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ANALYTICAL REPRESENTATIONS FOR THE TRUNCATED 
SPECTRAL CHARACTERISTICS OF THE FOUR-POINT 
COHERENCE FUNCTION OF A LASER BEAM 
IN A TURBULENT MEDIUM

N. N. Rogovtsova,* and V. Ya. Anissimovb UDC 517.937,535.36,537.86.029,537.87;621.371

New analytical representations for the truncated spectral characteristics of the four-point coherence function of 
a laser beam propagating in a turbulent medium are obtained. These representations are valid for any level of 
fl uctuation of the refractive index in air. They turn into exact analytical representations previously derived for two 
particular cases by using an integral-functional equation for truncated spectral characteristics of the four-point 
coherence function. A constructive procedure for obtaining approximate analytical expressions for the four-point 
coherence function of a laser beam propagating in a turbulent medium is proposed.

Keywords: integral-functional equation, turbulent medium, fl uctuations, four-point coherence function, truncated 
spectral characteristics, virtual parameters of invariant embedding, bijective connections, analytical representations, 
laser beam.

Introduction. A whole series of scientifi c and technical problems in information transfer in open optical 
communication systems, ranging, geophysics, astronomy, and acoustics and diagnostics of biological specimens can be 
solved by establishing the behavior of wave propagation (in particular, electromagnetic and acoustic) in stochastic media, 
the properties of which vary randomly on spatial scales much less than the overall propagation length of these waves in 
them. Such a situation occurs, e.g., upon propagation of laser radiation in a turbulent terrestrial atmosphere. A theoretical 
study of electromagnetic wave propagation in such an atmosphere can be reduced to solving the following three tasks. 
Modeling of stochastic processes describing the change of local, in particular optical, characteristics of the atmosphere 
itself. Derivation (in the framework of several physical and mathematical hypotheses and assumptions) of equations for 
those characteristics of wave fi elds in a turbulent atmosphere that can be experimentally found. Development of accurate, 
asymptotic, approximate analytical or numerical methods for solving these equations. These three tasks of the total problem 
of studying electromagnetic wave propagation in the turbulent terrestrial atmosphere are only partially solved because of 
their complexity or the inadequate methods used to solve them despite over a half century of research.

The seminal basic research to solve the fi rst task was performed in the last century [1–3]. However, classical models 
describing local characteristics of a turbulent atmosphere on surface trajectories and in the ionosphere [4, 5, and references 
therein] are still being refi ned. Strictly speaking, the need to solve the boundary tasks for stochastic wave equations or their 
consequences, which the stochastic Helmholtz equations address, must be resolved fi rst to solve the second task because 
the local properties of a turbulent atmosphere vary randomly. However, even formal rigorous solutions of scalar stochastic 
equations (wave, Helmholtz, and even much simpler ones) have not yet been obtained. Information about the general 
mathematical properties of stochastic differential equations and the complications with producing their explicit rigorous 
solutions has been published [6–10]. Various methods have been used for small-scale fl uctuations in a turbulent atmosphere 
that take into account insignifi cant backscattering on converting from the corresponding stochastic differential equations to 
dynamic differential equations for various statistical moments of wave fi elds because of the appearance of such diffi culties 
in solving the problem of propagation of electromagnetic (laser) radiation at rather long distances [10, 11]. These methods 
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enabled closed dynamic differential equations for any order of statistical moments to be obtained. Attempts to solve the 
boundary problems for differential equations in partial derivatives that they satisfy have been made considering experimental 
methods for fi nding the statistical moments [12]. The fi nding of solutions to these tasks relates to the third component of the 
above problem. Several works [13–15 and references therein] produced solutions of the corresponding boundary problems 
for fi rst- and second-order statistical moments. However, a fourth-order moment must be found to determine signal-to-noise 
ratios, i.e., a four-point coherence function Γ22(…) is actually sought [3]. Unfortunately, adequately justifi ed mathematical 
methods and algorithms have not been proposed for fi nding a function Γ22(…) that in general is a function of nine scalar 
variables for delimited laser beams. In particular, only approximate and numerical methods were previously used to fi nd 
this function [15–20]. The exception was work in which a new integral-functional equation for a four-dimensional Fourier 
transform (it had the sense of a truncated spectral characteristic) of the four-point coherence function Γ22(…) of a beam of 
laser radiation in a turbulent atmosphere was derived [21]. This equation was obtained from several heuristic procedures 
from a reduction method for common invariance relations (GIRRM), which was a common and effective method for solving 
multi-dimensional problems in radiative transfer theory and mathematical physics [21–30 and references therein]. Accurate 
analytical representations for a family of integral characteristics of the function Γ22(…) were fi rst found explicitly by 
analyzing the structure of this equation [21].

The present work showed that the integral-functional Equation (13) [21] could also be effectively used to obtain 
various analytical representations for both truncated spectral characteristics of the function Γ22(…) and the function 
itself.

Statement of the Problem. Let us examine a closed half-space [V ] on the boundary S of which lies the plane OXY 
in rectangular right-handed Cartesian coordinates OXYZ with the Z axis directed into the half-space [V ]. Let [V ] be fi lled 
randomly with an inhomogeneous medium, the properties of which are identical to those of a certain transparent part of 
a turbulent terrestrial atmosphere. Four points M1, M2, M3, and M4 are selected on any plane z = const (const ≥ 0). Their 
positions are determined by radius vectors r1 = (ρ11, ρ12, z), r2 = (ρ21, ρ22, z), 1′r  = 11′ρ , 12′ρ , z), and 2′r  = ( 21′ρ , 22′ρ , z); 
henceforth let us use the notations ρ1 (ρ11, ρ12), ρ2 = (ρ21, ρ22), 1′ρρ  = ( 11′ρ , 12′ρ ), and 2′ρρ  = ( 21′ρ , 22′ρ ). Let us suppose that a 
semi-infi nite medium is irradiated with a monochromatic linearly polarized beam of radiation, the projection of the electric-
fi eld strength of which on the X and Y axes can be written as ei(ωt – kz)U(ρ; z), where i is the imaginary unit; k = 2π/λ, the 
wavenumber; λ, radiation wavelength; ω, its circular frequency; U (ρ;  z), a complex amplitude that is a random function and 
varies insignifi cantly at distances of the order of the radiation wavelength; ρ = (ρ1, ρ2), a two-dimensional vector parallel 
to the OXY plane. Let us consider that the beam power is a fi nite quantity and that the beam is almost fi nite (in fact limited 
to any of its transverse cross sections). The ratio λ/a satisfi es the inequality λ/a << 1 (a is the exact upper facet of a set of 
chord lengths connecting any two points of the boundary of the transverse cross section of this laser radiation beam and is 
equal to double the effective radius of this cross section). Let us also assume that the center of the transverse cross section 
of the initial laser radiation beam lies on the Z axis and that the beam complex amplitude for any fi nite z → [0, +∞) allows 
for evaluation of U(ρ; z) = O[exp (–w0|ρ|)] as |ρ| → +∞ (w0 is a certain positive fi nite number of dimension [L–1] inverse to 
the dimension of length [L]). Also, let us consider that the volume of known information on the coherence properties of the 
radiation beam is suffi cient to specify the four-point coherence function Γ22(ρ1, ρ2, 1′ρ , 2′ρ ; z) [31, 32] on the z = 0 plane in 
the OXYZ system:

 ( ) ( ) ( ) ( ) ( )* *
22 1 2 11 2 2 1 2,  , , ; ; ; ; ; .z U z U z U z U zΓ = 〈′ ′ ′ 〉′ρ ρ ρ ρρ ρ ρ ρρ ρ ρ ρρ ρ ρ ρ   (1)

Here 〈…〉 denotes the operation of averaging over an ensemble of instances; *, a symbol of complex conjugation; U(ρ1; z), 
U(ρ2; z), U( 1′ρ ; z), and U( 2′ρ ; z) signify the complex amplitudes of the wave fi eld on the plane specifi ed by the z-axis and 
parallel to the OXY plane at points M1, M2, M3, and M4, respectively.

Second partial derivatives over all variables ρ11, ρ12, ρ21, ρ22, 11′ρ , 12′ρ , 21′ρ , and 22′ρ  and the fi rst-order partial 
derivative over variable z are introduced into the initial differential equation in partial derivatives, the solution of which is 
the function Γ22(ρ1, ρ2, 1′ρ , 2′ρ ; z) [21, 31–33]. Let function Γ22(ρ1, ρ2, 1′ρ , 2′ρ ; 0) describing the properties of the initial 
laser radiation beam in the OXY plane and giving one of the boundary conditions for the sought function Γ22(ρ1, ρ2, 1′ρ , 2′ρ ; 
z) have continuous partial derivatives up to the nth order (n ≥ 2) inclusive over all variables ρ11, ρ12, ρ21, ρ22, 11′ρ , 12′ρ , 21′ρ , 
and 22′ρ . Then, it is natural to seek a solution of the boundary problem for the initial differential equation for Γ22(ρ1, ρ2, 

1′ρ , 2′ρ ; z) in the class of functions that have a continuous derivative for the variable z (z ∈ [0, +∞)) and continuous partial 
derivatives to the nth order inclusive over all variables ρ11, ρ12, …, 21′ρ , 22′ρ . Let us set as the second boundary condition the 
estimate Γ22(ρ1, ρ2, 1′ρ , 2′ρ ; z) = O{exp [–w0(|ρ1| + |ρ2| + | 1′ρ | + | 2′ρ |)]} when just one of the quantities |ρ1|, |ρ2|, | 1′ρ |, or | 2′ρ | 
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approaches +∞ (the above beams automatically satisfy this condition). Analytical representations for the truncated spectral 
characteristics of Γ22(…) and the function itself are obtained in terms of the adopted assumptions.

Analytical Representations. The integral-functional Eq. (13) from before [21] is written:
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Functions εΦΦ (q; z) = const Φε(q; z), where function Φε(q; z) has the signifi cance of the spectral density of 
fl uctuations of dielectric permittivity ε in air that is directly related to the density of fl uctuations of refractive index n (const 
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if a positive number that is determined by the choice of the form for the forward and inverse Fourier transform) considering 
the relationship n = ε . Expressions of the type (a·l) in Eqs. (4)–(6) denote the scalar product of vectors a and l. Function 

εΦΦ (q; z) satisfi es the equality εΦΦ (q; z) = εΦΦ (–q; z), which is automatically fulfi lled when εΦΦ (q; z) = εΦΦ (|q|; z). It is 
noteworthy that the quantity z and the components of two-dimensional real vectors ω1, ω2, u, p, ρ1, ρ2, ρ1′, ρ2′, τ1, τ2, 1ωω , 

2ωω , σ, θ, σ′, θ′, and α have the dimension of length [L] while components of vectors ξ, γ, and q, dimensions of [L–1].
The quantity ξ, components α1 and α2, and vector α in Eqs. (2), (5), and (6) are arbitrary real numbers on which 

the solution of Eq. (2) does not depend. However, the values of terms included in the right part of integral-functional Eq. 
(2) depend on these virtual invariant embedding parameters. These parameters should be chosen so that the modulus of the 
complex-value function g(σ, θ, ζ, γ; kz′/2; ξ, α) adopts a value considerably less than the modulus of this function when 
parameters ξ and α are not used, i.e., ξ = 0 and α = 0 = (0, 0) when seeking approximate or asymptotic analytical solutions 
of this equation.

Let us suppose that ξ = 1 and α = 0 in Eq. (2). Then, considering Eq. (3), the parity of the cosine and the equality 

εΦΦ (q; z) = εΦΦ (q; z), and the existence of evenly limited and continuous partial fi rst- and second-order derivatives of the 

complex-value function 22
×Γ (σ, θ, ζ – η, γ; kz′ /2) over real variables (η1 and η2), Eq. (2) can be transformed to the form
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function Γ22(…)
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where Λ1 = x + 2–1[ω1 – ω2 + y + ( z – z′ )(γ – ζ)]; Λ2 = x + 2–1( z – z′ )(γ – ζ), Λ3 = x + 2–1[y – ω1 – ω2 – ( z – z′ )(γ – ζ)], 
and Λ4 = x – ω2 – 2–1( z – z′ )(γ – ζ).

The modulus of function g(…) in Eq. (2) where ξ = 1 and α = 0 is equal to the modulus of the double integral over 
variables η1 and η2 in Eq. (8) in which the second-order differential is represented in the form of Eq. (9). Therefore, the value 
of this modulus depends essentially on the functional form of spectral density (2 ; 2)kzε ′Φ η  and the quantities in the square 
brackets in Eq. (8). Let us briefl y write a series of conditions for which the modulus of the function g(σ, θ, ζ, γ; kz′/2; 1, 0) 
reverts to zero or can take suffi ciently small values as compared to the case where ξ = 0 and α = 0. First, the second terms 
in the right parts of Eqs. (2) and (7) revert to zero upon fulfi lling any noncontradictory conditions,

 σ – θ = ±(σ + θ) .  (10)
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With respect to Eq. (7), the conditions of Eq. (10) correspond to the situations ω2 = 0, γ = ζ, ω1 is an arbitrary two-
dimensional vector; ω1 = 0, γ = –ζ, and ω2 is an arbitrary two-dimensional vector. If any of these conditions is fulfi lled, 

function 22
×Γ (ω1, ω2, ζ, γ; z) is equal to the fi rst term in the right part of Eq. (7). Conditions of this type were used to 

obtain exact analytical representations for the integral characteristics of the four-point coherence function. Second, the 
fi rst terms in the right parts of Eqs. (2) and (7) for fi nite values of z  are the main terms of the asymptote for function

22
×Γ (…) [truncated spectral characteristics of the functions 22

×Γ (…) and Γ22(…) are expressed directly by it] for the cases 
1) ω1 is an arbitrary vector, |ω2| → 0, and |γ – ζ| → 0 and 2) ω2 is an arbitrary vector, |ω1| → 0, and |γ – ζ| → 0. Third, 
the modulus of the second term in the right part of Eq. (7) can decrease signifi cantly as compared to the situation where 
the virtual embedding parameters ξ and α are not used at all in Eq. (2), i.e., when these parameters are replaced by zero 
and the zero vector in Eq. (2), because of the actual transverse limitation of the model and actual laser beams [34, 35], the 
presence of factor 2–1(η·y)2 in the double integral over variables (y1, y2) in Eq. (9), and the rather rapid drop of the negative 
real function (2 ; 2)kzε ′Φ η  with increasing |η| [4, 10, 32]. The integration in the right part of Eq. (9) for the above beams 
should essentially be performed only for the four-dimensional Euclidian space 4R  if just one of the moduli |Λ1|, |Λ2|, |Λ3|, 
|Λ4|, |Λ1 – Λ2|, |Λ1 – Λ3|, |Λ1 – Λ4|, |Λ2 – Λ3|, |Λ2 – Λ4|, or |Λ3 – Λ4| for the given set [ω1, ω2, ( z – z′ ), γ, ζ) is greater 
than a. If just one of the inequalities |Λ1 – Λ3| > a or |Λ2 – Λ4| > a is valid, then the right part of Eq. (9) is practically equal 
to zero because the approximate equality Γ22(…) ≈ 0 is true. For example, for the case where ω1 = 0, ω2 = 0, ζ = 0, and γ 
is an arbitrary two-dimensional vector or ω1 = 0, ω2 = 0, γ = 0, and ζ is an arbitrary two-dimensional vector, modulus |y| 
satisfi es the inequality |y| ≤ 2a. The quantity B1(…) in the right part of Eq. (7) can adopt a modulus substantially less than 
the modulus of the second term in the right part of Eq. (2) when ξ = 0 and α = 0 with any type of limitation on modulus |y|. 
This confi rms that the quantity B1(…) in Eq. (7) can be a correction to the fi rst term in the right part and Eq. (7) itself can be 

used to obtain various analytical representations of the functions 22
×Γ (…), 22

×Γ (…), and Γ22(…). Moduli of the second term 
in Eq. (2) for ξ = 1, α = 0 and ξ = 0, α = 0 were compared to validate this confi rmation. A collimated Gaussian beam with a 
coherence radius equal to infi nity, a normally distributed random fi eld, and the given correlation function Γ11(…) was used 
as the model beam. The function Γ22(…) in the plane given by z = 0 was written [17, 19]:

 ( ) ( ) ( ) ( ) ( )22 1 2 1 2 11 1 1 11 2 2 11 1 2 11 2 1, , , ; 0 , ; 0 , ; 0 , ; 0 , ; 0′ ′ ′ ′ ′ ′Γ = Γ Γ + Γ Γρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ   .  (11)

This model beam was chosen for several reasons: 1) the relative simplicity of the analytical representation of the 
function Γ22(ρ1, ρ2, ρ1′, ρ2′; 0) for it; 2) the refractive index of Γ22(…) in the framework of a quadratic approximation 
to the structural function retains its functional form for arbitrary values of z; and 3) the ability to perform most of the 
transformations and evaluate the multiple integrals analytically in Eqs. (2) and (7)–(9). The modulus of the ratio 

β = )
)

0 1 2

0 1 2

( , , , ; ; 1,
( , , , ; ; 0,

B z
B z

ω ω ζ γω ω ζ γ
ω ω ζ γω ω ζ γ

0
0

 for a modifi ed Karman center [4] for ζ = 0. Figure 1 shows dependences of moduli of ratios 

β on the effective cross-section radius of a Gaussian beam b for various values of c. It was assumed that the following 

Fig. 1. Dependence of modulus β on effective beam radius b, c = 1 (1), 0.5 (2), and 0.2 (3).
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conditions were fulfi lled: L0 = 24lk; |ω1 – ω2| = 2lk ; |ω1 + ω2 – 2z γγ | = 2.449lk; b = a/2 = 0.05lk–0.06lk; l0 = 0.04lk; l0, L0, 
and lk are the internal, external, and transverse turbulence scales, respectively [12]; and lk was assumed to be 0.08 m.

Figure 1 shows that a populated set of realistic quantities L0, l0, ω1, ω2, a, z , and α exists for the chosen virtual 
parameters ξ and α and the used limited laser beams [12, 34, 35], for which ratio β has a modulus almost or greater than 
an order of magnitude less than unity. Considering these facts and the above assumptions about the initial models of laser 
beams from Eqs. (2) and (7), we obtain analytical representations for the truncated spectral characteristic of function 
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If any of the conditions of Eq. (10) are fulfi lled, the sign  in Eqs. (11) and (12) can be replaced by an equal sign. 
It is noteworthy that the arguments of the exponents in Eqs. (11) and (12) are nonpositive because the equality occurs:
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     (14)

where 1
×ωω  = ω1 + ( z  – z′′ )(γ + ζ) and 2

×ωω  = ω2 + ( z  – z′′ )(γ – ζ). Equations (14) were obtained by elementary transformations 
of the function f ( 1ωω , 2ωω , ζ, γ; h; 1, 0) in which argument h was equal to z  or z′  ( z  ∈ [0, z ]).

Equations (11)–(14) could be used to fi nd a series of analytical representations for truncated spectral characteristics 
of functions Γ22(…) and the function itself. Let us write the simplest analytical representations of this series to illustrate 
the confi rmation. These were obtained based on Eq. (11) in the framework of the described assumptions. In particular, the 
following analytical representations were found:
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Here, H  signifi es the function Γ22(y′ – 4–1 z (n – m), x′, y′ – 4–1 z (n + m) – a, x′ – 2–1 z m – b; 0) while the symbol 
A0 means the expression
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where a and b are arbitrary two-dimensional vectors, each component of which has the dimension [L]; m = (m1, m2), 
n = (n1, n2); and the quantity A1 is given by the right part of Eq. (16) in which vectors γ + ζ and γ – ζ are replaced by vectors 
n and m.

Conclusions. Analytical representations [Eqs. (11)–(16)] generalized and confi rmed previous results [21] 
and allowed important quantities describing statistical characteristics of limited beams of laser radiation propagated in 
a turbulent terrestrial atmosphere to be found. In particular, truncated spectral characteristics of a four-point coherence 
function, the function itself, and the twinkling effect [10] for actual types of model beams could be found using the obtained 
analytical representations. Heuristic procedures from a reduction method for common invariance relations [25, 27, 29] 
used before [21] to derive Eq. (2) allowed various analogs of this equation based on other partitions and representations of 
terms introduced into the second-order partial differential equation for the four-point coherence equation to be obtained. 
This expanded the capabilities of a search for more exact analytical representations for truncated spectral characteristics 
of a four-point coherence function and the function itself. The proposed approach allowed a generalization for statistical 
moments of any order and enabled exact and approximate analytical expressions for them to be obtained.

REFERENCES

1. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 30, No. 4, 299–303 (1941).
2. A. M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofi z., 13, No. 1, 58–69 (1949).
3. Yu. Ya. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, and V. I. Tatarskii, Usp. Fiz. Nauk, 102, No. 9, 3–42 (1970).
4. L. C. Andrews, Field Guide to Atmospheric Optics, SPIE Press, Bellingham, Washington, USA (2019), pp. 10–13.
5. V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, Usp. Sovrem. Estestvozn., No. 12-4, 369–377 (2014).
6. S. N. Bernshtein, Tr. Fiz.-Mat. Inst. im. V. A. Steklova, 5, 95–124 (1934).
7. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, New York (1981).
8. V. I. Klyatskin, Stochastic Equations through the Eyes of a Physicist [in Russian], Fizmatlit, Moscow (2001).
9. A. A. Levakov and M. M. Vas′kovskii, Stochastic Differential Equations and Inclusions [in Russian], BGU, Minsk 

(2019), pp. 6–472.
10. V. I. Tatarskii, Propagation of Waves in a Turbulent Atmosphere [in Russian], Nauka, Moscow (1967), pp. 143–157.
11. V. I. Klyatskin, Stochastic Equations and Waves in Randomly Inhomogeneous Media [in Russian], Nauka, Moscow 

(1980).
12. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, in: J. W. Strohbehn (Ed.), Laser Beam Propagation 

in the Atmosphere, Springer, Berlin (1978), pp. 107–127 [Russian translation, Mir, Moscow (1981), pp. 130–167].
13. J. W. Strohbehn, in: J. W. Strohbeh n (Ed.), Laser Beam Propagation in the Atmosphere, Springer, Berlin (1978), 

pp. 45–106 [Russian translation, Mir, Moscow (1981), pp. 61–105].
14. L. S. Dolin, Izv. Vyssh. Uchebn. Zaved., Radiofi z., 7, No. 3, 559–562 (1964).
15. B. J. Ucsinski, J. Opt. Soc. Am. A, 2, 2077–2091 (1985).
16. J. Gozani, J. Opt. Soc. Am. A, 2, 2144–2151 (1985).



1151

17. J. Garnier and K. Solna, Commun. Partial Differ. Equations, 39, 626–650 (2014).
18. W. J. Brown, J. Opt. Soc. Am., 62, 966–971 (1972).
19. Z.-W. Xu, J. Wu, and Z.-S. Wu, IEEE Transact. Antennas Propag., 55, No. 6, 1613–1621 (2007).
20. C. Macaskill, Proc. R. Soc. London, Ser. A, 386, 461–474 (1983).
21. N. N. Rogovtsov and V. Ya. Anisimov, J. Appl. Spectrosc., 87, 221–228 (2020).
22. N. N. Rogovtsov, Zh. Prikl. Spektrosk., 35, No. 6, 1044–1050 (1981).
23. N. N. Rogovtsov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 21, No. 10, 1111–1112 (1985).
24. N. N. Rogovtsov, Zh. Prikl. Spektrosk., 43, No. 1, 142–148 (1985).
25. N. N. Rogovtsov, Properties and Principles of Invariance. Application to the Solution of Mathematical Physics 

Problems [in Russian], Part. 1, MO RB, BGPA, Minsk (1999), pp. 283–374.
26. N. N. Rogovtsov, Differ. Uravn., 44, No. 9, 1205–1221 (2008).
27. N. N. Rogovtsov, in: A. A. Kokhanovsky (Ed.), Light Scattering Reviews 5, Springer-Verlag, Berlin, Heidelberg (2010), 

pp. 243–327.
28. N. N. Rogovtsov, Differ. Uravn., 51, No. 5, 650–662 (2015).
29. N. N. Rogovtsov and F. Borovik, J. Quantum Spectrosc. Radiat. Transfer, 183, 128–153 (2016).
30. N. N. Rogovtsov, in: Non-Stable Universe: Energetic Resources, Activity Phenomena, and Evolutionary Processes, 

A. M. Mickaelian, H. A. Harutyunian, and E. H. Nikoghosyan (Eds.), ASP Conf. Ser. Vol. 511, Astronomical Society 
of the Pacifi c, San Francisco (2017), pp. 276–281.

31. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics [in Russian], Part. 2, Random 
Fields, Nauka, Moscow (1978).

32. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press Inc., New York (1978).
33. Z. C. Chen, P. Li, J. Pu Ding, and D. Zhao, Appl. Phys. B: Lasers Opt., 107, No. 2, 469–472 (2012).
34. S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, Opt. Commun., 283, 3860–3868 (2010).
35. D. A. Marakasov and D. S. Rychkov, Opt. Atmos. Okeana, 29, No. 4, 317–322 (2016).


	Abstract
	Introduction
	Statement of the Problem
	Analytical Representations
	Conclusions
	REFERENCES



