, and -3 suppliers and final assembly plants.

Suppliers ID Location Risk Index
Final Assembly Plant, S11,S12,
S14,S15,S16,S17,S21,S22,S27

MX 2.7

S13,S23,S24,S28,S32 USA 1.6
S25 FR 1.7
S26 KR 1.5
S31 BR 2.5

FR: France, KR: South Korea, MX: Mexico, BR: Brazil

Table 7: Location with IHS Markit’s unique country risk. (Source: IHS Markit 2020; Up-
dated Q2-2020)
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Figure 13: Case study supply network for an automotive climate control system.

H: hours, D: days, W: weeks, M: months.

On Fig. 13 shipping information including shipping mode, duration, and frequency

between suppliers in different tiers, tier-1 suppliers and final assembly plant has been

determined. For instance, between suppliers S26 and S17, there are two types of shipping

modes with three different settings. First, it has road shipping which happens every three

weeks, and each delivery takes one day; Then, it switches to sea shipping happened every

two months with seven weeks delivery duration. Part names for each supplier reveal in Fig.

4; for instance, suppliers S15 and S23 shipped A/C Ducts and Motors to the final assembly

plant and supplier S11, respectively. Lead time and other supply network settings such as

holding cost, backordered cost, initial inventory, safety stock, and shipment capacity follow
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the same setting suggested in the study by [116]. All key performance metrics such as lost

demand, costs, lead times, service levels, and capacity utilization have been tracked in this

case study. In addition, the lost demand has been considered a key performance function

to assess the resilience level of the focal firm and all suppliers during the simulation.

3.6.2 Simulation Settings

As noted in section 3.4.4, DES has been chosen as the well-suited method to assess

network resilience. Once the optimal strategies and capacity levels of primary, secondary,

and back suppliers are obtained under given scenarios, the deep tier supply network is

simulated for T = 1, 095 days with a wrap-up of 90 days and 10-time replications. During

the simulation, regular disruption frequency and intensity are estimated according to risk

index (for details, refer [116]), and all expected performance metrics and resilience level

(section 3.3.1) for final assembly plant and tier -1 suppliers are measured. The following

visibility scenarios are defined and considered for simulating the defined case study to

evaluate the effectiveness of the proposed resilience management framework in the deep-

tier supply network.

• Full Visibility(SC0): Visibility to all major tiers of the supply network. Further up-

stream suppliers are assumed to be perfectly reliable and do not experience disrup-

tions.

• Typical Scenario (SC1): Network visibility limited to tier-1 suppliers.

A personal computer with Intel Corei5-6300U CPU (2.4 GHz) with 8.00 GB RAM has

been used for running the proposed simulation-based optimization. In the following sub-

sections, we discuss the results of optimal mitigation strategies to reach the given target
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Figure 14: Estimated node resilience for focal firm (FF) and tier-1 suppliers under differ-
ent levels of upstream visibility and different resilience target level [Full Visibility Sce-
nario (SC0), Typical Scenario (SC1)]

resilience levels for different levels of visibility with a brief discussion of significant man-

agerial insights obtained from our study.

3.6.3 Optimal Resilience Strategies for Deep-Tier Supply Network

This section provides details of computational experiments across simulation replica-

tions under the different scenarios (i.e., different levels of deep-tier visibility) for three

focal firm target resilience levels (%95, %97.5, and % 99).

Fig 14 compares two levels of visibility under three different target resilience levels.

The results confirm that there is an overestimation of resilience in all scenarios when the

supply chain network focuses on tier-1 suppliers. Moreover, the resilience overestima-

tion is very tangible (Fig.14a) when decision-makers do not set any resilience level and

consider any mitigation strategies. However, our resilience management framework can

reduce this gap but still, this overestimation of resilience levels could not be ignorable, and
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Figure 15: Optimal reserve capacity level at primary and backup suppliers for different
resilience target level [Full Visibility Scenario (SC0), Typical Scenario (SC1)]

Fig.14.b verifies the indigence of considering extra information and deep-tier visibility to

reach the expected resilience in all tier-1 suppliers and focal firms. In addition, Fig.14.b

compares the resilience levels of tier-1 suppliers and focal firms when the focal firm re-

silience target level has been set as %95 and %99. The results illustrate that for the %99

resilience level, supply chain managers need to define optimal mitigation strategies that

can keep most of the tier-1 suppliers in the %99 resilience level. However, there is not

this high tightness for tier 1 suppliers in %95 scenarios. For instance, in the %99 target

resilience level, almost five of seven tier-1 suppliers have posed the %99 resilience level in

comparison %95 scenarios in which just three tier-1 suppliers need to satisfied the max-

imum resilience. Finally, it can be concluded that our effective resilience management

framework demonstrates consistent performance in different visibility scenarios and how

the optimal mitigation strategies can cover all tier-1 suppliers’ vulnerabilities to reach an



66

acceptable level.

Fig.15 reports the level of reserve capacity at primary and secondary suppliers for all

tier-1 suppliers in our case study under different visibility scenarios and target resilience

levels. The results present more reserve capacity at primary suppliers when the supply

chain network has limited visibility on the tier-1 suppliers. However, in another scenario

with posing visibility and transparency beyond tier-1 suppliers, the resilience management

framework suggests more reserve capacity on the secondary supplier location to reach

the expected resilience level. Fig.15 highlights that when the supply chain network is

looking for a higher resilience level, the optimal mitigation strategy offers more reserve

capacity levels in primary suppliers in comparison to secondary suppliers, which can be

because of considering the trade-off cost - resilience level. In the following section 3.7

other performance indexes (KPIs) will discuss under different target levels to find how the

proposed framework can be effective and efficient.

3.7 Supply Cost and Responsiveness Assessment

Fig.16 plots the holding and backordered costs under three mitigation plans scenarios:

1. no mitigation strategies, 2. consider %95 target resilience level, 3. consider %99 target

resilience level. For the length of simulation (around three years), the resilience manage-

ment framework can improve the lost demand and reach expected resilience at the focal

firm by experiencing a gentle and negligible increase in holding cost. By implementing the

proposed resilience framework, we significantly reduce backordered cost, for instance, in

average %33 and %41 reductions when supply network moves from no mitigation strate-

gies to considering %95 and %99 targeted resilience level, respectively. In addition, we can
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Figure 16: Estimated total holding and back-ordered cost for focal firm under different
levels of deep-tier visibility and target resilience level [Full Visibility Scenario (SC0), Typ-
ical Scenario (SC1)]

see the same and consistent behavior under different visibility scenarios, which can prove

that the proposed framework is efficient. There is a minor increase in backorder costs

compared to full visibility of the supply network (SC0) with limited or typical visibility

levels.

As noted earlier, resilience is multi-dimensions, and shipment delays or lead-time de-

livery is one of the critical performance metrics that has been considered in this research.

Fig.17 reports the distribution of order shipment delays of suppliers tier-1 under two cat-

egories (without mitigation strategies and with mitigation strategies reaching to %99 re-

silience target level) with different visibility levels. For instance, when the supply network

does not consider any mitigation strategies, supplier S11 shows the maximum 9 and 4 days

delays delivery to focal firms under full (SC0) and limited (SC1) visibility scenarios, re-

spectively. On the other side, proposed resilience management optimizes the mitigation
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strategies to reach the %99 resilience level the supplier S11 poses the maximum 4 and 3

days delays delivery under two deep and typical visibility scenarios. The results show that

the proposed framework can lead to a more reliable delivery time with minimum shipment

delays than the network without affordable strategies.

3.7.1 Optimal Resilience Strategies for different slacks setting

As noted in section 3.5.1 regarding adding slacks (θ) to cover the imperfection of re-

gression models, Table 3.7.1 reports detailed results under various slacks values when the

supply chain network poses the full visibility with %97.5 target resilience level. The esti-

mated tier-1 suppliers’ resilience levels, holding cost, backordered, primary and secondary

reserved capacity levels with inventory level have been compared, and it demonstrates

Figure 17: Estimated order shipment delays by tier-1 suppliers under two different visi-
bility scenarios and mitigation strategies [Full Visibility Scenario (SC0), Typical Scenario
(SC1)]
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θ=2 θ=0 θ=1 θ=3
R2 0.77 0.86 0.81 0.69
Focal Firm (RF ) 97.56 97.5 97.54 97.8
S11 (R1) 97.62 97.58 97.63 97.85
S12 (R2) 98.03 97.63 97.96 98.31
S13 (R3) 98.23 97.57 97.92 98.46
S14 (R4) 97.98 97.61 97.83 98.19
S15 (R5) 98.02 97.93 98.01 98.16
S16 (R6) 97.61 97.65 97.63 97.88
S17 (R7) 97.78 97.53 97.74 98.09
Holding Cost (Per Year) $28,071 $27,018 $27,950 $29,837
Backordered Cost (Per Year) $9,012 $9,901 $9,175 $8,579
Primary Capacity Cost (Per Year) $418,004 $408,016 $417,094 $421,133
Secondary Capacity Cost (Per Year) $175,632 $175,448 $175,514 $184,189
Inventory Level (Per Month) 1115 1116 1127 1186
Max Inventory Level (Per Month) 2159 2161 2164 2205
Min Inventory Level (Per Month) 0 0 0 0

R2:R squared for regression model with dependent variable is Focal Firm Resilience Level (RF )
R: Resilience Level Eqs.3.1-3.2

Table 8: Comparison proposed framework with different slack values for generate regres-
sion function under target level %97.5

more tightened behavior for supply chain network when θ = 0 (minimum values). For in-

stance, in θ = 0 the costs and variance of suppliers’ resilience level are lower in comparison

to θ = 2 or 3. Also, the proposed prove the constancy behavior under different simulation

settings (θ=0,1,2, and 3), and just negligible increase can be seen in costs and inventory

levels when θ’s value has been changed from 0 to 1.

3.8 Conclusion

The supply chain network must design or redesign more resilient in the face of an un-

certain environment with more frequent or severe disruptions. The automotive industry is

a complex and vulnerable supply chain network due to globalization and a lack of trans-

parency beyond tier 1 suppliers, which increases the supply chain’s exposure when one of

the suppliers in the network shutdowns for a couple of weeks. Therefore, developing ef-

ficient and practical network resilience management to optimize the mitigation strategies
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while considering assumptions such as mapping deep-tier networks, real-time inventory

policies, and related shipment policies is vital for decision-makers. The current research

study was designed to develop a dynamic resilience management framework that is in-

formed with secondary data sources to optimize the mitigation strategies of a deep-tier

supply chain network. The dynamic framework has been tested with a deep-tier supplier’s

connection with a real-world and complex automotive supply chain network. The mitiga-

tion strategies have been evaluated with regular disruption scenarios to understand which

tier -1 supplier will be fragile and vulnerable in the face of disruptions. The framework and

tests reflect the real risk that OEMs can face, and the results illustrate the importance of

considering regional risk and deep-tier visibility. This framework allows decision-makers

to choose the best strategies that better fit their network structure and risk profiles.

In this framework, feasible mitigation strategies such as reserving backup capacity with

a primary supplier, reserving capacity from a secondary supplier, contracting with a backup

supplier, and creating initial inventory have been considered. Due to the multidimensional

nature of the supply chain resilience network, the optimal mitigation strategies for given

disruptions have been chosen by reviewing the different performance indexes such as cost,

capacity utilization, lead time, and delay delivery. The results demonstrate that relying

on primary and secondary capacity while facing random and low severity disruption and

moving to utilize the backup capacity for critical suppliers in long disruption scenarios.

In addition, the results verify the impact of ignoring deep-tier visibility on the total cost

is facing severe disruption with a high value of recovery duration through the network.

However, providing the proper mitigation strategies by considering a high level of visibility

can alleviate the consequence of extreme disruptions.
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Potential future research is considering the effect of supply chain structures of different

industries on the recovery and mitigation strategies. It means how this dynamic resilience

management can be compatible with other industries such as electronics with different

structures and risk profiles, and how they can benefit by implementing this framework.

Other future research directions can be modeling stochastic and risk-averse formulation to

consider more scenarios and validate the framework while considering worse case scenar-

ios or other uncertainty such as demand disruption.
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CHAPTER 4 CONCLUSION & FUTURE RESEARCH

4.1 Conclusion

Globalization, combined with growing market and environmental risks/uncertainties,

is forcing companies across industries to design more resilient supply networks. The

COVID-19 pandemic and the semiconductor chip shortage problems of 2021 have clearly

demonstrated that global supply chains are not resilient and quite vulnerable to all sorts

of natural disasters and man-made disruptions. As for academic literature, most of the

suggested frameworks for network resilience management either lack practical utility or

incomplete (e.g., by limiting the focus to just immediate suppliers). There is strong evi-

dence that over 50% of the risks to firms stem from deeper tiers of the supply network.

To address these issues, we developed an effective resilience assessment and management

framework for complex deep-tier supply networks. In the absence of deep-tier visibility,

our research demonstrates that firms are likely to overestimate network resilience and fail

to manage them effectively.

The proposed resilience assessment methodology consists of four modules: 1) Mapping

the supply chain network and setting related parameters/policies; 2) Generating (routine

and rare-event) disruption scenarios; 3) Simulating the network; and 4) Conducting re-

silience assessment considering multi-dimensional performance metrics. Discrete-event

simulation has been chosen as the primary method to simulate supply networks. For gen-

erating disruption events and define related parameters such as severity and frequency,

we utilized the regional risk indexes by looking at public secondary data sources. Given

that most Western firms lack deep-tier supply network visibility due to arms length rela-
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tionships with most suppliers (unlike Japanese firms such as Toyota), the growing list of

secondary data sources from firms such as Marklines and IHS Markit can help alleviate this

problem for mapping the deep-tier networks during assessment. We implemented the pro-

posed framework by integrating two python packages, NetworkX for tracking the network

connections and structures and SimPy for programmatically implementing discrete-event

simulation models and tracking resilience metrics. Our experiments informed by a real-

world automotive case study demonstrate the effectiveness of the proposed supply network

resilience assessment methodology.

We also propose an effective resilience management framework that efficiently lever-

ages simulation-based optimization. For illustrative purposes, we considered the mitiga-

tion strategies typical in the automotive industry, such as dual sourcing, reserve capacities

(at primary or secondary suppliers), and contracts with backup suppliers besides carry-

ing safety stock. Sourcing and transportation mode decisions can be easily incorporated

into the framework. The method seeks to minimize the cost of risk mitigation strategies

while attaining the target resilience. The framework is flexible and can entertain other

objectives and constraints. Given that simulation-based optimization methods can be com-

putationally expensive, we employ surrogate models that relate supply network resilience

performance to network design parameters within our mathematical programming formu-

lation. Without loss of generality, the surrogate models are based on linear regression

models that define the relationship between focal firm and tier-1 suppliers’ resilience lev-

els and network design decision variables. The imperfections of the regression models are

accounted for in the formulation through constraints with slack (function of the RMSE of

the regression model). We demonstrate that optimal resilience management would stem
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from jointly allocating safety buffers (e.g., capacity, inventory levels) across the network

and not by independently applying a simplistic/static set of rules for all nodes/arcs. Our

validation experiments with a real-world case study informed by secondary data from pub-

lic data sources confirm the effectiveness and efficiency of the proposed supply network

resilience management method.

4.2 Future research

There are several avenues for future research. First and foremost, the proposed method-

ology should be tested and refined with additional automotive case studies across geo-

graphical regions. The proposed methodology is general and should prove to be useful for

other industries as well. A potential future research extension is adding the impact of firm-

level risk heterogeneity factors like financial performance, inadequate manufacturing or

processing capability, low-process stability, and changes in technology within the primary

regional risk indices to the proposed deep-tier resilience assessment framework. As noted

earlier, most Western firms lack deep-tier supply network visibility due to arms length rela-

tionships with their immediate suppliers. Given this, the suppliers are generally unwilling

to share much information about their own suppliers for lack of trust. To overcome this

difficulty, future research can explore the possibility of developing resilience “adjustment

factors" based on the type of commodity and/or supply network structure, while limiting

the resilience assessment to just tier-1 suppliers. There are also opportunities to improve

the proposed sensitivity analysis methods for identifying critical suppliers and network

operation policies.

The efficiency of the proposed resilience management methodology can be improved
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by improving the surrogate model accuracy for the simulation-based optimization frame-

work by incorporating supply network structure parameters into the regression model or

incorporating nonlinear regression functions. Finally, future research can explore mod-

eling stochastic and risk-averse formulations to consider more scenarios and validate the

framework while considering worst-case scenarios or additional uncertainty around both

supply and demand disruptions.
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APPENDIX A

Case Study Network Attributes & Parameters

Inventory policy parameters and transportation lead-times employed for the case study

supply network:

• Target service level for inventory management at all supply network nodes is as-

sumed to be β = 0.95 (i.e., 95%).

• Holding cost rate is assumed to be 0.041% of unit price per day. Holding cost = Piece

price ($US/Unit)× Finished good inventory (Units/Day)× 0.00041.

• Initial inventory at the start of the simulation is assumed to be adequate to cover two

weeks of demand.

• Profit margin is considered to be the same as the back-order cost.

• Shipment lead-time is assumed to be mnj×c
s×h , where mnj is the Haversine distance

between two nodes (miles), s denotes transportation speed (mph), h denotes daily

transportation operation hours, and c denotes the distance correction multiplier. The

settings for these parameters based on transportation mode are reported in Table 9.

• Haversine distance between two nodes can be obtained as follows: mnj =

2r arcsin(
√
sin2(

ϕj−ϕn
2

) + cos(ϕn)cos(ϕj)sin2(
λj−λn

2
), where ϕn,ϕj,λn,λj, and r rep-

resent latitudes of points n and j, longitudes of points n and j, and radius of the

sphere, respectively.

• Safety Stock = Zβ ×
√
µ2
D × σ2

LT + µLT × σ2
D, where µD, σ2

D, µLT , and σ2
LT represent

mean and standard deviation of demand and lead-time, respectively.
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• Shipment capacity can set according to shipment mode, part weight (lb./Unit) and

piece volume (ft3/Unit).

Mode Speed
(mph):
s

Daily
Hours:
h

Distance
Correction
Multiplier: c

Truck 45 11 1.25

Rail 60 18 1.25

Boat 20 23 1.1

Air 180 24 1

Other 100 24 1

Table 9: Parameters employed for obtaining order shipment lead-times.

Node attributes including node name, longitude, latitude, region, risk index, and initial

inventory are listed in Table 10. Edge attributes including source ID, target ID, shipment

mode, shipment capacity, review period, lead-time, and safety stock are listed in Table 11.
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Name Latitude Longitude Region RiskIndex Piece
Weight
(lb/Unit)

Piece Vol-
ume
(ft3/Unit)

Focal Firm 29.0745 -110.95944 MX 2.7 NA NA
S11 27.0745 -109.95944 MX 2.7 50 4
S12 26.0745 -108.95944 MX 2.7 0.18 0.6
S13 30.2246036 -95.2469095 USA 1.6 8.23 1.25
S14 20.84266 -99.848149 MX 2.7 12 0.04
S15 25.4217215 -101.0001139 MX 2.7 8.23 2.35
S16 25.5946939 -103.400692 MX 2.7 8.23 1.25
S17 29.0892 -110.9613 MX 2.7 8.23 1.25
S21 19.048599 -98.192902 MX 2.7 0.72 0.75
S22 25.42139 -101.00024 MX 2.7 8.23 2.35
S23 41.003929 -89.134003 USA 1.6 8.23 1.25
S24 41.666515 -87.557064 USA 1.6 7.34 0.03
S25 27.560001 -110.54467 MX 2.7 0.72 0.75
S26 35.1049 129.0713 KS 1.5 12 0.04
S27 20.011199 -98.192922 MX 2.7 8.23 2.35
S28 35.7307088 -78.6291299 USA 1.6 7.34 0.03
S29 20.9636 -97.4045 MX 2.7 12 0.04
S31 53.4437216 27.9705154 BR 2.5 0.72 0.75
S32 41.268116 -80.798241 USA 1.6 7.34 0.03
S33 35.89169 128.63075 KS 1.5 12 0.04
S34 49.69473 4.8759 FR 1.7 0.72 0.75

Table 10: Node attributes for supply network case study.
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Source ID Target ID Shipment
Mode

Shipment
Capacity
(units)

Review
Period
(days)

Lead
Time
(days)

Safety
Stock
(units)

S11 Focal Firm Truck 880 1 1 210
S12 Focal Firm Truck 6480 1 2 310
S17 Focal Firm Truck 3110 1 0 200
S13 Focal Firm Truck 3110 2 3 121
S14 Focal Firm Truck 3666 3 4 114
S15 Focal Firm Truck 1654 3 1 670
S16 Focal Firm Truck 3110 3 1 480
S22 S11 Truck 1654 1 4 630
S23 S11 Truck 3110 1 3 688
S24 S11 Truck 5994 1 2 774
S25 S11 Truck 5184 4 1 200
S27 S12 Truck 1654 2 3 940
S21 S12 Truck 5184 1 5 1050
S28 S12 Truck 5994 4 7 1077
S29 S17 Truck 3666 1 2 1350
S26 S29 Boat 3666 1 28 6636
S31 S21 Boat 5589 4 16 4966
S33 S26 Truck 3666 4 0 400
S32 S27 Truck 5994 3 15 948
S34 S25 Boat 5589 4 10 3953

Table 11: Edge attributes for supply network case study.
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APPENDIX B

Simulation Setting & Python Packages

In this dissertation, for running discrete-event simulation - optimization models, we

relied on several powerful Python packages. Fig.18 illustrates the overall structure and

related information connection between each module. The Python packages and their

structure give us a lot of flexibility in simulating complex supply networks and optimizing

the strategies options. The structure includes five Python packages and eight modules. A

brief description of these modules and packages is as follows:

• NetworkX package [91] gives us the ability to map the supply network and cre-

ate related connections. We could easily record and update the node and edge at-

Figure 18: Discrete Event Simulation - Optimization Structure & Packages
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tributes/measures by using NetworkX features. In addition, time as a new feature

has been added for integrating the NetworkX and the SimPy sections.

• SimPy Package [86] is a powerful Python package to run discrete-event simulation.

We have four modules, including inventory, demand, shipping updates, and scenario

generation, where the SimPy features have been adjusted to run discrete-event sim-

ulation.

• There are several connections between NetworkX and SimPy packages to ensure the

network structure, related attributes, and other information would be updated based

on the current status in SimPy packages. These connections with their arrows are

demonstrated in Fig.18.

• All information and updated data have been recorded in various Excel files. These

Excel files with given structures have been moved between modules.

• the docplex package [23]is known as a Python modeling library for optimization

and mathematical algorithm. By utilizing this package, we formulate and optimize

our resilience management problem. The optimized decision variables have been

considered as input for network simulation running by SimPy Package.

• In our framework, we utilize the SciPy package [108] to generate the initial sample

by running the design of the experiment method. In addition, this package gives us

the ability to generate statistical reports of simulation outputs.

• Finally, we have simulation output (Excel Files) for different scenarios and parameter

settings. We employed the matlotlib [56] package to plot and create a dashboard.
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The Python code structure and modules can be used for different supply networks

with different policies and limitations. Our simulation models can be adjusted for various

industries through simple changes in input Excel files such as node/edge attributes and

related policies. The Python codes and related packages are available on GitHub website

at following address:

https://github.com/elhamtgh/NetworkX-Supply-Chain-Simulation

https://github.com/elhamtgh/NetworkX-Supply-Chain-Simulation
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In today’s environment with highly global and complex supply chains for engineered

products, the ability to assess and manage the resilience of supply chains is not a luxury

but a fundamental prerequisite for business continuity and success. This is particularly true

for firms with deep-tier supply chains, such as the automotive original equipment manu-

facturers (OEMs) and their suppliers. Automotive supply networks are particularly fac-

ing growing challenges due to their complexity, globalization, economic volatility, rapidly

changing technologies, regulations, and environmental/political shocks. These risks and

challenges can disrupt and halt operations in any section of the supply network. Given

that supply chains have become quite lean in the 21st century with relatively little slack,

the COVID-19 pandemic has fully exposed these vulnerabilities. According to Allianz’s

Business Risk Report from 2014, half of all supply chain disruptions stem from tier-2 and

tier-3 suppliers. However, the industry’s supply network assessment practice is primarily

limited to immediate (i.e., "tier-1") suppliers with no real consideration for the deep-tiers.

The added complication due to poor supplier relations is that there is no visibility to the
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upstream deeper-tiers of the supply network, which could lead to severe vulnerabilities

and impose massive disruption costs.

Our research goal is to enhance the resilience of deep-tier automotive supply net-

works through improved resilience assessment and management mechanisms. In this

collaborative study with a global automotive OEM (Ford Motor Company), we seek to

develop methods to assess and manage the resilience of deep-tier supply networks. This

research considers the multi-dimensional nature of resilience management focusing on

metrics around cost efficiency, effective inventory management, demand fulfillment, ca-

pacity management, and delivery performance. We develop and evaluate our proposed

resilience assessment and management framework with a real case study supply network

for an automotive climate control system. The supply network contains 20 firms (nodes)

located in various global regions and 21 connections (edges) between firms. The network

contains three-tiers of suppliers with different transportation modes, making the network a

rich illustrative example for proposed resilience assessment and management methods and

analysis. All inventory and shipping policies with related parameters have been defined

and set for each supplier and their connections.

The proposed resilience assessment framework relies on discrete-event simulation for

effectiveness; computational efficiency is maintained by relying on modern open-source

packages for modeling, optimization, and analysis. The framework starts by generating

a digital model of the supply network that includes the focal firm and its suppliers and

deeper-tiers based on the available visibility. Disruption scenarios, including disruption

sources, frequency and severity, are then efficiently generated using private and public re-

gional risk sources. For illustrative purposes, we primarily relied on public secondary data
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sources. The secondary regional risk indices that we relied upon aggregate political, eco-

nomic, legal, operational, and security risks for the given region. Finally, the digital supply

network is simulated with adequate number of replications for reliable assessment. In this

research, discrete-event simulation is implemented using NetworkX and SimPy Python

packages. We employ the network analysis techniques combined with discrete-event sim-

ulation informed by secondary data sources for improving the assessment framework. Our

resilience assessment results confirm that visibility into the deeper-tiers of the supply net-

work (through primary or secondary data sources) leads to more accurate network re-

silience assessment. Finally, we offer a global sensitivity analysis procedure to determine

the supply network players, parameters and policies that most influence the network per-

formance.

We also propose an effective resilience management framework that efficiently lever-

ages simulation-based optimization. For illustrative purposes, we considered the mitiga-

tion strategies typical in the automotive industry, such as dual sourcing, reserve capacities

(at primary or secondary suppliers), and contracts with backup suppliers besides carry-

ing safety stock. Sourcing and transportation mode decisions can be easily incorporated

into the framework. The method seeks to minimize the cost of risk mitigation strategies

while attaining the target resilience. The framework is flexible and can entertain other

objectives and constraints. Given that simulation-based optimization methods can be com-

putationally expensive, we employ surrogate models that relate supply network resilience

performance to network design parameters within our mathematical programming formu-

lation. Without loss of generality, the surrogate models are based on linear regression

models that define the relationship between focal firm and tier-1 suppliers’ resilience lev-
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els and network design decision variables. The imperfections of the regression models are

accounted for in the formulation through constraints with slack (function of the RMSE of

the regression model). We demonstrate that optimal resilience management would stem

from jointly allocating safety buffers (e.g., capacity, inventory levels) across the network

and not by independently applying a simplistic/static set of rules for all nodes/arcs. Our

validation experiments with a real-world case study informed by secondary data from pub-

lic data sources confirm the effectiveness and efficiency of the proposed supply network

resilience management method.
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