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Abstract—While machine learning is vulnerable to adversarial examples, it still lacks systematic

procedures and tools for evaluating its security in different application contexts. In this article,

we discuss how to develop automated and scalable security evaluations of machine learning

using practical attacks, reporting a use case on Windows malware detection.

Index Terms: Machine learning, Invasive software

INTRODUCTION

Machine learning has recorded unprecedented
success in many applications, including computer
vision and speech recognition. Even in the cyber-
security domain, many companies have recently
built machine learning models within their de-
tection pipelines to improve their anti-malware
solutions [8]. However, it is now widely known
that machine learning models can be easily misled
by carefully-crafted attacks, such as training data
poisoning, backdooring, evasion, model stealing,
and other privacy-related threats [3]. While many
of these attacks can be successfully prevented,
machine learning models remain extremely vul-
nerable to adversarial examples [2], [15], that are
inputs presented at test time specifically designed
to cause the model to make a mistake. Adversarial
examples are normally found by optimizing a
perturbation against the target model either via

gradient-based optimization, when white-box ac-
cess to the model is given (the kind of model
and its trained parameters are accessible), or via
gradient-free optimizers, when only black-box
access to the model is provided (for instance,
the model can be queried using different inputs,
and feedback on the corresponding predictions
is observable). In the black-box setting, it is
also possible to stage transfer attacks, which
are gradient-based attacks optimized against a
surrogate model which also succeed against the
target model. Such attacks are feasible only when
the surrogate model provides a differentiable and
sufficiently-smooth approximation of the target
model, which is clearly neither always available
to the attacker nor easy to build [3]. In Figure 1,
we exemplify the process used to craft adversarial
examples, starting from the image of a school bus
(classified correctly with 94% confidence by a
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Figure 1: Adversarial examples are crafted by
optimizing an input perturbation � to fool the
target model. In this example, a slightly-perturbed
image of a school bus is misclassified as an
ostrich.

state-of-the-art model trained on ImageNet), and
showing how it can be perturbed to generate an
adversarial example misclassified as an ostrich
(with 97% confidence). The latter is computed
by solving the following optimization problem:

max
�

L(x+ �, y;✓),

s.t. k�kp  ✏, x+ � 2 [0, 1]d,
(1)

where L(x, y, ✓) is a loss function that exhibits
lower values when the input sample x (for in-
stance, the input image consisting of d pixels)
is correctly assigned to class y by the model
(parameterized via ✓). The goal is to optimize
the applied perturbation �, to maximize the loss
on the perturbed sample x+�, to produce a mis-
classification with high confidence by the target
model. However, this should be achieved while
preserving some constraints on the applied pertur-
bation. First, the `p norm of � is typically upper
bounded by a small number ✏, to keep the pertur-
bation size small. Second, the perturbed sample
x+� is also normally constrained to stay within
some bounds, e.g., to ensure that each pixel of
the perturbed image lies in the scaled interval
[0, 1]. While this formulation works well for the
image domain, it is not straightforward to extend
it to other domains. First, adding perturbations to
the input data is not acceptable in many applica-
tions; for instance, crafting adversarial malware

requires manipulating complex structures in the
input program, which can not be formalized as
additive perturbations. Second, constraining the
perturbation size using `p norms may not have
any practical meaning for the application at hand.

These issues hinder the applicability and the
generality of these attacks beyond the image
domain, highlighting the need for more general
and practical adversarial attacks. In particular,
we believe that, for machine learning attacks to
become practical, the considered threat models
have to satisfy four main properties, that ensure
the corresponding input perturbations have to be:

1) application-specific, as they should enable
crafting real-world attacks in different ap-
plications (e.g., image manipulations are
different from perturbations which can be
applied to source code);

2) semantics-preserving, as they must comply
with constraints imposed by the given ap-
plication domain, not to compromise the
content or functionality of the source input
samples;

3) automatable, as the process of crafting at-
tacks should be repeatable and scalable,
without requiring extensive human inter-
vention, and

4) fine-tunable, as they should ensure good
testing coverage of the input space to also
identify adversarial examples lying in hard-
to-find blind spots.

In this work, we show that adversarial attacks
can be generalized to encompass more complex,
practical, and application-specific manipulations.
We develop a unifying framework for computing
adversarial attacks that parameterizes these ma-
nipulations, enabling the production of minimal,
content- and functionality-preserving adversarial
examples. We present a case study on Windows
malware detection by systematizing and defining
all the known feasible manipulations that abuse
the PE file format flexibility to craft evasive
malware. We show how the corresponding attacks
can highly degrade the performances of popular
machine learning-based malware detectors under
both white-box and black-box attack scenarios,
and how these attacks also surprisingly transfer
to some well-known commercial products.

We conclude this article by envisioning the
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creation of more security tools for the various
domains where machine learning is applied, fol-
lowed by integrated development environments
for creating, maintaining, versioning, debugging,
and testing machine learning models before their
deployment. We firmly believe that this will be
a remarkable step towards bringing the current
machine learning development practices much
closer to the best practices which are normally
followed in modern software engineering, easing
deployment, maintainability, testing, and security
of machine learning models in real-world appli-
cations.

Practical Attacks against Machine
Learning

We discuss here how to overcome the four
factors that are hindering the development of
large-scale, practical security attacks of machine
learning in different application-specific contexts.
To this end, we envision a practical framework
consisting of two main building blocks: (i) a set of
practical, application-specific manipulations that
can be applied to craft perturbed input samples;
and (ii) an optimization algorithm that identifies
the best combination of such manipulations to
find the corresponding adversarial examples, by
also considering an application-specific function
to bound the perturbation size. We conceptually
represent this two-step procedure in Figure 2, and
provide below a more detailed description of each
step.

Practical Manipulations. As anticipated, it is
important to define a set of feasible manipulations
based on the properties of the input data which
have to be perturbed. Such manipulations have
thus to be application-specific, meaning that each
domain should be investigated in detail to under-
stand how to implement perturbation models that
are well suited to the given input data. In the
proposed framework, we model the set of fea-
sible manipulations via a manipulation function
h, parameterized by a vector �, hence h(x; �)
creates a perturbed version of the input sample
x. The underlying idea is to use the parameter
vector � to control and optimize the type and
intensity of the applied perturbation; for example,
if we assume that h corresponds to manipulating
images by rotating them, then � may simply be

a scalar value corresponding to the degrees of
rotation. This also ensures that the manipulations
are fine-tunable, implying that they can be opti-
mized against a given target model. Finally, the
manipulation function h must also be semantics-
preserving, as it must preserve the semantics of
the perturbed object by design to ensure that
the content or functionality of the input data
remains intact; for instance, adversarial malware
must preserve its malicious functionality while
being undetected, and modified spam emails must
still convey the intended message to the targeted
users while evading anti-spam filters. We will
provide more details and examples of practical
manipulations on Windows malware in our case
study.

Attack Optimization. We now describe the
second component of the proposed framework by
detailing the optimization step. We hence write
a similar optimization problem to Equation (1),
including the manipulation function h:

max
�

L(h(x; �), y;✓),

s.t. g(�)  ✏
(2)

where g is an abstraction of the constraint we de-
scribed in Equation (1), and it can be customized
for the target domain. This optimization problem
can be solved using two different families of
algorithms, depending on whether white-box or
black-box access to the target model is provided.
These techniques are normally referred to respec-
tively as (i) gradient-based and (ii) gradient-free
optimizers [3], [8].

Gradient-based optimizers are most suitable
when perfect knowledge of the target model is
available (i.e., white-box access is provided), and
the model is differentiable. Thus, perturbations
can be iteratively optimized using the information
retrieved from its gradients. For instance, this is
the case of end-to-end attacks against image clas-
sifiers, where gradients are used to drive the op-
timization of the pixel values towards the desired
class. Even if the model is trained on handcrafted
(non-differentiable) features extracted from the
input sample, gradient-based attacks can be still
used, provided that the perturbations applied to
the input features can be then implemented in
practice, by ensuring that one can build the ad-
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Figure 2: Our framework builds upon two
core components: parametric manipulations cus-
tomized for the application domain and an op-
timization algorithm. Hence, each attack applies
manipulations, and the optimizer adjusts the size
of the perturbation that is applied to an input
sample at each step of the strategy, ensuring that
the given constraints are satisfied.

versarial example corresponding to the perturbed
feature representation.

Gradient-free optimizers are most suitable
when either the model under attack is not dif-
ferentiable, or only responses to input queries
can be retrieved from it, while no knowledge
of its internal parameters is available (i.e., only
black-box access to the model is given). Since the
target can be queried, these strategies maximize
the loss by fine-tuning the manipulations based on
the returned predictions. Alternatively, manipula-
tions can also be optimized via transfer attacks,
if a surrogate, differentiable model which well
approximates the target is available. In this case,
gradient-based attacks can be optimized against
the surrogate model and then transferred to the
target.

All of these families of optimizers allow at-
tacks to be applied automatically, hence adversar-
ial examples can be computed on a large scale,
satisfying the automatable desired property.

Application Examples. We discuss here how
previously-proposed attacks can be recast into our
framework by detailing the considered manipula-
tions, optimizers, and which function they use to
constrain the perturbation size. The analysis for
some selected attacks is compactly reported in

Table 1. While images and audio can be manipu-
lated by adding an `p-norm bounded perturbation,
different kinds of input data require the devel-
opment of more specific perturbation models.
For instance, two popular manipulations used to
fool anti-spam filters are normally referred to
as Good-Word-Injection (GWI) and Bad-Word-
Obfuscation (BWO) attacks. They respectively
consist of modifying a spam email by insert-
ing randomly-chosen words which are likely to
appear in legitimate messages but not in spam
and by obfuscating (e.g., by misspelling) typical
“spammy” words. Similarly, for both Android and
Windows malware, the attacker can only inject
content by following the conventions imposed by
the format used for storing programs as a file.
While GWI and BWO attacks can be constrained
using, e.g., the `0 norm, to bound the number
of modified or injected words, crafting adver-
sarial malware may require defining additional
application-specific constraints to bound the per-
turbation size (e.g., defining distances between
sequences of bytes), thus going beyond additive
perturbation models. Recall also that, contrary to
the other domains, the misplacement of a single
byte in the input program will most likely result
in the corruption of the whole executable.

Adversarial Attacks against Windows
Malware Detection

We discuss here an implementation of our
framework, presenting a detailed use case on
practical attacks against machine learning Win-
dows malware detectors. This domain is char-
acterized by several constraints, and it requires
extra care when manipulating files, as one single
misplaced value can break the entire structure and
functionality of a program. Hence, the manipula-
tions must take into account the rigid structure of
the Portable Executable (PE) file format, which
dictates how programs are stored as files.

Programs as Files. The PE file format is
made up of several headers, followed by the
program code, the initialized constants, and the
program resources. The headers are three: the
DOS Header, the PE Header, and the Optional
Header. The DOS header is kept for retro-
compatibility with the outdated DOS environ-
ment, and it also contains code that will print
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Image classification Speech-to-text Spam detection

Proposed by
Biggio et al. [2]

Szegedy et al. [15] Carlini et al. [4] Nelson et al. [14]
Dalvi et al. [5]

Manipulations Additive noise Additive noise GWI/BWO
Optimizer Gradient-based Gradient-based Gradient-based
Constraint `2, `1 `2 `0

Windows malware detection PDF malware detection Android malware detection

Proposed by Demetrio et al. [7], [8] Biggio et al. [2]
Maiorca et al. [13]

Demontis et al. [9]
Grosse et al. [10]

Manipulations Format ambiguities Object injection Injecting fake APIs, permissions

Optimizer
Hybrid optimizer

Gradient-free (Genetic) Gradient-based Gradient-based

Constraint Levenshtein distance Manhattan distance `0

Table 1: Recasting previously-proposed attacks from different application domains (in columns) in our
framework, detailing the corresponding manipulations and optimizers (in rows).

an error message if a user tries to execute such a
program into an older version of Windows. The
few important bytes are the magic number MZ
at the beginning of the file and the 4-bytes-long
value at offset 0x3c that points to the beginning
of the real header, the PE header. It starts with
the PE signature, and this header specifies the
characteristics of the file and the size of the last
header of the format, that is the Optional Header.
This last header, which is not optional, contains
most of the relevant information needed by the
operating system to properly load the program
in memory and execute it. These headers are
followed by sections, constructed by two key
components: (i) a section entry that specifies
where to find the content inside the file through
the usage of an offset, and (ii) the section content
itself.

Practical Manipulations of PE Files. Once
the format is known, we dive into the practical
manipulations that can be applied safely on a
Windows executable without compromising its
functionality [7], as shown in Figure 3, where
we overlap a graphical representation of the PE
file format with its perturbations. The Partial
DOS and Full DOS manipulations exploit the
presence of the useless DOS header in each
executable, partially or completely rewriting its
unused content. The Extend manipulation lever-
ages the offset that instructs the loader where to
find the PE header inside the file by enlarging it
and thus reserving space for injecting adversarial
content. The Header Fields manipulation per-
turbs metadata that is not checked by the loader
while transferring the content of the program in

P E

COFF + Optional Header

Code section

DOS Header

PE 
position

M Z

Partial DOS

. . .

Last section

P E

COFF + Optional Header

First section

DOS Header

PE 
position

M Z

. . .

Last section

Full DOS Extend
Shift

Padding

Header Fields

Code section

Injected section

API Injection Slack Space
Section Injection

Binary Rewriting
Figure 3: A graphical representation of the PE file
format and its manipulations.

memory. The Shift manipulation creates space
for adversarial content by enlarging the offset
of section entries, forcing the loader to look up
for each section content further ahead inside the
file. The Section Injection manipulation creates
and implants a new section entry along with
its section content inside the file, providing new
space for storing adversarial content. The API
Injection manipulation forces the loader to import
more functions when uploading the program into
memory. The Slack Space manipulation inserts
adversarial content inside unused space located
between contiguous sections. The Padding ma-
nipulation just appends bytes at the end of the
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sample. Lastly, we also mention a Binary Rewrit-
ing techniques [12] that allows manipulating the
program source code by changing instructions or
by adding dead code that will never be executed.

Optimizers for PE Manipulations. We now
introduce the optimizers that can be used in this
domain, depending on the differentiability and
the accessibility of the target model to attack.
We summarize these algorithms in Table 2, along
with the attacks built around them.

When the model under attack is fully ac-
cessible and differentiable, gradient-based tech-
niques can be used to compute adversarial attacks.
Kreuk et al. [11] use a single-step approach that
uses gradients to manipulate single bytes inside
samples. Since they attack an end-to-end model
that abstracts bytes to an embedding layer, once
they have computed the perturbation, they need to
match it with all the manipulated bytes inside the
input space. However, this method is limited by
design, as it only performs one optimization step,
thus not exploring the space extensively. Lucas et
al. [12] apply manipulations that best align with
the information provided by the gradient. They
apply random manipulations that alter the code
of an executable, and hence they require many
iterations to find suitable ones that decrement
the malicious score. Lastly, Demetrio et al. [8]
apply an iterative optimization algorithm that
alters the malware byte-per-byte, thus substitut-
ing each selected byte with the closest one that
mostly decreases the malicious confidence. While
this technique could in principle require a large
number of parameters to tune (one per byte), it
is more precise as it iteratively alters all bytes by
following the direction pointed by the gradient.

Otherwise, when the model under attack is
non-differentiable, or it can only be interacted
through queries, gradient-free techniques can be
used to compute adversarial attacks. Demetrio
et al. [7] use a genetic algorithm to discover
the space of manipulations that are applied to
malware. To speed up the process, they inject
content extracted from goodware samples, guid-
ing the optimizer towards the benign class. This
formulation avoids the optimization of every sin-
gle byte of the adversarial noise, hence reducing
the number of queries sent to the detector. Also,
they construct transfer attacks against commercial

solutions by recycling the adversarial examples
computed against the local target. Anderson et
al. [1] deploy a learning agent that explores the
space of manipulations by receiving a reward
when it achieves evasion, hence learning which
is the best sequence of manipulations to apply.
However, this method not only requires thousands
of queries for both training the agent and subse-
quently evading the target detector, but also the
optimizer can break the executable in the process,
forcing it to validate the malware inside a sandbox
at each iteration of the algorithm.
Measuring the Perturbation Size. To bound
the manipulation, in this domain, we count the
number of modified and injected bytes inside
the adversarial malware [7]. Since programs are
represented as strings of bytes, this is equivalent
to applying the Levenshtein distance. Given two
strings as inputs, it measures the minimum num-
ber of characters that should be inserted, deleted,
or substituted in the first string to match the
second one.

Experimental Analysis
We now showcase the impact of practical at-

tacks against machine learning Windows malware
detectors. We first explain which tools we lever-
age for building practical attacks, and then we
consider three different experimental settings: (i)
gradient-based (white-box) attacks against end-
to-end network-based detectors that take in input
programs as-is without extracting features, (ii)
gradient-free (black-box) attacks against a partic-
ular tree-based detector trained on hand-crafted
features, and (iii) transfer attacks against online
anti-malware commercial products.

Implementation. To craft adversarial mal-
ware, we leverage SecML Malware [6], a Python
library that implements most of the previously-
described optimizers and practical manipulations
of Windows programs. This library is designed
to be compliant with the four properties we
require to deliver practical attacks against ma-
chine learning models. SecML Malware also has
a command-line interface, named ToucanStrike,
which enables the creation of adversarial exam-
ples by typing commands in a shell terminal.
SecML Malware is the basic building block for
hosting and collecting adversarial malware at-
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Proposed by Practical Manipulation Optimizer Constraint Needs Sandbox

Demetrio et al. Partial DOS, Full DOS, Extend,
Shift, Padding, Section Injection Iterative Discrete Gradient Step Levenshtein distance x

Kreuk et al. Padding, Slack Space Single Gradient Step `2, `1 xGradient-based

Lucas et al. Code Rewriting Gradient Alignment Levenshtein distance x

Demetrio et al. Partial DOS, Full DOS, Extend,
Shift, Padding, Section Injection

Genetic Optimizer with benign content
Transfer Levenshtein distance x

Gradient-free Anderson et al. Header Fields, API Injection
Section Injection, Padding Reinforcement Learning Agent None X

Table 2: List of algorithms used to attack Windows malware detectors, divided into gradient-based
and gradient-free techniques. We also report the manipulations used by each attack, and if they need
to validate the created adversarial malware inside a sandbox.

(a) (b)

Figure 4: Effectiveness of (a) gradient-based attacks against end-to-end deep networks, and (b)
gradient-free attacks against robust decision-tree classifier trained on hand-crafted features. Symbols
”E” and ”P” specifies the dataset used at training time, while percentages describe the average amount
of injected bytes with respect to the input size of the network.

tacks, as it can also be easily extended to include
novel attacks, while ToucanStrike provides an im-
mediate interface for creating adversarial attacks
with no coding skills required.

Bypassing network-based malware detec-

tors. We start by highlighting how end-to-end
networks are vulnerable to adversarial attacks
in Figure 4a. These networks, trained on either
the open source EMBER dataset [7] (E) or on
proprietary data (P), take in input programs as
strings of bytes without extracting hand-crafted
features. We consider a gradient-based attack
coupled with the extend manipulation and bound
the maximum number of injected bytes (i.e., the
perturbation size ✏) to 4KB. We run the attack
for 50 iterations against networks with different
architectures, as detailed in [8]. The results show
that our adversarial malware samples deteriorate

the detection rate of the given models in just 5 to
20 iterations of our algorithm.

Bypassing tree-based malware detectors.

In this case, we apply a gradient-free attack
against a popular decision-tree model trained on
hand-crafted features, as detailed in [7]. This
attack uses a genetic optimizer to select portions
of sections extracted from benign programs and
injects such content into new sections created in-
side the input malware (i.e., performing a section-
injection attack). The idea behind injecting con-
tent from benign programs is to drastically reduce
the number of queries that are normally needed by
state-of-the-art black-box attacks to optimize ad-
versarial examples [7]. The attack can also control
the perturbation size ✏, i.e., the number of injected
bytes, by means of a specific penalty added to
the loss function. The results are reported in
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Figure 4b, showing that evasion is achieved by
performing very few queries (i.e., from 10 to 500,
against the tens of thousands typically requested
by state-of-the-art black-box attacks), and with
small injected payloads (700 KB on average).

Before adversarial attack After adversarial attack

Figure 5: Testing online antivirus hosted on Virus-
Total, before and after the application of adver-
sarial noise to a Petya ransomware sample.

Figure 6: The adversarial version of the Petya ran-
somware, where we highlight in red the payload
added by the section-injection attack.

Bypassing commercial anti-malware prod-

ucts. We conclude by showing how to create
an adversarial version of the infamous Petya
ransomware, using the same section-injection at-
tack detailed in the previous case [7]. We op-
timize the adversarial malware example against
the decision-tree model described in the previous
paragraph and then perform a transfer attack by
uploading the adversarial malware to VirusTotal,
which is a popular service that scans the input file
with multiple commercial products. We track the
number of anti-malware solutions that detect the

malware program before and after applying the
adversarial manipulations. As shown in Figure 5,
the number of detections decreases from 59 to
40, meaning that 19 commercial products have
been evaded with this simple transfer attack. This
example is just one paradigmatic case to convey
the intuition of how machine learning malware
detectors based on static program analysis can
be brittle. In practice, recent results show that
this phenomenon can happen at scale, as the
same attack has been demonstrated on many
other malware programs, giving the attacker a
systematic way for computing slightly-perturbed
samples that evade commercial products [7]. We
finally show the adversarial variant of the Petya
ransomware computed before in Figure 6, by ren-
dering bytes with different colors and highlighting
the injected payload in red.

Conclusions and Future Work
In this article, we have shown that we can

make a step towards a more systematic and scal-
able attacking methodology for machine learning
algorithms, by proposing a framework that miti-
gates the four issues that hinder the application of
attacks in this domain. This framework consists
of two essential building blocks, i.e., the practical
manipulations to be defined within the given
application-specific constraints, and the optimizer
which will be used to fine-tune them. We have
discussed a use case on Windows malware de-
tection, highlighting how one can instantiate our
framework to create attacks with ease, and rais-
ing an alarm in the field since already-deployed
technologies are weak against adversarial attacks.

As future work, we would like to imagine
the presence of tools that will help developers
and security engineers not only apply adversarial
attacks against their models, but also to test,
debug, apply version control, perform unit testing,
and more. In an ideal world, we would use an in-
tegrated development environment (IDE) similar
to the one we use for regular software, where
a developer has full access to the same tools
they usually use when coding. This would lead
to the formalization of coding patterns and best
practices also for machine learning algorithms,
and push safety and robustness as a consequence.
Finally, we foresee a thriving environment where
also machine learning vulnerabilities are con-
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sidered as important as the ones discovered in
regular programs, since they are already deployed
in safety-critical and security-sensitive settings, as
the one reported in our empirical analysis.
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