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Abstract

Background: Mycelia of higher fungi consist of interconnected hyphae that are compartmentalized by septa. These septa
contain large pores that allow streaming of cytoplasm and even organelles. The cytoplasm of such mycelia is therefore
considered to be continuous.

Methodology/Principal Findings: Here, we show by laser dissection that septa of Schizophyllum commune can be closed
depending on the environmental conditions. The most apical septum of growing hyphae was open when this
basidiomycete was grown in minimal medium with glucose as a carbon source. In contrast, the second and the third
septum were closed in more than 50% and 90% of the cases, respectively. Interestingly, only 24 and 37% of these septa
were closed when hyphae were growing in the absence of glucose. Whether a septum was open or closed also depended
on physical conditions of the environment or the presence of toxic agents. The first septum closed when hyphae were
exposed to high temperature, to hypertonic conditions, or to the antibiotic nourseothricin. In the case of high temperature,
septa opened again when the mycelium was placed back to the normal growth temperature.

Conclusions/Significance: Taken together, it is concluded that the septal pores of S. commune are dynamic structures that
open or close depending on the environmental conditions. Our findings imply that the cytoplasm in the mycelium of a
higher fungus is not continuous perse.
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Introduction

A fungal mycelium is the result of fusing hyphae that grow at

their apices and that branch subapically. In general, hyphae of the

lower fungi, i.e. the Glomeromycota, Zygomycota, and Chytri-

diomycota are sparsely, if at all, septated [1–3]. Therefore, the

cytoplasm within mycelia of these fungi is continuous. Hyphae of

the higher fungi, i.e. the Ascomycota and Basidiomycota, are

compartmentalized by septa. These septa contain central pores of

up to 500 nm that allow streaming of cytoplasm and translocation

of organelles like mitochondria and nuclei [1–3]. Therefore, the

cytoplasm within these mycelia is also considered to be continuous.

This discriminates the filamentous fungi from plants and animals.

In these latter two kingdoms there are also intercellular

cytoplasmic connections but they are much smaller. Gap junctions

in animals and plasmodesmata in plants have pores with a

diameter of about 1.5 to 3.0 nm. These pores allow streaming of

inorganic ions and small water-soluble organic molecules [8–10].

It should be noted that the diameter of the pores of plasmodesmata

and gap junctions is dynamic. For instance, the channels in

plasmodesmata can be closed or their width increased to 5 to

9 nm.

The major groups of fungi within the Basidiomycota contain

different types of septa. The Pucciniomycotina and the Ustilagi-

nomycotina have relatively simple septa [1,11,12]. In contrast,

septa of the Agaricomycotina are relatively complex. They consist

of a barrel-shaped swelling around the pore, the dolipore, which is

associated with a septal pore cap (SPC) [6]. This septal pore cap,

which restricts organelle translocation, can be of the vesiculate

type, the perforate type or the imperforate type [13] and is

assumed to be derived from the endoplasmic reticulum [14–16].

The SPC of Schizophyllum commune is of the perforate type. Its base,

i.e. the part closest to the septum, has a diameter of 450–600 nm

and the whole structure is regularly perforated by openings of

approximately 100 nm [15,17].

Septa of Ascomycota and the Basidiomycetes become plugged

in response to hyphal damage to prevent loss of cytoplasm [18–

20]. Peroxisome-like organelles, called Woronin bodies, plug the

septa of the ascomycetes [21–23], whereas in basidiomycetes septa

are closed by electron dense, plugging material [19]. It has been

proposed that the SPC is involved in the plugging process

[15,20,24,25]. Here, it is shown by laser dissection that septa of

growing hyphae of S. commune not only plug in response to hyphal

damage but that this is also caused by environmental conditions
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such as availability of carbon source, exposure to high tempera-

ture, osmotic shock or toxic agents. The results thus imply that the

cytoplasmic continuity of this fungus depends on the environmen-

tal conditions.

Results and Discussion

S. commune was grown in a glass bottom culture dish in a thin layer

of solidified minimal medium (MM) containing glucose as a carbon

source. The solidified medium was overlaid with liquid MM

(Figure 1A). Extension of selected hyphae was followed during a

3 min period using the light microscope of the PALM CombiSys-

tem. Compartments of growing hyphae were disrupted with the

laser of the PALM Combi-system within 30 mm from the septum.

Cytoplasm of disrupted compartments spilled into the surrounding

medium (Figure 2). Cytoplasmic flow from the adjacent compart-

ment into the medium depended on the state of the septum

(Figure 2; Movies S1, S2, S3, S4, S5, S6). Loss of cytoplasm was

considerable (septum was open and was slowly closed; Movies S5-

S6), minor (septum was open but was quickly closed; Movies S3-S4)

or not detected (septum was already closed; Movies S1-S2). By

cutting the second compartment and following cytoplasmic

streaming from the apical compartment into the medium it was

shown that 45 out of 45 apical septa were open (Table 1). In

contrast, only 25 out of 53 of the second septum (separating

compartment 2 and 3; see Figure 1C) and 1 out of 14 of the third

septum (separating compartment 3 and 4) were open. This was

shown to occur in growing hyphae throughout the mycelium. The

second and third septa closed quickly in the case they were open. In

contrast, closure of the most apical septum was generally slower.

The fact that the second and third septa were often closed came

to a surprise considering the phenomenon of streaming of cytosol in

a fungal mycelium [26]. We argued that in the presence of a surplus

of glucose in the medium cytosolic streaming is not essential and

that therefore septal pores can be closed. To test this hypothesis,

hyphae were grown from a glucose-containing medium into a

medium without this carbon source (Figure 1B). Indeed, in MM

without glucose many more septa of growing hyphae were open (i.e.

11 out of 12 apical septa, 22 out of 29 second septa and 26 out of 41

third septa; Table 1). Taken together, these findings show that the

continuity of the cytoplasm of S. commune depends on the presence of

carbon source in the medium.

Figure 1. Glass bottom culture dish used to assess plugging of septa in S. commune. In most cases S.commune was grown in a thin layer of
agar medium overlaid with minimal medium (A). However, liquid medium was not added when it was assessed whether septa were open or closed in
the absence of glucose in the medium. In this case, the culture dish contained distinct patches of minimal medium with or without glucose, which
were separated by a gap of 5 mm (B). (C) Magnification of boxed area in (A) and (B) showing a hypha with the first and second septum as referred to
in the text.
doi:10.1371/journal.pone.0005977.g001
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We reasoned that another environmental condition that could

affect the septal pore is exposure to stress. To test this, the liquid

medium overlaying the solid minimal medium (Figure 1A) was

replaced by deionized water. This neither affected growth nor closure

of the apical septum in a 60 minutes interval (Table 2). In contrast,

addition of 1 M MgSO4 to the liquid medium did have an effect on

the state of the septal pore. Addition of MgSO4 initially resulted in the

accumulation of vacuoles and after 15 minutes most hyphae had

stopped growing. At this point, all apical septa were still open.

However, 5 out of 5 apical septa had closed after an additional 30

minutes of exposure to 1M MgSO4. Absence of streaming of

cytoplasm into the medium from the adjacent compartment was not

Figure 2. A septum is open when cytoplasm moves through the septum after laser dissection of a neighbouring compartment.
Compartments before (A, E) and after (B–D, F–H) dissection of a hypha with a closed (A–D) and an open (E–H) septum. Cytoplasmic flow in E–H is
indicated by the movement of a vacuole (arrows) through the septum (*). Dots represent the position of the laser.
doi:10.1371/journal.pone.0005977.g002

Table 1. Plugging of a septal pore depends on its position in the hypha and the presence of glucose in the medium.

Treatment Septum* Total number of Septa Open Septa Closed Septa % Open Septa

MM + glucose 1 45 45 0 100

2 53 25 28 47

3 14 1 13 7

MM - glucose 1 12 11 1 92

2 29 22 7 76

3 41 26 15 63

*Septum 1 separates the apical compartment from the second compartment; septum 2 separates compartment 2 and 3, and septum 3 compartment 3 and 4.
doi:10.1371/journal.pone.0005977.t001
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due to the presence of vacuoles near the septum. Exposure of S.

commune to 20 mg ml21 nourseothricin, which inhibits protein

synthesis, triggered a similar response as 1M MgSO4 (Table 2).

Within 30 minutes, the hyphal tips stopped growing and mild

vacuolization was observed. Yet, septa were still open. After another

30 minutes, all hyphae were heavily vacuolized and almost all apical

septa had closed. Transfer of the mycelium from 25uC to 0 or 220uC
did not cause plugging. Hyphae continued their original growth rate

when they were placed back at 25uC. Exposing the mycelium to 45uC
for 30 minutes stopped growth. Hyphae vacuolized and all apical

septa had closed (Table 2). Interestingly, most septa opened again 15

minutes after colonies were placed back at 25uC. During this time,

hyphae restored normal growth and vacuolization was decreased to

normal levels.

Our data show that hyphae initially accumulate vacuoles upon

exposure to stress, after which their growth halts. This is followed

by septal closure. Closure of the septum may thus be a final rescue

system that is activated to have individual compartments survive

the stress condition. Notably, plugging was shown to be reversible,

at least when induced by heat. This indicates that septal pores are

dynamic structures that can open and close depending on the

environmental conditions. Taken together, it is concluded that the

cytoplasm of a mycelium of a higher fungus is not continuous per

se, as is generally assumed. The cytoplasmic connections within a

mycelium of S. commune thus resemble those in plants and animals.

Like the septal pore of this basidiomycete, plasmodesmata and gap

junctions can reversibly open and shut [8,27,28].

Materials and Methods

Strains and growth conditions
S. commune strain 4–8 (FGSC # 9210 VT # H4–8) was grown in

the light at 25uC on minimal medium with 2% glucose (MM; 29).

Plugging experiments were performed in glass bottom culture

dishes (P35G-0-20-C, MatTek Corporation, Ashland, MA, USA).

To this end, wells in the dishes (20 mm in diameter, 1 mm in

height) were filled with 400 ml MM containing 1% agarose.

Cultures were inoculated with a plug of S. commune mycelium that

was gently pushed in the agar medium containing glucose. Dishes

were filled with 2 ml liquid MM (Figure 1A) and transferred to a

water vapour saturated chamber at 25uC for 2–3 days. Heat stress

was applied by floating the glass bottom culture dish in a water

bath at 45uC. Alternatively, wells were filled with MM that

contained glucose on one side but no carbon source on the other

side (Figure 1B). These media were separated by a 5 mm gap

preventing glucose to diffuse into the medium without carbon

source. In this case the agar media were not topped with liquid

medium after inoculation with a plug of mycelium.

Analysis of plugging
Glass bottom culture dishes were mounted on a PALM

CombiSystem (Carl Zeiss MicroImaging GmbH, Munich, Ger-

many). Disruption of compartments was performed with laser

pulses (laser setting ‘‘dots’’, laser power 65%). Movies were

captured to assess whether septa were open or closed. To this end,

spilling of cytoplasm from compartments adjacent to the disrupted

compartment was monitored.

Supporting Information

Movie S1 This septum is closed. There is no spilling of

cytoplasm from the compartment that is adjacent to the one that

is damaged.

Found at: doi:10.1371/journal.pone.0005977.s001 (6.14 MB

MP3)

Movie S2 This septum is closed. There is no spilling of

cytoplasm from the compartment that is adjacent to the one that

is damaged.

Found at: doi:10.1371/journal.pone.0005977.s002 (2.40 MB

MP3)

Movie S3 This septum is open but it closes quickly after the

compartment is damaged. There is minor spilling of cytoplasm

from the compartment that is adjacent to the one that is damaged.

Found at: doi:10.1371/journal.pone.0005977.s003 (6.65 MB

MP3)

Movie S4 This septum is open but it closes quickly after the

compartment is damaged. There is minor spilling of cytoplasm

from the compartment that is adjacent to the one that is damaged.

Found at: doi:10.1371/journal.pone.0005977.s004 (3.62 MB

MP3)

Movie S5 This septum is open and it closes slowly after the

compartment is damaged. There is major spilling of cytoplasm

from the compartment that is adjacent to the one that is damaged.

Found at: doi:10.1371/journal.pone.0005977.s005 (1.80 MB

MP3)

Movie S6 This septum is open and it closes slowly after the

compartment is damaged. There is major spilling of cytoplasm

from the compartment that is adjacent to the one that is damaged.

Found at: doi:10.1371/journal.pone.0005977.s006 (0.15 MB

MP3)

Table 2. Plugging of the apical septum depends on environmental stress.

Treatment* Total number of Septa** Open Septa Closed Septa % Open Septa

Hypotonic, 45 min 5 5 0 100

Hypertonic, 45 min 5 0 5 0

20 mg ml21 nourseothricin 5 1 4 20

45uC, 30 min 5 0 5 0

45uC, 30 min; 25uC, 15 min 5 4 1 80

0uC, 30 min 5 4 1 80

220uC, 30 min 5 5 0 100

*Hyphae were grown in MM medium with glucose. Hypotonic or hypertonic conditions were created by overlaying the agar medium with water and 1 M MgSO4,
respectively. Nourseothricin was added to the liquid medium overlaying the agar medium.

**Hyphae were analysed in two independent experiments.
doi:10.1371/journal.pone.0005977.t002

Fungal Cytoplasmic Continuity

PLoS ONE | www.plosone.org 4 June 2009 | Volume 4 | Issue 6 | e5977



Author Contributions

Conceived and designed the experiments: AFvP LGL HAW. Performed

the experiments: AFvP LGL. Analyzed the data: AFvP LGL HAW.

Contributed reagents/materials/analysis tools: WHM. Wrote the paper:

AFvP WHM TB LGL HAW.

References

1. Bauer R, Begerow D, Sampaio JP, Weiss M, Oberwinkler F (2006) The simple

septate basidiomycetes: a synopsis. Mycol Prog 5: 41–66.

2. Barr DJS (2001) Chytridiomycota. In: McLaughlin DJ, McLaughlin EG,
Lemke PA, eds. The Mycota VII, Systematics and evolution, Part A;Berlin:

Springer-Verlag, 93–112.
3. Benny GL, Humber RA, Morton JB (2001) Zygomycota: Zygomycetes. In:

McLaughlin DJ, McLaughlin EG, Lemke PA, eds. The Mycota VII, Systematics
and evolution, Part A. Berlin: Springer-Verlag, pp. 113–146.

4. Shatkin AJ, Tatum EL (1959) Electron microscopy of Neurospora crassa mycelia.

J Biophys Biochem Cytol 6: 423–426.
5. Moore RT, McAlear JH (1962) Fine structures of mycota. Observations on septa

of ascomycetes and basidiomycetes. Am J Bot 49: 86–94.
6. Bracker CE, Butler EE (1963) The ultrastructure and development of septa in

hyphae of Rhizoctonia solani. Mycologia 55: 35–58.

7. Bracker CE, Butler EE (1964) Function of the septal pore apparatus in
Rhizoctonia solani during protoplasmic streaming. J Cell Biol 21: 152–157.

8. Veenstra RD (1996) Size and selectivity of gap junction channels formed from
different connexins. J Bioenerg Biomembr 28: 327–337.

9. Perkins G, Goodenough D, Sosinsky G (1997) Three-dimensional structure of
the gap junction connexon. Biophys J 72: 533–544.

10. Ghoshroy S, Lartey R, Sheng J, Citovsky V (1997) Transport of proteins and

nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol
48: 27–50.

11. Oberwinkler F, Bandoni RJ (1982) A taxonomic survey of the gasteroid,
auricularioid Heterobasidiomycetes. Can J Bot 60: 1726–1750.

12. Bauer R, Oberwinkler F, Vanky K (1997) Ultrastructural markers and

systematics in smut fungi and allied taxa. Can J Bot 75: 1273–1314.
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