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Evaluation of the uncertainty due to dynamic effects in linear measuring devices – 
Preliminary results  
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A B S T R A C T   

Systematic dynamic effects in linear measuring devices include possible amplification or attenuation, and phase 
shift of the spectral components of the indicated signal in respect to the original phenomenon. When this effect is 
non negligible, dynamic compensation should be applied. Yet in any case uncertainty on the modulus and the 
phase of the frequency response of the device will cause uncertainty on the final measurement results. Therefore, 
a simple formula for the evaluation of such uncertainty is presented, for periodic or harmonic dynamic 
phenomena.   

1. Introduction 

Dynamic measurement, that is measurement where the measurand 
value varies along time, is the object of increasing attention today, due 
to its application importance and to the scientific and technological 
challenges it still poses [1]. Dynamic measurement can be classified as 
either direct, where the property to be measured is the time history of 
the quantity of interest [2], or indirect, where some other characteristic 
of the quantity is searched such as, most frequently, the spectral distri
bution of the energy of the phenomenon [3]. Here only the case of direct 
dynamic measurement will be considered. 

In this regard, the scientific and technical debate has developed 
along four main lines, strictly related to each other, but with a focus on.  

• generic modelling [4,5],  
• dynamic calibration [6,7],  
• dynamic compensation [8–10],  
• uncertainty reduction end evaluation [11–13], 

where the list above includes just a few examples, among many 
others. 

Concerning generic modelling, dynamic measurement can be 
considered a part of a generic framework for measurement, which has 
been a key topic of measurement sciences, over the years. A main 
concern has been the possibility of developing a common approach 
between physical and social sciences [4,14–16,5]. The specific aspects of 
dynamic measurement have also been discussed [15,17–19], and the 
possibility of a probabilistic framework common to static and dynamic 
measurement has been addressed [2]. 

In this context, systematic dynamic effects in the measurement sys
tem constitute an important point for improving the quality of the 
measurement process and for evaluating and declaring its uncertainty. 
In linear measuring devices such effects include a possible amplification 
or attenuation, and phase shift of the spectral components of the indi
cated signal, in respect to the original phenomenon. When this effect is 

non negligible, typically when operating outside the recommended band 
for the instrument, dynamic compensation should be applied, as dis
cussed elsewhere [16,6]. When operating within the recommended 
band, uncertainty due to non-ideal behaviour the measuring device 
should be anyway evaluated and included in the uncertainty budget. 
Here a simple practical formula for doing that will be derived and pro
posed, for periodic or harmonic dynamic phenomena. Such evaluation 
should also be done even when dynamic compensation is applied, to 
account for residual uncertainty remaining after such compensation. Yet 
in any case uncertainty on the modulus and the phase of the frequency 
response of the device will cause uncertainty on the final measurement 
results. 

2. Modelling dynamic effects in measuring devices: introductory 
example 

The dynamic behaviour of a linear measuring device can be modelled 
through its frequency response: 

H(f )= kα(f )exp(jϕ(f )) (1)  

where f is the frequency, H(f) the (complex) frequency response (FR), k 
is the sensitivity, α(f) is the (dimensionless) modulus of the FR, ϕ(f) is its 
phase, and j denotes the imaginary unit. For example, in the case of a 
simple contact thermometer, the modulus is: 

α(f )=
(
1 + (2πfT)2)− 1/2 (2)  

and the phase is [9]: 

ϕ(f )= tan− 1(2πfT) (3)  

where T is the time constant of the thermometer. 
Suppose now that the measurand is a simple cosinusoidal process: 

x(t)= x0 cos(2πf0t+ϕ0), (4)  
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where f0 = T− 1
p , and Tp is the period. 

Considering, by now, systematic effects only, i.e., neglecting the 
noise, the instrument indication will then be 

y(t)= kα(f0)x0 cos(2πf0t+ϕ0 +ϕ(f0)) (5) 

The measured signal, with no dynamic compensation [14], will then 
be: 

x̂(t) = k− 1y(t) = α(f0)x0 cos(2πf0t + ϕ0 + ϕ(f0) ) (6) 

Then, the dynamic effect can be expressed by the error: 

e(t)= x̂(t) − x(t). (7) 

If the (ideal) non-distortion conditions hold true, i.e., if α(f) = 1 and 
ϕ(f) = 0 for all the frequencies of interest, x̂(t) = x(t) and no systematic 
deviation occurs. Therefore, for discussing the actual behaviour of the 
system, it is convenient to assume α(f) = 1 + δα(f) and ϕ(f) = 0+

δϕ(f). Yet, in a typical practical case the exact values of δα(f) and δϕ(f)
would be unknown, it makes sense to model them as probabilistic var
iables. Lastly, since we do not know the “functions” δα(f) and δϕ(f) but 
only some global figures about them, such as their standard deviations 
(i.e., σα and σϕ), or their ranges (i.e. ±Δα and ±Δϕ), we will neglect their 
dependence upon frequency, thus definitely setting: 

α(f )= 1 + δα  

ϕ(f )= 0 + δϕ (8) 

It thus results, for the measured signal: 

x̂(t) = x0(1 + δα)cos(2πf0t + ϕ0 + δϕ)

= x0(1+ δα)[cos(2πf0t+ϕ0)cos δϕ − sin(2πf0t+ϕ0)sin δϕ]

Since δϕ is usually small, let us assume cos δϕ ≅ 1 and sin δϕ ≅ δϕ. 
Then, after neglecting second order terms, we finally obtain for the 
error: 

e(t) = δαx0 cos(2πf0t + ϕ0)

− δϕx0 sin(2πf0t +ϕ0) (9) 

Therefore, for any given dynamic process x(t), the error is a sto
chastic process, depending upon the two random parameters δα and δϕ,
that can be modelled as probabilistic variables. Since such variables can 
be assumed as zero-mean, the error will be also zero-mean. 

Up to now, a deterministic model of the process has been assumed. In 
fact the process has been modelled as a member of the set of cosinusoidal 
functions, each identified by its amplitude, frequency and phase. 

For each possible such function, let us calculate the variance of the 
error, assuming that the two variables, δα and δϕ, are zero-mean and 
uncorrelated. We obtain: 

σ2
e(t) = E

(
e2(t)

)

= E
[
δα2x2

0cos 2(2πf0t + ϕ0) + δϕ2x2
0sin 2(2πf0t + ϕ0)

− 2δaδϕx2
0 cos(2πf0t + ϕ0)sin(2πf0t + ϕ0)

]

= σ2
αx0

2cos 2(2πf0t + ϕ0) + σ2
ϕx0

2sin 2(2πf0t + ϕ0), (10)  

where E( ·) denotes the expectation operator. 
The variance is thus time dependent, and such is also the standard 

deviation due to dynamic effects. Yet this is not practical, and a constant 
global value is rather of interest. To obtain that, time averaging over one 
period may be considered, yielding: 

σ2
e =

1
Tp

∫+Tp/2

− Tp/2

σ2
e(t)dt

=
1
Tp

∫+Tp/2

− Tp/2

[
σ2

αx0
2cos 2(2πf0t + ϕ0) + +σ2

ϕx0
2sin 2(2πf0t + ϕ0)

]
dt

=
x0

2

2

(
σ2

α + σ2
ϕ

)
(11) 

Let us introduce now the “power” of the signal, i.e., its mean square 
value. For any positive integer n , and for T being a generic time dura
tion, we obtain: 

Px =
1
Tp

∫+Tp/2

− Tp/2

x2(t)dt =
1

nTp

∫+nTp/2

− nTp/2

x2(t)dt  

= lim
T→∞

1
T

∫+T/2

− T/2

x2(t)dt =
x0

2

2
(12) 

Lastly, considering the usual notation for standard uncertainty, and 
denoting by udthe standard uncertainty due to dynamical effects in the 
measuring device, we obtain, noteworthy: 

ud

xrms
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
α + σ2

ϕ

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
α + u2

ϕ

√

(13)  

where uα,uϕdenote the uncertainty contribution due to the modulus and 
phase. Equation (13) establishes a simple, elegant, and practical relation 
between the relative standard uncertainty due to dynamical effects and 
the uncertainty on the modulus and the phase of the frequency response 
of the measuring device. 

3. Periodic and harmonic phenomena 

Let us now generalize the above ideas by proposing their application 
to two of the most important classes of (models of) dynamic phenomena, 
namely the (zero-mean) periodic and the harmonic ones. In the case of 
periodic phenomena, a deterministic model can be based on its limited 
Fourier series expansion [10]: 

x(t)=
∑n

i=1
ci cos(i2πf0t+ϕi), (14)  

where x(t) is (the time history of) the measurand and f0 = T− 1
p is its 

fundamental frequency. 
Harmonic processes can be instead modelled as [20]: 

x(t)=
∑n

i=1
ci cos(2πfit+ϕi) (15) 

Since eq. (15) is a generalization of eq. (14), which can be obtained 
from (15) by putting 

fi = if0 (16) 

it is sufficient to discuss the latter. 
Firstly, let us calculate the “power” (mean square value) of a har

monic process: 

Px = lim
T→∞

1
T

∫+T/2

− T/2

x2(t)dt =
∑n

i=1

ci
2

2
. (17) 

Then, following the approach outlined in section 2, we obtain for the 
instrument indication: 
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y(t)= k
∑n

i=1
α(fi)ci cos(2πfit+ϕi +ϕ(fi)), (18)  

where k is the sensitivity of the measurement device. Thus, the measured 
signal can be derived as: 

x̂(t)= k− 1y(t)=
∑n

i=1
α(fi)ci cos(2πfit+ϕi +ϕ(fi)), (19)  

and for the error due to dynamic effects, still accounting for assumptions 
(8), we obtain: 

e(t) = δα
∑n

i=1
ci cos(2πfit + ϕi)

− δϕ
∑n

i=1
ci sin(2πfit+ϕi) (20) 

The variance of the error is: 

σ2
e(t) = σ2

α

∑n

i=1
ci

2cos 2(2πfit + ϕi) + σ2
ϕ

∑n

i=1
ci

2sin 2(2πfit + ϕi). (21) 

Accounting for eq. (17), the average error variance is now: 

σ2
e = lim

T→∞

1
T

∫+T/2

− T/2

σ2
e(t)dt=Px

(
σ2

α + σ2
ϕ

)
(22)  

and, lastly, we still obtain eq. (13), here recalled for clarity: 

ud

xrms
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
α + u2

ϕ

√

(23) 

Therefore, this result, originally obtained for mono-tone processes results 
to be applicable also to the important classes of periodic and harmonic 
processes. 

4. Hints for practical uncertainty evaluation 

Let us now discuss the application of the above method to typical 
dynamic measurements, such as vibration measurement. Typical trans
ducers for such measurements are either piezo-electric accelerometers, 
for absolute motion monitoring, or eddy-currents proximity probes, for 
relative motion. Let us then assume a more general model of instrument 
indication, capable to account for other typical uncertainty sources, that 
is: 

y(t)= (k + δk)
∑n

i=1
α(fi)ci cos(2πfit+ϕi +ϕ(fi))+ (h+ δh) + v(t), (24)  

where h is an additive term which accounts for a possible no-zero output, 
in correspondence to a zero input, which is typically the case with eddy- 
current proximity probes, δk and δh are multiplicative and additive 
deviations, and v(t) is additive noise that includes the effect of noise in 
the process, due to a non-perfectly harmonic phenomenon, and electric 
measurement noise. 

The corresponding expression for the error will then be: 

e(t) =
(

δk
k
+ δα

)
∑n

i=1
ci cos(2πfit + ϕi)

− δϕ
∑n

i=1
ci sin(2πfit+ϕi) + k− 1(h+ v(t)) (25) 

It should be noted that the multiplicative systematic effect due to 
sensitivity (normalised) deviation δk/k behaves in a way much similar to 
δα;therefore it is again convenient to average over time. Consequently, 
the final expression for relative standard uncertainty evaluation, ac
counting for all the above considered uncertainty sources, is: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
α + u2

ϕ + k− 2
(
u2

k + x− 2
rms

(
u2

h + v2
rms

))√

(26) 

The relationship between relative standard uncertainty and signal- 
to-noise ratio (SNR), a common feature in dynamic measurement, can 
be also noted. Indeed: 

SNR= 10log 10

(xrms

u

)2
= 20log 10

(xrms

u

)
(27) 

Let us then briefly discuss its practical application, leaving apart, by 
now, the evaluation of noise, to be treated at the end of this section. 

In the case of high quality piezo-electric accelerometers, explicit 
statements on the uncertainties of the modulus and of the phase, for a 
selected frequency range, in the form: 

δα= ± Δα,

δϕ= ± Δϕ. (28) 

The uncertainty on k is typically expressed as a percentage/relative 
value, i.e., in the form ±Δk/k and the uncertainty on h are often not 
mentioned, which may be interpreted as they are considered negligeable 
as compared to the dynamic effects. Let us also assume that uncertainty 
related to environmental conditions is negligeable as well. Then, apart 
from noise, relative standard uncertainty can be evaluated by: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δα2 + Δϕ2 + (Δk/k)2

3

√

. (29)  

where uniform distributions have been assumed for the variable 
involved. For example, if, in the frequency range of the device, the un
certainty on the sensitivity is rated within ±10%, that on the module 
also within ±10%, and that on the phase within ±1◦, we obtain: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0.1)2
+ (0.0175)2

+ (0.1)2

3

√

= 0.082, (30)  

which corresponds to SNR = 22 dB. It may be noted that the phase ef
fect, in this case, is negligeable as compared to the modulus effect. 

In the case of eddy-current proximity probes, the dynamic behaviour 
may be documented by presenting typical frequency responses curves 
for both modulus and phase. Such curves usually have a low-pass 
character, with deviation from the ideal behaviour asymmetrical in 
respect to the zero, typically in a range (− Δα, 0) and ( − Δϕ, 0), 
respectively. Yet an asymmetrical distribution would imply some 
correction of the result, which, in this case, would mean to perform 
dynamic compensation. Yet this is usually avoided, in practical appli
cation. Then, symmetric ranges can be assumed, i.e., (− Δα,+Δα) and ( −
Δϕ, + Δϕ). Concerning the other uncertainty sources, here both δk/k ad 
δh are present, usually denoted as (uncertainty on the) incremental scale 
factor (ISL) and deviation from best fit straight line (DSL). Therefore, apart 
from noise, eq. (24) can be used. If, for example, in a given frequency 
range, viz. up to 1 kHz, the maximum deviation of the modulus is −
0.25 dB, of the phase − 10◦, the ISL is rate within ±5%, the DSL is 
±0.025 mm, for xrms = 1.0 mm, we obtain: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0.03)2
+ (0.175)2

+ (0.05)2
+ (0.025/1.0)2

3

√

= 0.11, (31)  

with SNR = 19. Here the uncertainty on the phase is the most important 
effect. 

Lastly, let us briefly discuss the evaluation of the rms value of the 
noise that directly affects the result as an additional uncertainty source. 
In practice, this can be hardly obtained from the data sheets of the de
vices, since it is strongly related to the experimental and environmental 
conditions. 

One possibility, when applicable, is to record the output of 
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measuring system, for a zero measurand input, and to compute the 
corresponding rms value. But zeroing the input is often impossible, 
especially in the field. 

Then, if the maximum frequency of interest for the phenomenon, call 
it fmax, is significantly smaller then fs/2, where fs is the sampling fre
quency, the noise in the band (fmax, fs /2) can be estimated as the dif
ference between the original signal e the signal low-pass filtered up to 
fmax. If v′rms is its rms value, the rms value of the noise can be estimated 
as: 

vrms = v′rms

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
fs/2

fs/2 − fmax

√

. (32) 

Lastly, if neither that is possible, after estimating the spectrum of the 
signal, the noise can be estimated as the difference between the original 
signal and the signal reconstructed through (14) or (15), where only the 
significant spectral components are included. 

5. Conclusions 

Systematic dynamic effects in linear measuring devices have been 
considered and a simple formula has been derived, for evaluating the 
relative standard uncertainty associated to such effects, in the case of 
periodic or harmonic phenomena. Its practical application, in case of 
absolute or relative vibration measurement has been discussed. The 
relation with the signal to noise ratio has also been outlined. As a future 
development, the application of this approach to other classes of dy
namic phenomena is envisaged. 
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