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Abstract

In this paper we study how the presence of a small amount of noise in signaling games

impacts on the likelihood of separation and, hence, the likelihood of information trans-

mission. We consider a variant of a standard signaling model where a source of ex-

ogenous noise affects the signals that agents observe. Noise, even if tiny, poses tight

constraints on beliefs by making all signals possible along the equilibrium path. We

show that separation cannot be obtained in equilibrium if the noise is small enough

– but not nil. In particular, for any separating profile, if noise is sufficiently small

then the sender has a profitable deviation consisting of a signal reduction. Instead, the

pooling equilibrium where all sender’s types pool on the minimum signal always exists,

independently of the level of noise. These results provide a new source of interest in

pooling equilibria.
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1 Introduction

The setup that we are going to consider is a straightforward variant of a standard signaling

model. The main novelty that we introduce concerns the presence of frictions in the form of

exogenous noise affecting signals. Our analysis aims at establishing the relative prominence

of pooling and separating equilibria when a tiny amount of noise affects the signal observed

by the receiver. Since a small amount of noise can be considered as a realistic feature, it

is interesting to check whether standard results in signaling games are robust to its intro-

duction. In particular, our model is consistent with two different sources of noise: errors in

the transmission of the signal, and mistakes in the observation made by the receiver. To fix

ideas think of voiced messages (we will often use message instead of signal in the paper). In

the presence of ambient noise (a source of transmission errors) the message that reaches the

recipient can indeed differ from the one that has been sent by the sender. In addition, if the

receiver does not pay full attention, another kind of errors arises, due to mistakes done by

the receiver in the elaboration of the signal, so that the observed message differs from the

received one.

Noise is important because it poses tight constraints on beliefs, since all signals become

possible along the equilibrium path. Quite surprisingly, when the noise tends to become

very small, such constraints deliver a powerful selection of equilibria, allowing the survival of

only one equilibrium: the pooling equilibrium where all sender’s types pool on the minimum

signal.

To have an intuitive grasp of our main result, consider a signaling setting with noise where,

as the noise goes to zero, the observed message becomes extremely close to the true message

with arbitrarily high probability. Starting from a positive level of the signal, the sender has

a profitable deviation consisting in a small enough reduction of the signal. By doing so,

indeed, the sender does not significantly compromise separation, since the observed message

is very likely to be sufficiently close to the original message as not to affect remarkably the

receiver’s beliefs (see the example in Section 2 for a better intuition). At the same time,

such a reduction in signal entails a save in the cost of signaling which makes such a deviation

profitable, against equilibrium. As a result, we are able to show that a unique equilibrium

survives the progressive reduction in the amount of noise: the pooling equilibrium where all

sender’s types pool on the minimum signal.

These results suggest two important considerations. The first is that the presence of

noise makes full separation less likely, meaning that revelation of types is harder to obtain

in equilibrium even when noise is very small. In particular, less noise need not be bet-
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ter for information transmission. The second consideration is that pooling equilibria with

non-minimal signals are also less likely in the presence of noise. This makes the pooling

equilibrium with minimum signal rather focal in terms of prediction.

This paper is part of a broader project that studies the consequences of introducing

frictions in signaling games. In particular, two general classes of frictions are considered.

The first class comprises exogenous frictions: the signal sent by the sender is subject to a

friction that reduces its informativeness for the receiver. We study this case in the present

paper. The second class comprises instead endogenous frictions: the signal sent by the

sender is subject to a friction whose intensity depends on the choices of either the sender,

the receiver, or both. In Bilancini and Boncinelli (2014) we investigate the role of endogenous

frictions by focusing on the case of costly acquisition of signals.

The paper is organized as follows. In Section 2 we give a rather simple example which

is used to provide an intuitive understanding of the results that we obtain. In Section 3 we

define the class of noisy signaling games. In Section 4 we present our main results on the

non-existence of separating equilibra when noise is sufficiently small; we also show that there

is a unique pooling equilibrium that survives at all (positive) levels of noise. In Section 5 we

discuss our contribution in relationship with the relevant literature. Section 6 summarizes

and provides some additional comments.

2 An example

Consider a sender S who has to choose a message m ∈ [0, 1]. Sender’s type is denoted with

t, which can be equal to either 1 or 2, with prior probability p and 1 − p respectively. The

message sent is subject to an error e, which is normally distributed with density f(e) =
1

σ
√
2π

exp(−x2

2σ2 ), where σ is the standard deviation. A receiver R observes m+ e and then has

to choose an action a ∈ R. The utility for S is a − m/t. We note that the single crossing

condition is satisfied, since m is relatively cheaper for type-2 than for type-1. The utility for

R is −(a− t)2.

It is straightforward to observe that the pooling equilibrium where both sender’s types

choose the minimum message 0 is an equilibrium for any level of noise σ. By means of

the first order condition, it is easy to find that R’s best reply when the belief to meet a

type-1 sender is p is equal to 2− p. When both types pool on the same message, then every

observed message yields a conditional belief that is equal to the prior belief, and hence R’s

action is 2 − p for every observed message. Consequently, since messages are costly, both

sender’s types choose the zero message. This kind of reasoning is independent of the amount
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of noise σ, as long as it is positive. Remarkably, no refinement based on the restriction of

out-of-equilibrium beliefs can be fruitfully applied to this setting with perturbed messages,

because every observed message has a positive probability to be observed so that the Bayes

rule can be always applied to find posterior probabilities and, hence, no out-of-equilibrium

messages exist.

Perhaps more interestingly, any positive message level cannot be part of an equilibrium

when the amount of noise becomes sufficiently small. This not only rules out every pooling

equilibrium with a non-minimum message level, but also all separating equilibria. The reason

behind this result is that, when σ is small enough, there always exists a sufficiently small

reduction in the message level that is profitable for the sender. Indeed, there are two effects

arising from such a tiny reduction: one is the save in the cost of signaling, whose marginal

change is equal to either 1 or 0.5 depending on the sender’s type, while the other comes

from the re-action by R to the change in her posterior beliefs. Much of this paper is about

showing that this latter effect is negligible. To give an intuitive understanding of this, we

rely on figure 1, which represents conditional beliefs as a function of the observed message.

Figure 1: We consider a sender’s strategy where type-1 sender and type 2 sender play 0 and 1,

respectively. By considering a normal distribution of errors with mean zero and four different values

of the standard deviation, we use the Bayes rule to compute the conditional probability that the

observed message comes from a type-2 sender.
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As we can see from the figure, the marginal effect of a reduction in the message level on the

probability to be believed a type-2 sender, computed around the true message level, tends

to zero when σ approaches zero. In particular, as σ gets lower and lower most of errors

concentrate around the true message level, so that a type whose current message level is

positive sees the negative effect of slightly reducing the message becoming vanishingly small.

This should intuitively convince us that this type, for σ small enough, can profitably exploit

the save in the cost of signaling that is associated to a marginal reduction in the message.

All the rest of the paper is devoted to prove formally these results in a general setting of

perturbed signaling.

3 The Model

We consider a setting with two players, a sender S and a receiver R, who are engaged in a

noisy signaling game.

The sender. Sender S observes his own type t ∈ T (with T a finite set of cardinality n)

and then chooses a signal (or message) m ∈ [0, 1]. Types are drawn according to probabilities

p = (p1, p2, . . . , pn), with pt > 0 for every t ∈ T and
∑

t∈T pt = 1.

Errors. The signal is subject to an error e ∈ R, so that the observed signal (or observed

message) is m̂ = m + e. The error e has a density function fσ which is always positive,

differentiable – we denote its derivative with fσ
e – and single-peaked at zero, i.e., fσ(e′) <

fσ(e) whenever |e′| > |e|. The parameter σ ∈ (0, σ̄] measures the amount of noise affecting

signaling. In particular, as σ decreases we have that most of errors will have a tiny effect

on the observed signal. Formally, we assume that for every ǫ ∈ (0, 1) and every δ > 0, a

threshold level σ̃ can be found such that if σ ≤ σ̃ then
∫ +δ

−δ
fσ(e)de ≥ 1 − ǫ. Finally, as

regularity condition we assume that fσ
e is uniformly convergent1 as σ tends to zero on every

interval of the form (−∞,−a] or [+a,+∞) with a > 0.2

The receiver. Receiver R observes the signal m̂ and then chooses a reply a ∈ A ⊆ R.

Utilities. Utility for S is U : T× [0, 1]×A → R, and utility for R is V : T× [0, 1]×A → R.

1A parameterized real-valued function gσ is said to be uniformly convergent on an interval I if there

exists a limit function g such that, for every ǫ > 0, there exists a threshold σ̃ such that for all σ ≤ σ̃ we have

that |gσ(x)− g(x)| < ǫ for all x ∈ I.
2We exclude 0 from these intervals because, if we consider an interval including 0, then for every σ > 0

we might find a point e in the interval where fσ

e
(e) differs significantly from zero (intuitively, this happens

in the proximity of 0 when the density function jumps over).
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We assume that, for all t ∈ T , U is differentiable with respect to both m and a with

countinuous derivatives denoted, respectively, by Um and Ua; we also assume that Um < 0.

Strategies. A strategy for S is µ : T → [0, 1]. A strategy for R is α : R → A.

The receiver’s beliefs. Given µ and σ, R observes m̂ and then derives posterior beliefs

on the type and the true signal, by means of the Bayes rule. In particular, the probability

conditional upon the observation of m̂ that S is of type t and, consequently, the true signal

is µ(t) is:

βt(m̂|µ, σ) =
ptf

σ(m̂− µ(t))
∑

t′∈T pt′fσ(m̂− µ(t′))
. (1)

The receiver’s best reply. Once m̂ is observed, and beliefs β(m̂|µ, σ) = (β1(m̂|µ, σ), . . . , βn(m̂|µ, σ))

are formed, R replies with the action maximizing R’s utility. We assume that such best reply

action is always unique, and we denote the resulting function with ρ : ∆T → A. Moreover,

and importantly, we assume that ρ is differentiable with continuous derivatives, and we

denote its partial derivatives with ρβt
.

Noisy signaling game and equilibrium. We will refer to the setting that we have introduced

as noisy signaling game, and we will denote it as Γ(T, p, U, V, fσ). An equilibrium of the noisy

signaling game Γ(T, p, U, V, fσ) is a pair (µ, α) such that:

• α(m̂) = ρ(β(m̂|µ, σ)), for all m̂ ∈ R;

• µ(t) ∈ argmaxm∈M

∫ +∞
−∞ fσ(e)U(t,m, ρ(β(m+ e|µ, σ)))de, for all t ∈ T .

Equilibrium robust to noise. We are interested to understand which equilibria will persist

in the presence of a tiny but positive amount of noise. Before doing that, we observe that

standard refinements of signaling games that use restrictions of out-of-equilibrium beliefs3

have no bite in a noisy signaling game. The reason is simply that, due to the presence of

noise, every signal can be observed by the receiver, so that no out-of-equilibrium information

set exists, and hence Bayesian update can always be applied to compute posterior beliefs.

Formally, we introduce the following equilibrium refinement to capture the idea of robust-

ness to a vanishing amount of noise: given a family of noisy signaling games {Γ(T, p, U, V, fσ)}σ∈(0,σ̄],

we say that a pair (µ, α) is an equilibrium robust to noise if there exists σ̃ such that (µ, α)

is an equilibrium of the noisy signaling game Γ(T, p, U, V, fσ) for every σ ≤ σ̃.

3We can remind the Intuitive Criterion, D1, and D2 (Cho and Kreps, 1987), Divinity and Universal Divin-

ity (Banks and Sobel, 1987), the Undefeated Equilibrium (Mailath et al., 1993), and the Perfect Sequential

Equilibrium (Grossman and Perry, 1986).
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4 Results

Our take-home result – which we state in Propositions 1 and 2 – relies on an intermediate

technical result that we provide in the following lemma. In a few words, small changes in

the message level around µ(t′) for some t′ ∈ T generate a negligible change in the beliefs

held by R that the sender she is facing is of (generic) type t ∈ T .

Lemma 1. Given a noisy signaling game Γ(T, p, U, V, fσ), for every t, t′ ∈ T , and for every

ℓ > 0, there exists σ̃ > 0 such that, for every σ < σ̃, there exists δ̃ > 0 such that, for every

|δ| < δ̃:
dβt(m̂|µ, σ)

dm̂

∣

∣

∣

∣

m̂=µ(t′)+δ

< ℓ.

Proof. Consider any t, t′ ∈ T . For every σ > 0, we have that:

dβt(m̂|µ, σ)

dm̂

∣

∣

∣

∣

m̂=µ(t′)+δ

= lim
ǫ→0

βt(µ(t
′) + δ + ǫ|µ, σ)− βt(µ(t

′) + δ|µ, σ)

ǫ
,

which has an indeterminate form of the kind 0/0. Since the involved functions are differen-

tiable, we can apply L’Hôpital’s rule and we obtain:

lim
ǫ→0

βt(µ(t
′) + δ + ǫ|µ, σ)− βt(µ(t

′) + δ|µ, σ)

ǫ
= lim

ǫ→0

dβt(µ(t
′) + δ + ǫ|µ, σ)

dǫ
.

We elaborate on the last expression by using (1):

lim
ǫ→0

dβt(µ(t
′) + δ + ǫ|µ, σ)

dǫ
= (2)

= lim
ǫ→0

ptf
σ
e (µ(t

′) + δ + ǫ− µ(t))
[
∑

t′′∈T pt′′f
σ(µ(t′) + δ + ǫ− µ(t′′))

]

[
∑

t′′∈T pt′′fσ(µ(t′) + δ + ǫ− µ(t′′))
]2 +

− lim
ǫ→0

ptf
σ(µ(t′) + δ + ǫ− µ(t))

[
∑

t′′∈T pt′′f
σ
e (µ(t

′) + δ + ǫ− µ(t′′))
]

[
∑

t′′∈T pt′′fσ(µ(t′) + δ + ǫ− µ(t′′))
]2 . (3)

We now show that, in the above two-line expression (3), if we take a sufficiently small σ, and

then choose δ + ǫ small enough, some terms in the fractions are bounded from above, while

other terms grow unboundedly; this will allow us to show that expression (3) can be made

smaller than an arbitrarily fixed ℓ. We prove this by relying on two lemmas that are given

in the appendix.

In particular, by applying Lemma 6 (with δ+ǫ replacing δ in the lemma’s statement), we

know that there exist ℓ′ and σ̃1 such that, if σ ≤ σ̃1, then we can find δ̃1 such that, if δ+ǫ ≤ δ̃1,
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then fσ(µ(t′) + δ + ǫ− µ(t′′)) < ℓ′ for every µ(t′′) 6= µ(t′), and fσ
e (µ(t

′) + δ + ǫ− µ(t′′)) < ℓ′

for every µ(t′′).

Moreover, by applying Lemma 2 (with δ + ǫ replacing δ in the lemma’s statement), we

obtain that for every k > 0, we can find σ̃2 such that, if σ ≤ σ̃2, then we can find δ̃2 such

that, if δ + ǫ ≤ δ̃2 then fσ(µ(t′) + δ + ǫ− µ(t′′)) > k when µ(t′) = µ(t′′).

We fix ℓ′ ≤ 1, and we restrict ourselves to considering σ ≤ σ̃1(ℓ
′), and δ ≤ δ̃1(ℓ

′, σ).

By virtue of the above results, we can affirm about the two-line expression (3) that: (i)

each term of the sum at the numerator is bounded from above by k, so that the whole

numerator is bounded from above by 2nk; (ii) the denominator is bounded from below by

p̃2tk
2, with p̃t = minT pt (we have also neglected all other terms of the denominator, all

of which are positive). Therefore, expression (3) on the whole is bounded from above by

(2nk)/(p̃2tk
2). Since such an upper bound converges to 0 as k grows unboundedly, we can

find k′ such that, for k ≥ k′, expression (3) is lower than an arbitrarily fixed ℓ. Then, we set

σ̃ = min{σ̃1(ℓ
′), σ̃2(k

′)}, and δ̃ = min{δ̃1(ℓ
′, σ), δ̃2(k

′, σ)}. We complete the proof by simply

noting that, for every δ < δ̃ we have that δ+ ǫ < δ̃ for ǫ that is sufficiently small (this is not

a limitation since we are considering the limit for ǫ going to zero).

Before proceeding, we define the no-signal pooling equilibrium as the pair (µ, α) such

that:

• µ(t) = 0 for all t ∈ T ;

• α(m̂) = ρ(p) for all m̂ ∈ R.

We are ready to state – in Proposition 1 – the first part of our main result: the equilibrium

where all sender’s types choose the minimum signal is robust to the introduction of a tiny

amount of noise.

Proposition 1. Given a family of noisy signaling games {Γ(T, p, U, V, fσ)}σ∈(0,σ̄], the no-

signal pooling equilibrium is an equilibrium robust to noise.

Proof. Given that all types of sender S pool on the same signal, we have that βt(m̂|µ, σ) = pt

for every m̂ ∈ R, every σ ∈ (0, σ̄], and every type t ∈ T , i.e., the posterior beliefs always

coincide with the prior beliefs. Therefore, the best reply for R is to choose ρ(p1, . . . , pn),

irrespectively of the observed signal m̂ ∈ R, and this is true for every σ ∈ (0, σ̄].

Since the reply by R is not affected by the observed signal, signals are useless and sender

S is only motivated to save on signaling costs, and this is true for every σ ∈ (0, σ̄]. The

assumption that Um is always negative implies that the least costly signal is the minimum

signal, i.e., 0, for all types t ∈ T .
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The above arguments show that the no-signal pooling equilibrium is actually an equilib-

rium of the noisy signaling game Γ(T, p, U, V, fσ) for every σ ∈ (0, σ̄], and this implies that

it is an equilibrium robust to noise.

The following proposition complements the previous proposition and completes the illus-

tration of our main result on equilibrium selection in noisy signaling games. In particular,

Proposition 2 states a kind of converse result with respect to Proposition 1: there is no

equilibrium other than the no-signal pooling equilibrium that is robust to noise.

Proposition 2. Given a family of noisy signaling games {Γ(T, p, U, V, fσ)}σ∈(0,σ̄], if (µ, α)

is different from the no-signal pooling equilibrium then it is not an equilibrium robust to

noise.

Proof. If all sender’s types choose the minimum signal, then either the profile coincides with

the no-signal pooling equilibrium or R’s strategy is non-optimal.

Suppose µ(t) 6= 0. Consider the derivative of the expected utility of type t with respect

to the chosen message:

∂

∂m

∫ +∞

−∞
fσ(e) · U(t, µ(t), ρ(β(µ(t) + e|µ, σ))) · de =

=

∫ +∞

−∞
fσ(e) · Um(t, µ(t), ρ(β(µ(t) + e|µ, σ))) · de+

∫ +∞

−∞
fσ(e)·Ua(t, µ(t), ρ(β(µ(t) + e|µ, σ)))·

(

∑

t∈T

ρβt
(β(µ(t) + e|µ, σ))·

dβt(µ(t) + e|µ, σ)

dm̂

)

· de.

(4)

We observe that Um(t,m, ·) ≤ Um < 0. This is true because Um(t,m, ·) takes a maximum

value, denoted with Um, when beliefs vary by virtue of the extreme value theorem, since

Um(t,m, ·) is continuous and beliefs are defined over a compact set; moreover, since Um is

assumed to be always negative, we have that Um < 0. Therefore, the first integral of the

two-line expression (4) is negative and always not greater than Um

∫ +∞
−∞ fσ(e)de = Um, for

every σ ∈ (0, σ̄].

We now argue that the second integral of expression (4) can be made as small as desired,

and hence lower than |Um|, by choosing σ sufficiently low, so that a profitable deviation

for type t exists, consisting of a tiny reduction of the message. Hence, the profile under

consideration is not an equilibrium of the noisy signaling game when σ is small enough, i.e.,

the profile is not an equilibrium robust to noise.
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By choosing σ sufficiently low, Lemma 1 then ensures that δ can be found such that,

for every e ∈ (−δ,+δ), the derivatives dβt(µ(t) + e|µ, σ)/dm̂ for all t ∈ T are not greater

than an arbitrary ℓ > 0. We rewrite the integral under consideration dividing the range of

integration in three intervals: from −∞ to −δ, from −δ to +δ, and from +δ to +∞.

We start focusing on the integral from −δ to +δ. We observe that Ua(t,m, ·) and all the

derivatives ρβt
are bounded when beliefs vary by virtue of the boundedness theorem, since

the functions are continuous and beliefs are defined over a compact set. We denote the upper

bounds with Ua and ρβt
for t ∈ T . The integral under consideration is hence not greater

than Uaℓ
∑

t∈T ρβt

∫ +δ

−δ
de, which in turn is not greater than Uaℓ

∑

t∈T ρβt
(β(µ(t) + e|µ, σ)).

Since ℓ > 0 can be chosen freely, we conclude that the integral from −δ to δ can be made as

small as desired when σ, and consequently δ, are chosen small enough.

We now focus on the integral ranging from −∞ to −δ, and we rewrite it by using the

formula of integration by parts:

[fσ(e) · U(t, µ(t), ρ(β(µ(t) + e|µ, σ)))]−δ

−∞−

∫ −δ

−∞
fσ
e (e) ·U(t, µ(t), ρ(β(µ(t)+ e|µ, σ)))de. (5)

We prove that (5) can be made as small as desired when σ approaches zero, by showing

that it is so for both of its terms. Preliminarily, we observe that U(t,m, ·) is a bounded

function when beliefs vary; this is obtained, analogously to what done for Ua(t,m, ·), by

applying the boundedness theorem once you note that beliefs are defined over a compact

set, and functions ρ and U are both continuous (indeed, differentiability implies continuity).

We denote with U and U the upper and lower bounds, respectively. We consider the first

term of the sum, noting that:

[fσ(e) · U(t, µ(t), ρ(β(µ(t) + e|µ, σ)))]−δ

−∞ ≤ fσ(−δ) · U − lim
a→−∞

fσ(a) · U.

By uniform convergence to zero established in Lemma 5, both fσ(−δ) and lima→−∞ fσ(a)

become arbitrarily close to zero when σ approaches zero, and hence the same holds for the

whole term. Then we focus on the second term of the sum, noting that:

∫ −δ

−∞
fσ
e (e) · U(t, µ(t), ρ(β(µ(t) + e|µ, σ)))de ≤ U

∫ −δ

−∞
fσ
e (e) · de = U [fσ(e)]−δ

−∞ .

which, by the same argument used above, can be made as small as desired when σ approaches

zero.

The integral from +δ to +∞ can be dealt with similarly to what already done for the

integral −∞ to −δ, and this completes the proof.

10



Propositions 1 and 2 contrast with standard results in signaling games where pooling

equilibria are usually found to be less robust than separating equilibria. In noisy signaling

games, instead, the no-signal pooling equilibrium soars to be the prominent equilibrium that

is likely to emerge.

5 Relation to the literature

Although noisy signaling has not attracted much attention so far, there exists a small liter-

ature on the topic.

Matthews and Mirman (1983) are perhaps the first to explicitly consider noise in sig-

naling games. They apply this idea to the study of price signaling with stochastic demand

(extending Milgrom and Roberts, 1982), assuming that the source of noise is the imperfect

message transmission.

Hertzendorf (1993) studies multi-dimensional signaling in the presence of noise, extending

the advertising model by Milgrom and Roberts (1986). His main finding is that the recipients

of advertising signals will only rarely be informed about the exact advertising budget of a

company, typically receiving a noisy signal.

Truyts (2012) studies the case of stochastic costly signaling in the presence of exoge-

nous imperfect information, and provides condition for equilibrium signaling to decrease or

increase in the accuracy of exogenous information.

Daley and Green (2013) consider a signaling environment where receivers observe, in

addition to the signal chosen by the sender, the stochastic outcome of a test which is cor-

related with the sender’s actual type. They show that if the noise affecting the test is not

too strong, then equilibria where sender’s types pool on the costly signal can become more

plausible than separating equilibria.

The paper most closely related to ours is Carlsson and Dasgupta (1997). They analyze

the noise-proofness of equilibria in signaling games where the receiver has only two actions

available. A noise-proof equilibrium of an ordinary signaling game has the property that

it can be approximated by equilibria of sequences of noisy signaling games with vanishing

noise. Carlsson and Dasgupta (1997) show that a noise-proof equilibrium always exists and

that it is in general “insufficiently revealing” in the sense that there is always a positive

probability that the receiver misinterprets the observed signal and takes an action that is

suboptimal against the actual type of the sender.

Besides the slightly different approach to the study of the robustness of signaling equilibria

to noise, the main difference between our paper and Carlsson and Dasgupta (1997) is that the
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receiver has only two actions available. This leads to a discontinuity of the sender’s expected

payoff function in the signal sent, so that a marginal reduction in the signal might entail a

large loss. This allows the survival of some separation in equilibrium, even when noise is

very small. To put it differently, the main elements of our results are already contained in

Carlsson and Dasgupta (1997), but their discrete specification of the receiver’s action space

leads to a much less strong selection in favor of pooling. This also shows that a continuum

of actions for the receiver is an important ingredient of our result.

Another quite related paper is de Haan et al. (2011) where noisy signaling is explored both

theoretically and experimentally. They consider the traditional setup by Spence (1973) where

the receiver has only two actions as in (Carlsson and Dasgupta, 1997). They find, among

other things, that if the amount of noise increases, then high types aiming for separation

increase their signaling expenditures, and that for intermediate and high levels of noise, a

separating and pooling equilibrium co-exist. More relevantly, they provide a result that

is closely related to ours, namely that a separating equilibrium ceases to exist when two

conditions hold: a low enough level of noise and a pessimistic enough prior. In a sense, our

result confirms the theoretical analysis by de Haan et al. (2011) showing that pessimistic

priors are not a crucial ingredient when the receiver has a continuum of actions.

Finally, noise in signaling games is considered also by Jeitschko and Normann (2012)

who contrast a standard deterministic signaling game with one where the signal-generating

mechanism is stochastic. In particular, they show that with stochastic signals a unique

equilibrium emerges that involves separation where the degree of separation depends on the

prior type distribution. They do not investigate what happens when the noise goes to zero.

6 Conclusions

In this paper we have considered a signaling framework and we have shown that the intro-

duction of a tiny amount of noise in the transmission/observation of signals – so that the

observed signal only slightly differs from the true one – has a big impact on the equilibrium

profile that is likely to emerge. In particular, the unique equilibrium that survives in the

presence of a vanishing amount of noise is the pooling equilibrium where all sender’s types

choose the minimum signal. This result is in stark contrast with the literature on the refine-

ments of signalling equilibria in the absence of noise, where separating equilibria have been

considered as the prominent outcome (see Riley, 2001).

We think that our research, despite its mainly theoretical nature, can have potentially

relevant consequences for applied research, because of the relevance of signaling models in

12



applied theory. In particular, consider the following sketched argument. The presence of

noise in the transmission/observation of signals can be understood as an obstacle to the

separation of types through signaling, which is considered a standard tool to overcome the

adverse selection problem. In a sense, our results confirm this concern. In the light of this,

a benevolent public authority may try to intervene and invest in order to reduce noise in

relevant signaling setups (e.g., by providing a better transmission technology). A correct

interpretation of our results, however, suggests that such an intervention could be a total

waste of money, if not worsen the situation. The reason is that, for any positive level of

noise, a separating equilibrium may well exist where different types choose different signals,

so that observed signals allow a proper update of beliefs (see Carlsson and Dasgupta, 1997);

however, as the amount of noise shrinks to zero, a slight reduction of the signal becomes a

profitable deviation for all sender’s types – as we have shown in this paper – making the

original separating equilibrium unsustainable. A detailed investigation of the relationship

between noise and welfare might be an interesting follow up of the present contribution.
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Appendix

Here is a list of lemmas that are used to prove the main results in the paper. Lemmas from

2 to 5 show useful properties that hold in noisy signaling games, while Lemma 6 packages a

result which is directly usable in the proof of Proposition 1.

Lemma 2. For every k > 0, there exists σ̃1(k) such that, for every σ ≤ σ̃1(k), there exists

δ̃1(σ) such that, if δ < δ̃1(σ), then fσ(δ) > k.

Proof. Fix k > 0. Then fix ǫ ∈ (0, 1) and δ > 0 such that (1− ǫ)/(2δ) > k. By assumption

there exists a threshold level σ̃ such that if σ ≤ σ̃ then
∫ +δ

−δ
fσ(e)de ≥ 1− ǫ. Since fσ(0) ≥

fσ(e) for every e ∈ R, because fσ is single-peaked with the peak at zero, it follows that

fσ(0) > (1 − ǫ)/(2δ) if σ ≤ σ̃. By continuity of fσ, we can conclude that, if σ ≤ σ̃, there

exists δ̃1(σ) such that, if δ < δ̃1(σ), then fσ(δ) > k.

13



Lemma 3. limσ→0 f
σ(e) = 0, for all e 6= 0.

Proof. Suppose not. This means that it must exist e′ 6= 0 and k > 0 such that we can

always find a small enough σ > 0 such that fσ(e′) > k. Since for all σ we have that fσ

is single-peaked with peak at zero, then fσ(e) > k for all e such that |e| < |e′|. But then
∫

e
′

2

e′ fσ(e)de ≥ ke′/2, if e′ < 0, or
∫ e′

e′

2

fσ(e)de ≥ ke′/2, if e′ > 0, contradicting the assumption

that if σ is small enough then
∫ +δ

−δ
fσ(e)de becomes as close as desired to 1.

Lemma 4. For every σ > 0, and for every ℓ > 0, there exists δ̃ > 0 such that, if |δ| < δ̃,

then fσ
e (δ) < ℓ.

Proof. For every σ > 0, fσ
e (0) exists by assumption. If fσ

e (0) 6= 0, then the assumption that

fσ is single-peaked with peak at zero would be violated. Hence, fσ
e (0) = 0 for every σ > 0.

By continuity of fσ
e , we conclude that, for every σ > 0 and every ℓ > 0, there exists δ̃ > 0

such that, if |δ| < δ̃, then fσ
e (δ) < ℓ.

Lemma 5. For every δ > 0, we have that fσ
e converges uniformly to zero on (−∞,−δ] ∪

[+δ,+∞) when σ tends to zero.

Proof. Choose δ > 0. By Lemma 3 we have that fσ converges pointwise to the zero constant

function on (−∞,−δ]∪ [+δ,+∞) when σ tends to zero. Since fσ
e is assumed to be uniformly

convergent on (−∞,−δ] and [+δ,+∞) when σ tends to zero, and hence on (−∞,−δ] ∪

[+δ,+∞) as well, we now show that fσ
e converges uniformly on (−∞,−δ] ∪ [+δ,+∞) to

the derivative of the limit function at which fσ converges, i.e., the derivative of the zero-

constant function, which is the zero-constant function itself, proving the statement of the

lemma. To be convinced of the above assertion, suppose that it is not true, i.e., there exists

e ∈ (−∞,−δ] ∪ [+δ,+∞) such that limσ→0 f
σ
e (e) 6= limσ→0 f

σ(e). Then we consider an

interval [a, b] such that e ∈ [a, b]. Due to the assumption that fσ converges pointwise to

the zero constant function on (−∞,−δ] ∪ [+δ,+∞), and hence on [a, b] as well, we can find

e0 ∈ [a, b] where limσ→0 f
σ(e0) exists (and is equal to 0), and so we obtain a contradiction

with, e.g., Theorem 7.17 of Rudin (1976).

Lemma 6. There exist ℓ and σ̃ such that, if σ < σ̃, then we can find δ̃ such that, if δ < δ̃

then:

• fσ(µ(t′) + δ − µ(t′′)) < ℓ for every µ(t′′) 6= µ(t′);

• fσ
e (µ(t

′) + δ − µ(t′′)) < ℓ for every µ(t′′).
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Proof. Fix ℓ > 0. Choose δ̃1 > 0 such that δ̃1 < mint′′∈T |µ(t′) − µ(t′′)|. Consider e1 =

−mint′′∈T |µ(t′)− µ(t′′)|+ δ̃1 and e2 = +mint′′∈T |µ(t′)− µ(t′′)| − δ̃1. By applying Lemma 3

to both e1 and e2 and choosing the minimum threshold we are able to find σ̃1 such that, if

σ < σ̃1, then both fσ(e1) and fσ(e2) are not greater than ℓ. By the fact that fσ is single-

peaked with peak at zero, we conclude that fσ(µ(t′) + δ− µ(t′′)) for every µ(t′′) 6= µ(t′) and

every |δ| < δ̃1.

By Lemma 4, we know that for every σ > 0, there exists δ̃2 > 0 such that, if |δ| < δ̃2,

then fσ
e (µ(t

′) + δ + ǫ− µ(t′′)) < ℓ when µ(t′) = µ(t′′).

Now we use again e1 and e2 as previously defined. By Lemma 5, we know that fσ
e is

uniformly convergent on (−∞,−e] ∪ [+e,+∞), i.e., there exists σ̃2 > 0 such that, if σ < σ̃2

and |δ| < δ̃1, then fσ
e (µ(t

′) + δ − µ(t′′)) < ℓ for every µ(t′′) 6= µ(t′).
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