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ABSTRACT: The direct functionalization of Si−H bonds by the
nitrene insertion methodology is described. A copper(I) complex
bearing a trispyrazolylborate ligand catalyzes the transfer of a
nitrene group from PhINTs to the Si−H bond of silanes,
disilanes, and siloxanes, leading to the exclusive formation of Si−
NH moieties in the first example of this transformation. The
process tolerates other functionalities in the substrate such as
several C−H bonds and alkyne and alkene moieties directly
bonded to the silicon center. Density functional theory (DFT)
calculations provide a mechanistic interpretation consisting of a
Si−H homolytic cleavage and subsequent rebound to the Si-
centered radical.

■ INTRODUCTION

Silicon-based compounds bearing Si−N bonds constitute an
important class within both organic/inorganic fields with
applications ranging from ligands to protecting groups, bases,
or functional materials.1,2 Several methods have been reported
to date for the construction of Si−N bonds from silanes
(Scheme 1). In addition to the stoichiometric reaction of
chlorosilanes with amines (and subsequent elimination of
HCl), the following catalytic processes are known for
generating such groups: (a) the dehydrocoupling of amines
and hydrosilanes (Scheme 1, I);3 (b) the hydrosilylation
reaction of hydrolyzable imines4 (Scheme 1, II); (c) the
hydrosilylation of nitriles (Scheme 1, III);5 (d) the use of
pyridines as N sources (Scheme 1, IV);6 (e) the N-silylation
employing vinyl-silanes (Scheme 1, V).7 In all cases, the
hydrogen from the parent Si−H bond is lost during the
transformation.8

The metal-catalyzed nitrene transfer employing hypervalent
iodine compounds or organic azides as the nitrene source has
been successfully employed to introduce the NR unit into an
array of unsaturated and saturated bonds, including C−H
bonds (Scheme 2a).9 The reaction occurs through metal−
nitrene intermediates,10 which induce the homolytic C−H
bond cleavage and subsequent C−N bond formation.11

Surprisingly, the related reaction onto a Si−H bond leading
to the Si−N bond formation remains, to the best of our
knowledge, yet unreported. In the last two decades, our
research group has developed significant activity in the field of
catalytic nitrene transfer reactions using complex Cu- and Ag-
based catalysts bearing trispyrazolylborate ligands.12 In general,
TpxM complexes (M = Cu, Ag) are highly active and selective
catalysts for the aziridination reactions of olefins and dienols13
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Scheme 1. Strategies for Si−N Bond Formation
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as well as for nitrene insertion into C−H bonds of arenes and
alkanes.14 Herein, we describe the first example of such a
transformation in which the Si−H bonds of silanes, disilanes,
and siloxanes are modified upon insertion of a nitrene group
into such a moiety. The process takes place at room
temperature and with high selectivity (Scheme 2b), and the
maintenance of the hydrogen atom from the initial Si−H bond
provides a certain degree of atom economy to the reaction.

■ RESULTS AND DISCUSSION
Catalytic Reaction Model: Dimethyl(Phenyl)Silane

with PhINTs. We first faced the functionalization of a
model substrate such as dimethyl(phenyl)silane with PhI
NTs. As a catalyst, we chose the silver complex [Tp*,BrAg]2 for
which we reported the best catalytic activity for the alkane C−
H bond amination reaction.11a This dinuclear compound in
solution delivers monomeric Tp*,BrAg units, which react with
PhINTs to give the silver−nitrene complex.15 The
experimental methodology is quite simple: a solution of the
catalyst and the silane in dichloromethane at room temper-
ature is prepared before solid PhINTs is added, which
slowly dissolves. Stirring at room temperature for 45 min led to
complete consumption of the latter. Removal of volatiles and
NMR studies of the reaction crude revealed the formation
(Scheme 3) of new compound 1 in 65% yield as well as some
TsNH2 from PhINTs decomposition. Compound 1 was
purified by column chromatography with reverse phase C18
silica gel and isolated as an off-white solid. The 1H NMR
spectrum shows a resonance at −0.55 ppm for the SiMe2 group
as well as a broad singlet at 4.66 ppm assigned to the N−H
moiety. No Si−H resonance is observed, the spectrum being
completed with the expected resonances for the tosyl and
phenyl groups. The 13C NMR data are consistent with the
formulation proposed for 1. The change in the chemical shifts
in the 29Si NMR spectra from −17.1 ppm (starting silane) to
1.0 ppm for 1 is noted. Finally, single crystals of this compound
were obtained upon cooling petroleum ether/hexane solutions,
leading to the determination of the solid-state structure
(Scheme 3),16 which confirmed that proposed from the
spectroscopic data.

Once the insertion of the NTs group into the Si−H bond
was assessed, catalyst screening was carried out with the same
probe reaction of PhINTs and dimethylphenylsilane. An
array of several Cu-, Ag-, and Au-based complexes, either with
Tpx (hydrotrispyrazolyborate) or NHC (N-heterocyclic
carbene) ligands, were employed as well as some representative
examples of Cu, Rh, Co, or Lewis acids (Zn-, Fe-, or Al-based),
given literature precedents for their competence in nitrene
transfer.9 The results are shown in Figure 1 (see the

Supporting Information for details). Most of the candidates
showed catalytic activity within the 20−60% yield into 1, with
only three of them surpassing that value. In addition to the
already mentioned [Tp*,BrAg]2, IPrCuCl induced 70% yield
whereas TpBr3Cu(NCMe) led to the maximum value of 90%,
being by far the best of the whole series. Reaction conditions
were further optimized in terms of stoichiometry, solvent, and
nitrene precursor (see the Supporting Information), leading to
the use of PhINTs in dichloromethane and a 1:5 [PhI
NTs]/[silane] ratio as the most productive conditions.

Scope of the Silanamination Reaction. After the
optimal reaction conditions were defined, the scope of this
transformation was studied. Scheme 4 contains the 14

Scheme 2. (a) Typical Examples of Known Nitrene Transfer
Reactions; (b) Novel Procedure for Si−H Functionalization
by Nitrene Insertion

Scheme 3. Catalytic Functionalization of
Dimethylphenylsilane with PhINTs Using [Tp*,BrAg]2 as
the Catalyst

Figure 1. Catalyst screening for the nitrene transfer reaction onto
dimethylphenylsilane.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c03739
J. Am. Chem. Soc. 2022, 144, 10608−10614

10609

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c03739/suppl_file/ja2c03739_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c03739/suppl_file/ja2c03739_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c03739?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c03739?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


compounds obtained by employing this methodology in which
hydrosilanes bearing aryl and/or alkyl substituents were
generated in 31−90% yield (determined by internal standard
on the reaction crude; see the Supporting Information) with
TsNH2 accounting for all the initial PhINTs. Despite the
previous reports on the capabilities of this copper catalyst
inserting the nitrene units into arene or alkane C−H bonds,14

now, the nitrene transfer occurs in an exclusive manner onto
the Si−H bond, while the aryl or alkyl groups bonded to Si
remain unreacted. Electronic effects do not seem crucial for the
reaction outcome, since the use of dimethylarylsilanes bearing
OMe or Cl substituents in the aryl ring did not affect the yields
into the functionalized silane (see Scheme 4, 1, 8, and 9).
When competition experiments were carried out between these
three silanes, nearly equimolar mixtures were obtained
(Scheme 5). With the caution of a reduced number of
experiments, it seems that electronic effects are not crucial in
this transformation.

The tris-alkyl substituted silanes delivered reasonable yields
within the range of 72−75% (compounds 10, 11, 13) for linear
alkyl fragments, which turned into lower yields upon increasing
the volume of the substituent (31% yield for 12). The
difference augments when the alkyl group displays a certain
steric hindrance, as is the case of cyclopentyldimethylsilane
(14, 58%). A comparison of phenyl- with alkyl-substituted
silanes shows that the former is more reactive: it is the case of
1 (90%) and 13 (72%). The functionalization of the Si−H
becomes more difficult when increasing the number of
aromatic rings: the steric effect surpasses by far the augment
of nucleophilicity at the Si−H bond by the action of the aryl
groups. Such an effect is found for both catalysts; since the
catalytic pocket defined by the TpBr3 and Tp*,Br ligands is quite
similar,15a the reactivity is defined by the geometry around the
Si−H bond (Figure 2).
We also targeted the evaluation of isotopic effects. Toward

that end, we prepared PhMe2Si−D and run the catalytic

Scheme 4. Scope of the Silane Functionalization by Nitrene
Insertion Using TpBr3Cu(NCMe) as Catalysta

aYields determined with an internal standard; values in brackets
correspond to isolated yields. Reaction conditions: [Cat]/[PhINTs]/
[silane] = 1:20:100, r.t., DCM, 45 min. Yields determined by 1H
NMR using 1,3,5-trimethoxybenzene as the internal standard. See the
Supporting Information for experimental details.

Scheme 5. Competition Experiments with
Aryldimethylsilanesa

aReaction conditions: [Cat]/[PhINTs]/[silane]/[silane-X] =
1:20:50:50, r.t., DCM, 45 min. Yields determined by 1H NMR
using 1,3,5-trimethoxybenzene as the internal standard. See the
Supporting Information for experimental details.

Figure 2. Effect of bulkiness of substituents on the nirene insertion
reaction catalyzed by TpBr3Cu(NCMe) and [Tp*,BrAg]2 complexes.
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reaction with PhINTs. Unfortunately, in all cases, we
obtained the protio-derivative, since we observe an N−D
exchange with adventitious water (which also originates from
the formation of TsNH2). Therefore, we could not evaluate the
Si−H/Si−D competition experiments.
Once the tolerance toward C−H bonds was demonstrated,

we studied the compatibility with other functional groups
using silanes bearing alkyne or alkene functionalities as well as
N-containing silanes. As shown in Scheme 6, when the C−C

multiple bond is directly connected to the silicon center, the
reaction occurs at the Si−H bond with an effective formation
of the Si−N moiety. However, with allylic groups as
substituents, the preferred transformation is the aziridination
of the alkene. In the context of nitrene transfer chemistry, it is
well established that the nucleophilicity of the substrate
governs the reactivity. Therefore, the olefin must be more
reactive than the Si−H bond. However, if the CC bond is
hindered, as is the case of the substrate leading to 16, the
reactivity is reversed.
Regarding the use of 2-(dimethylsilyl)pyridine and N,N-

diethyl-1,1-dimethylsilanamine as representative examples of
N-containing silanes, the reaction proceeded toward the
formation of zwitterionic, N−N containing compounds,
following the reactivity recently reported by our group17

with no functionalization of the Si−H bond being observed
(eqs 1 and 2).

Given the novelty of this transformation and the lack of 15N
NMR data for compounds bearing Si−N bonds, we have
carried out NMR experiments toward that end. Thus, the
resonance for the Si−N nucleus has been detected through
INEPT and/or HSQC experiments in the vicinity of −285
ppm, referred to as nitromethane, for representative com-

pounds (1, 4−6, 8, 10, and 11). Figure 3 displays the 2D
spectrum of compound 5 with δ = −281.8 ppm. 29Si NMR

data has also been collected, and the chemical shift of the new
compounds is in the interval of +15 ppm (trisalkyl substituted)
to ca. 0 to −10 ppm when incorporating the aryl substituents
(see the Supporting Information).
The formation of Si−N bonds by this new methodology is

not restricted to silanes of type HSiR3 but also works for
dihydrosilanes H2SiR2. Despite the availability of two Si−H
bonds, we have only observed the products derived from the
monoinsertion of the nitrene group, no matter the ratio of
reactants employed (Table 1). To complete the array of silanes
capable of being functionalized with this tactic, we have
employed disilane and siloxane compounds, which are also
unreported toward that end (Scheme 7). The presence of two
Si−H bonds per molecule in these substrates does not
influence the reaction outcome with one unique nitrene unit
being incorporated in each case. A similar observation has been

Scheme 6. Study of the Tolerance of Other Functional
Groups: Insertion vs Addition Reactiona

aReaction conditions: [Cat]/[PhINTs]/[silane] = 1:20:100, r.t.,
DCM, 45 min. Yields determined by 1H NMR using 1,3,5-
trimethoxybenzene as the internal standard. See the Supporting
Information for experimental details.

Figure 3. 1H−15N HSQC NMR spectrum for 5 (CDCl3).

Table 1. Reaction of Dihydrosilanes and PhINTs Using
TpBr3Cu(NCMe) as Catalysta

aSee the Supporting Information for experimental details. b[PhI
NTs]/[silane] = 1:2.5. c[PhINTs]/[silane] = 1:1.25. d[Tp*,BrAg]2
complex as catalyst.
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reported for a rhodium-catalyzed C−H amination process.18

Attempts to force a second incorporation upon adding more
PhINTs did not give the targeted product. We believe that
the competitive formation of TsNH2 from adventitious water is
a favored pathway. In agreement with this assumption, the
yield into 21 is diminished when a 1:20:25 ratio of catalyst,
PhINTs, and disilane is employed, compared with the same
experiment carried out with a 1:20:100 molar ratio of catalyst
and reactants.
Yields are moderate to high, and the experiments are

performed at room temperature. Compound 24 was
characterized by X-ray diffraction to completely assess the
formation of the Si−N bond in this siloxane skeleton. The
functionalization of siloxanes with this tactic is remarkable
since these molecules are unit models for biocompatible
polymers.
Density Functional Theory (DFT) Studies. Given the

lack of precedents in this nitrene transfer to Si−H bonds, we
carried out DFT calculations (B3LYP-D3, in DCM solvent;
full details in the Supporting Information) in order to clarify
the mechanism. A data set collection of the computational
results is available in the ioChem-BD repository19 and can be
accessed through https://doi.org/10.19061/iochem-bd-1-233.
It is well-known that the interaction of the TpBr3Cu core and
PhINTs leads to nitrene intermediates TpBr3Cu(NTs)15b,17

with the triplet state being more favorable. The reaction
between TpBr3Cu(NTs) and dimethylphenylsilane was there-
fore chosen, and the computed mechanism is shown in Scheme
8. The reaction proceeds through a homolytic cleavage of the

Si−H bond in a process similar to the rebound mechanism
reported by Cundari, Stavropoulous, and co-workers for C−H
amination processes.11b The TpBr3Cu(NTs) starting species is
in a triplet ground state with one unpaired electron fully on
nitrogen and the second one shared between nitrogen and
copper. This complex forms an adduct, −0.7 kcal mol−1 below,
with the silane. This adduct can undergo the homolytic
cleavage of the Si−H bond with a barrier below 6 kcal mol−1 in
the key step of the mechanism. The resulting intermediate has
one unpaired electron on the silyl and another one on the Cu−
N moiety. It can rearrange to products either by separation and
recombination (rebound mechanism) or through a triplet/
singlet minimum energy crossing point (MECP). Both
alternatives have very low barriers.

■ CONCLUSIONS
A novel strategy for the formation of silicon−nitrogen bonds
has been developed, employing copper catalysis for the
insertion of a nitrene group into the Si−H bond of mono-
and dihydrosilanes, disilanes, and siloxanes. At variance with
previous methods, the hydrogen atom of the parent Si−H
bond is maintained. DFT studies have shown that the process
takes place through Si−H homolytic cleavage and rebound
with the Si-centered radical. This is the first example of the
formation of Si−N bonds by this methodology, which takes
place under very mild conditions. This strategy provides a new
window for the functionalization of silicon-based structures,
including macromolecules of the silicone type.

■ EXPERIMENTAL SECTION
General Catalytic Experiment. In a Schlenk tube, under an inert

atmosphere, the catalyst (0.01 mmol) was dissolved in deoxygenated
solvent (6 mL) and the silane was added (1 mmol). PhINTs (0.2
mmol) was added in one portion, and the mixture was stirred at room
temperature for 1.5 h. The solvent was removed under reduced
pressure, and the reaction crude was analyzed by NMR spectroscopy.
The residue was purified through a column of C18-reversed phase

Scheme 7. Functionalization of Disilane and Siloxane
Compounds by Nitrene Insertion into the Si−H Bonda

aReaction conditions: [Cat]/[PhINTs]/[silane] = 1:20:100, r.t.,
DCM, 45 min. Yields determined by 1H NMR using 1,3,5-
trimethoxybenzene as the internal standard. See the Supporting
Information for experimental details.

Scheme 8. Computed Mechanism for the Nitrene Transfer
to the Silanea

aNumbers within the parentheses correspond to the computed
relative free energies in kcal/mol. Numbers near the Cu, N, and Si
atoms correspond to their computed Mulliken spin density.
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silica gel (eluent MeCN). Single crystals were obtained by
crystallization in Et2O/hexane (2:1).
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