
Universitat Politècnica de Catalunya
Programa de Doctorat en Matemàtica Aplicada

Barcelona Supercomputing Center
Computer Applications in Science and Engineering Department

Conformal n-dimensional bisection for local
refinement of unstructured simplicial meshes

by

Guillem Belda-Ferŕın

PhD dissertation
Advisor: Xevi Roca

Co-advisor: Eloi Ruiz-Gironés
Barcelona, September 2022

Dedicat a muns pares i a la Clara

Abstract

Conformal n-dimensional bisection for local refinement of
unstructured simplicial meshes

Guillem Belda-Ferŕın

In n-dimensional adaptive applications, conformal simplicial meshes must be lo-

cally modified. One systematic local modification is to bisect the prescribed simplices

while surrounding simplices are bisected to ensure conformity. Although there are

many conformal bisection strategies, practitioners prefer the method known as the

newest vertex bisection. This method guarantees key advantages for adaptivity when-

ever the mesh has a structure called reflectivity. Unfortunately, it is not known (i)

how to extract a reflection structure from any unstructured conformal mesh for three

or more dimensions. Fortunately, a conformal bisection method is suitable for adap-

tivity if it almost fulfills the newest vertex bisection advantages. These advantages

are almost met by an existent multi-stage strategy in three dimensions. However, it is

not known (ii) how to perform multi-stage bisection for more than three dimensions.

This thesis aims to demonstrate that n-dimensional conformal bisection is possible

for local refinement of unstructured conformal meshes. To this end, it proposes the

following contributions. First, it proposes the first 4-dimensional two-stage method,

showing that multi-stage bisection is possible beyond three dimensions. Second, fol-

lowing this possibility, the thesis proposes the first n-dimensional multi-stage method,

and thus, it answers question (ii). Third, it guarantees the first 3-dimensional method

that features the newest vertex bisection advantages, showing that these advantages

are possible beyond two dimensions. Fourth, extending this possibility, the thesis

guarantees the first n-dimensional marking method that extracts a reflection struc-

ture from any unstructured conformal mesh, and thus, it answers question (i). This

answer proves that local refinement with the newest vertex bisection is possible in

any dimension. Fifth, this thesis shows that the proposed multi-stage method al-

most fulfills the advantages of the newest vertex bisection. Finally, to visualize four-

dimensional meshes, it proposes a simple tool to slice pentatopic meshes.

In conclusion, this thesis demonstrates that conformal bisection is possible for local

refinement in two or more dimensions. To this end, it proposes two novel methods

for unstructured conformal meshes, methods that will enable adaptive applications

on n-dimensional complex geometry.

v

Acknowledgments

This thesis is the result of a team of different people’s shared effort, dedication,

endurance, and ideas. Thus, for me, it is necessary to thank everyone who made this

dissertation possible.

I want to thank Xevi Roca for his guidance and advice. Thanks for allowing me to

be a researcher and teaching me across all categories, professionally and personally.

Especialment per totes les “apretades” i sobretot per fer-me veure que, fem el que

fem, hem de disfrutar del camı́. I also would like to thank Eloi Ruiz Gironés, my

second advisor in light and partner in breakfast. Without his positive energy, this

adventure would not have been the same. Gràcies per tants bons moments, riures,

suport i “trolling”. Working with Xevi and Eloi was a true privilege. De veritat,

moltes gràcies als dos.

Thank all the members of the meshing group for these years. I am grateful to

Abel Gargallo for the shared ideas and good vibes. I am also grateful to Guillermo

Aparicio and Albert Jiménez. We supported, encouraged, and cared for each other

during these years, staying together during the tough times of the doctorate. Keep

that path; you are doing well. Now it’s your bureaucracy turn.

I appreciate very much the possibility of doing my thesis in the Computer Ap-

plications in Science and Engineering (CASE) research framework at Barcelona Su-

percomputing Center (BSC). I am grateful to thank the support and friendship of

all the workmates at CASE. Especialment a en Gerard Guillamet, per tots els riures,

ànims i “has d’anar de cara barraca” de la recta final. També a l’Adrià Quintanas,

l’Albert Coca i en Roger Pastor per formar el grup poĺıticament més incorrecte del

departament. Gràcies.

Thanks a lot to the Facultat de Matemàtiques i Estad́ıstica (FME). To Sonia

Fernandez for introducing me to applied mathematics and for communicating to me

the possibility of working at BSC. To Jaume Franch for opening to me the research

door of applied mathematics. To all the Ph.D. crew of DMA, we have shared coffees,

teas, and beers. Especially to Mar Giralt for sharing with me this last year. Què

fariem sense el nostre “gossipeo”! Finally, to Daniel Aldeguer, Jordi Pizarro, and

“Paupi”, the most dangerous squad of lovely people that FME ever had.

vii

I want to show my gratitude to the tribunal members and the referees. It is

difficult to add new entries to a crowded agenda with the current situation, but they

made it possible. Especially to Pep Sarrate for being part of this thesis committee

from the beginning.

També donar-li les gràcies a la famı́lia Mateo Campo. Per aquesta aventura i per

les que vindran. También a mis amigos Anna, Esther y López, ese pequeño grupo de

gente que me acompaña desde los cuatro años y que tengo la suerte de poder llamar

mis amigas. A Sergi Picart, porque las penas compartidas son menos penas.

Finalment, donar les gràcies a la meva famı́lia pel suport i l’ajuda durant aquests

31 anys. A la Nieves i a en Quim, els meus pares, per ser els pilars sobre els quals

vaig començar a fer la meva vida i als quals hi torno quan necessito retrobar-me amb

l’esència. A Adrián, mi hermano, por escuchar, guiar y relativizar mi yo y mi porqué.

I finalment a la Clara, la meva companya de vida, per estar al meu costat fent equip

en tot moment. Us estimo molt.

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

List of Figures xi

List of Algorithms xv

1 Introduction 1
1.1 Motivation and background . 1
1.2 Research opportunity and questions 3
1.3 Aim and objectives . 4
1.4 Scope . 5
1.5 Methodology . 5
1.6 Contributions and novelty . 6
1.7 Layout . 7

2 Preliminaries and definitions 11
2.1 Preliminaries . 11
2.2 Definitions in this thesis . 17

3 Marked bisection in n dimensions 25
3.1 Problem and outline of our solution 26
3.2 Unequivocal edge selection per mesh entity: consistent bisection edge 27
3.3 Pre-processing: codimensional marks 28
3.4 First stage: tree-simplices . 29
3.5 Second stage: casting to Maubach . 31
3.6 Third stage: Maubach’s bisection . 33
3.7 Examples . 34
3.8 Concluding remarks . 44

ix

4 Marked bisection in three dimensions with optimal similarity bound 47
4.1 Preliminaries and problem . 48
4.2 Solution: conformingly marking as planar 52
4.3 Restricted marked bisection . 56
4.4 Examples . 57
4.5 Concluding remarks . 63

5 Newest vertex bisection in n dimensions: reflectivity 65
5.1 Problem and outline of our solution 66
5.2 Solution: strict total order of vertices leads to reflected meshes 66
5.3 Examples . 72
5.4 Concluding remarks . 80

6 Suitability of marked bisection for local refinement in n dimensions 81
6.1 Marked bisection on a triangle . 81
6.2 Marked bisection on a tetrahedron 85
6.3 Conformity and reflectivity after n uniform refinements 92
6.4 Estimation of the number of similarity classes 97
6.5 Conclusions . 101

7 Conclusions and future work 103

A Lemmas relating sets and unions with simplices, concatenation
and vertex sorting 107

B Visualization of pentatopic meshes 109

C Conformity, reflectivity, and mesh renumbering 111
C.1 Conformity check . 111
C.2 Reflectivity check . 114
C.3 Mesh renumbering . 115

D Local bisection for conformal refinement of unstructured 4D sim-
plicial meshes 117

Bibliography 137

x

List of Figures

2.1 Bisection of a tetrahedron into two tetrahedra. 13
2.2 Bisection trees of the triangle σ = ([v0], [v1], [v2]) and generated meshes af-

ter two uniform refinements. The bisection tree (a) generated by Maubach’s
algorithm considering σ as a tagged triangle with tag d = 2 generates the
triangular mesh (c). The bisection tree (b) generated by shortest edge
bisection, being ([v0], [v1]) the first bisection edge, algorithm generates the
mesh (d). 22

2.3 Balanced vertex tree and its complete vertex tree. (a) Vertex tree and (b)
complete vertex tree associated to Figure 2.2(a). 23

3.1 Conformal reflected n-dimensional meshes after the first two bisection
stages. (a) Conformal reflected triangular mesh T 2

2 after two uniform
refinements. (b) Conformal reflected tetrahedral mesh T 3

3 after three uni-
form refinements. (c) Volume slice with the hyperplane t = 0 of the
conformal reflected pentatopic mesh T 4

4 after four uniform refinements. . 35
3.2 Minimum (blue) and maximum (red) quality cycles for uniform refine-

ments. In columns, initial simplex: (a), (c) and (e) equilateral, (b), (d)
and (f) irregular simplex. In rows, simplex dimension: (a) and (b) trian-
gles; (c) and (d) tetrahedra; (e) and (f) pentatopes. 37

3.3 Volume slices of 4-dimensional mesh T22 at different planes: (a) x = 1/2;
(b) y = 1/2; and (c) z = 1/2. 39

3.4 Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iterations. 39

3.5 Slice of the 4-simplicial mesh of a hypersphere with the hyperplane t = 0:
(a) initial mesh; and (b) locally adapted mesh T5. 40

3.6 Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iterations. 41

3.7 Volume slices of T18 at different time instants colored by potential value.
In columns, slice of the mesh (a,c,e) without and (b,d,f) with the iso-
potential manifold. In rows, slices with: (a,b) t = 0.0; (c,d) t = 0.5; and
(e,f) t = 1.0. 43

xi

3.8 Volume slice with the hyperplane x = 1/2. In Figures (a) and (b) we ob-
tain the 3D space-time mesh (z, y, t), where we can see the time evolution
of the iso-surface defined by the gravitational potential. We can see how
the mesh is adapted to capture the movement of the two particles. . . . 44

3.9 Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iteration. 44

4.1 Representations of a tetrahedron composed of the vertices v1, v2, v3, and
v4: (a) volumetric; and (b) planar. 49

4.2 The five different type of marked tetrahedra of Arnold’s cycle: (a) un-
flagged planar tetrahedron, (b) flagged planar tetrahedron, (c) adjacent
tetrahedron, (d) mixed tetrahedron, and (e) opposite tetrahedron. . . . 50

4.3 Directed graph of tetrahedron types for marked bisection. 51

4.4 Marked tetrahedra with: (a) our element-based marking method; and (b)
the standard face-based marking method. 54

4.5 Restricted bisection cycle starting on unflagged planar type. 55

4.6 Cases for restricted marked bisection: (a) from a Pu to two Pf ; (b) from
a Pf to two A; and (c) from a A to two Pu. 57

4.7 Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iteration: (a) equilateral tetrahedron; (b)
cartesian tetrahedron; and (c) random tetrahedron. 59

4.8 Final mesh after 12 iterations of uniform refinement for: (a) equilateral
tetrahedron; (b) cartesian tetrahedron; and (c) irregular tetrahedron. . . 60

4.9 Slice of the mesh T40 with the plane: (a) x = 1/2; and (b) y = 1/2. . . . 61

4.10 Quality of Example 4.4.2: Evolution of the maximum (red line) and min-
imum (blue line) mesh quality through the mesh refinement iterations. . 61

4.11 Slices of T50 with the plane: (a) t = 0.0; (b) t = 0.5; and (c) t = 1.0. . . 62

4.12 Slice of the T50 with the plane x = 1/2, (a) with, and (b) without the
iso-surface. 62

4.13 Quality of Example 4.4.3: Evolution of the maximum (red line) and min-
imum (blue line) mesh quality through the mesh refinement iterations. . 63

5.1 We show the evolution of Ck for the meshes in 2D (blue line), 3D (red
line), 4D (yellow line), and 5D (green line) during the 10 iterations of
local refinement. 75

5.2 Slice of the 4-simplicial mesh of a hypersphere with the hyperplane t = 0:
(a) initial mesh; and (b) locally adapted mesh T7. 76

5.3 Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iteration. 76

5.4 Evolution of Ck during the local refinement process. 77

xii

5.5 Different slices in time of T22 are presented to illustrate how the isosurface
has been captured. In rows, slice with t = 0.0 (a) and (b), slice with
t = 0.5 (c) and (d), and slice with t = 1.0 (e) and (f). In columns, slice of
the mesh (a), (c) and (e), and countour of the isosurface (b), (d) and (f). 78

5.6 Slice with the hyperplane x = 1/2. In Figures (a) and (b) we obtain the
3D space-time mesh (z, y, t), where we can see the time evolution of the
isosurface defined by the gravitational potential. We can see how the mesh
is adapted to capture the movement of the two particles. 79

5.7 Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iteration. 79

5.8 Evolution of Ck during the local refinement process. 80

6.1 Bisection trees of a triangle σ = ([v0], [v1], [v2]) where the consistent bisec-
tion edges is: (a) e = ([v1], [v2]), (b) e = ([v0], [v2]), and (c) e = ([v0], [v1]). 82

6.2 Sequence of meshes for two uniform refinements of the triangle σ with the
bisection tree depicted in Figure 6.1(a): (a) Qσ0 , (b) Qσ1 , and (c) Qσ2 . . . 83

6.3 The triangular meshes (a), (b) and (c) after two uniform refinements using
the balanced bisection trees of Figure 6.1(a), Figure 6.1(b) and Figure
6.1(c), respectively. 84

6.4 Each step of the marking process applied to the tetrahedron σ: (a) il-
lustrates each sub-simplex of the marking process and its corresponding
consistent bisection edge; and (b) is the obtained bisection tree of σ. . . 86

6.5 Obtained meshes after uniform marked-simplex bisection refinements: (a)
Qσ0 , (b) Qσ1 , (c) Qσ2 , and (d) Qσ3 . 88

6.6 Complete vertex tree t̄ corresponding to the bisection tree of Figure 6.4(b). 91

6.7 Outline of the proof: (a) Given a tetrahedron, and a refinement edge e
with midpoint ν, (b) trough bisection we obtain two tetrahedra. Then,
(c) we split the two tetrahedra into two triangles that share an edge and
the vertex ν. After that, (d) we perform two uniform refinements to the
triangles. Thus, since the shared edge is refined in the same manner, (e)
we can be merged the triangular meshes trough their shared refined edge.
Finally, (f) we connect ν to all the vertices of the merged triangular mesh,
generating a conformal tetrahedral mesh composed of 8 tetrahedra. . . . 96

6.8 The three possible bisection trees ti corresponding to the consistent bisec-
tion edges (a) ([vi1], [vi2]), (b) ([vi0], [vi2]), and (c) ([vi0], [vi1]). 98

xiii

B.1 The first row corresponds to the application of the visualization to the
3D tetrahedral mesh that generate a 2D triangular visualization mesh.
We slice a tetrahedral mesh (a) with a 2D plane, obtaining a polygonal
mesh (b). Then, we generate a 2D triangular mesh (c). Analogously,
the second row corresponds to the visualization of a 4D pentatopic mesh.
First, we slice a 4D pentatopic mesh with a 3D hyperplane (d), obtaining
a polyhedral mesh B.1(e). Then, we decompose the obtained polyhedral
mesh into tetrahedral mesh (f). 110

xiv

List of Algorithms

2.1 Maubach’s bisection of a n-simplex. 14
2.2 Refining a subset of a mesh. 16
2.3 Local refinement of a marked mesh. 16
2.4 Refine-to-conformity a marked mesh. 16
2.5 Bisect a set of simplices. 17
2.6 Generation of a new multi-id. 18
2.7 Local edges of a simplex . 19
2.8 Simplices with hanging vertices of the mesh T. 20
3.1 Bisection of a marked simplex ρ. 26
3.2 Mark a k-simplex. 28
3.3 Mark a conformal simplicial mesh. 28
3.4 Bisect a marked tree-simplex. 30
3.5 Bisect a tree-simplex. 30
3.6 Bisect to Maubach . 31
3.7 Cast to Maubach. 32
3.8 Adapted Maubach’s algorithm. 33
4.1 Marking as unflagged planar. 53
4.2 Conformingly marking a tetrahedral mesh. 55
4.3 Restriced marked bisection. 56
5.1 Make a reflected mesh. 67
C.1 Generation of a dictionary of faces 112
C.2 Checking of conformity . 113
C.3 Checking of reflected neighbors . 114

xv

Chapter 1

Introduction

1.1 Motivation and background

In many applications, computational scientists and engineers need to numerically

solve problems formulated in more than three dimensions, problems such as partial

differential equations (PDEs) and combinatorial fixed points, problems that model

physical and economic phenomena. In these problems, the dimensionality might be

relatively small or potentially large. It is relatively small in problems such as 4D

general relativity equations, 4D space-time discretizations of unsteady 3D phenom-

ena, and 6D Boltzmann equations. It is potentially large in problems such as the

Black-Scholes equation with as many dimensions as financial assets, the Schrödinger

equation with as many dimensions as three times the number of quantum particles,

and combinatorial fixed point models featuring up to thousands of dimensions. Unfor-

tunately, the cost of solving these problems grows exponentially with dimensionality.

To mitigate this exponential growth, practitioners can use adaptive mesh refine-

ment to reduce the element count and, thus, the computational cost. Specifically,

adaptive mesh refinement uses finer elements where the solution presents larger vari-

ations and coarser elements where the solution presents smaller variations.

In adaptive n-dimensional refinement, conformal simplicial meshes must be locally

modified. One systematic modification for arbitrary dimensions is to bisect a set of

selected simplices. This operation splits each simplex by introducing a new vertex on a

previously selected refinement edge. Then, this new vertex is connected to the original

vertices to define two new simplices. To ensure that the mesh is still conformal, the

1

1. Introduction

bisection has to select additional refinement edges on a surrounding conformal closure.

This edge selection is commonly based on choosing either the longest edge (Rivara,

1984, 1991; Plaza and Carey, 2000; Plaza and Rivara, 2003) or the newest vertex

(Mitchell, 1991; Kossaczký, 1994; Maubach, 1995, 1996b; Traxler, 1997). Although

both edge selections are well-suited for adaption, newest vertex bisection has been

preferred in applications where it is possible to start with a reflected mesh (Maubach,

1995; Traxler, 1997; Stevenson, 2008; Alkämper et al., 2018).

This preference is so since on reflected meshes newest vertex bisection guarantees

key advantages for n-simplicial adaption. The first advantage is that if the initial

mesh is conformal, the refined mesh is also conformal (Stevenson, 2008) (conformity).

Second, local refinement of a set of simplices terminates in finite time (Stevenson,

2008) (finiteness). Third, successive refinement leads to a fair number of simplex

similarity classes (Maubach, 1996a; Traxler, 1997; Arnold et al., 2000; Stevenson,

2008). Thus, the minimum mesh quality is bounded (stability). Finally, it needs a

fair number of additional bisections to complete the conformal closure (Stevenson,

2008) (locality).

Unfortunately, practitioners only know how to exploit the advantages of pure

newest vertex bisection on meshes generated using the Coxeter-Freudenthal-Kuhn al-

gorithm (Coxeter, 1934; Freudenthal, 1942; Kuhn, 1960) or meshes where all the edges

have an even number of incident tetrahedra (Maubach, 1996b; Traxler, 1997). For

complex geometry, newest vertex bisection is only used in two dimensions (Mitchell,

1991). For more dimensions, there is not any known method to extract a reflection

structure from an arbitrary unstructured conformal mesh (Maubach, 1995; Traxler,

1997; Stevenson, 2008; Alkämper et al., 2018).

For unstructured conformal meshes, there are pre-processing methods for n-di-

mensional meshes that allow conformal finite termination of posterior newest vertex

bisection (Stevenson, 2008; Alkämper et al., 2018). However, these methods do not

fulfill simultaneously the similarity and the locality properties. The number of simi-

larity classes for the method in Stevenson (2008) is not favorably bounded since the

pre-process starts by splitting all simplices into (n+1)!/2 simplices. Thus, the method

can lead to (n+1)!/2 times more similarity classes for each simplex than pure newest

vertex bisection. On the contrary, the bound on the cost of the conformal closure

for the method in Alkämper et al. (2018) might be worst than in Stevenson (2008)

since the pre-process leads to weakly reflected meshes. As stated in Alkämper et al.

2

1.2. Research opportunity and questions

(2018), this weak condition might not satisfy the strong reflection condition required

for locality Stevenson (2008), a strong condition that is possibly more restrictive than

being a weakly reflected mesh.

Fortunately, a conformal and finite bisection method is adequate for adaptive

analysis if it almost fulfills the similarity and locality properties. To almost fulfill

these conditions, one can use an existent multi-stage method (Arnold et al., 2000).

These methods feature a first stage performing a specific-purpose bisection for marked

simplices. This marked bisection enforces that after a few initial steps, one can switch

independently on each element to another stage featuring Maubach’s newest vertex

bisection (Maubach, 1995). The number of initial bisection steps is comparable with

the spatial dimension. Hence, these steps are responsible for an initial slight increase

in both the total number of similarity classes and the cost of the conformal closure.

Taking into account this initial increase and since the first stage fulfills the sufficient

conformity and reflection conditions stated in Stevenson (2008), the whole method

is finite and conformal while almost fulfills the similarity and locality properties.

However, these multi-stage methods are specifically devised for 3D by Arnold et al.

(2000). Accordingly, the question of whether there is a practical n-dimensional multi-

stage bisection method for unstructured conformal meshes is still open.

1.2 Research opportunity and questions

The previous overview identifies a research opportunity to enable mesh adaptivity in

arbitrary dimensions. Although there are methods for conformal bisection of un-

structured conformal simplicial meshes in arbitrary dimensions, there is no known

method that guarantees (almost guarantees) the advantages for local refinement of

newest vertex bisection on unstructured conformal meshes in more than two (three)

dimensions.

The overview also identifies the following key research questions for conformal

bisection of unstructured conformal simplicial meshes in arbitrary dimensions:

(Q1) Can a reflection structure be extracted from any mesh? Answering this question

will enable the advantages of the newest vertex bisection for local refinement of

complex geometry. This is an open question for three (Arnold et al., 2000) or

more dimensions (Mitchell, 1991, 2017).

3

1. Introduction

(Q2) Is it possible to perform multi-stage bisection in any mesh? Answering this

question will provide a method that almost fulfills the advantages of the newest

vertex bisection for local refinement of complex geometry. This is an open

question for four or more dimensions (Arnold et al., 2000).

Potentially, answering question (Q2) is easier than answering question (Q1). Be-

cause the newest vertex bisection can be understood as a multi-stage method with

a first stage featuring zero refinements, we have that answering question (Q1) also

answers question (Q2). On the contrary, because the first stages of a multi-stage

bisection method might not be equivalent to the newest vertex bisection, answering

question (Q2) does not answer question (Q1).

1.3 Aim and objectives

This thesis aims to demonstrate conformal bisection methods in arbitrary dimensions

for local refinement of unstructured conformal simplicial meshes. To this end, this

thesis develops the following objectives :

(O1) Proposing a multi-stage bisection method in four dimensions, Appendix D.

(O2) Proposing a multi-stage bisection method in arbitrary dimensions, Chapter 3.

(O3) Enabling and guaranteeing newest vertex bisection advantages in three dimen-

sions, Chapter 4.

(O4) Enabling and guaranteeing newest vertex bisection advantages in arbitrary di-

mensions, Chapter 5.

(O5) Demonstrating suitability of multi-stage bisection method for local refinement in

arbitrary dimensions, Chapter 6.

The aim of this thesis addresses the research opportunity. Moreover, the objectives

address the research questions. Objectives (O1) and (O2) empirically address the

research question (Q2). Objectives (O3) and (O4) formally address the research

question (Q1). Objective (O5) proposes a formal outline for the research question

(Q2).

4

1.4. Scope

1.4 Scope

This thesis is focused on conformal bisection methods for local refinement on un-

structured conformal simplicial meshes. Specifically, this thesis is focused on marked

bisection and the newest vertex bisection methods. Following, we justify this scope,

yet there are alternative choices. First, refinement with bisection is preferred because

it features a nested structure that can be exploited, e.g., by fast multigrid solvers.

Second, bisection conformity is favored because it allows bisecting conformal and

non-conformal meshes. Third, unstructured simplicial meshes are chosen because

they feature geometric flexibility, and there are automatic mesh generators for com-

plex (simple) geometries in two and three (arbitrary) dimensions. Fourth, marked

bisection and the newest vertex bisection methods are preferred because they rely on

existing theoretical results guaranteeing advantages for adaptivity.

1.5 Methodology

To gradually meet the aim of this thesis, the research methodology increases the po-

tential difficulty of the objectives. Because multi-stage methods are more flexible, the

thesis starts with objectives (O1) and (O2). These objectives propose multi-stage

methods, the first demonstrates a particular method for four dimensions, and the

second demonstrates a generic method in arbitrary dimensions. Then, encouraged by

these multi-stage bisection results and deriving new sufficient conditions for newest

vertex bisection, the objectives (O3) and (O4) are focused on the newest vertex bi-

section. Specifically, they guarantee the advantages of the newest vertex bisection in

three (O3) and arbitrary dimensions (O4). Finally, using the reflectivity theory de-

veloped in (O4), outlining new approaches to ensure conformity, and estimating the

number of similarity classes, objective (O5) shows the suitability of marked bisection

in arbitrary dimensions for local refinement.

The methodology approaches are based on computer implementations, runtime

checks, and formal proofs. First, the computer implementations of the proposed meth-

ods allow showing empirical evidence of the advantages for local refinement. Second,

the computer implementation checks mesh invariants at runtime, invariants such as

reflectivity and conformity, invariants that validate the obtained results. Finally, the

formal proofs guarantee the properties of the proposed methods. These theoretical

proofs rely on existent theory, new conjectures, and new theoretical results.

5

1. Introduction

1.6 Contributions and novelty

This thesis demonstrates conformal bisection for local refinement of unstructured

meshes in arbitrary dimensions. To this end, this thesis proposes novel methods :

(C1) The first multi-stage bisection in four dimensions, Appendix D. This contribu-

tion empirically answers question (Q2) in four dimensions. It corresponds to

the peer-reviewed conference paper Belda-Ferŕın et al. (2019).

(C2) The first multi-stage bisection in arbitrary dimensions, Chapter 3. This con-

tribution empirically answers question (Q2) in arbitrary dimensions. It corre-

sponds to the submitted journal paper Belda-Ferŕın et al. (2022).

(C3) The first guaranteed marked bisection behaving as the newest vertex bisection

in three dimensions, Chapter 4. This contribution empirically and formally

answers question (Q1) in three dimensions. It corresponds to the peer-reviewed

conference paper Belda-Ferŕın et al. (2021).

(C4) The first guaranteed newest vertex bisection in arbitrary dimensions, Chapter 5.

This contribution empirically and formally answers question (Q1) in arbitrary

dimensions. It corresponds to the journal paper in preparation Belda-Ferŕın

et al. (2022a).

(C5) An outline to guarantee multi-stage bisection for local refinement in arbitrary

dimensions, Chapter 6. This contribution addresses question (Q2). It checks

the question in two and three dimensions, and it outlines a formal answer in

arbitrary dimensions. This contribution corresponds to the journal paper in

preparation Belda-Ferŕın et al. (2022b).

(C6) A slicing tool to visualize four-dimensional pentatopic meshes, Appendix B.

This contribution corresponds to the research note Belda-Ferŕın et al. (2019).

Reflectivity and conformity are sufficient conditions to use the newest vertex bi-

section method on unstructured conformal meshes. Accordingly, the central findings

of this thesis provide sufficient conditions to ensure reflectivity and conformity. To

ensure reflectivity, this thesis proves that it is sufficient to sort the mesh vertices

with a strict and total order, Chapter 5. To ensure conformity, this thesis promotes

checking conformity separately on faces determined by mesh simplices and on faces

generated by bisection, Chapter 6.

6

1.7. Layout

1.7 Layout

To develop the previous contributions, the thesis starts with the preliminaries and def-

initions, contents that are common to the different contributions. Then, the proposed

contributions are successively presented. Finally, the appendices include the detail

of non-central methods and results. The final appendix appends a peer-reviewed

conference paper corresponding to contribution (C1). Following, we summarize the

contents of the contribution chapters.

In Chapter 3, we present an n-dimensional marked bisection method for unstruc-

tured conformal meshes. We devise the method for local refinement in adaptive

n-dimensional applications. To this end, we propose a mesh marking pre-process and

three marked bisection stages. The pre-process marks the initial mesh conformingly.

Then, in the first n− 1 bisections, the method accumulates in reverse order a list of

new vertices. In the second stage, the n-th bisection, the method uses the reversed

list to cast the bisected simplices as reflected simplices, a simplex type suitable for

newest vertex bisection. In the final stage, beyond the n-th bisection, the method

switches to newest vertex bisection. To allow this switch, after the second stage, we

check that under uniform bisection the mesh simplices are conformal and reflected.

These conditions are sufficient to use newest vertex bisection, a bisection scheme

guaranteeing key advantages for local refinement. Finally, the results show that the

proposed bisection is well-suited for local refinement of unstructured conformal mesh-

es.

In Chapter 4, we propose a new method to mark for bisection the edges of an

arbitrary three-dimensional unstructured conformal mesh. For these meshes, the ap-

proach conformingly marks all the tetrahedra with coplanar edge marks. To this

end, the method needs three key ingredients. First, we propose a specific edge or-

dering. Second, marking with this ordering, we guarantee that the mesh becomes

conformingly marked. Third, we also ensure that all the marks are coplanar in each

tetrahedron. To demonstrate the marking method, we implement an existent marked

bisection approach. Using this implementation, we mark and then locally refine three-

dimensional unstructured conformal meshes. We conclude that the resulting marked

bisection features an optimal bound of 36 similarity classes per tetrahedron.

In Chapter 5, we propose a new method to mark for bisection the edges of an

arbitrary n-dimensional unstructured conformal mesh. This marking method is de-

vised for local refinement in adaptive n-dimensional applications. To this end, we

7

1. Introduction

consider three main ingredients. First, we sort the simplex vertices with a strict and

total order, and we mark all the mesh elements as Maubach simplices with a tag

equal to n. Second, for any n-dimensional unstructured conformal mesh, we guar-

antee that the marking procedure leads to a reflected mesh. Third, we guarantee

that the resulting meshes are strongly compatible, and thus, they are suitable for

posterior local refinement with the newest vertex bisection. To illustrate the local

refinement application, we equip an n-dimensional refine to conformity marked bisec-

tion implementation with our marking method. With this implementation, we locally

refine unstructured conformal meshes of different dimensions. We also illustrate the

stability and locality of the resulting meshes. We conclude that the resulting marked

bisection enables the conformity, finiteness, stability, and locality properties of the

newest vertex bisection on complex n-dimensional geometry.

In Chapter 6, we show that the resulting meshes are conformal, the algorithm fin-

ishes in a finite number of steps, and that the meshes asymptotically feature locality.

To this end, we illustrate and justify that it is sufficient to prove that after n uniform

multi-stage bisections the resulting mesh is conformal and reflected. Finally, we esti-

mate that the number of generated similarity classes is slightly greater than with the

newest vertex bisection. In conclusion, because the proposed method is conformal,

finite, asymptotically local, and features a fair similarity bound, it can be used for

local refinement of unstructured conformal meshes.

In Appendix B, we propose a simple tool to visualize 4D unstructured pentatopic

meshes. We present a method that slices unstructured 4D pentatopic meshes (fields)

with an arbitrary 3D hyperplane and obtains a conformal 3D unstructured tetra-

hedral representation of the mesh (field) slice ready to explore with standard 3D

visualization tools. The results show that the method is suitable to visually explore

4D unstructured meshes. This capability has facilitated devising our 4D bisection

method, and thus, we think it might be useful when devising new 4D meshing meth-

ods. Furthermore, it allows visualizing 4D scalar fields, which is a crucial feature for

our space-time applications.

In Appendix D, we present a conformal bisection procedure for local refinement

of 4D unstructured simplicial meshes with bounded minimum shape quality. Specif-

ically, we propose a recursive refine to conformity procedure in two stages, based

on marking bisection edges on different priority levels and defining specific refine-

ment templates. Two successive applications of the first stage ensure that any 4D

8

1.7. Layout

unstructured mesh can be conformingly refined. In the second stage, the successive

refinements lead to a cycle in the number of generated similarity classes and thus,

we can ensure a bound over the minimum shape quality. In the examples, we check

that after successive refinement the mesh quality does not degenerate. Moreover, we

refine a 4D unstructured mesh and a space-time mesh (3D+1D) representation of a

moving object.

9

Chapter 2

Preliminaries and definitions

Before proposing the new methods and results of this thesis, we introduce the common

notation, concepts, theory, and methods. First, we present existent content in the

literature related to simplicial meshes, conformity, and bisection methods. Second, we

introduce novel concepts and methods, contents that are required by the contribution

chapters.

2.1 Preliminaries

We proceed to introduce the necessary notation and concepts. Specifically, we intro-

duce the preliminaries related simplicial meshes, conformity, and bisection methods.

2.1.1 Simplicial meshes, conformity, and bisection

A simplex is the convex hull of n + 1 points p0, . . . , pn ∈ Rn that do not lie in the

same hyperplane. We denote a simplex as σ = conv(p0, . . . , pn). We identify each

point pi with a unique integer identifier vi that we refer as vertex. Thus, a simplex

is composed of n + 1 vertices and we denote it as σ = (v0, . . . , vn) where vi is the

identifier of point pi. We have an application Π that maps each identifier vi to the

corresponding point pi.

Given a simplex σ, a k-entity is a sub-simplex composed of k + 1 vertices of σ,

for 0 ≤ k ≤ n− 1. We say that a 1-entity is an edge and an (n− 1)-entity is a face.

11

2. Preliminaries and definitions

The number of k-entities contained in a simplex σ is
(
n+ 1

k + 1

)
.

Particularly, the number of edges and faces of σ is
(
n+ 1

2

)
=
n(n+ 1)

2
,

(
n+ 1

n

)
= n,

respectively. We associate each face of a simplex σ to its opposite vertex in σ.

Specifically, the opposite face to vi is

κi = (v0, v1, . . . , vi−1, vi+1, . . . , vn).

We say that two simplices σ1 and σ2 are neighbors if they share a face.

We define a mesh, T, associated to an open set Ω ∈ Rn as a finite collection of

mutually disjointed simplices such that

Ω =
⋃

σ∈T

σ.

A simplicial mesh is conformal if the following two conditions are satisfied:

(C1) For any σ ∈ T, σ ∩ ∂Ω is the union of entities of σ.

(C2) For any σ1, σ2 ∈ T, either σ1∩σ2 is empty, or a k-entity of T with 0 ≤ k ≤ n−1.

In reference Stevenson (2008), the author states a definition for conformal meshes

slightly different from the standard one. Specifically, he considers that a simplicial

mesh is conformal if the following two conditions are satisfied:

(C1) For any σ ∈ T, σ ∩ ∂Ω is the union of entities of σ.

(C3) Each x ∈ σ1 ∩ σ2, with σ1, σ2 ∈ T, for which any open ball B 3 x, any y ∈
σ1 ∩ B ∩ Ω, y′ ∈ σ2 ∩ B ∩ Ω are connected by a path through B ∩ Ω, lies on a

joint k-entity of σ1 and σ2.

When Ω nowhere lies simultaneously on both sides of an (n− 1)- dimensional part of

its boundary, (C3) is equivalent to the standard definition (C2) of conformity. If, in

addition, ∂Ω is everywhere (n− 1)-dimensional, i.e., if Ω = int(Ω), then (C3) implies

(C1), see Remark 3.1 of Stevenson (2008).

With that definition, Stevenson proves that if a mesh T fulfills the condition (C3)

then, it is enough to check the conformity of T only through faces. We rewrite its

theorem as follows:

12

2.1. Preliminaries

Figure 2.1: Bisection of a tetrahedron into two tetrahedra.

Theorem 2.1 (Theorem 3.2 of Stevenson (2008)). A mesh T of Ω satisfies (C3) if

and only if any σ1, σ2 ∈ T, for which σ1 ∩ σ2 ∩ Ω contains a point interior to a face

of σ1, or σ2 are neighbors.

Specifically, if a mesh T is conformal by faces, then Theorem 2.1 ensures auto-

matically that T is conformal by all the k-entities, where 1 ≤ k ≤ n − 2. Thus,

Theorem 2.1 ensures that checking the conformity of the faces automatically checks

the conformity of all the entities of the mesh.

We define the bisection of a simplex as the operation that splits a simplex by

introducing a new vertex on the selected refinement edge. Then, the vertices not

lying on this refinement edge are connected to the new vertex. These connections

determine two new simplices. Figure 2.1 shows the bisection of a tetrahedron.

2.1.2 Newest vertex bisection

We introduce tagged-simplex bisection, see Maubach (1995), and some definitions

that explain the sufficient conditions to use newest vertex bisection, see Stevenson

(2008).

We define a tagged simplex as a simplex σ = (v0, v1, . . . , vn) equipped with an

integer called tag, d ∈ {1, . . . , n}. We denote it as σ = (v0, v1, . . . , vn)d. Maubach

proposes a bisection step for tagged simplices, see Algorithm 2.1. The input is a

tagged simplex σ, and the output are two tagged simplices σ1 and σ2.

Let σ = (v0, . . . , vn)d the input tagged simplex. First, we define the new tag

of the children as d′, see Line 3. Then, we create the new vertex z, which is the

midpoint of the edge (v0, vd), see Line 4. Then, we define the two tagged children as

σ1 = (v0, v1, . . . , vd−1, z, vd+1, . . . , vn)d′ and σ2 = (v1, v2, . . . , vd, z, vd+1, . . . , vn)d′ , see

Lines 5 and 6, respectively. Finally, we return the two tagged simplices σ1 and σ2,

see Line 7.

13

2. Preliminaries and definitions

Algorithm 2.1 Maubach’s bisection of a n-simplex.

input: TaggedSimplex σ
output: TaggedSimplex σ1, TaggedSimplex σ2
1: function bisectTaggedSimplex(σ)
2: (v0, . . . , vn)d = σ

3: Set d′ =

{
d− 1, d > 1
n, d = 1

4: Create the new vertex z =
1

2
(v0 + vd)

5: σ1 = (v0, v1, . . . , vd−1, z, vd+1, . . . , vn)d′ .
6: σ2 = (v1, v2, . . . , vd, z, vd+1, . . . , vn)d′ .
7: return µ1, µ2

8: end function

According to Stevenson (2008), we say that two neighboring tagged simplices

σ1 = (v0, . . . , vn)d1 and σ2 = (w0, . . . , wn)d2 with d1 = d2 are reflected neighbors if

the order of vertices of the shared face is the same. That is, there are two sequences

i0 < i1 < . . . < in−1 and j0 < j1 < . . . < jn−1 such that vik = wjk , for k = 0, . . . , n− 1

and ik, jk ∈ N. In reference Traxler (1997), the author defines a reflected mesh as a

mesh such that all adjacent pairs of simplices are reflected neighbors.

In reference Alkämper et al. (2018), the authors introduce some definitions about

the compatibility of a face and of a mesh. A face κ = σ1∩σ2 of the mesh T is called a

strongly compatible face if σ1 and σ2 are reflected neighbors, or their children adjacent

to κ are reflected neighbors. A mesh T is a strongly compatible mesh if all faces in T
are strongly compatible.

Remark 2.1 (Strong compatibility condition). Note that to have a strongly com-

patible mesh, it is sufficient to have a conformal and reflected mesh.

Remark 2.2 (Newest vertex bisection conditions). If the initial mesh is strongly

compatible, then we can use newest vertex bisection and have the following properties:

• Conformity and finiteness. Local refinement with newest vertex bisection

generates a conformal mesh and terminates in a finite number of steps, see

Theorem 5.1 of Maubach (1995) and Theorem 5.1 of Stevenson (2008).

• Stability. Successive refinement of newest vertex bisection leads at most to

Mn = nn!2n−2 similarity classes, see Theorem 4.5 of Arnold et al. (2000). Thus,

the minimum mesh quality of the refined mesh is bounded.

14

2.1. Preliminaries

• Locality. Local refinement with newest vertex bisection needs a fair number

of additional bisections to complete the conforming closure, see Theorem 2.4

of Binev et al. (2004) and Theorem 6.1 of Stevenson (2008). The number of

simplices of the refined mesh is bounded, up to a constant, by the sum of refined

simplices of the initial mesh. That is, let T0 be a conformal simplicial mesh,

Tn be the mesh obtained after the n-th local refinement iteration, Mk be the

set of elements marked to be refined at the k-th iteration of local refine, and

M =M0 ∪ · · · ∪Mn−1 be the union of all the marked sets. Then, there exists

a constant C > 0 such that

(Tn)−# (T0) ≤ C# (M) (2.1)

is hold, where # (·) denotes the number of simplices. Note that the constant C

only depends on the initial mesh, T0, and it does not depend on the number of

refinement iterations.

2.1.3 Marked bisection

In reference Arnold et al. (2000), the authors presented a marked bisection algorithm

for unstructured conformal tetrahedral meshes that ensures locally refined conformal

meshes and quality stability. The refinement edge is the edge of σ to be bisected.

Since an edge is shared by n − 1 faces of the simplex, the faces that contain the

refinement edge are the refinement faces of σ. The remaining two faces are defined

as non-refinement faces.

Now, we can introduce the definition of marked simplex, which is a modification

of the one detailed by Arnold et al. (2000). Herein, a marked simplex is a simplex σ

equipped with a data structure that tells us how to refine it and its descendants.

A mesh is marked if all its simplices are marked. A marked conformal mesh is

conformingly-marked if each entity has a unique refinement edge. That is, an entity

shared by two simplices has the same refinement edge from both sides. Accordingly,

shared entities are bisected in the same manner from different simplices.

To perform the bisection process, we adapt to the n-dimensional case the recursive

refine-to-conformity scheme proposed by Arnold et al. (2000). The marked bisection

method, Algorithm 2.2, starts by marking the initial unstructured conformal mesh

and then applies a local refinement procedure to a set of simplices of the marked

mesh. To do it so, we need to specify a conformal marking procedure for simplices to

15

2. Preliminaries and definitions

Algorithm 2.2 Refining a subset of a mesh.

input: Mesh T, SimplicesSetM ⊂ T
output: ConformalMarkedMesh T2
1: function refineMesh(T, M)
2: T1 = markMesh(T)
3: T2 = localRefine(T1,M)
4: return T2
5: end function

Algorithm 2.3 Local refinement of a marked mesh.

input: ConformalMarkedMesh T and SimplicesSetM ⊂ T
output: ConformalMarkedMesh T ′
1: function localRefine(T, M)
2: T̄ = bisectSimplices(T,M)
3: T ′ = refineToConformity(T̄)
4: T0 = renumberMesh(T ′)
5: return T0
6: end function

Algorithm 2.4 Refine-to-conformity a marked mesh.

input: MarkedMesh T
output: MarkedMesh T ′ without hanging vertices
1: function refineToConformity(T)
2: M = getNonConformalSimplices(T)
3: if M 6= ∅ then
4: T̄ = bisectSimplices(T,M)
5: T ′ = refineToConformity(T̄)
6: else
7: T ′ = T
8: end if
9: return T ′
10: end function

obtain a marked mesh T ′. Using this marked mesh, the local refinement procedure,

Algorithm 2.3, first refines a set of simplices, then calls a recursive refine-to-conformity

strategy, and finally renumbers the mesh, see C.3. The refine-to-conformity strategy,

Algorithm 2.4, terminates when successive bisection leads to a conformal mesh. Both

algorithms use marked bisection to refine a set of elements, see Algorithm 2.5.

Remark 2.3 (Declaring new bisection methods). In the following chapters, we use

the previous bisection process to declare new bisection methods. To this end, for each

16

2.2. Definitions in this thesis

Algorithm 2.5 Bisect a set of simplices.

input: MarkedMesh T, SimplicesSetM
output: MarkedMesh T1
1: function bisectSimplices(T, M)
2: T1 = ∅
3: for ρ ∈ T do
4: if ρ ∈M then
5: ρ1, ρ2 = bisectSimplex(ρ)
6: T1 = T1 ∪ ρ1
7: T1 = T1 ∪ ρ2
8: else
9: T1 = T1 ∪ ρ

10: end if
11: end for
12: return T1
13: end function

method, we specify a mesh preprocess to mark the initial unstructured conformal

mesh, see Algorithm 2.2, and a set of simplex bisection rules to refine each element

type, see Algorithm 2.5.

In reference Arnold et al. (2000), the authors introduce the following notation to

indicate that a mesh has been refined uniformly k times. Let Q0 = T and

Qk = bisectSimplices(Qk−1,Qk−1)

be the obtained mesh after performing k uniform refinements. The mesh Qi is com-

posed of # (Qi) = 2i# (T) simplices. Analogously, when we refine uniformly a simplex

σ, we denote Qσ0 = σ, and

Qσk = bisectSimplices(Qσk−1,Qσk−1)

be the obtained mesh after performing k uniform refinements. Since we are performing

uniform refinements, the mesh Qσi is composed of # (Qσi) = 2i simplices.

2.2 Definitions in this thesis

Before we detail our marked bisection method, we introduce: the notion of multi-id

to provide a unique identifier to the mid-vertices; the search of simplices that define

17

2. Preliminaries and definitions

Algorithm 2.6 Generation of a new multi-id.

input: Multi-Id v1, Multi-Id v2

output: Multi-Id v
1: function midVertex(v1,v2)
2: [v1,1, . . . , v1,k1] = v1

3: [v2,1, . . . , v2,k2] = v2

4: [vi1 , . . . , vik1+k2
] = sort([v1,1, . . . , v1,k1 , v2,1, . . . , v2,k2])

5: v = [vi1 , . . . , vik1+k2
]

6: return v
7: end function

a non-conformal configuration; the selection of the bisection edge in a consistent

manner; and the bisection tree to store the bisection edges.

2.2.1 Unique mid-vertex identifiers: multi-ids

We use multi-ids to uniquely identify the new vertices that are created during the

bisection process. A multi-id is a sorted list of vertices, v = [v1, . . . , vk], where

v1 ≤ v2 ≤ . . . ≤ vk. Particularly, a vertex id v can be mapped to a multi-id of length

one as [v]. A simplex that contains multi-ids is denoted as σ = (v0, . . . ,vn). We

reinterpret a simplex σ = (v0, . . . , vn) using multi-ids as σ = ([v0], . . . , [vn]).

When creating a new vertex after bisecting and edge, we generate a multi-id for

the new vertex. The new multi-id is the combination of the multi-ids of the edge

vertices, v0 and v1, see Algorithm 2.6. That is, v is the multi-id of the new vertex

after bisecting e = (v0,v1). The resulting multi-id is created by merging and sorting

the the multi-ids of v0 and v1. We remark that the ids can appear more than once

after generating a new multi-id.

We sort the multi-ids using a lexicographic order. Let vi = [vi1 , . . . , viki] and

vj = [vj1 , . . . , vjkj] be two multi-ids. We say that vi < vj if there exists r such that

vil < vjl for all l < r and vil = vjl .

After introducing the notion of multi-ids, we introduce the order of edges for a

given simplex. Let σ = ([v0], [v1], . . . , [vn]) be a n-simplex, where vi represents the

i-th vertex of σ. We define the list of local edges of σ as E, a sorted list composed of

n(n + 1)/2 edges. We denote as E(i) the i-th edge of E. For instance, the edges of

18

2.2. Definitions in this thesis

Algorithm 2.7 Local edges of a simplex

input: n-Simplex σ
output: Sorted list of local edges E
1: function getLocalEdges(σ)
2: ([v0], [v1], . . . , [vn]) = σ
3: E = ∅
4: for i = 0, . . . , n− 1 do
5: for j = i+ 1, . . . , n do
6: e = ([vi], [vj])
7: E = E ∪ e
8: end for
9: end for

10: return E
11: end function

the n-simplex σ obtained using Algorithm 2.7 are

([v0], [v1]) ([v0], [v2]) ([v0], [v3]) · · · ([v0], [vn])

([v1], [v2]) ([v1], [v3]) · · · ([v1], [vn])

([v2], [v3]) · · · ([v1], [vn])
. . .

...
...

([vn−2], [vn−1]) ([vn−2], [vn])

([vn−1], [vn])

2.2.2 Non-conformal simplices: hanging vertices

In the recursive refining strategy, see Algorithm 2.4, we need to detect and refine the

non-conformal simplices of the mesh. The non-conformal configurations in the mesh

are created when refining the adjacent simplices. Thus, the main idea is to loop on

the mesh simplices to detect those edges that overlap with an edge bisected from

a neighboring element. This bisected edge features a mid-vertex which is seen as a

hanging vertex from the edge of the current simplex. The simplices with at least one

edge with a hanging vertex define the refinement set to enforce a conformal mesh.

To get the refinement set, Algorithm 2.8 loops over all the simplices of the mesh.

For each simplex, if any of its edges has a hanging mid-vertex, we add the simplex in

the refinement set. To check if an edge contains a mid-vertex, we use the multi-ids.

For a given edge e = (v0,v1), we obtain the associated multi-id, v, of the mid-vertex

using Algorithm 2.6. If the multi-id v is in the set of mesh vertices, the edge e

19

2. Preliminaries and definitions

Algorithm 2.8 Simplices with hanging vertices of the mesh T.
input: Mesh T
output: SimplicesSetM
1: function getNonConformalSimplices(T)
2: M = ∅
3: V = Vertices(T)
4: for σ ∈ T do
5: for e ∈ σ do
6: (v0,v1) = e
7: v = midVertex(v0,v1)
8: if v ∈ V then
9: M =M∪ σ
10: end if
11: end for
12: end for
13: returnM
14: end function

contains a hanging mid-vertex and therefore, the simplex defines a non-conformal

configuration.

2.2.3 Bisection trees and complete vertex trees

During the bisection process, we select a bisection edge e to perform the bisection of

σ. The process of selecting the bisection edge is repeated for the two children, the

four grandchildren, and so on. We can encode the bisection process by storing those

edges in a binary tree that, at level l, has the edges to be bisected of the descendants

corresponding to level l. We define as bisection tree of a simplex, denoted as t,

the binary tree that in each level contain the edges to bisect of the descendants

corresponding to that level. This idea was introduced by Maubach (1995) and is used

by Alkämper et al. (2018). Particularly, Alkämper et al. show that the bisection tree

generated by Maubach (1995), or Traxler (1997), defines a binary tree t of height

n for each simplex σ such that t contain all and only the edges of σ. Moreover,

Maubach’s and Traxler’s algorithms lead to a conformal configuration after n uniform

refinements.

We define a balanced bisection tree of a simplex σ as a bisection tree that has

height n, contains all and only the edges of σ, and that after n uniform refinements

the generated mesh, composed of 2n simplices, is conformal. However, there exist

20

2.2. Definitions in this thesis

bisection methods that do not generate balanced bisection trees. We define as balanced

bisection method as a bisection method that for a given simplex σ, after n uniform

refinements, the mesh Qσn is conformal and composed of 2n simplices.

Remark 2.4 (Balanced methods bisect all the edges). Since a balanced bisection

tree contains all the edges of a simplex σ, a balanced bisection method bisects all the

initial edges after n uniform refinements. This balanced behavior is preferred in local

refinement because the resulting edge size is divided by two.

Remark 2.5 (Balanced trees for newest vertex bisection). The bisection trees gen-

erated by Maubach (1995) and Traxler (1997) for the tags d = n or d = n − 1, are

balanced bisection trees, see Lemma 9 and Lemma 11 of Alkämper et al. (2018).

Remark 2.6 (Balanced newest vertex bisection conditions). According to Remark

2.1, Remark 2.2, and Remark 2.5, to obtain a balanced, conformal, finite, stable,

and local refinement method using newest vertex bisection, it is sufficient to have

a conformal and reflected mesh with all the elements marked as either d = n or

d = n − 1. Consequently, these are the conditions favored in this thesis because we

pursue balanced bisection methods with the advantages of newest vertex bisection.

If we always select as the bisection edge the shortest edge of a simplex σ, the

bisection tree t may contain edges that are not defined in σ. In Figure 2.2, we

illustrate the bisection tree generated by two different bisection methods when we

apply them to an equilateral triangle σ = ([v0], [v1], [v2]). If we apply Maubach’s

algorithm with tag d = 2 to the triangle σ, we obtain the bisection tree of Figure

2.2(a), that is balanced because has height 2, contain all and only the edges of σ,

and leads to a conformal triangular mesh after two uniform refinements, see Figure

2.2(c). If we consider the shortest edge bisection method and the initial bisection

edge ([v0], [v1]), the generated bisection tree t, see Figure 2.2(b), has height 2, leads

to a conformal triangular mesh after two uniform refinements, see Figure 2.2(d), but

is not balanced since t has at level 1 the edges ([v0], [v0, v1]) and ([v0, v1], [v1]), that

are not defined by the vertices of σ.

Let σ be a simplex and consider that its bisection tree t is balanced. We have seen

that if we bisect an edge ([vi], [vj]) the new generated vertex is [vi, vj] with vi < vj.

Thus, there is a direct relation between an edge ek = ([v1,k], [v2,k]), where ek is an

edge of level k of t, and the new vertex [v1,k, v2,k] that is generated after bisecting ek.

21

2. Preliminaries and definitions

([v0], [v2])

([v0], [v1]) ([v1], [v2])

(a)

([v0], [v1])

([v0], [v0, v1]) ([v0, v1], [v1])

(b)

(c) (d)

Figure 2.2: Bisection trees of the triangle σ = ([v0], [v1], [v2]) and generated meshes
after two uniform refinements. The bisection tree (a) generated by Maubach’s algo-
rithm considering σ as a tagged triangle with tag d = 2 generates the triangular mesh
(c). The bisection tree (b) generated by shortest edge bisection, being ([v0], [v1]) the
first bisection edge, algorithm generates the mesh (d).

We define the balanced vertex tree, denoted as t̂, as the binary tree that in each level

contain the new vertices that are generated during the bisection process.

Let t be a balanced bisection tree and consider a branch {e0, e1, . . . , en−1} of

t, where the sub-index in el determines the level l of the edge in the tree. We

can identify the branch of edges {e0, e1, . . . , en−1} with the branch of new vertices

{[v1,0, v2,0], [v1,1, v2,1], . . . , [v1,n−1, v2,n−1]} of t̂, where the first index of the vertices de-

termines if it is the first or second vertex of the edge, and the second index determines

the level of the edge. This branch determines the (n− 1)-simplex κ

κ = {[v1,0, v2,0], [v1,1, v2,1], . . . , [v1,n−1, v2,n−1]}.

Moreover, κ is an interior face due the fact that its generated only by mid-vertices.

After bisecting the last edge en−1 the two generated simplices are

σ1 = {[v1,0, v2,0], . . . , [v1,n−1, v2,n−1], [v1,n−1]},
σ2 = {[v1,0, v2,0], . . . , [v1,n−1, v2,n−1], [v2,n−1]},

that share the interior face κ.

22

2.2. Definitions in this thesis

[v0, v2]

[v0, v1] [v1, v2]

(a)

[v0, v2]

[v0, v1]

[v0] [v1]

[v1, v2]

[v1] [v2]

(b)

Figure 2.3: Balanced vertex tree and its complete vertex tree. (a) Vertex tree and
(b) complete vertex tree associated to Figure 2.2(a).

Consider that we add one more level of vertices to t̂, being this level composed of

the vertices of the edges of the level n − 1. We generate a tree of vertices such that

each branch defines a simplex. This tree of vertices is defined as completed vertex

tree. In particular, since the height of this completed vertex tree is n + 1, it defines

2n simplices, that correspond to the generated simplices after n uniform refinements.

Consider again the equilateral triangle and the application of Maubach’s algo-

rithm with d = 2. We illustrate in Figure 2.3 the tree of vertices and its extension

tree, see Figures 2.3(a) and 2.3(b), respectively, associated to the balanced bisec-

tion tree of Figure 2.2(a). We see that the nodes of the vertex tree of Figure 2.3(a)

are the new vertices created during the bisection process. Moreover, the branches

{[v0, v2], [v0, v1]} and {[v0, v2], [v1, v2]} of Figure 2.3(a) are inner faces the triangular

mesh of Figure 2.2(c). Finally, the four branches of the extended tree of vertices of Fig-

ure 2.3(b), that are {[v0, v2], [v0, v1], [v0]}, {[v0, v2], [v0, v1], [v1]}, {[v0, v2], [v1, v2], [v1]}
and {[v0, v2], [v1, v2], [v2]}, correspond to the four triangles generated after two uni-

form refinements.

23

Chapter 3

Marked bisection in n dimensions

The question of whether there is a practical n-dimensional multi-stage bisection

method for unstructured conformal meshes is still open. To formally answer this

question is the goal of Chapter 6. In this chapter we want to heuristically propose a

practical n-dimensional multi-stage bisection on unstructured conformal meshes.

To meet our goal, the main contribution is to propose and implement an n-dimen-

sional three-stage bisection method. By construction, the method starts by marking

the sub-simplices of the initial mesh conformingly. Then, independently for each

simplex, the first n − 1 marked bisections accumulate in reverse order the list of

newly created mid-edge vertices (first stage). The n-th marked bisection completes

the accumulated vertex list to replace simplices of bisection level n with equivalent

simplices having a Maubach tag equal to n (second stage). This equivalent tagging

allows switching to Maubach’s newest vertex bisection (third stage). The pre-process

and the three stages work in n dimensions by construction, and hence, the method

is n-dimensional. Furthermore, the method heuristically enforces conformity and

finiteness while almost meeting the similarity and locality properties. Although we

do not formally prove that the conformity and reflectivity conditions are satisfied,

we perform the corresponding experiments to check them. We finally apply the

implementation of the proposed method to successfully locally refine unstructured

conformal meshes.

25

3. Marked bisection in n dimensions

Algorithm 3.1 Bisection of a marked simplex ρ.

input: MarkedSimplex ρ
output: MarkedSimplex ρ1, MarkedSimplex ρ2
1: function bisectSimplex(ρ)
2: l = level(ρ)
3: if l < n− 1 then
4: τ = TreeSimplex(ρ)
5: τ1, τ2 = bisectStageOne(τ)
6: ρ1, ρ2 = MarkedSimplex(τ1, τ2)
7: else if l = n− 1 then
8: τ = TreeSimplex(ρ)
9: µ1, µ2 = bisectCastToMaubach(τ)
10: ρ1, ρ2 = MarkedSimplex(µ1, µ2)
11: else
12: µ = MaubachSimplex(ρ)
13: µ1, µ2 = bisectMaubach(µ)
14: ρ1, ρ2 = MarkedSimplex(µ1, µ2)
15: end if
16: return ρ1, ρ2
17: end function

3.1 Problem and outline of our solution

Our goal is to locally refine an n-dimensional conformal unstructured simplicial mesh

using a stable bisection method that ensures a conformal mesh in a finite number of

steps. The input of our problem is an unstructured conformal simplicial mesh T and

a set of elements M to be refined. The output is a conformal unstructured marked

simplicial mesh T1 with the simplices in M bisected.

The kernel of our bisection method, Algorithm 3.1, bisects a single simplex. This

algorithm is divided into three stages determined by the descendant level of the

simplex to be bisected. The first stage (Lines 3–6) and the second stage (Lines 7–10)

promote that we obtain a conformal reflected mesh. In this manner, we ensure a

strongly compatible mesh which is a sufficient condition to use Maubach’s algorithm.

The last stage is Maubach’s algorithm (Lines 11–14). Maubach’s algorithm can be

applied locally ensuring the generation of conformal meshes in a finite number of

steps. In addition, it is the only known bisection strategy for n-dimensional simplicial

meshes that has been proved to guarantee a finite number of similarity classes, and

therefore, we ensure that our bisection strategy is stable.

26

3.2. Unequivocal edge selection per mesh entity: consistent bisection edge

3.2 Unequivocal edge selection per mesh entity:

consistent bisection edge

For all mesh entities shared by different mesh elements, we must ensure that these

entities have the same bisection edge on all those elements. To this end, we base this

selection on a strict total order of the mesh edges. The main idea is to order the

edges from the longest one to the shortest one, and use a tie-breaking rule for the

edges with the same length. Specifically, we define the consistent bisection edge of a

simplex as the longest edge with the lowest global index.

A shared edge between two simplices may have a different order of vertices, which

can induce different results when computing the edge length from different elements.

To avoid these discrepancies, we use the concept of global edges. A global edge is a

pair of indices, e = (vi,vj), with vi < vj. The length of a global edge is defined

as ‖e‖ = ‖Π(vj)− Π(vi)‖, where ‖·‖ denotes the Euclidean norm. We compute the

length of an edge using the corresponding global edge. Therefore, for different views

of the same global edge, we always obtain the same length since we perform the same

numerical operations in the same order.

To define a strict total order of edges, when two edges have the same length, we

need a tie-breaking rule. To this end, we use a lexicographic order for the global

edges in terms of the order of the vertices. We say that the global edge ei = (vi1 ,vi2)

has lower global index than the global edge ej = (vj1 ,vj2) if vi1 < vj1 , or vi1 = vj1

and vi2 < vj2 . Note that the proposed lexicographic order is strict and total since it

is straight-forward to check that is irreflexive, transitive, asymmetric, and connected.

We identify each global edge with a unique integer. To this end, we sort all the

existing edges of the mesh using the global index criteria. Then, we sort the edges

by length using a stable sorting method. This guarantees that edges with the same

length maintain the order given by the lowest global index.

The consistent bisection edge of a simplex is the edge with the lowest integer

assigned in the edge ordering process. Note that the consistent bisection edge of a

simplex is unique because we use a strict total order to define it.

27

3. Marked bisection in n dimensions

Algorithm 3.2 Mark a k-simplex.

input: k-Simplex σ
output: BisectionTree t
1: function stageOneTree(σ)
2: e = consistentBisectionEdge(σ)
3: if dimσ = 1 then
4: t = tree(node = e)
5: else
6: ([v1], [v2]) = e
7: κ1 = oppositeFace(σ, [v1])
8: κ2 = oppositeFace(σ, [v2])
9: t1 = stageOneTree(κ1)
10: t2 = stageOneTree(κ2)
11: t = tree(node = e, left = t1, right = t2)
12: end if
13: return t
14: end function

Algorithm 3.3 Mark a conformal simplicial mesh.

input: ConformalMesh T
output: ConformalMarkedMesh T ′
1: function markMesh(T)
2: T ′ = ∅
3: for σ ∈ T do
4: t = stageOneTree(σ)
5: κ̄ = ()
6: l = 0
7: ρ = (σ, κ̄, t, l)
8: T ′ = T ′ ∪ ρ
9: end for
10: return T ′
11: end function

3.3 Pre-processing: codimensional marks

We propose a codimensional marking process for a simplex, in which the resulting

mark is a tree. The tree is computed by traversing the sub-entities of the simplex in

a recursive manner and selecting the consistent bisection edge of each sub-simplex.

The resulting bisection tree has height n, and the tree nodes of level i correspond to

the consistent bisection edges of sub-simplices of co-dimension i (dimension n− i).

28

3.4. First stage: tree-simplices

Next, we detail the codimensional marking process for a single simplex, Algorithm

3.2. Since the codimensional marking process is the first step of the mesh refinement

algorithm, the length of the multi-ids of all simplices is one. The input of the function

is a simplex σ = ([v0], . . . , [vn]) and the output is the corresponding bisection tree.

First, we obtain the consistent bisection edge, e, of the simplex, see Line 2. If σ is an

edge, this corresponds to the base case of the recursion and we return a tree with only

the root node. Otherwise, we obtain the opposite faces of the vertices of the bisection

edge, see Lines 7–8. Then, we recursively call the marking process algorithm for the

faces κ1 and κ2, and we obtain the corresponding trees t1 and t2, see Lines 9–10.

Finally, we build the bisection tree t with the bisection edge as root node and the

trees t1 and t2 as left and right branches, see Line 11.

Then, we obtain a marked mesh by marking all mesh simplices, see Algorithm

3.3. The input is a conformal simplicial mesh, T, and the output is a conformal

marked simplicial mesh, T ′. A tree-simplex is a 4-tuple τ = (σ, κ̄, t, l) where σ is the

original simplex, κ̄ is a list of vertices, t is the bisection tree of the simplex τ, and l

is the bisection level. The marked mesh is composed of tree-simplices. We create an

empty marked mesh T ′. For each simplex of the original mesh T, we create a marked

tree-simplex τ, where t is the bisection tree of σ, κ̄ is an empty list, and the bisection

level is 0. Then, we append the tree-simplex τ to the marked mesh T ′.

3.4 First stage: tree-simplices

In the first stage, we bisect the simplices using the bisection trees computed with the

codimensional marking process. The first stage is used in the first n − 2 bisection

steps and, therefore, the generated simplices have at most descendant level n − 2.

Moreover, during the refinement process we store the new mid-vertices into κ̄. Thus,

in the second stage, we are able to map the generated simplices into a reflected mesh,

a mesh type that it is also strongly compatible. When we refine adjacent simplices

using their bisection trees, we will obtain a conformal mesh since, by construction, we

enforce that a sub-simplex has the same bisection tree independently of the marked

simplex it belongs to.

Algorithm 3.4 details the bisection process of a simplex in the first stage. First,

we get the bisection edge, e, taking the root of the bisection tree, t, see Line 3. Then,

we call the function that bisects a tree-simplex, see Algorithm 3.5. This function

29

3. Marked bisection in n dimensions

Algorithm 3.4 Bisect a marked tree-simplex.

input: TreeSimplex τ
output: TreeSimplex τ1, TreeSimplex τ2
1: function bisectStageOne(τ)
2: (σ, κ̄, t, l) = τ
3: e = root(t) . Bisection edge
4: σ1, κ̄1, σ2, κ̄2 = bisectTreeSimplex(σ, κ̄, e, l)
5: t1 = left(t); t2 = right(t) . Bisect tree
6: l1 = l + 1; l2 = l + 1 . Bisect level
7: τ1 = (σ1, κ̄1, t1, l1)
8: τ2 = (σ2, κ̄2, t2, l2)
9: return τ1, τ2
10: end function

Algorithm 3.5 Bisect a tree-simplex.

input: Simplex σ, l-List κ̄, Edge e, Level l
output: Simplex σ1, (l + 1)-List κ̄1, Simplex σ2, (l + 1)-List κ̄2
1: function bisectTreeSimplex(σ, κ̄, e, l)
2: (v0,v1, . . . ,vn) = σ
3: ([v1,l−1, v2,l−1], . . . , [v1,0, v2,0]) = κ̄
4: ([v1,l], [v2,l]) = e
5: [v1,l , v2,l] = midVertex([v1,l], [v2,l])
6: (i1, i2) = simplexVertices(σ, e)
7: σ1 = (v0, . . . ,vi2−1, [v1,l, v2,l],vi2+1, . . . ,vn)
8: σ2 = (v0, . . . ,vi1−1, [v1,l, v2,l],vi1+1, . . . ,vn)
9: κ̄1 = ([v1,l , v2,l], [v1,l−1, v2,l−1] . . . , [v1,0, v2,0])
10: κ̄2 = ([v1,l , v2,l], [v1,l−1, v2,l−1] . . . , [v1,0, v2,0])
11: return σ1, κ̄1, σ2, κ̄2
12: end function

bisects σ into σ1 and σ2, and returns two lists of vertices, κ̄1 and κ̄2, see Line 4. Next,

we proceed to bisect the bisection tree t generating two bisection trees t1 and t2, see

Line 5, that are the left and right branches of t, respectively. Recall that the branches

have one level less than t. We do the same with the level l, and we obtain the levels

l1 and l2 that are defined as l+ 1, see Line 6. After that, we return the tree simplices

τ1 and τ2 defined in Line 7 and Line 8, respectively.

To bisect a tree-simplex, we apply Algorithm 3.5. The inputs are a simplex, σ,

an l-list of vertices, κ̄, a bisection edge, e, and a descendant level, l. We extract the

vertex ids (v0,v1, . . . ,vn) of σ, see Line 2. There are l multi-ids of length two and

n + 1 − l multi-ids of length one. This is so because at each bisection, we replace a

30

3.5. Second stage: casting to Maubach

Algorithm 3.6 Bisect to Maubach

input: TreeSimplex τ
output: MaubachSimplex µ1, MaubachSimplex µ2

1: function bisectToMaubach(τ)
2: (σ, σ̄, t, l) = τ
3: e = root(t)
4: σ1, κ̄1, σ2, κ̄2 = bisectTreeSimplex(σ, κ̄, e, l)
5: σ̄1, σ̄2 = castToMaubach(e, κ̄1, κ̄2)
6: d1 = n; d2 = n
7: l1 = l + 1; l2 = l + 1
8: µ1 = (σ̄1, d1, l1)
9: µ2 = (σ̄2, d2, l2)

10: return µ1, µ2

11: end function

multi-id of length one with a multi-id of length two, the latter multi-id corresponding

to the mid-vertex. In Line 3, we extract the vertex ids of the vertices list.

Since the bisection edge belongs to the initial simplex, the length of the multi-ids

of the vertices are one. Thus, we write e = ([v1,l], [v2,l]), see Line 4, and we create the

new mid-vertex [v1,l, v2,l] in Line 5. The new mid-vertex is identified using a multi-id

of length two. Then, we obtain the local identifier of the vertices of e inside the

simplex σ, see Line 6. After that, we define as children of σ the simplices σ1 and

σ2. In σ1 we replace the i2-th local vertex by the new vertex [v1,l, v2,l], see Line 7.

We proceed in the same manner for σ2 substituting the i1-th local vertex by the new

vertex, see Line 8. Next, we add the new vertex [v1,l, v2,l] at the beginning of the lists

κ̄1 and κ̄2, see Lines 9 and 10, respectively.

Note that κ̄1 and κ̄2 are the same list on the current bisection step. Nevertheless,

in the next bisection step, we may append a different vertex to each list. Moreover,

a tree-simplex with descendant level l has a sorted list composed of l vertices. Since

a tree-simplex descendant level is at most n− 1, the list of vertices contains at most

n− 1 vertices.

3.5 Second stage: casting to Maubach

We next introduce the second stage of our bisection method for simplices. In this

stage, after bisecting a simplex, we reorder the vertices of the bisected simplices to

31

3. Marked bisection in n dimensions

Algorithm 3.7 Cast to Maubach.

input: Edge e, n-List κ̄1, n-List κ̄2
output: n-Simplex σ̄1, n-Simplex σ̄2
1: function castToMaubach(e, κ̄1, κ̄2)
2: ([v1,n−1], [v2,n−1]) = e
3: ([v1,n−1, v2,n−1], . . . , [v1,0, v2,0]) = κ̄1
4: ([v1,n−1, v2,n−1], . . . , [v1,0, v2,0]) = κ̄2
5: σ̄1 = ([v1,n−1], [v1,n−1, v2,n−1], . . . , [v1,0, v2,0])
6: σ̄2 = ([v2,n−1], [v1,n−1, v2,n−1], . . . , [v1,0, v2,0])
7: return σ̄1, σ̄2
8: end function

obtain a reflected mesh. Thus, in the third stage, we can apply Maubach’s algorithm

to further refine the mesh.

The second stage is used when the descendant level of a tree-simplex, τ, is l = n−1.

At this step, κ̄ is a (n−1)-list of vertices that have been accumulated in the previous

(n−1) steps of the first stage. Finally, t is a bisection tree that only contains a single

vertex. That is, t is a leaf where the consistent bisection edge e = ([v1,n−1], [v2,n−1])

is the root.

In the second stage of our proposed bisection method, the input is a tree-simplex

τ = (σ, κ̄, t, l), and the outputs are two Maubach simplices µ1 and µ2. A Maubach

simplex is a 3-tuple µ = (σ̄, d, l), where σ̄ is an equivalent simplex, but it is reordered

to properly contribute to a reflected mesh, d is a Maubach integer tag, and l is the

descendant level.

First, we obtain the consistent bisection edge, e = ([v1,n−1], [v2,n−1]), Line 3. Then,

we bisect the simplex σ using the function that bisects tree-simplices, generating two

simplices σ1 and σ2 and the sorted n-lists of vertices κ̄1 and κ̄2. After that, we reorder

the simplices to be able to apply Maubach’s algorithm, see Line 5. After generating

the two simplices σ̄1 and σ̄2 that define a reflected neighbors configuration, we bisect

the descendant level l generating two descendant levels l1 = n and l2 = n, see Line 7.

Then, we set the Maubach tags d1 = n and d2 = n, see Line 6. According to Remark

2.6, we can also use the tag d = n − 1. Finally, we create the Maubach simplices

µ1 = (σ̄1, d1, l1) and µ2 = (σ̄2, d2, l2).

To cast the simplices to obtain a reflected configuration, we apply Algorithm 3.7.

The inputs are the bisection edge, and two lists of vertices. The outputs are two

reordered simplices in a reflected configuration. This algorithm adds the vertices

32

3.6. Third stage: Maubach’s bisection

Algorithm 3.8 Adapted Maubach’s algorithm.

input: MaubachSimplex µ
output: MaubachSimplex µ1, MaubachSimplex µ2

1: function bisectMaubach(µ)
2: ((v0,v1, . . . ,vn), d, l) = µ
3: w = midVertex(v0,vd)
4: σ̄1 = (v0, . . . ,vd−1,w,vd+1, . . . ,vn)
5: σ̄2 = (v1, . . . ,vd,w,vd+1, . . . ,vn)

6: Set d′ =

{
d − 1, d > 1
n, d = 1

7: d1 = d′; d2 = d′

8: l1 = l + 1; l2 = l + 1
9: µ1 = (σ̄1, d1, l1)
10: µ2 = (σ̄2, d2, l2)
11: return µ1, µ2

12: end function

of the bisection edge [v1,n−1] and [v2,n−1] to κ̄1 and κ̄2, respectively, generating two

sorted (n + 1)-list. The lists κ̄1 and κ̄2 contain the same vertices that σ1 and σ2,

respectively, but in a different order. The order of vertices induced by κ̄1 and κ̄2

leads to a reflected mesh. Next, we create the simplices σ̄1 and σ̄2 by casting the

(n+ 1)-sorted list of vertices κ̄1 and κ̄2 into simplices, respectively.

3.6 Third stage: Maubach’s bisection

Following, we describe the third stage of our bisection algorithm. In this stage, we

use Maubach’s algorithm to favor the conformity, finiteness, stability, and locality

properties.

We reinterpret Maubach’s algorithm using tagged simplices and multi-ids in Al-

gorithm 3.8. The input is a Maubach simplex, µ = (σ̄, d, l), and the outputs are two

Maubach simplices, µ1 and µ2. First, we generate the new vertex w as the mid-vertex

of v0 and vd, see Line 3. That is, the bisection edge is e = (v0,vd). Then, we bisect

σ̄ and generate the children σ̄1 and σ̄2, see Lines 4 and 5, respectively. After that,

we set the new tag d′ for the children simplices, see Line 6. Thus, we define the tags

d1 and d2 as d′, see Line 7. Analogously, we bisect the levels l1 and l2, see Line 8.

Finally, we create two Maubach simplices µ1 and µ2, see Lines 9 and 10, respectively.

In this algorithm, we use the notation σ = (v0,v1, . . . ,vn) because any of the

33

3. Marked bisection in n dimensions

multi-ids can be of length two or higher. This is so since if we call local refine after

previous local refinements, our marked mesh might contain Maubach simplices with

tags in the range 1 ≤ d ≤ n − 2. For this tag range, Maubach’s algorithm bisects

edges of newer generations before bisecting all the original edges of the Maubach

simplex (Alkämper et al., 2018). Therefore, we can have multi-ids of length higher

than two.

3.7 Examples

We present several examples to illustrate that our proposed algorithm bisects unstruc-

tured simplicial meshes, locally adapts conformal meshes, generates a finite number

of similarity classes, and leads to lower-bounded quality meshes. For all the examples,

we have computed the shape quality of the mesh (Knupp, 2001). We plot the min-

imum and maximum shape quality of the mesh in each refinement step to illustrate

that the minimum quality is lower bounded and cycles.

To validate the results, we need the capabilities to check the conformity and the

reflectivity of some of the meshes generated during the refinement process. To check

the conformity, we check that all the interior faces of Tk are shared only by two

simplices and that all the boundary faces of mesh Tk are descendants of the original

boundary faces. See more details in C.1. To check the reflectivity of Tk, we check

that all the neighboring simplices are reflected neighbors through the shared face.

See more details in C.2.

All the results have been obtained on a MacBook Pro with one dual-core Intel

Core i5 CPU, with a clock frequency of 2.7GHz, and a total memory of 16GBytes.

As a proof of concept, a mesh refiner has been fully developed in Julia 1.4. The

Julia prototype code is sequential (one execution thread), corresponding to the im-

plementation of the method presented in this chapter. All the unstructured initial

meshes are generated with the distmesh algorithm (Persson and Strang, 2004), and

all the structured initial meshes are generated with the Coxeter-Freudenthal-Kuhn

algorithm (Coxeter, 1934; Freudenthal, 1942; Kuhn, 1960). We recall that after each

refinement to conformity, we perform a renumber of the vertices of the mesh Tk in

order to have only multi-ids of length one, see C.3.

34

3.7. Examples

(a) (b) (c)

Figure 3.1: Conformal reflected n-dimensional meshes after the first two bisection
stages. (a) Conformal reflected triangular mesh T 2

2 after two uniform refinements.
(b) Conformal reflected tetrahedral mesh T 3

3 after three uniform refinements. (c)
Volume slice with the hyperplane t = 0 of the conformal reflected pentatopic mesh
T 4
4 after four uniform refinements.

3.7.1 First two stages on unstructured meshes: conformity

and reflectivity

The goal of this example is to propose a methodology to check the correctness of the

algorithm implementation. Thus, let T n0 be a conformal unstructured n-simplicial

mesh and consider n uniform refinements using our proposed bisection algorithm.

That is, we apply our bisection method until the second stage is executed. At this

point of the algorithm, we have reordered the vertices of the simplices and we should

obtain a conformal and reflected mesh. We check if the generated n-dimensional

mesh T nn is conformal and reflected, conditions that are sufficient to apply Maubach’s

algorithm. The proposed algorithms to check the conformity and reflectivity of T nn
are depicted in C.1 and C.2, respectively.

To verify our proposed algorithm, we present an unstructured example in different

dimensions that allows us to check that the obtained results are the expected ones.

Let B̄n be the n-dimensional closed ball of radius 1 centered at the origin, defined as

the points such that ‖x‖ ≤ 1. We approximate the domains B̄2, B̄3, B̄4, and B̄5 with

the simplicial meshes T 2
0 , T 3

0 , T 4
0 , and T 5

0 , respectively. To obtain equivalent mesh

resolution, we set the edge length to 0.3 in all the cases.

After generating T n0 for each dimension, we apply n uniform refinements using

our bisection algorithm, and we obtain the meshes T nn for n = 2, 3, 4, and 5. The

35

3. Marked bisection in n dimensions

meshes T nn have 2nNne simplices, where Nne is the number of simplices of the initial

mesh T n0 . In Figures 3.1(a) and 3.1(b), we show the meshes obtained for the two-

and three- dimensional cases, respectively. Moreover, in Figure 3.1(c), we show a

3-dimensional slice of the 4-dimensional mesh.

After the second stage, all the meshes are conformal and reflected, and thus they

are strongly compatible. For this reason, we can apply the third stage, which is

Maubach’s algorithm, to further refine the meshes.

3.7.2 Uniform bisection: minimum quality is lower

bounded and cycles

Following, we show that the minimum quality is lower bounded and cycles. To this

end, we uniformly refine a single simplex several times. To illustrate the quality

cycles, we perform a series of refinements to ensure that the method completes two

additional cycles of Maubach’s method.

Figure 3.2 plots the evolution of the minimum (blue line) and maximum (red

line) qualities during the uniform refinement process. Each column of Figure 3.2

corresponds to a dimensional case, starting from 2D and ending in 4D. Analogously,

the first and second rows of Figure 3.2 correspond to an equilateral and an irregular

simplex, respectively. Note that in all cases, the minimum quality is lower-bounded,

and the maximum and minimum qualities cycle with a period of n steps.

For the 2-dimensional case, we illustrate in Figures 3.2(a) and 3.2(b) the evolu-

tion of the minimum and maximum qualities of the meshes obtained by uniformly

bisecting an equilateral triangle and an irregular triangle, respectively. For this case,

we perform six uniform refinements. Since our method marks a triangle as a tagged

triangle with d = 1 or d = 2, it is analogous to Maubach’s algorithm and, with two

uniform refinements, all the similarity classes of a triangle are generated. At the

second iteration, both the minimum and the maximum qualities start to cycle with

a period of two steps.

For the 3-dimensional case, we show in Figures 3.2(c) and 3.2(d) the evolution of

the minimum and maximum qualities of the meshes obtained by uniformly bisecting

an equilateral tetrahedron and an irregular tetrahedron, respectively. We perform

twelve uniform refinements to generate all the similarity classes. For the equilateral

tetrahedron, the marking process generates a bisection tree that is equivalent to a

tagged tetrahedron with tag d = 2 or, equivalently, a planar tetrahedron Pu, as

36

3.7. Examples

0 2 4 6
Qk

10-1

100

q

(a)

0 2 4 6
Qk

10-1

100

q

(b)

0 2 4 6 8 10 12
Qk

10-1

100

q

(c)

0 2 4 6 8 10 12
Qk

10-1

100

q

(d)

0 2 4 6 8 10 12 14 16 18
Qk

10-1

100

q

(e)

0 2 4 6 8 10 12 14 16 18
Qk

10-1

100

q

(f)

Figure 3.2: Minimum (blue) and maximum (red) quality cycles for uniform refine-
ments. In columns, initial simplex: (a), (c) and (e) equilateral, (b), (d) and (f)
irregular simplex. In rows, simplex dimension: (a) and (b) triangles; (c) and (d)
tetrahedra; (e) and (f) pentatopes.

denoted in Arnold et al. (2000). At iteration six, the process achieves the minimum

quality, and both the minimum and maximum qualities cycle with a period of three

steps, see Figure 3.2(c). We obtain similar results for the irregular tetrahedron, see

Figure 3.2(d). Specifically, the minimum quality is achieved at iteration six, and both

37

3. Marked bisection in n dimensions

the minimum and maximum qualities cycle with a period of three steps.

For the 4-dimensional case, we show in Figures 3.2(e) and 3.2(f) the evolution of

the minimum and maximum qualities of the meshes obtained by uniformly bisect-

ing an equilateral pentatope and an irregular pentatope, respectively. We performed

eighteen uniform refinements. In the case of the equilateral pentatope, the minimum

quality is achieved at iteration eight, and both the minimum and maximum quality

cycle with a period of four steps, see Figure 3.2(e). When bisecting the irregular pen-

tatope, the minimum quality is obtained at iteration twelve, and both the minimum

and maximum qualities cycle with a period of four steps, see Figure 3.2(f).

In all the cases we perform enough uniform bisection steps to generate all the

similarity classes and show some full refinement cycles of length n. Moreover, we

reach the minimum and maximum mesh quality in a finite number of steps, qualities

that are repeated every n steps. This illustrates that the mesh quality does not

degenerate with successive refinement and thus, the method is stable.

3.7.3 Local refine of a 4D structured mesh: equivalency to

Maubach’s method

The main goal of this example is to illustrate that our algorithm is equivalent to

newest vertex bisection when we refine a structured mesh. To this end, we recreate

the first example from Maubach (1995) and Arnold et al. (2000) but we extend it

to four dimensions. Let [0, 1]4 be the unit hypercube and consider its subdivision

into 16 sub-hypercubes. We subdivide into 24 pentatopes each sub-hypercube us-

ing Coxeter-Freudenthal-Kuhn algorithm (Coxeter, 1934; Freudenthal, 1942; Kuhn,

1960), generating a 4D pentatopic mesh, T0, composed of 384 pentatopes and 81

vertices.

Let

H =

{(
x− 1

2

)2

+

(
y − 1

2

)2

+

(
z − 1

2

)2

+

(
t− 1

2

)2

=
1

16
, x ≥ 1

2

}

be an hemisphere of a hypersphere of radius 1/4, centered at (1/2, 1/2, 1/2, 1/2)

that is embedded in the cube [0, 1]4. We want to adapt the pentatopic mesh T0 to

the hemisphere H, thus, we choose as refinement set Mk the pentatopes of Tk that

intersect with the hemisphere H. That is, Mk = {σ ∈ Tk−1 |σ ∩ H 6= ∅}. After

22 iterations of the proposed local refinement process, the mesh T22 is composed

38

3.7. Examples

(a) (b) (c)

Figure 3.3: Volume slices of 4-dimensional mesh T22 at different planes: (a) x = 1/2;
(b) y = 1/2; and (c) z = 1/2.

0 2 4 6 8 10 12 14 16 18 20 22
Tk

10-1

100

q

Figure 3.4: Evolution of the maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iterations.

of 10093008 pentatopes and 557664 vertices. We make three different slices of the

final mesh, T22, with the hyperplanes x = 1/2, y = 1/2 and z = 1/2, see Figures

3.3(a), 3.3(b) and 3.3(c), respectively. We can see how the mesh has been refined

locally around the hemisphere. That is, the mesh contains small elements near the

hemisphere, and large elements far from the hemisphere.

Figure 3.4 shows the evolution of the maximum and minimum quality of the mesh

during the local refinement process. We see that the maximum quality remains con-

stant during the refinement process. The minimum quality of the mesh decreases until

39

3. Marked bisection in n dimensions

(a) (b)

Figure 3.5: Slice of the 4-simplicial mesh of a hypersphere with the hyperplane t = 0:
(a) initial mesh; and (b) locally adapted mesh T5.

iteration 4, and then it stabilizes since, in posterior local refinements, the minimum

mesh quality is achieved.

When we apply our codimensional marking process to a Coxeter-Freudenthal-

Kuhn mesh, all the initial pentatopes have a bisection tree equivalent to a Maubach

pentatope with tag d = 4.

3.7.4 Local refine of a 4D unstructured mesh

We show that our bisection method can be applied to locally refine unstructured

simplicial meshes. In particular, to 4D unstructured pentatopic meshes. To this end,

we generate an unstructured 4D mesh of a hypersphere of radius 1 and centered in

the origin. Then, we successively refine those elements that intersect a hypersphere

of radius 1/2 and centered in the origin. The initial mesh has an edge length of 0.15

and is composed of 198740 pentatopes and 10361 vertices. Figure 3.5(a) shows a slice

of T0 with the hyperplane t = 0.0.

After 5 iterations of the refinement process, the obtained mesh T5 is composed

of 12101892 pentatopes and 614409 vertices. We slice T5 with the hyperplane t =

0.0 to obtain the 3D tetrahedral representation depicted in Figure 3.5(b). We can

see how the mesh is refined capturing the inner hypersphere. The obtained results

40

3.7. Examples

0 1 2 3 4 5
Tk

10-2

10-1

100

q

Figure 3.6: Evolution of the maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iterations.

illustrate that the proposed bisection algorithm can refine unstructured simplicial

meshes locally while preserving conformity.

Figure 3.6 shows the evolution of the shape quality during the refinement process.

We see that the maximum quality remains constant during the refinement process.

The minimum quality of the mesh decreases but does not achieve its minimum since

we need to perform more local refinements.

3.7.5 Local refinement in 4D space-time: time evolution of

a 3D potential

We proceed to show that we can locally refine a mesh to capture 3-dimensional

manifolds that lay in 4D space-time, manifolds that result from the time evolution

of an unsteady 3D potential. We show the evolution of the gravitational potential

defined by two mass particles that move along the z-axis. Let

V (x, t) = −G
(

m1

‖x− p1(t)‖
+

m2

‖x− p2(t)‖

)

p1(t) = p1 + (0, 0, vt), t ∈ [0, 1]

p2(t) = p2 − (0, 0, vt), t ∈ [0, 1]

the equation that defines the gravitational potential. For a given iso-value V0, V (x, t) =

V0 defines a 3D embedded manifold in 4D space. Let H be the hypercylinder with

41

3. Marked bisection in n dimensions

spherical basis defined by the equations

(
x− 1

2

)2

+

(
y − 1

2

)2

+

(
z − 1

2

)2

= 1

−0.1 ≤ t ≤ 1.1.

In this example, we choose the iso-value V0 = −10 and the parameters G = 1, m1 = 1,

m2 = 1, p1 = (1/2, 1/2, 1/8), p2 = (1/2, 1/2, 7/8) and v = 3/8.

We generate an adapted pentatopic mesh by locally refining an initial mesh around

the manifold. We generate the initial mesh T0 composed of 7345 pentatopes and 576

vertices. We generate the set of pentatopes that intersect H, Fk = {σ ∈ Tk−1 |σ∩H 6=
∅}. Then, for each pentatope in Fk we compute the curvature of V (x, t) at each

simplex using the formula

eσ =
4∑

i=0

∣∣hTi ∇2V (xi, ti)hi
∣∣ ,

where ∇2V (xi, ti) is the Hessian matrix of the potential V (x, t) evaluated at the

vertices (xi, ti) of σ, and hi = (xi, ti)− cM , where cM is the center of mass of σ. After

that, we choose as refinement set Mk the 10% of the pentatopes of Fk with more

curvature. The idea is to adapt the pentatopic mesh not only to the elements that

intersect the iso-surface but also to the areas of the iso-surface with more curvature.

After 18 iterations of the local refinement process, the generated mesh T18 has

12115582 pentatopes and 619571 vertices. To visualize the obtained mesh, we sliced

it with a hyperplane to obtain a 3D tetrahedral representation. Figures 3.7(a), 3.7(c),

and 3.7(e) show a slice of the pentatopic mesh with the hyperplanes t = 0, t = 0.5,

and t = 1, respectively. The mesh has been locally refined around the iso-surface and

therefore, we have smaller elements near the iso-surface and large elements far from

the iso-surface. Figures 3.7(b), 3.7(d), and 3.7(f) show the iso-surface that is extracted

from the mesh. These slices show that the iso-surface starts as two different connected

components and then it merges as one connected component. Figure 3.8(a) shows

a slice of the pentatopic mesh with the hyperplane x = 0.5, generating the space-

time mesh (z, y, t). We can see how the mesh captures the time evolution of the

iso-surface defined by V (x, t). Figure 3.8(b) shows the iso-surface that is extracted

from the space-time mesh.

Figure 3.9 shows the evolution of the maximum and minimum quality of the

mesh during the local refinement process. We see that the maximum quality remains

42

3.7. Examples

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Volume slices of T18 at different time instants colored by potential value. In
columns, slice of the mesh (a,c,e) without and (b,d,f) with the iso-potential manifold.
In rows, slices with: (a,b) t = 0.0; (c,d) t = 0.5; and (e,f) t = 1.0.

constant during the refinement process. The minimum quality of the mesh decreases

until iteration 16, and then it stabilizes since, in posterior local refinements, the

43

3. Marked bisection in n dimensions

(a) (b)

Figure 3.8: Volume slice with the hyperplane x = 1/2. In Figures (a) and (b) we
obtain the 3D space-time mesh (z, y, t), where we can see the time evolution of the
iso-surface defined by the gravitational potential. We can see how the mesh is adapted
to capture the movement of the two particles.

0 2 4 6 8 10 12 14 16 18
Tk

10-2

10-1

100

q

Figure 3.9: Evolution of the maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iteration.

minimum mesh quality is achieved.

3.8 Concluding remarks

To heuristically enforce a practical bisection method, we have considered two key

ingredients. First, independently for each simplex, the marked bisection is active

only in the first n bisection steps. Therefore, it is responsible for a slight initial

increase in the number of similarity classes and the cost of completing the conformal

closure. Second, the marking process and the two stages heuristically enforce the

44

3.8. Concluding remarks

condition that after successive n uniform marked bisections, we obtain a conformal

and reflected mesh. According to Stevenson (2008), these are sufficient conditions to

switch to newest vertex bisection.

In conclusion, we have proposed and implemented the first practical n-dimen-

sional multi-stage bisection for unstructured conformal meshes. In future work, we

will prove that the proposed method features the properties of a practical bisection

method.

In perspective, guaranteeing unstructured conformal refinement would enable

adaptive applications on n-dimensional complex geometry. In this case, the com-

plexity of the geometry would be handled by the flexibility of unstructured conformal

meshes. Furthermore, on these meshes, the refinement would almost fulfill the ad-

vantages of pure newest vertex bisection for n-simplicial adaption.

45

Chapter 4

Marked bisection in three

dimensions with optimal similarity

bound

For three-dimensional unstructured conformal meshes, there are bisection methods

with sub-optimal similarity bound (Bänsch, 1991; Kossaczký, 1994; Liu and Joe,

1994, 1995; Arnold et al., 2000). All these methods lead to analogous locally refined

conformal meshes. Nevertheless, Arnold et al. (2000) establish a key connection

between Maubach (1995) newest vertex bisection and marked bisection of Arnold

et al. (2000). Marked bisection leads at most to 72 similarity classes. This bound is

two times the number of similarity classes of newest vertex bisection.

To meet this sub-optimal bound, marked bisection of Arnold et al. (2000) features

one pre-process stage and two bisection stages. In the pre-processing, for all the faces

of the initial mesh, the method conformingly marks the bisection edges. These edge

marks determine a finite set of marked tetrahedron types. For each type, there is a

specific bisection that leads to two children tetrahedra of the next type. The first

stage ensures that different types of tetrahedra are all bisected to the planar type.

This type, independently for each tetrahedron, is the beginning of the next bisection

stage. In this second stage, successive marked bisection cycles every three bisection

steps through a subset of the marked types (unflagged planar, flagged planar, and

adjacent). This cyclic stage is equivalent to Maubach (1995) newest vertex bisection

47

4. Marked bisection in three dimensions with optimal similarity
bound

under specific conditions stated by Arnold et al. (2000).

The previous overview allows reasoning about the number of similarity classes. On

the one hand, the number potentially doubles the bound for the newest vertex bisec-

tion due to the initial bisection stage. On the other hand, the cyclic stage guarantees

that the rest of the generated similarity classes correspond to those determined by the

newest vertex bisection. Accordingly to Arnold et al. (2000), for some conformingly-

marked meshes, marked bisection behaves as the newest vertex bisection. Specifically,

there are no more than 36 similarity classes if the conformingly-marked mesh is com-

posed only of unflagged planar or adjacent tetrahedra.

The question of whether there is a method to conformingly mark as unflagged

planar or as adjacent all the tetrahedra of an arbitrary three-dimensional unstructured

conformal mesh is still open, see reference Arnold et al. (2000). A constructive answer

is of significant interest. It would lead to the first marked bisection featuring an

optimal similarity bound for adaption in complex geometry. The main goal of this

chapter is to answer this question and implement the obtained method.

To meet the goal, our main contribution is to propose a new marking procedure for

three-dimensional unstructured conformal meshes. For these meshes, we guarantee

that all the tetrahedra become conformingly marked as unflagged planar. To this

end, we consider three key ingredients. First, we propose a specific ordering of the

global mesh edges. Second, relying on this edge ordering, we deduce that all the mesh

tetrahedra become marked as unflagged planar. Third, we guarantee conformingly-

marked meshes by checking that we fulfill the sufficient conditions for tetrahedral

meshes stated by Arnold et al. (2000). To illustrate the application, we implement

the refine to conformity marked bisection of Arnold et al. (2000) but equipped with

our planar marking method. We use the implementation to locally refine three-

dimensional unstructured conformal meshes and check the minimum mesh quality.

4.1 Preliminaries and problem

We proceed to introduce the necessary notation and concepts. Specifically, we intro-

duce the preliminaries related to conformal simplicial meshes and marked bisection.

Finally, we state the problem of conformingly marking unstructured simplicial meshes

for bisection.

48

4.1. Preliminaries and problem

(a) (b)

Figure 4.1: Representations of a tetrahedron composed of the vertices v1, v2, v3, and
v4: (a) volumetric; and (b) planar.

4.1.1 Preliminaries and definitions

In our application, we are interested in tetrahedra, three-dimensional simplices. Here-

in, as Arnold et al. (2000), we represent volumetric tetrahedra composed of the ver-

tices v1, v2, v3, and v4, see Figure 4.1(a), in the plane by cutting and unfolding the

corresponding triangular faces, see Figure 4.1(b).

A tetrahedron has three types of entities: triangles, edges, and vertices, which are

sub-simplices composed of 3, 2, and 1 vertices of τ , respectively. We denote the faces,

edges and vertices with the letters κ, e and v, respectively. We define the list of local

edges of a tetrahedron τ = (v0, v1, v2, v3) as the following sorted list of edges

(v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3), (v2, v3).

We associate each triangular face of a tetrahedron τ with the opposite face to a

vertex of τ . As an example, for the tetrahedron τ = (v0, v1, v2, v3), the opposite face

to the vertex v0 is the triangular face κ0 = (v1, v2, v3). We say that two tetrahedra τ1

and τ2 are neighbors if they share a common triangular face.

4.1.2 Marked bisection for tetrahedra

Arnold et al. (2000) presented a marked bisection algorithm for unstructured con-

formal tetrahedral meshes that ensure locally refined conformal meshes and quality

stability. Following, we present the terminology and results required to overview their

marked bisection algorithm.

The refinement edge eτ is the edge of τ to be bisected. Since an edge is shared

by two triangular faces of the tetrahedron, the triangular faces that contain eτ are

49

4. Marked bisection in three dimensions with optimal similarity
bound

(a) (b) (c) (d) (e)

Figure 4.2: The five different type of marked tetrahedra of Arnold’s cycle: (a) un-
flagged planar tetrahedron, (b) flagged planar tetrahedron, (c) adjacent tetrahedron,
(d) mixed tetrahedron, and (e) opposite tetrahedron.

the refinement faces of τ . The remaining two triangular faces are defined as non-

refinement faces. For those faces, one edge, referred as marked edge, is assigned.

We recall that each triangular face κi has a refinement edge eκi . Particularly, the

refinement edge eτ is the same as the eκi of the refinement faces.

Since the non-refinement edges are adjacent or either opposite to the refinement

edge, we can classify the marked tetrahedra into four types, see Figure 4.2: adjacent

A, planar P , mixed M , and opposite O.

• Planar, P : the refinement edge and the marked edges are coplanar. A planar

tetrahedron is further classified as type Pu or type Pf , according to a boolean

flag, see Figures 4.2(a), and 4.2(b), respectively.

• Adjacent, A: the marked edges are adjacent to the refinement edge but are not

coplanar, see Figures 4.2(c).

• Mixed, M : one marked edge is adjacent to the refinement edge, and the other

is opposite, see Figures 4.2(d).

• Opposite, O: both marked edges are opposite to the refinement edge, see Figures

4.2(e).

These tetrahedron types are the nodes of the directed graph determining the

marked bisection sequence, see Figure 4.3.

Now, we can introduce the definition of marked tetrahedron, which is a modifica-

tion of the one detailed by Arnold et al. (2000). Herein, a marked tetrahedron is the

5-tuple

ρ = (τ , eτ , eκ1 , eκ2 , t),

50

4.1. Preliminaries and problem

M O

Pu

A Pf

Figure 4.3: Directed graph of tetrahedron types for marked bisection.

where τ is a tetrahedron, eτ is the refinement edge, eκ1 and eκ2 are the marked edges

of the non-refinement faces, and t is the tetrahedron type.

A mesh is marked if all its tetrahedra are marked. A marked conformal mesh is

conformingly-marked if each triangular face has a unique marked edge. That is, a

triangular face shared by two tetrahedra has the same marked edge from both sides.

Accordingly, shared triangular faces are bisected in the same manner from different

tetrahedra.

Remark 4.1 (Conditions to conformingly mark). To guarantee that a conformal

mesh is conformingly-marked, Arnold et al. (2000) state that it is sufficient to combine

a strict total order of the mesh edges with their marking process for tetrahedra. For

instance, the mesh edges can be sorted according to their length using a tie-breaking

rule when the lengths are equal.

The marked bisection method, Algorithm 2.2, starts by marking the initial un-

structured conformal mesh and then applies a local refinement procedure to a subset

of tetrahedra of the marked mesh. The marking pre-process is devised to ensure a

conformingly-marked mesh. Using this marked mesh, the local refinement procedure,

Algorithm 2.3, first refines a set of tetrahedra and then calls a recursive refine-to-

conformity strategy. This strategy, Algorithm 2.4, terminates when successive bisec-

tion leads to a conformal mesh. Both algorithms use marked bisection to refine a set

of elements, see Algorithm 2.5.

Remark 4.2 (Optimal similarity bound). If the conformingly-marked mesh is com-

posed only of unflagged planar or adjacent tetrahedra, marked bisection does not

generate more than 36 similarity classes, see reference Arnold et al. (2000).

51

4. Marked bisection in three dimensions with optimal similarity
bound

4.1.3 Problem

Our problem is to conformingly mark an unstructured conformal tetrahedral mesh

T1 exclusively with tetrahedra of type Pu. Thus, when applying successive marked

bisection, starting on the resulting marked T1, we can guarantee an optimal number of

similarity classes, see Remark 4.2. Specifically, starting on the unflagged planar mesh

T1, if we locally refine a set of elementsM, we obtain a new conformal unstructured

marked tetrahedral mesh T2 with the corresponding elements bisected. The marked

mesh T2 is suitable for a posterior local refinement. Furthermore, any successive local

refinement process has the minimum element quality bounded.

4.2 Solution: conformingly marking as planar

Following, we detail our solution to conformingly mark an unstructured conformal

mesh with unflagged planar tetrahedra. To this end, we first introduce the concept

of consistent bisection edge. This concept ensures that we can always select the same

bisection edge for a given simplex, independently of its dimension. Based on this selec-

tion, we propose an element-based marking process that generates unflagged planar

tetrahedra. We also check that our marking process is equivalent to the standard

face-based marking process proposed by Arnold et al. (2000). Finally, we guarantee

that our marking process leads to a conformingly-marked mesh. Accordingly, if we

use a restricted version of standard marked bisection to refine the resulting marked

mesh, we obtain the optimal number of similarity classes.

4.2.1 Marking edges: strict total order

To mark the mesh edges, we propose a strict total order of the mesh edges. To this

end, we use a lexicographic order for the mesh edges that is inherited from the order

of the vertices. Specifically, we say that the mesh edge ei = (vi1 , vi2) has lower global

index than the mesh edge ej = (vj1 , vj2) if vi1 < vj1 , or vi1 = vj1 and vi2 < vj2 .

Note that the proposed lexicographic order is strict and total since it is straight-

forward to check that is irreflexive, transitive, asymmetric, and connected. Using

this lexicographic order, we identify each mesh edge with a unique integer by sorting

all the existing edges of the mesh according to the global index criterion.

52

4.2. Solution: conformingly marking as planar

Algorithm 4.1 Marking as unflagged planar.

input: Tetrahedron τ
output: MarkedTetrahedron ρ
1: function markTetrahedron(τ)
2: eτ = consistentBisectionEdge(τ)
3: (v0, v1) = eτ
4: κ1 = oppositeFace(τ , v0)
5: κ2 = oppositeFace(τ , v1)
6: eκ1 = consistentBisectionEdge(κ1)
7: eκ2 = consistentBisectionEdge(κ2)
8: t = Pu . Initialize type of tetrahedron
9: ρ = (τ , eτ , eκ1 , eκ2 , t)

10: return ρ
11: end function

The consistent bisection edge of a simplex (tetrahedron or triangle) is the edge

with the lowest integer assigned in the edge ordering process. Note that the consistent

bisection edge of a simplex is unique because we use a strict total order to characterize

it.

4.2.2 Marking tetrahedra: unflagged planar

Using the consistent bisection edge, we propose a marking process of a single tetra-

hedron that leads to a marked tetrahedron of type Pu, see Algorithm 4.1. The input

of the function is a tetrahedron τ = (v0, v1, v2, v3) and the output is the correspond-

ing marked tetrahedron ρ. First, we obtain the consistent bisection edge, eτ , of the

tetrahedron, see Line 2. Then, we obtain the opposite triangular faces of the vertices

of the bisection edge eτ , see Lines 4–5. After that, we obtain the corresponding con-

sistent bisection edges eκ1 and eκ2 of κ1 and κ2, see Lines 6–7. Finally, we initialize

the tetrahedron type, Line 8, as t = Pu.

The proposed marking process always generates an unflagged planar tetrahedron.

To check it, we need to ensure that the consistent bisection edges selected in Algorithm

4.1 define a triangle of the tetrahedron. Let τ = (v0, v1, v2, v3) be a tetrahedron and

let us reorder the vertices to have vi0 < vi1 < vi2 < vi3 . The consistent bisection edge

is eτ = (vi0 , vi1) since this is the edge with the lowest indices. The opposite faces

to eτ are κ1 = (vi1 , vi2 , vi3) and κ2 = (vi0 , vi2 , vi3), respectively. For those faces, the

consistent bisection edges are eκ1 = (vi0 , vi2) and eκ2 = (vi1 , vi2), respectively. Since

53

4. Marked bisection in three dimensions with optimal similarity
bound

(a) (b)

Figure 4.4: Marked tetrahedra with: (a) our element-based marking method; and (b)
the standard face-based marking method.

eτ , eκ1 and eκ2 are connected generating the triangle (vi0 , vi1 , vi2), they define a planar

configuration. Figure 4.4(a) shows the obtained marked tetrahedron, where the red

edge is the refinement edge and the blue edges are the marked edges corresponding

to the non-refinement faces.

We can see that our element-based marking method and the standard face-based

one are equivalent, see Figure 4.4. Note that they might not be equivalent since our

marking procedure does not exactly proceed as the standard procedure. Specifically,

we do not explicitly mark all the triangular faces of a tetrahedron, see Figure 4.4(a).

In the standard approach, each face of a tetrahedron has a marked edge that indicates

which edge has to be bisected, see red edges in Figure 4.4(b). The refinement edge of

the tetrahedron is the only edge that has been marked on both adjacent faces. Thus,

after marking all the faces, we obtain that the marked edges of the faces

κ1 = (vi0 , vi1 , vi2), κ2 = (vi0 , vi1 , vi3),

κ3 = (vi0 , vi2 , vi3), κ4 = (vi1 , vi2 , vi3),

are eκ1 = (vi0 , vi1), eκ2 = (vi0 , vi1), eκ3 = (vi0 , vi2) and eκ4 = (vi1 , vi2), respectively.

Therefore, the refinement edge of τ is eτ = eκ1 = eκ2 and the refinement faces are κ1

and κ2. The faces κ3 and κ4 are the non-refinement faces and their marked edges are

eκ3 and eκ4 , respectively. Thus, all the triangular faces are also marked as an unflagged

planar tetrahedron. The edge that is marked from two triangular faces corresponds

to the refinement edge of the tetrahedron, see Figure 4.4(b). Thus, the refinement

edge and the marked edges obtained with our marking process are equivalent to those

obtained with the standard marking process but equipped with our edge ordering.

That is, both marking methods generate an equivalent unflagged planar tetrahedron.

54

4.3. Restricted marked bisection

Algorithm 4.2 Conformingly marking a tetrahedral mesh.

input: ConformalMesh T
output: ConformalMarkedMesh T ′
1: function markMesh(T)
2: T ′ = ∅
3: for τ ∈ T do
4: ρ = markTetrahedron(τ)
5: T ′ = T ′ ∪ ρ
6: end for
7: return T ′
8: end function

Pu

A Pf

Figure 4.5: Restricted bisection cycle starting on unflagged planar type.

4.2.3 Conformingly marking a mesh

To ensure that we obtain a conformingly-marked mesh, we need that our marking

procedure fulfills the sufficient conditions required in Remark 4.1. The first condition

is fulfilled since our ordering for mesh edges is strict and total. Furthermore, we

know that our element-based marking process is equivalent to the standard face-based

marking process. Since both sufficient conditions are fulfilled, we can guarantee that

the marking process in Algorithm 4.1 leads to conformingly-marked meshes.

Now, we can detail the method to conformingly mark an unstructured conformal

tetrahedral mesh, see Algorithm 4.2. The input is a conformal tetrahedral mesh,

T, and the output is a conformingly-marked tetrahedral mesh, T ′. We initialize an

empty marked mesh and generate a marked tetrahedron ρ for each tetrahedra τ of the

mesh T. Then, we insert the marked tetrahedra into the marked mesh T ′. Finally,

we return the conformingly-marked mesh T ′ after marking all the tetrahedra.

55

4. Marked bisection in three dimensions with optimal similarity
bound

Algorithm 4.3 Restriced marked bisection.

input: MarkedTetrahedron ρ
output: MarkedTetrahedron ρ1, MarkedTetrahedron ρ2
1: function bisectTet(ρ)
2: t = type(ρ)
3: if t is Pu then
4: ρ1, ρ2 = bisectUnflaggedPlanar(ρ)
5: else if t is Pf then
6: ρ1, ρ2 = bisectFlaggedPlanar(ρ)
7: else if t is A then
8: ρ1, ρ2 = bisectAdjacent(ρ)
9: end if
10: return ρ1, ρ2
11: end function

4.3 Restricted marked bisection

To bisect our unflagged planar meshes, we consider a restricted version of the standard

marked bisection, see Algorithm 4.3. The restricted method bisects a tetrahedron

according to its type. Moreover, it only needs to consider the bisection cycle of

length three for the tetrahedron types Pu, Pf , and A, see Figure 4.5. In the first case,

Line 4, we bisect an unflagged planar tetrahedron. In the second case, Line 6, we

bisect a flagged planar tetrahedron. Finally, in the third case, Line 8, we bisect an

adjacent tetrahedron.

Figure 4.6 shows how to assign the refinement edge and the marked edges of the

children after bisecting a marked tetrahedron of the proposed refinement cycle, ac-

cording to standard marked bisection. Without loss of generality, we suppose that in

all the cases the refinement edge is eτ = (v0, v1). The vertex ν is the new vertex after

the bisection of the edge eτ . We colored the refinement edge and the marked edges

with red and blue, respectively. The first column corresponds to a marked tetrahe-

dron, and the second and third columns correspond to the left and right children,

respectively. In rows, we have three different cases. The first row corresponds to the

bisection of an unflagged planar tetrahedron to two flagged planar tetrahedra. The

second row corresponds to the bisection of a flagged planar tetrahedron to two ad-

jacent tetrahedra. Finally, the third row corresponds to the bisection of an adjacent

tetrahedron to two unflagged planar tetrahedra.

56

4.4. Examples

(a)

(b)

(c)

Figure 4.6: Cases for restricted marked bisection: (a) from a Pu to two Pf ; (b) from
a Pf to two A; and (c) from a A to two Pu.

4.4 Examples

We present several examples to illustrate that our proposed algorithm refines un-

structured tetrahedral meshes, generates locally adapted conformal meshes, a finite

number of similarity classes, and has a lower-bounded quality. For all the exam-

ples, we have computed the shape quality of the mesh elements, see reference Knupp

(2001). Then, we plot the minimum and maximum shape quality of the mesh in

each refinement step to check that the minimum quality is lower bounded and cycles.

Moreover, in the examples where we locally refine the mesh, our code asserts that

the mesh is conformal by faces and that Euler’s characteristic of the mesh remains

57

4. Marked bisection in three dimensions with optimal similarity
bound

constant.

The results have been obtained on a MacBook Pro with one dual-core Intel Core

i5 CPU, at a clock frequency of 2.7GHz, and with a total memory of 16GBytes. As a

proof of concept, a mesh refiner has been fully developed in Julia 1.4. The Julia proto-

type code is sequential (one execution thread), corresponding to the implementation

of the method presented in this chapter.

4.4.1 Minimum quality is lower bounded and cycles with

uniform refinement

In this example, we show that the minimum quality is lower bounded and cycles. To

this end, we uniformly refine a single tetrahedron several times. We denote as Qk the

obtained mesh after k uniform refinements,

Qk = bisectTetrahedra(Qk−1,Qk−1),

where Q0 = τ . Thus, the mesh Qk is composed of 2k tetrahedra and the accumulated

number of generated tetrahedra is 2k+1 − 1.

The method needs at least five iterations of uniform refinement to generate 36,

different similarity classes. This number of iterations is so since the process only accu-

mulates 31 generated tetrahedra after four successive uniform refinements. Assuming

all of these 31 tetrahedra are of a different similarity class, the pigeonhole principle

ensures that they cannot correspond to 36 different similarity classes. On the con-

trary, at the end of iteration five, the accumulated number of generated tetrahedra is

63, greater than 36, and thus, all the similarity classes might be generated. After that

iteration, further refinements do not generate new similarity classes, and therefore,

the minimum quality remains lower bounded. Moreover, if we perform three addi-

tional uniform refinements, we obtain an entire cycle of the quality of length three.

To illustrate those quality cycles, we perform a series of additional refinements.

Figure 4.7 plots the evolution of the minimum (blue line) and maximum (red

line) qualities during the uniform refinement process. Figures 4.7(a), 4.7(b), and

4.7(c) illustrate the quality of an equilateral, cartesian and a perturbed tetrahedra,

respectively. At most, we have to perform five uniform refinements to generate all the

similarity classes. Thus, we perform 12 uniform refinements to see how the quality

cycles. We can see in Figure 4.7(a), for the most symmetric tetrahedron, how the

minimum quality achieves its minimum at iteration five, and then it remains cycling.

58

4.4. Examples

0 2 4 6 8 10 12
Qk

10-1

100

q

(a)

0 2 4 6 8 10 12
Qk

10-1

100

q

(b)

0 2 4 6 8 10 12
Qk

10-1

100

q

(c)

Figure 4.7: Evolution of the maximum (red line) and minimum (blue line) mesh qual-
ity through the mesh refinement iteration: (a) equilateral tetrahedron; (b) cartesian
tetrahedron; and (c) random tetrahedron.

59

4. Marked bisection in three dimensions with optimal similarity
bound

(a) (b) (c)

Figure 4.8: Final mesh after 12 iterations of uniform refinement for: (a) equilateral
tetrahedron; (b) cartesian tetrahedron; and (c) irregular tetrahedron.

For the cartesian and perturbed tetrahedra, we can see in Figures 4.7(b) and 4.7(c)

that we also have to perform five uniform refinements to generate all the similarity

classes, achieving the minimum quality of the mesh and start to cycle. In Figures

4.8(a), 4.8(b), and 4.8(c) correspond to the meshes Q12 of the equilateral, cartesian

and irregular tetrahedra after 12 uniform refinements.

We have generated all the similarity classes for the three tetrahedra, and thus, the

minimum mesh quality is achieved. Thus, this example illustrates that the method

is stable and the mesh quality does not degenerate during successive refinement.

4.4.2 3D unstructured mesh: locally refining a sphere

This example shows that the proposed refinement scheme can be applied to locally re-

fine unstructured tetrahedral meshes. To this end, we perform the refinement process

of Example 3.7.4 with the proposed marked bisection method.

We want to adapt the tetrahedral mesh T0 to the hemisphere H. At each local

refine iteration, we choose the tetrahedra that intersect the hemisphere H as the

refinement set. After 40 iterations the mesh T40 is composed by 5806615 tetrahedra

and 1045175 vertices. Figures 4.9(a) and 4.9(b) show the T40 sliced with the planes

x = 1/2 and y = 1/2. Figure 4.10 shows how the maximum quality remains constant

because it is achieved in each iteration of the local refinement. The minimum quality

decreases until its minimum is achieved and then remains constant.

The final mesh is conformal and captures the chosen hemisphere with smaller

elements, while it contains larger elements at the exterior boundary.

60

4.4. Examples

(a) (b)

Figure 4.9: Slice of the mesh T40 with the plane: (a) x = 1/2; and (b) y = 1/2.

0 5 10 15 20 25 30 35 40
Tk

10-2

10-1

100

q

Figure 4.10: Quality of Example 4.4.2: Evolution of the maximum (red line) and
minimum (blue line) mesh quality through the mesh refinement iterations.

4.4.3 3D space-time mesh: locally refining a iso-potential

surface

The main goal of this example is to capture a two-dimensional manifold defined by

the movement of a one-dimensional manifold. To this end, we perform the refinement

process of Example 3.7.5 using the proposed bisection method.

We generate an adapted tetrahedral mesh by locally refining an initial mesh

around the manifold. The initial mesh, T0, is composed of 3781 tetrahedra and 712

61

4. Marked bisection in three dimensions with optimal similarity
bound

(a) (b) (c)

Figure 4.11: Slices of T50 with the plane: (a) t = 0.0; (b) t = 0.5; and (c) t = 1.0.

(a) (b)

Figure 4.12: Slice of the T50 with the plane x = 1/2, (a) with, and (b) without the
iso-surface.

vertices. After 50 iterations of the local refinement process, the generated mesh T50
has 8356894 tetrahedra and 1504344 vertices. Figures 4.11(a), 4.11(b), and 4.11(c)

show a slice of the tetrahedral mesh with the planes t = 0, t = 0.5, and t = 1,

respectively. The mesh has been locally refined around the iso-surface and therefore,

we have smaller elements near the iso-surface and large elements far from the iso-

surface. Figure 4.12 shows a slice of the tetrahedral mesh with the plane x = 0.5.

We can see how the mesh captures the time evolution of the iso-surface defined by

V (x, t). Figure 4.12(b) shows the iso-surface that is extracted from the space-time

62

4.5. Concluding remarks

0 5 10 15 20 25 30 35 40 45 50
Tk

10-1

100

q

Figure 4.13: Quality of Example 4.4.3: Evolution of the maximum (red line) and
minimum (blue line) mesh quality through the mesh refinement iterations.

mesh. Figure 4.13 shows how the maximum quality remains constant because it is

achieved in each iteration of the local refinement. The minimum quality decreases

until its minimum is achieved and then remains constant.

4.5 Concluding remarks

In conclusion, we have shown the first bisection method meeting the bound of 36

similarity classes on three-dimensional unstructured conformal meshes. For these

meshes, we have guaranteed that our approach conformingly marks all the tetrahedra

as unflagged planar. In this case, marked bisection behaves as the newest vertex

bisection, and thus, it features the optimal bound. We have also checked, with our

implementation, that the minimum quality cycles for three-dimensional unstructured

conformal meshes.

We have answered an open question. Specifically, we have proved that it is possible

to mark as unflagged planar all the tetrahedra of an arbitrary three-dimensional

unstructured conformal mesh. To explore alternative answers, we will study whether

it is possible to mark all the tetrahedra as adjacent or as a mixture of unflagged

planar and adjacent elements.

In perspective, our marked bisection allows refining with optimal similarity bound

in adaptive applications on three-dimensional complex geometry. The complexity can

be handled by the geometrical flexibility of unstructured conformal meshes. On these

meshes, our marked bisection meets all the advantages of the newest vertex bisection.

63

Chapter 5

Newest vertex bisection in n

dimensions: reflectivity

The question of whether there is a method to extract a reflection structure on an

arbitrary n-dimensional unstructured conformal mesh is still open (Mitchell, 1991,

2017). Answering this question with an explicit algorithm is of major practical in-

terest. Specifically, it would enable applying newest vertex bisection on unstructured

meshes and thus, to exploit for the first time the conformity, finiteness, stability, and

locality properties on complex n-dimensional geometry. In this chapter, we aim to

answer this question and implement the devised method.

To meet this goal, the main contribution is to propose a new marking procedure

for n-dimensional unstructured conformal meshes. For these meshes, we guarantee

that all the simplices are conformingly-marked as Maubach simplices with a tag equal

to n. To this end, we consider three key ingredients. First, we propose to sort the

vertices of the simplices with a strict and total order, and we mark all the simplices

with Maubach tag equal to n. Second, we prove that this marking procedure extracts

a reflected mesh from any n-dimensional unstructured conformal mesh. Third, we

prove that this approach ensures strong compatible meshes and thus, enables posterior

local refinement with newest vertex bisection.

To illustrate the local refinement application, we implement in n-dimensions the

refine to conformity marked bisection in Arnold et al. (2000), but equipped with our

marking method. We use the implementation to locally refine unstructured conformal

65

5. Newest vertex bisection in n dimensions: reflectivity

meshes of different dimensions. Although the conformity, finiteness, stability, and

locality are guaranteed, we also illustrate the stability and locality of the resulting

meshes.

5.1 Problem and outline of our solution

Given an unstructured simplicial mesh T0, our problem is to obtain a reflected mesh

T1. Thus, when applying successive iterations of newest vertex bisection, starting

on the resulting reflected mesh T1, we can guarantee an optimal number of similar-

ity classes. Specifically, starting on the reflected mesh T1, if we locally refine a set

of elements M, we obtain a new conformal strongly compatible mesh T2 with the

corresponding elements bisected. The strongly compatible T2 is suitable for a poste-

rior local refinement. Furthermore, any successive local refinement process has the

minimum element quality bounded.

Our solution is to sort the vertices of each simplex and mark the simplex with

the tag d = n. In this manner, we obtain a reflected mesh in which we can apply

Maubach’s bisection method.

5.2 Solution: strict total order of vertices leads

to reflected meshes

In this section, we first present an algorithm that, for a given conformal unstruc-

tured simplicial mesh, reorders the vertices of its elements. Then, we prove that the

generated mesh is reflected, and therefore, we can use newest vertex bisection.

5.2.1 Extracting a reflection structure

Given an unstructured simplicial mesh, we detail a method to obtain a reflected mesh,

see Algorithm 5.1. The idea of the algorithm is to sort the vertices of each simplex

to enforce reflected neighbors.

The input of Algorithm 5.1 is an unstructured conformal simplicial mesh T0 and

the output is a reflected mesh T1. First, we create an empty mesh T1 in Line 2.

Following, we loop over the simplices of T0, Line 3, and extract the simplex vertices

(v0, . . . , vn), Line 4. Then, we sort the vertices using the order of natural numbers,

66

5.2. Solution: strict total order of vertices leads to reflected meshes

Algorithm 5.1 Make a reflected mesh.

input: Mesh T0
output: ReflectedMesh T1
1: function MarkAsReflectedMesh(T0)
2: T1 = ∅
3: for σ ∈ T0 do
4: (v0, . . . , vn) = σ
5: (vi0 , . . . , vin) = sort(v0, . . . , vn)
6: σ̄ = ([vi0], . . . , [vin])
7: d = n
8: l = 0
9: µ = (σ̄, d, l)

10: T1 = T1 ∪ µ
11: end for
12: return T1
13: end function

which is a strict total order, see Line 5. After that, we perform a mapping between

the sorted list of vertices and a sorted list of multi-ids of length one, and create a

new simplex, σ̄, see Line 6. Since we have not bisected any edge yet, all the multi-ids

are of length one. In Lines 7 and 8, we set the tag d = n and descendant level l = 0,

respectively. According to Remark 2.6, we can also use the tag d = n− 1. Then, we

set the Maubach simplex µ = (σ̄, d, l), see Line 9, and add it to T1, see Line 10. A

Maubach simplex is a 3-tuple µ = (σ̄, d, l), where σ̄ is an equivalent simplex, but it

is reordered to properly contribute to a reflected mesh, d is a Maubach integer tag,

and l is the descendant level. Finally, we return the reflected mesh T1 in Line 12.

5.2.2 Sufficient condition for reflectivity

In this subsection, we prove that if we have a strict total order of mesh vertices and

that all the simplices have their vertices ordered accordingly to it, then the mesh

is reflected. Then, we use this result to prove our Algorithm 5.1 generates reflected

meshes. Before that, we present some definitions and functions that we will use in the

proof. Note that there are functions with the same name but with different input and

output. In this section, we consider a given strict total order, �, of mesh vertices.

• For a given simplex (s0, . . . , sn), the function set returns the set of vertices

67

5. Newest vertex bisection in n dimensions: reflectivity

{s0, . . . , sn}:
set : Simplex −→ Set

set (s0, . . . , sn) = {s0, . . . , sn}.
(5.1)

• For a given tuple (s0, . . . , sn), the constructor function Simplex returns the

simplex (s0, . . . , sn):

Simplex : Tuple −→ Simplex

Simplex (s0, . . . , sn) = Simplex(s0, . . . , sn).
(5.2)

• For a given set of vertices {s0, . . . , sn}, the function sort returns the sorted tuple

(si0 , . . . , sin), where i0, i1, . . . , in is a permutation such that si0 � . . .� sin :

sort : Set −→ Tuple

sort {s0, . . . , sn} = (si0 , . . . , sin).
(5.3)

• For a given set of vertices {s0, . . . , sn}, the function simplex returns a sorted

simplex (si0 , . . . , sin), where i0, i1, . . . , in is a permutation such that si0 � . . .�
sin :

simplex : Set −→ Simplex

simplex {s0, . . . , sn} = Simplex ◦ sort {s0, . . . , sn}.
(5.4)

• For a given simplex (s0, . . . , sn), the function sort returns a sorted simplex

(si0 , . . . , sin), where i0, i1, . . . , in is a permutation such that si0 � . . .� sin :

sort : Simplex −→ Simplex

sort (s0, . . . , sn) = simplex ◦ set (s0, . . . , sn).
(5.5)

• For two given simplices (s0, . . . , sn) and (t0, . . . , tm), the function + returns

the concatenation simplex (s0, . . . , sn, t0, . . . , tm):

+ : Simplex× Simplex −→ Simplex

+ (s0, . . . , sn) (t0, . . . , tm) = (s0, . . . , sn, t0, . . . , tm).
(5.6)

Note that if σ is already sorted the function sort of Equation (5.5) holds that

sort(σ) = σ.

Let σ = (v0, . . . , vn) be a sorted simplex and let v be a vertex of σ. Consider the

decomposition of σ as follows

σ = (v0, . . . , vn) = (v0, . . . , vk−1, v, vk+1, . . . , vn), (5.7)

68

5.2. Solution: strict total order of vertices leads to reflected meshes

where k is such that vk = v. That is, for a given simplex σ and a vertex v of σ, we

have that σ = l + (v) + r, where l = (v0, . . . , vk−1) and r = (vk+1, . . . , vn) hold that

l0 � . . . � lk−1 � v � rk+1 � . . . � rn. The interpretation of that decomposition

is that for a given sorted simplex σ and a vertex v, we can split the simplex into two

sub-simplices composed of the vertices smaller than v, and the vertices greater than

v.

For the strict total order � of mesh vertices, we consider the two following defi-

nitions:

Definition 5.1 (Sorted simplex). A simplex (v0, . . . , vn) is sorted if

v0 � . . .� vn.

Definition 5.2 (Sorted simplicial mesh). A simplicial mesh is sorted if all the mesh

simplices are sorted.

Theorem 5.1 (Reflectivity sufficient condition). Let T be a conformal n-dimensional

simplicial mesh. If the mesh is sorted and all the Maubach simplices have tag equal

to n, then the mesh T is reflected.

Proof. We have to check that all pairs of adjacent neighboring simplices σ̄1 and σ̄2 of

T are reflected neighbors. That is, both simplices have the same tag, and the shared

face κ̄ = simplex(set(σ̄1)∩ set(σ̄2)) is ordered in the same manner from σ̄1 and σ̄2.

By hypothesis all the Maubach simplices have the same tag d = n. Thus, we only

need to proof that the shared face has the same order of vertices inside σ̄1 and σ̄2.

Since T is a sorted simplicial mesh, we have that σ̄1 and σ̄2 are sorted simplices

by Definition 5.2. Therefore, we have that

σ̄1 = (v0, . . . , vn) with v0 � . . .� vn,

σ̄2 = (w0, . . . , wn) with w0 � . . .� wn,

according to Definition 5.1. Moreover, let

κ̄ = simplex(set(σ̄1) ∩ set(σ̄2)) = (u0, . . . , un−1)

be the shared sorted face between σ̄1 and σ̄2. Since σ̄1 and σ̄2 are neighbors, there is

only one v in set(σ̄1) that is not in set(σ̄2), and there is only one w in set(σ̄2) that

is not set(σ̄1).

69

5. Newest vertex bisection in n dimensions: reflectivity

Now, we can consider the decomposition of σ̄1 and σ̄2 as in Equation (5.7)

σ̄1 = l1 + (v) + r1,

σ̄2 = l2 + (w) + r2.

Next, we prove that κ̄ is equal to l1 + r1. Since the vertices of κ̄ are sorted, we have

that κ̄ = sort(κ̄). Applying that sort is equal to simplex ◦ set, Equation (5.4), we

have that

sort(κ̄) = simplex(set(κ̄)).

Since set(κ̄) = set(l1) ∪ set(r1) by Lemma A.2, we obtain that

simplex(set(κ̄)) = simplex(set(l1) ∪ set(r1)).

Finally,

simplex(set(l1) ∪ set(r1)) = l1 + r1

by Lemma A.3.

We have obtained that κ̄ = l1 + r1. Similarly, we can repeat the argument with

the simplex σ̄2 to obtain κ̄ = l2 + r2. Accordingly, we obtain l1 + r1 = l2 + r2,

and therefore the shared face κ̄ in σ̄1 and σ̄2 appears with the same order in both

simplices.

Thus, we have proved that any pair of simplices σ̄1 and σ̄2 of T are reflected

neighbors. Therefore, the sorted simplicial mesh T is a reflected mesh as we wanted

to see.

5.2.3 Newest vertex bisection on unstructured meshes:

extracting reflectivity and strong compatibility

Next, we guarantee that the proposed marking procedure enables local refinement

with the newest vertex bisection. To this end, we use the theorem of the reflectivity

sufficient condition to ensure that the marking procedure leads to reflected meshes.

This reflectivity guarantees that the resulting meshes feature strong compatibility,

thus, ensuring the applicability of the newest vertex bisection.

Corollary 5.1 (Marking as reflected). Let T0 be a conformal simplicial mesh, and

T1 the obtained mesh after the application of Algorithm 5.1 to T0. Then, T1 is a

reflected mesh.

70

5.2. Solution: strict total order of vertices leads to reflected meshes

Proof. We have to check that the mesh T1 is reflected. To this end, we will check

that all the simplices in T1 are sorted simplices and, therefore, that T1 is a sorted

simplicial mesh. Moreover, we will check that all the Maubach simplices have tag

d = n. Then, by Theorem 5.1, T1 is reflected.

By construction, Algorithm 5.1 sorts all the simplices with the order of the natural

numbers, which is strict and total. Accordingly, all the simplices in T1 are sorted

simplices according to Definition 5.1. Thus, the mesh T1 is a sorted simplicial mesh

according to Definition 5.2. Since Algorithm 5.1 assigns to all the Maubach simplices

the same tag d = n, Theorem 5.1 ensures that the mesh T1 is reflected.

Corollary 5.2 (Strong compatibility). Let T0 be a conformal n-simplicial mesh, and

let T1 be the mesh obtained with Algorithm 5.1. Then, T1 is suitable to use newest

vertex bisection for local refinement.

Proof. The mesh T1 is reflected by Corollary 5.1 and, therefore, by Remark 2.6, is

strongly compatible. By Theorem 5.1 of Stevenson (2008), if we locally refine T1 using

newest vertex bisection, the obtained mesh is conformal and strongly compatible.

5.2.4 Number of iterations to obtain all the similarity

classes

We want to calculate the minimum number of uniform refinements required to gen-

erate all the similarity classes with newest vertex bisection. To do that, we consider

uniform refinements in order to generate the maximum number of simplices per iter-

ation. Thus, let Qσ0 = σ and

Qσk = bisectSimplices(Qσk−1,Qσk−1)

the obtained mesh after performing k uniform refinements, a mesh Qσi that is com-

posed of # (Qσi) = 2i simplices. Considering all the meshes Qσ0 , . . .Qσk , we have at

most
k∑

i=0

(Qσi) =
k∑

i=0

2i = 2k+1 − 1 (5.8)

different simplices.

Recall that newest vertex bisection generates at most Mn = nn!2n−2 similarity

classes, see Theorem 4.5 of Arnold et al. (2000). We remark that the number of

generated similarity classes is an upper bound. That is, the method can generate

71

5. Newest vertex bisection in n dimensions: reflectivity

K similarity classes, where K ≤ Mn. Thus, in the case that the method generates

Mn similarity classes, it needs to refine at least k times uniformly to generate Mn

similarity classes, where k holds that

2k+1 − 1 ≥ nn!2n−2.

Thus, k has to fulfill that

2k+1 ≥ 1 + nn!2n−2.

Applying logarithm in both sides, we obtain that

k ≥ dlog2(1 + nn!2n−2)e − 1.

Assuming all of these 2k+1 − 1 simplices are of a different similarity class, the

pigeonhole principle ensures that they cannot correspond to Mn different similarity

classes. On the contrary, at the end of iteration k, the accumulated number of

generated simplices is 2k+1 − 1, greater than Mn.

Remark 5.1 (Number of bisection iterations). With this reasoning, we show that

we need at least dlog2(1+nn!2n−2)e−1 iterations to get all the similarity classes. We

do not ensure that we get all the similarity classes. Nevertheless, it is a lower bound

over the necessary uniform refinement to generate Mn similarity classes.

5.3 Examples

We present four examples where we refine different meshes with our bisection method.

In the first example, we illustrate the number of similarity classes for different sim-

plices and the number of iterations to obtain them. Next, we locally refine a hyper-

sphere in different dimensions to study the evolution of the constant C controlling

the growth of the conformal closure (Binev et al., 2004; Stevenson, 2008). In the

third example, we locally refine 4-dimensional unstructured meshes of a hypersphere

to locally adapt a smaller hypersphere. Finally, in the fourth example, we locally

refine a hypercylinder to capture the time-evolution of a potential.

All the results have been obtained on a computer with an Intel Core i9-9900K,

with a clock frequency of 3.6GHz, and total memory of 8TBytes. As a proof of

concept, a mesh refiner has been fully developed in Julia 1.4.2. The Julia prototype

code is sequential (one execution thread), corresponding to the implementation of the

method presented in this chapter. All the unstructured initial meshes are generated

with the distmesh algorithm (Persson and Strang, 2004).

72

5.3. Examples

Table 5.1: Number of generated similarity classes by newest vertex bisection.

Dimension Equilateral Cartesian Kuhn Irregular Mn

2 3 4 1 4 4
3 36 27 3 36 36
4 52 58 4 384 384
5 2079 312 5 4800 4800

Table 5.2: Number of uniform refinements to generate all the similarity classes.

Minimum
Dimension Equilateral Cartesian Kuhn Irregular for irregular
2 2 2 0 2 2
3 7 5 2 7 5
4 10 10 3 10 8
5 15 15 4 17 12

5.3.1 Iterations versus number of similarity classes

We present the number of similarity classes and the minimum number of uniform

refinements for different simplices and dimensions. We uniformly refine an equilateral

simplex, a Cartesian simplex, a Kuhn simplex, and an irregular simplex for dimensions

2, 3, 4, and 5. The number of similarity classes and the needed uniform refinements

are detailed in Table 5.1 and Table 5.2, respectively.

The equilateral simplex has all its edges of the same length, the Cartesian sim-

plex has vertices determined by the origin and the canonical vectors ei, and the

Kuhn simplex, which is one of the simplices obtained after dividing a hypercube with

Coxeter-Freudenthal-Kuhn algorithm. Finally, the irregular simplex has all its edges

with different lengths. To obtain all the similarity classes, we used the quality of the

simplices as a proxy, assigning an obtained shape quality to a similarity class. We

refined the initial simplices and their descendants uniformly until the method does

not generates more similarity classes.

Table 5.1 shows the number of obtained similarity classes for each case. The

equilateral and Cartesian simplex have fewer similarity classes than Mn. That is

because they have geometric symmetries, and thus Maubach’s bisection generates

less similarity classes than Mn. On the other hand, the Kuhn simplex is the one

that generates the minimum number of similarity classes. That is because newest

73

5. Newest vertex bisection in n dimensions: reflectivity

vertex bisection achieves its optimal number of similarity classes with structured

meshes, which are fully composed of Khun simplices. Finally, the irregular simplex

generates the maximum number of similarity classes due to its lack of symmetry. That

is, it generates the predicted maximum number of similarity classes. As dimension

increases, the number of similarity classes also increases in all the cases.

Table 5.2 shows the number of uniform refinements performed to generate the

similarity classes of Table 5.1, and the a lower bound over the number of uniform

refinements to generate Mn similarity classes. We see that the equilateral, the Carte-

sian, and the irregular simplices exceed the number of minimum uniform refinements

to generate the similarity classes of Table 5.1. Moreover, the number of uniform

refinements of the equilateral and Cartesian simplices is smaller than the irregular

simplex. For the Kuhn simplex, we can see that the number of uniform refinements

to achieve the generated number of similarity classes is n− 1, except in the 2D case.

That is because the initial simplex is the unique similarity class. Generally, when

the number of similarity classes becomes larger, we need to perform more uniform

refinements to generate them.

5.3.2 Conformal closure

In this example, we illustrate that our refinement method fulfills the bounds presented

in Theorem 6.1 of Stevenson (2008) under successive local refinements. To do that, we

adapt the mesh of an n-dimensional closed ball of radius 1 to capture a hypersphere

of radius 10−3. We perform this procedure for dimensions 2, 3, 4, and 5.

Let B̄n be the n-dimensional closed ball of radius 1 centered at the origin, defined

as the points such that ‖x‖ ≤ 1. We approximate the domains B̄2, B̄3, B̄4, and B̄5

with the simplicial meshes T 2
0 , T 3

0 , T 4
0 , and T 5

0 , respectively. All the meshes have been

generated using distmesh (Persson and Strang, 2004). In all the cases, the meshes

have the same edge length, he = 0.5. We perform 10 iteration of local refinement,

generating the simplicial meshes T 2
10, T 3

10, T 4
10, and T 5

10.

Let

Tk+1 = localRefine (Tk,Mk)

be the obtained mesh, Mk be the set of marked simplices to be bisected at iteration

k, and M0,k = M0 ∪ . . . ∪Mk−1 be the union of the sets marked simplices to be

refined until the k-th iteration, where 1 ≤ k ≤ 10. We use Theorem 6.1 of Stevenson

(2008) to study the evolution of C during the 10 iterations of local refine for each

74

5.3. Examples

1 2 3 4 5 6 7 8 9 10
k

100

101

102

103

C
k

Figure 5.1: We show the evolution of Ck for the meshes in 2D (blue line), 3D (red
line), 4D (yellow line), and 5D (green line) during the 10 iterations of local refinement.

mesh. We approximate C in each iteration with Ck, approximating Equation (2.1)

as

Ck =
(Tk+1)−# (T0)

(M0,k)
.

Figure 5.1 shows the evolution of Ck for dimensions 2, 3, 4, and 5. For dimensions

2 and 3, we see that Ck increases at iteration 6 and then, it tends to decrease. For

dimension 4, Ck starts to increase at iteration 7 and at iteration 9 it decreases. Finally,

for dimension 5 we see that Ck starts to increase at iteration 8.

5.3.3 4D unstructured mesh: locally refining a hypersphere

This example shows that the proposed refinement scheme can be applied to locally

refine unstructured simplicial meshes. To this end, we perform the refinement process

of Example 3.7.4 with the proposed newest vertex bisection method.

The initial mesh has an edge length of 0.15 and is composed of 218229 pentatopes

and 10362 vertices. Figure 5.2(a) shows a slice of T0 with the hyperplane t = 0.0.

After 7 iterations of the refinement process, the obtained mesh T7 is composed of

73121697 pentatopes and 3568201 vertices. We slice T7 with the hyperplane t = 0.0

to obtain the 3D tetrahedral representation depicted in Figure 5.2(b). We can see

how the mesh is locally refined capturing the inner hypersphere.

Figure 5.3 shows the evolution of the shape quality during the refinement process.

We see that the maximum quality remains constant during the refinement process.

The minimum quality of the mesh decreases but does not achieve its minimum since

75

5. Newest vertex bisection in n dimensions: reflectivity

(a) (b)

Figure 5.2: Slice of the 4-simplicial mesh of a hypersphere with the hyperplane t = 0:
(a) initial mesh; and (b) locally adapted mesh T7.

0 1 2 3 4 5 6 7
Tk

10-3

10-2

10-1

100

q

Figure 5.3: Evolution of the maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iteration.

we need to perform more local refinements. Figure 5.4 shows the evolution of C

during the refinement process and how it decreases after the third local refinement

step.

The obtained results illustrate that the proposed bisection algorithm can refine

locally unstructured simplicial meshes and generates conformal meshes.

76

5.3. Examples

1 2 3 4 5 6 7
k

100

101

102

C
k

Figure 5.4: Evolution of Ck during the local refinement process.

5.3.4 4D Space-time local refinement: time evolution of a

potential

The main goal of this example is to capture a three-dimensional manifold defined by

the movement of a two-dimensional manifold. To this end, we perform the refinement

process of Example 3.7.5 using the proposed bisection method. curvature.

After 22 iterations of the local refinement process, the generated mesh T22 has

35686663 pentatopes, 1773294 vertices, and 23221152 edges. To visualize the ob-

tained mesh, we sliced it with a hyperplane to obtain a 3D tetrahedral representa-

tion. Figures 5.5(a), 5.5(c), and 5.5(e) show a slice of the pentatopic mesh with the

hyperplanes t = 0, t = 0.5, and t = 1, respectively. The mesh has been locally refined

around the isosurface and therefore, we have smaller elements near the isosurface and

large elements far from the isosurface. Figures 5.5(b), 5.5(d), and 5.5(f) show the iso-

surface that is extracted from the mesh. These slices show that the isosurface starts

at two connected components and then join into one connected component. Figure

5.6(a) shows a slice of the pentatopic mesh with the hyperplane x = 0.5, generating

the space-time mesh (z, y, t). We can see how the mesh captures the time evolution of

the isosurface defined by V (x, t). Figure 5.6(b) shows the isosurface that is extracted

from the space-time mesh.

Figure 5.7 shows the evolution of the maximum and minimum quality of the

mesh during the local refinement process. We see that the maximum quality remains

constant during the refinement process. The minimum quality of the mesh decreases

until iteration 16, and then it stabilizes since, in posterior local refinements, the

77

5. Newest vertex bisection in n dimensions: reflectivity

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Different slices in time of T22 are presented to illustrate how the isosurface
has been captured. In rows, slice with t = 0.0 (a) and (b), slice with t = 0.5 (c) and
(d), and slice with t = 1.0 (e) and (f). In columns, slice of the mesh (a), (c) and (e),
and countour of the isosurface (b), (d) and (f).

minimum mesh quality is achieved. Figure 5.8 shows the evolution of Ck during the

local refinement process. We see how Ck decreases after the third local refinement

78

5.3. Examples

(a) (b)

Figure 5.6: Slice with the hyperplane x = 1/2. In Figures (a) and (b) we obtain the
3D space-time mesh (z, y, t), where we can see the time evolution of the isosurface
defined by the gravitational potential. We can see how the mesh is adapted to capture
the movement of the two particles.

0 2 4 6 8 10 12 14 16 18 20 22
Tk

10-2

10-1

100

q

Figure 5.7: Evolution of the maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iteration.

step. In the last iterations, Ck is approximately ten, and this means that for each

marked simplex, we had to refine ten additional simplices to obtain a conformal mesh.

79

5. Newest vertex bisection in n dimensions: reflectivity

0 2 4 6 8 10 12 14 16 18 20 22
k

101

102

103

C
k

Figure 5.8: Evolution of Ck during the local refinement process.

5.4 Concluding remarks

In conclusion, we have proposed and implemented the first n-dimensional bisection

method for n-simplicial unstructured conformal meshes that can be applied locally,

generating conformal meshes in a finite number of steps, see references Maubach

(1995) and Stevenson (2008), that leads to at most Mn similarity classes, see Arnold

et al. (2000), and that its conformal closure is optimal for finite element methods

(Binev et al., 2004; Stevenson, 2008). For these meshes, we have guaranteed that our

approach generates reflected meshes. In this case, the generated meshes are suitable

for using newest vertex bisection with local refinement.

We have answered an open question. Specifically, we have proved that it is pos-

sible to reorder an arbitrary n-simplicial unstructured conformal mesh such that the

obtained mesh is reflected.

In perspective, our bisection method enables adaptive applications on n-dimensio-

nal complex geometry. In this case, the complexity of the geometry would be handled

by the flexibility of unstructured conformal meshes. Furthermore, on these meshes,

the refinement fulfills the advantages of newest vertex bisection for n-simplicial adap-

tion.

80

Chapter 6

Suitability of marked bisection for

local refinement in n dimensions

In this chapter, we discuss how to guarantee that the n-dimensional marked bisec-

tion algorithm proposed in Chapter 3 can be used for local refinement on unstruc-

tured conformal meshes. Accordingly, we need to show that the resulting meshes are

conformal, the algorithm finishes in a finite number of steps, and that the meshes

asymptotically feature locality. Furthermore, we need to prove a fair bound on the

number of generated similarity classes.

The rest of the chapter is organized as follows. First, we illustrate through exam-

ples how conformity and reflectivity arise. Second, we discuss how we can guarantee

conformity, finiteness, and locality. Finally, we estimate the number of generated

similarity classes.

6.1 Marked bisection on a triangle

To illustrate the multi-stage bisection and how the conformity and reflectivity arise,

we perform two uniform refinements to a single triangle. First, we mark it with the

co-dimensional marking process. Then, we perform two uniform refinements with our

marked bisection algorithm. Finally, we check that the resulting mesh is conformal

and reflected.

81

6. Suitability of marked bisection for local refinement

([v1], [v2])

([v0], [v1]) ([v0], [v2])

(a)

([v0], [v2])

([v0], [v1]) ([v1], [v2])

(b)

([v0], [v1])

([v0], [v2]) ([v1], [v2])

(c)

Figure 6.1: Bisection trees of a triangle σ = ([v0], [v1], [v2]) where the consistent
bisection edges is: (a) e = ([v1], [v2]), (b) e = ([v0], [v2]), and (c) e = ([v0], [v1]).

6.1.1 Co-dimensional marks on a triangle

Let σ = ([v0], [v1], [v2]) be a triangle such that its consistent bisection edge is e =

([v1], [v2]), and consider the application of the co-dimensional marking process, Al-

gorithm 3.2, to σ. Since e is the consistent bisection edge of σ, we compute the

opposite faces to the vertices of e. Thus, we obtain the faces κ1 = ([v0], [v1]) and

κ2 = ([v0], [v2]).

Then, we apply recursively the co-dimensional marking process to κ1 and κ2. Since

the dimension of κ1 is equal to one, the marking process returns as bisection tree t1

the binary tree composed of the edge ([v0], [v1]), the only edge of κ1. Analogously,

the bisection tree t2 of κ2 is the binary tree composed of the edge ([v0], [v2]). Finally,

the bisection tree of σ is detailed in Figure 6.1(a).

There are two more cases, depending if the consistent bisection edge of σ is

([v0], [v2]) or ([v0], [v1]). For those cases, the bisection trees generated by the co-

dimensional marking process are illustrated in Figure 6.1(b) and 6.1(c), respectively.

Remark 6.1 (Three possible bisection trees for triangles). There are only three

possible bisection trees for the 2-dimensional case, depicted in Figure 6.1, because

there are only three possible consistent bisection edges of level zero. After choosing

the consistent bisection edge of level zero, the rest of the bisection tree is already

determined.

6.1.2 Two uniform refinements on a triangle

We refine uniformly two times, with Algorithm 3.1, the tree-simplex τ = (σ, κ̄, t, l),

with bisection tree t depicted in Figure 6.1(a), and its descendants. We illustrate

in Figure 6.2 the obtained meshes during the refinement process. That is, Figures

6.2(a), 6.2(b), and 6.2(c) correspond to Qσ0 , Qσ1 , and Qσ2 , respectively.

82

6.1. Marked bisection on a triangle

(a) (b) (c)

Figure 6.2: Sequence of meshes for two uniform refinements of the triangle σ with
the bisection tree depicted in Figure 6.1(a): (a) Qσ0 , (b) Qσ1 , and (c) Qσ2 .

Table 6.1: Triangles after two uniform refinements and corresponding reflected trian-
gles.

Generated triangles Generated reflected triangles
σ1 = ([v0], [v0, v1], [v1, v2]) σ̄1 = ([v0], [v0, v1], [v1, v2])
σ2 = ([v0, v1], [v1], [v1, v2]) σ̄2 = ([v1], [v0, v1], [v1, v2])
σ3 = ([v0], [v1, v2], [v0, v2]) σ̄3 = ([v0], [v0, v2], [v1, v2])
σ4 = ([v0, v2], [v1, v2], [v2]) σ̄4 = ([v2], [v0, v2], [v1, v2])

First, we refine uniformly the meshQσ0 , generating the meshQσ1 , see Figure 6.2(b).

This mesh is composed of two tree-simplices τ1 and τ2. Each tree-simplex is composed

of a triangle σ1 = ([v0], [v1], [v1, v2]) and σ2 = ([v0], [v1, v2], [v2]), respectively. Each

tree-simplex has associated the 1-list κ̄1 = ([v1, v2]) and κ̄2 = ([v1, v2]), and the

bisection tree t1 = ([v0], [v1]) and t2 = ([v0], [v2]), respectively.

Finally, we refine uniformly Qσ1 , generating the mesh Qσ2 , see Figure 6.2(c), which

is composed of four tree-simplices τ1, τ2, τ3, and τ1. Each tree-simplex τi has the

associated triangle σi, depicted in the first column of Table 6.1.

After generating the four triangles σi, the tree-simplex bisection generates the

following sorted 2-list κ̄i, defined as:

κ̄1 = ([v0, v1], [v1, v2]), κ̄2 = ([v0, v1], [v1, v2]),

κ̄3 = ([v0, v2], [v1, v2]), κ̄4 = ([v0, v2], [v1, v2]).

Then, we apply cast to Maubach, Algorithm 3.7, and convert all the tree-simplices

of Qσ2 into Maubach triangles µ = (σ̄, d, l). We add in front of each κ̄i the a vertex of

the corresponding bisection edge and then, we map those four sorted 3-list into the

triangles σ̄i, that are depicted in the second column of Table 6.1.

83

6. Suitability of marked bisection for local refinement

Table 6.2: Mesh inner faces of generated triangles and the reflected triangles.

Inner Faces Inner reflected faces
κ1 = σ1 ∩ σ2 = {[v0, v1], [v1, v2]} κ̄1 = σ̄1 ∩ σ̄2 = ([v0, v1], [v1, v2])
κ2 = σ3 ∩ σ4 = {[v0, v2], [v1, v2]} κ̄2 = σ̄3 ∩ σ̄4 = ([v0, v2], [v1, v2])
κ3 = σ2 ∩ σ3 = {[v0], [v1, v2]} κ̄3 = σ̄2 ∩ σ̄3 = ([v0], [v1, v2])

(a) (b) (c)

Figure 6.3: The triangular meshes (a), (b) and (c) after two uniform refinements
using the balanced bisection trees of Figure 6.1(a), Figure 6.1(b) and Figure 6.1(c),
respectively.

6.1.3 Triangular conformity after two refinements

We check that Qσ2 is conformal and composed of four triangles for the bisection tree

of Figure 6.1(a). In the first column of Table 6.2, we detail all the inner faces of Qσ2 .

We see that the mesh Qσ2 is conformal since all the inner edge faces are shared only

by two triangles.

Remark 6.2 (Sort preserves conformity). Recall that σ̄i and σi have the same ver-

tices. Thus, the mesh Qσ2 maintains its conformity due the fact that we only sorted

the vertices of its triangles.

For the two remaining cases, corresponding to the bisection trees of Figures 6.1(b)

and 6.1(c), the obtained meshes Qσ2 are illustrated in Figures 6.3(b) and 6.3(c), re-

spectively. In all the cases, it is straightforward to check that the obtained triangular

meshes are conformal, and composed of four triangles.

6.1.4 Triangular reflectivity after two refinements

We check that Qσ2 is a reflected mesh. To this end, we check that all the Maubach

triangles have the same tag, and that any pair of neighboring triangles share an edge

84

6.2. Marked bisection on a tetrahedron

face that is sorted in the same manner. By construction of the second stage, see Line

6 of Algorithm 3.6, all the Maubach triangles have the same tag d = 2. Then, we

have to check that any pair of neighboring triangles share an edge face that is sorted

in the same manner. The triangles σ̄i of Qσ2 corresponds to the second column of

Table 6.1, and they define a reflected neighbors configuration since the shared edge

faces are sorted in the same manner, see second column of Table 6.2. Thus, the mesh

Qσ2 is reflected.

6.2 Marked bisection on a tetrahedron

As in Section 6.1, we proceed in the same manner for a single tetrahedron. First, we

mark it with the co-dimensional marking process. Then, we perform three uniform

refinements with our marked bisection algorithm. Finally, we check that the resulting

mesh is conformal and reflected.

6.2.1 Co-dimensional marks on a tetrahedron

Let σ = ([v0], [v1], [v2], [v3]) be a tetrahedron and assume that its edges are ordered

in such a manner that

e1 = ([v1], [v2]), e2 = ([v1], [v3]), e3 = ([v2], [v3]),

e4 = ([v0], [v1]), e5 = ([v0], [v2]), e6 = ([v0], [v3]),

where e1 < . . . < e6. Consider the application of the co-dimensional marking process,

Algorithm 3.2, to σ.

In Figure 6.4, we show the steps of the co-dimensional marking process and the

obtained bisection tree. Figure 6.4(a) shows all the steps that the co-dimensional

process makes during the whole process. It has three rows organized by the dimension

of the marked entity. Note that the marking process is a co-dimensional algorithm

that starts with a tetrahedron and ends with an edge. Thus, the first row is composed

of a tetrahedron, the second row is composed of two triangles, and the third row is

composed of four edges. Figure 6.4(b) shows the generated bisection tree.

In Figure 6.4(a), we plot the initial tetrahedron in each step and color its vertices

and edges to illustrate the current state of the algorithm. We color the vertices in

black and gray, depending if they define or not the sub-simplex to be marked. For

the edges, we use the same colors as in the vertices. The black edges are the existing

85

6. Suitability of marked bisection for local refinement

(a)

([v1], [v2])

([v1], [v3])

([v0], [v1]) ([v0], [v3])

([v2], [v3])

([v0], [v2]) ([v0], [v3])

(b)

Figure 6.4: Each step of the marking process applied to the tetrahedron σ: (a)
illustrates each sub-simplex of the marking process and its corresponding consistent
bisection edge; and (b) is the obtained bisection tree of σ.

edges of the sub-simplex to be marked, and the gray edges are the edges that are

not involved in the marking process. In addition, we colored in red the consistent

bisection edge of each sub-simplex.

First, we obtain the consistent bisection edge of σ, which is e1 = ([v1], [v2]). It

86

6.2. Marked bisection on a tetrahedron

corresponds to the red edge of the first row of Figure 6.4(a). Since the dimension

of the simplex is larger than 1, we obtain the opposite faces to the vertices of e1,

and those faces are the triangles κ1 = ([v0], [v1], [v3]) and κ2 = ([v1], [v2], [v3]). Those

triangles are the left and right triangle of the second row of Figure 6.4(a), respectively.

After that, we apply the marking process to κ1, and then to κ2.

The consistent bisection edge of κ1 is e2 = ([v1], [v3]), colored in red the left

triangle of Figure 6.4(a). Since the dimension of κ1 is larger than 1, we obtain the

opposite faces to the vertices of e2 inside the triangle κ1. Those opposite faces are the

edges e4 = ([v0], [v1]) and e6 = ([v0], [v3]), respectively. Again, we apply the marking

process to e4 and e6. Since the dimension of e4 is 1, the algorithm returns a tree that

only contains a root node with the edge e4. For the edge e6, the algorithm proceeds

in the same manner, and we obtain a tree with only the node that contains the edge

e6. Those edges correspond to first and second red edges of the third row of Figure

6.4(a). Then, the algorithm builds the bisection tree of the face κ1. The root node is

the bisection edge of κ1, the edge e2, and the left and right branches are the bisection

trees of the edges e4 and e6, respectively.

Next, the algorithm computes analogously the bisection tree of the triangle κ2.

The consistent bisection edge of κ2 is e3 = ([v2], [v3]), the red edge of the right triangle

of the second row of Figure 6.4(a). The opposite faces to the vertices of e3 inside

the triangle κ2 are the edges e5 = ([v0], [v2]) and e6 = ([v0], [v3]), respectively. Those

edges correspond to third and fourth red edges of the third row in Figure 6.4(a).

Thus, we apply the marking process to the edges e5 and e6. Since the dimension of

e5 and e6 is 1, the algorithm returns a leaf for each edge such that the root is the

corresponding edge. After that, the algorithm returns the bisection tree t2 of κ2 with

root e3, and left and right branches corresponding to the bisection trees of e5 and e6,

respectively.

Finally, the algorithm returns the bisection tree t of σ with root e1, and left and

right branches the bisection trees t1 and t2 respectively. Figure 6.4(b) shows the

bisection tree t generated by the marking process after marking the tetrahedron σ.

6.2.2 Three uniform refinements on a tetrahedron

We refine uniformly three times, with Algorithm 3.1, the tree-simplex τ = (σ, κ̄, t, l),

with bisection tree t depicted if Figure 6.4(b), and its descendants. We recall that a

tree-simplex of descendant level l = k, where 0 ≤ k ≤ 3, fulfills that σ is composed

87

6. Suitability of marked bisection for local refinement

(a) (b)

(c) (d)

Figure 6.5: Obtained meshes after uniform marked-simplex bisection refinements: (a)
Qσ0 , (b) Qσ1 , (c) Qσ2 , and (d) Qσ3 .

of k new vertices and 4− k original vertices, a bisection tree t of height 3− k, and a

k-sorted list κ̄. We illustrate in Figure 6.5 the obtained meshes during the refinement

process. That is, Figures 6.5(a), 6.5(b), 6.5(c), and 6.5(d) correspond to Qσ0 , Qσ1 , Qσ2 ,

and Qσ3 , respectively.

Remark 6.3 (Tree-simplex of descendant level l = k). Let σ be a simplex marked

with the co-dimensional marking process. Let τ = (σ, κ̄, t, l) be the resultant tree-

simplex of the marking process. Consider 0 ≤ k ≤ n uniform refinements with marked

bisection of τ and its descendants, generating the mesh Qσk . Then, the tree-simplices

τi = (σi, κ̄i, ti, li) of Qσk hold that σi is composed of k new vertices and n + 1 − k

original vertices, ti is a bisection tree of height n− k, κ̄i is a k-sorted list, and li = k.

88

6.2. Marked bisection on a tetrahedron

Consider the first uniform marked bisection refinement of Qσ0 . We generate

the mesh Qσ1 , see Figure 6.5(b), which is composed of two tree-simplices τ1 and

τ2. Each tree-simplex is composed of a tetrahedron σ1 = ([v0], [v1], [v1, v2], [v3]) and

σ2 = ([v0], [v1, v2], [v2], [v3]), respectively. Those tetrahedra share the inner triangular

face κ1 = {[v0], [v1, v2], [v3]}. Each tree-simplex has associated the 1-list κ̄1 = ([v1, v2])

and κ̄2 = ([v1, v2]), and the bisection tree t1 and t2, where t1 and t2 are

([v1], [v3])

([v0], [v1]) ([v0], [v3])

([v2], [v3])

([v0], [v2]) ([v0], [v3])

respectively.

Again, refining uniformly Qσ1 we obtain the mesh Qσ2 , see Figure 6.5(c). This

mesh is composed of four tree-simplices τ1, τ2, τ3, and τ4. Each tree-simplex has the

associated tetrahedron

σ1 = ([v0], [v1], [v1, v2], [v1, v3]), σ2 = ([v0], [v1, v3], [v1, v2], [v3]),

σ3 = ([v0], [v1, v2], [v2], [v2, v3]), σ4 = ([v0], [v1, v2], [v2, v3], [v3]).

The bisection creates two new inner triangular faces κ1 = {[v0], [v1, v2], [v1, v3]} and

κ2 = {[v0], [v1, v2], [v2, v3]}. Each tree-simplex has associated the 2-list

κ̄1 = ([v1, v3], [v1, v2]), κ̄2 = ([v1, v3], [v1, v2]),

κ̄3 = ([v2, v3], [v1, v2]), κ̄4 = ([v2, v3], [v1, v2]),

and the bisection tree t1 = ([v0], [v1]), t2 = ([v0], [v3]), t3 = ([v0], [v2]), and t4 =

([v0], [v3]), respectively.

Finally, we refine uniformly Qσ2 and obtain the mesh Qσ3 , see Figure 6.5(d). Recall

that the third tree-simplex bisection is performed inside the second stage of our

marked bisection scheme. This mesh is composed of eight tree-simplices τ1, . . . , τ8.

Each tree-simplex τi has the associated tetrahedron σi, depicted in the first column

of Table 6.3.

After generating the eight tetrahedra σi, the tree-simplex bisection generates the

following sorted 3-lists κ̄i, defined as:

κ̄1 = ([v0, v1], [v1, v3], [v1, v2]), κ̄2 = ([v0, v1], [v1, v3], [v1, v2]),

κ̄3 = ([v0, v3], [v1, v3], [v1, v2]), κ̄4 = ([v0, v3], [v1, v3], [v1, v2]),

κ̄5 = ([v0, v2], [v2, v3], [v1, v2]), κ̄6 = ([v0, v2], [v2, v3], [v1, v2]),

κ̄7 = ([v0, v3], [v2, v3], [v1, v2]), κ̄8 = ([v0, v3], [v2, v3], [v1, v2]).

89

6. Suitability of marked bisection for local refinement

Table 6.3: Tetrahedra after three uniform refinements and corresponding reflected
tetrahedra.

Generated simplices Generated reflected simplices
σ1 = ([v0], [v0, v1], [v1, v2], [v1, v3]) σ̄1 = ([v0], [v0, v1], [v1, v3], [v1, v2])
σ2 = ([v0, v1], [v1], [v1, v2], [v1, v3]) σ̄2 = ([v1], [v0, v1], [v1, v3], [v1, v2])
σ3 = ([v0], [v1, v3], [v1, v2], [v0, v3]) σ̄3 = ([v0], [v0, v3], [v1, v3], [v1, v2])
σ4 = ([v0, v3], [v1, v3], [v1, v2], [v3]) σ̄4 = ([v3], [v0, v3], [v1, v3], [v1, v2])
σ5 = ([v0], [v1, v2], [v0, v2], [v2, v3]) σ̄5 = ([v0], [v0, v2], [v2, v3], [v1, v2])
σ6 = ([v0, v2], [v1, v2], [v2], [v2, v3]) σ̄6 = ([v2], [v0, v2], [v2, v3], [v1, v2])
σ7 = ([v0], [v1, v2], [v2, v3], [v0, v3]) σ̄7 = ([v0], [v0, v3], [v2, v3], [v1, v2])
σ8 = ([v0, v3], [v1, v2], [v2, v3], [v3]) σ̄8 = ([v3], [v0, v3], [v2, v3], [v1, v2])

Table 6.4: Mesh inner triangular faces of generated tetrahedra and the reflected
tetrahedra.

Inner triangular faces Reflected inner triangular faces
κ1 = σ1 ∩ σ2 = {[v0, v1], [v1, v2], [v1, v3]} κ̄1 = σ̄1 ∩ σ̄2 = ([v0, v1], [v1, v3], [v1, v2])
κ2 = σ3 ∩ σ4 = {[v1, v3] [v1, v2], [v0, v3]} κ̄2 = σ̄3 ∩ σ̄4 = ([v0, v3] [v1, v3], [v1, v2])
κ3 = σ5 ∩ σ6 = {[v1, v2], [v0, v2], [v2, v3]} κ̄3 = σ̄5 ∩ σ̄6 = ([v0, v2], [v2, v3], [v1, v2])
κ4 = σ7 ∩ σ8 = {[v1, v2], [v2, v3], [v0, v3]} κ̄4 = σ̄7 ∩ σ̄8 = ([v0, v3], [v2, v3], [v1, v2])
κ5 = σ1 ∩ σ3 = {[v0], [v1, v2], [v1, v3]} κ̄5 = σ̄1 ∩ σ̄3 = ([v0], [v1, v3], [v1, v2])
κ6 = σ5 ∩ σ7 = {[v0], [v1, v2], [v2, v3]} κ̄6 = σ̄5 ∩ σ̄7 = ([v0], [v2, v3], [v1, v2])
κ7 = σ3 ∩ σ7 = {[v0], [v1, v2], [v0, v3]} κ̄7 = σ̄3 ∩ σ̄7 = ([v0], [v0, v3], [v1, v2])
κ8 = σ4 ∩ σ8 = {[v0, v3], [v1, v2], [v3]} κ̄8 = σ̄4 ∩ σ̄8 = ([v3], [v0, v3], [v1, v2])

Then, we apply the cast to Maubach, Algorithm 3.7, and convert all the tree-

simplices of Qσ3 into Maubach simplices µ = (σ̄, d, l). We add in front of each κ̄i the a

vertex of the corresponding bisection edge and then, we map those eight sorted 4-list

into the tetrahedra σ̄i, that are depicted in the second column of Table 6.3.

6.2.3 Tetrahedral conformity after three refinements

We want to check that, for the presented tetrahedron σ marked with the co-dimen-

sional marking process, the obtained mesh Qσ3 is conformal, and that all the edges

and only the edges of σ have been bisected. That is, the bisection tree t generated

by the co-dimensional marking process is balanced.

We see that all the inner faces are shared by two tetrahedra, see first column of

Table 6.4. Therefore, the mesh Qσ3 is conformal. Moreover, since t contains all the

edges of σ and we used the entire tree, all the edges and only the edges of σ have

90

6.2. Marked bisection on a tetrahedron

[v1, v2]

[v1, v3]

[v0, v1]

[v0] [v1]

[v0, v3]

[v0] [v3]

[v2, v3]

[v0, v2]

[v0] [v2]

[v0, v3]

[v0] [v3]

Figure 6.6: Complete vertex tree t̄ corresponding to the bisection tree of Figure
6.4(b).

been bisected.

6.2.4 Tetrahedral reflectivity after three refinements

Next, we check that Qσ3 is a reflected mesh. To this end, we check that all the

Maubach tetrahedra have the same tag, and that any pair of neighboring tetrahedra

share a triangular face that is sorted in the same manner. By construction of the

second stage, see Line 6 of Algorithm 3.6, all the Maubach tetrahedra have the same

tag d = 3. Then, we have to check that any pair of neighboring tetrahedra share a

triangular face that is sorted in the same manner. The tetrahedra σ̄i ofQσ3 correspond

to the second column of Table 6.3, and they define a reflected neighbors configuration

since the shared triangular faces are sorted in the same manner, see second column

of Table 6.4. Thus, as we wanted to see, the mesh Qσ3 is reflected.

Remark 6.4 (Reflectivity induced by the complete vertex tree). The idea behind

the reflectivity of the mesh Qσ3 is that the order of the vertices of σ̄ is induced by the

complete vertex tree t̄ associated to the bisection tree t.

From Section 2.2.3, we know that each branch of t̄, depicted in Figure 6.6, defines

a tetrahedron of Qσ3 . Let σ̄ be a tetrahedron of Qσ3 , which has the form

σ̄ = ([vi,2], [v1,2, v2,2], [v1,1, v2,1], [v1,0, v2,0]),

where i ∈ {1, 2}, by construction of the Algorithm 3.7, see Lines 5–6. The order of

the vertices of σ̄ correspond to sorting the proper branch of t̄ from the leaf to the

root. Thus, if we sort each branch of t̄ from the leaf to the root, we have sorted all

the tetrahedra in a manner that all the shared entities between tetrahedra have the

same order. Particularly, the inner triangular faces have the same order in adjacent

91

6. Suitability of marked bisection for local refinement

tetrahedra and therefore, the mesh is reflected. This reasoning will be used to prove

that Qn is a reflected mesh.

6.3 Conformity and reflectivity after n uniform

refinements

We discuss next how we can guarantee conformity, finiteness, and asymptotic locality.

To this end, since our method switches independently to the newest vertex bisection

at the n-th bisection of each simplex, it is sufficient to guarantee that after n uniform

refinements of the whole mesh, the resulting mesh fulfills sufficient conditions to use

the newest vertex bisection. Hence, it will inherit from the newest vertex bisection

the subsequent conformity, finiteness, and asymptotic locality. To use the newest

vertex bisection, it is sufficient to check that the mesh is conformal and reflected, see

Remark 2.6. Accordingly, to guarantee that our multi-stage bisection can be used for

local refinement, we propose to prove that after n uniform refinements the meshes

are conformal and reflected. Although this is a proof for the worst case, it does not

imply that in practice the method needs to uniformly refine n times the initial mesh.

This reasoning is analogous to the proof that three-dimensional marked bisection

terminates on a conformal mesh when starting on conformingly-marked meshes, see

Theorem 3.1 in Arnold et al. (2000). Specifically, the authors consider multiple

iterations of local refinement with marked bisection for a conformingly-marked mesh.

They prove that in the worst case those local refinements behave as a succession of

uniform refinements of the whole mesh.

Following, for n uniform refinements, we guarantee that the mesh is reflected, and

we outline how to prove that the mesh is conformal.

6.3.1 Simplicial reflectivity after n uniform refinements

Following, we prove that after uniformly refining n times a conformal simplicial mesh

Q0 = T0, the obtained mesh Qn is a reflected mesh. The idea is to prove that Qn,

after using cast to Maubach, is a sorted simplicial mesh such that all its simplices

have tag d = n. Then, by Theorem 5.1, we can ensure that the mesh Qn is reflected.

As we see in Section 2.2.3, each branch of a complete vertex tree t̄ defines a

simplex of Qn. Thus, the order of the vertices of each simplex of Qn corresponds

92

6.3. Conformity and reflectivity after n uniform refinements

to traversing from the leaf to the root the corresponding branch of t̄. We define an

order of vertices, ≺, that is compatible with the order of vertices of each simplex in

the following manner

(1) [vi] ≺ [vj] if vi < vj.

(2) Let v1 = [vi1 , vj1] and v2 = [vi2 , vj2] be two vertices of length 2, that correspond

to the midpoint of the edges e1 = ([vi1], [vj1]) and e2 = ([vi2], [vj2]). We say that

v1 ≺ v2 if e2 < e1, where < is the strict total order of the mesh edges.

(3) Let v1 and v2 be two vertices of length k1 and k2, respectively. We say that

v1 ≺ v2 if k1 < k2.

Lemma 6.1. The order ≺ is strict and total.

Proof. Is straightforward to check that ≺ is irreflexive, asymmetric, and transitive

since we have used a strict total order for the mesh vertices and the mesh edges of

T0.

Theorem 6.1 (Sorted mesh after n uniform refinements). The mesh Qn is a sorted

simplicial mesh with the order ≺.

Proof. We need to check that the mesh is composed of sorted simplices with the order

≺. Let p be the set of vertices corresponding to a branch of t̄. Since p is a branch of

t̄, it has the form

p = {[vi,n−1], [v1,n−1, v2,n−1], . . . , [v1,0, v2,0]},

where i ∈ {1, 2}, see Lines 5–6 of Algorithm 3.7. Since each branch of t̄ correspond

to a simplex σ̄ of Qn, we have that p corresponds to the set of vertices of σ̄. Consider

the application of ≺ to p, obtaining that

[vi,n−1] ≺ [v1,n−1, v2,n−1] ≺ . . . ≺ [v1,0, v2,0].

That is because [v1,l+1, v2,l+1] ≺ [v1,l , v2,l] from (2), where 0 ≤ l ≤ n−2, and [vi,n−1] ≺
[v1,n−1, v2,n−1] from (3). Thus, the simplex

σ̄ = ([vi,n−1], [v1,n−1, v2,n−1], . . . , [v1,0, v2,0]) = simplex p,

where simplex is defined in Equation 5.4, is a sorted simplex with the strict total

order ≺. Since this reasoning can be applied to all the simplices of Qn, we conclude

that Qn is a sorted mesh with the strict total order ≺.

93

6. Suitability of marked bisection for local refinement

Corollary 6.1 (Reflectivity after n uniform refinements). Qn is a reflected mesh.

Proof. By Theorem 6.1, the mesh Qn is a sorted simplicial mesh. Since the marked

bisection assigns the same tag d = n to all the simplices of Qn, by Theorem 5.1 we

can ensure that Qn is a reflected mesh.

6.3.2 Conformity after n uniform refinements

To prove the conformity, we split the reasoning into two parts: the external and

the internal conformity. For the external conformity, we show that a shared face κ

between two simplices is bisected in the same manner from both sides. Then, for the

internal conformity, we show that when we refine uniformly n times a simplex σ, the

inner faces that appear during the refinement process will be uniquely bisected. We

check the conformity through mesh faces because Theorem 2.1 of Stevenson (2008)

ensure that is sufficient. Before, we conjecture some results that we will assume as

true in the outline of the conformity proof.

Conjecture 6.1 (Isomorphic bisection trees). Let T be a conformal simplicial mesh

marked with our co-dimensional marking process. Let τ ∈ T by a k-entity shared by

σ1 and σ2. Let t1 and t2 be the inherited bisection trees τ when τ is marked from σ1

and σ2, respectively. Then, t1 and t2 are the same up to the order of appearance of

the vertices.

Conjecture 6.2 (Bisection of k-entities). Let T be a conformal simplicial mesh

marked with our co-dimensional marking process, and let τ ∈ T be a k-entity with

bisection tree t. Then, Qτk depends only on t and Qτk is the same for equivalent

bisection trees obtained with different order of vertices.

Remark 6.5. Conjectures 6.1 and 6.2 ensure that using our co-dimensional marking

process, the mesh Qτk of a refined k-entity τ is the same from all the simplices that

contain it.

Proposition 6.1 (Conformity on external faces). Let T0 be a conformal simplicial

mesh marked with our co-dimensional marking process, and let σ1 and σ2 two neigh-

boring simplices that share a face κ. Then, the mesh Qn is conformal through the

mesh faces defined by the simplices of the refined mesh Qκn−1.

94

6.3. Conformity and reflectivity after n uniform refinements

Proof. We want to check that the mesh Qn is conformal through the interfaces gen-

erated by mesh faces of T0. To this end, we check that for every pair of neighboring

simplices of T0 that share a face, after n uniform refinements, maintain their confor-

mity through the shared face.

Let σ1, σ2 ∈ T0 be two neighboring simplices that share a face κ = σ1 ∩ σ2. By

Conjecture 6.1, the bisection tree of κ is the same, up to isomorphism, inherited

from σ1 and σ2. Therefore, by Conjecture 6.2, the mesh Qκn−1 is the same from Qσ1n
and Qσ2n . Thus, the mesh is conformal through Qκn−1. Since we can repeat this for

every pair of neighboring simplices of T0 that share a face, we conclude that Qn is

conformal.

Proposition 6.2 (Conformity on internal faces). Let σ be a simplex marked with our

co-dimensional marking process. Then, Qσn is conformal.

Proof. We want to prove that Qσn is conformal. To this end, we will use induction. By

Section 6.1, we know that Qσ2 is conformal and this is the base case of the induction.

Our induction hypothesis is that a (n−1)-simplex σ marked with our co-dimensional

marking process leads to a conformal mesh Qσn−1 after n − 1 uniform refinements.

In this outline of the proof, we use the tetrahedral case illustrated in Figure 6.7 as

support, since the procedure used to prove the 3-dimensional one can be extended to

the n-dimensional case.

Let σ = Qσ0 be an n-simplex marked with our co-dimensional marking process,

see Figure 6.7(a). Consider the bisection of σ using the consistent bisection edge of

level zero, e. In this step, we generate the mesh Qσ1 and the new vertex ν, see Figure

6.7(b). This mesh is composed of two simplices σ1 and σ2, and is a conformal mesh.

Those simplices are composed of the opposite faces κ1 and κ2 to the vertices of e,

respectively, and ν.

Consider the (n − 1)-simplicial mesh composed of the opposites faces κ1 and κ2,

obtained after removing the vertex ν, see Figure 6.7(c). By induction hypothesis, the

meshes Qκ1n−1 and Qκ2n−1 are conformal, see Figure 6.7(d).

The faces κ1 and κ2 share an (n− 2)-entity τ, that is the opposite (n− 2)-entity

to the consistent bisection edge of level zero e. By Conjecture 6.1, the bisection

trees of τ inherited from κ1 and κ2 are isomorphic. Thus, according to Conjecture

6.2, the bisected mesh of τ will be the same from κ1 and κ2. Therefore, we can

merge the meshes Qκ1n−1 and Qκ2n−1 through the common interface in a conformal

manner, see Figure 6.7(e). Finally, we complete the (n − 1)-simplices by adding

95

6. Suitability of marked bisection for local refinement

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Outline of the proof: (a) Given a tetrahedron, and a refinement edge e
with midpoint ν, (b) trough bisection we obtain two tetrahedra. Then, (c) we split
the two tetrahedra into two triangles that share an edge and the vertex ν. After that,
(d) we perform two uniform refinements to the triangles. Thus, since the shared edge
is refined in the same manner, (e) we can be merged the triangular meshes trough
their shared refined edge. Finally, (f) we connect ν to all the vertices of the merged
triangular mesh, generating a conformal tetrahedral mesh composed of 8 tetrahedra.

the vertex ν, see Figure 6.7(f), and generating the n-simplicial mesh Qσn. Since this

operation maintains the conformity of the mesh, the obtained n-simplicial mesh Qσn

96

6.4. Estimation of the number of similarity classes

is conformal.

Theorem 6.2 (Bisection conformity condition). Let T0 be a conformal simplicial

mesh and T1 be the simplicial mesh obtained with a bisection method. Assume that

the mesh T1 is conformal through the faces that are descendants of the faces of mesh

T0, and conformal through the bisection faces obtained inside the simplices of T0.
Then, the T1 is conformal.

Proof. According to Theorem 2.1, we need to check the conformity of the mesh T1
through the faces. There are two types of inner faces in T1: the faces that are

descendants of faces in T0; and the faces that are created inside simplices of T0. In

both cases, the hypotheses ensure the conformity of the mesh T1 through its faces,

and therefore the mesh T1 is conformal.

Corollary 6.2 (Conformity after n uniform refinements). Let T0 be a conformal

simplicial mesh, and Qn be the mesh obtained after n uniform refinements using our

marked bisection. Then, the mesh Qn is conformal.

Proof. Propositions 6.1 and 6.2 ensure that the mesh Qn satisfies the hypotheses of

Theorem 6.2. Thus, the mesh Qn is conformal.

6.4 Estimation of the number of similarity classes

Finally, we estimate an upper bound of the number of similarity classes obtained

with our marked bisection. We prove that this number is sub-optimal. That is, it

is slightly greater than the number of similarity classes obtained using newest vertex

bisection.

Lemma 6.2 (Newest vertex bisection for triangular meshes). The marked bisection

is equivalent to Maubach’s bisection for 2-simplices.

Proof. We have seen that the co-dimensional marking process generates three possible

bisection trees for 2-simplices. Those bisection trees are

([v1], [v2])

([v0], [v1]) ([v0], [v2])

([v0], [v2])

([v0], [v1]) ([v1], [v2])

([v0], [v1])

([v0], [v2]) ([v1], [v2])

97

6. Suitability of marked bisection for local refinement

([vi1], [vi2])

([vi0], [vi1]) ([vi0], [vi2])

(a)

([vi0], [vi2])

([vi0], [vi1]) ([vi1], [vi2])

(b)

([vi0], [vi1])

([vi0], [vi2]) ([vi1], [vi2])

(c)

Figure 6.8: The three possible bisection trees ti corresponding to the consistent bi-
section edges (a) ([vi1], [vi2]), (b) ([vi0], [vi2]), and (c) ([vi0], [vi1]).

, trees that are equivalent to the bisection trees generated by the tagged triangles

(([v1], [v0], [v2]), d = 2), (([v0], [v1], [v2]), d = 2), and (([v0], [v2], [v1]), d = 2), respec-

tively. Therefore, for triangular meshes our marked bisection algorithm is equivalent

to Maubach’s algorithm.

Proposition 6.3 (Tagging with d = 2 after step n− 2). Let σ be a simplex marked

with the co-dimensional marking process, and consider the mesh Qσn−2 obtained after

n − 2 uniform refinements with marked bisection. Then, we can map a tree-simplex

τ of Qσn−2 to a Maubach simplex µ with descendant level l = n− 2 and tag d = 2.

Proof. Let σ0 be a simplex marked with the co-dimensional marking process and

Qσ0n−1 be the mesh obtained after n − 2 uniform marked bisection refinements. Let

τ ∈ Qσ0n−2 be a tree-simplex of the form τ = (σ, κ̄, t, l = n− 2). After applying n− 2

uniform refinements with marked bisection, we know that σ is composed of 3 original

vertices and n− 2 multivertices. That is,

σ = {[vi0], [vi1], [vi2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]}.

Since the bisection tree t of σ is composed of vertices [vi0], [vi1], and [vi2], that define a

triangle, its bisection tree is equivalent to the bisection tree of a triangle. By Lemma

6.2, t is equivalent to the bisection tree of a tagged triangle. Thus, t is one of the

bisection trees depicted in Figure 6.8.

If we map the tree-simplex τ corresponding to the simplex σ to a Maubach simplex

µ = (σ̄, l = n−2, d = 2), we have that there are three possible simplices σ̄, illustrated

in Equation (6.1):

σ̄ = ([vi1], [vi0], [vi2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]), (6.1a)

σ̄ = ([vi0], [vi1], [vi2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]), (6.1b)

σ̄ = ([vi0], [vi2], [vi1], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]). (6.1c)

98

6.4. Estimation of the number of similarity classes

We recall that we sorted the vertices [vi0], [vi1], and [vi2] according to the tagged

triangles of the proof of Lemma 6.2. Thus, we have that the simplices of Equations

(6.1a)–(6.1c) correspond to the bisection trees depicted in Figures 6.8(a)–6.8(c).

Then, it only remains to check that if we apply two uniform tagged-bisection

steps to σ̄i, the obtained Maubach simplices are the same than the Maubach simplex

obtained after n uniform refinements with marked bisection.

Let µ = (σ̄, l = n − 2, d = d = 2) be a Maubach simplex, where σ̄ is defined

in Equation (6.1a). Performing the first Maubach’s bisection step, we obtain two

children µ1 = (σ̄1, l = n− 1, d = 1) and µ2 = (σ̄2, l = n− 1, d = 1), where

σ̄1 = ([vi1], [vi0], [vi1 , vi2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]),

σ̄2 = ([vi0], [vi2], [vi1 , vi2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]).

Since the edge ([vi1], [vi2]) is the consistent bisection edge of level l = n− 2, we have

that [vi1 , vi2] = [v1,n−2, v2,n−2]. Thus, if we substitute it on σ̄1 and σ̄2, we have that

σ̄1 = ([vi1], [vi0], [v1,n−2, v2,n−2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]),

σ̄2 = ([vi0], [vi2], [v1,n−2, v2,n−2], [v1,n−3, v2,n−3], . . . , [v1,0, v2,0]).

Again, we perform a uniform tagged-bisection to µ1 and µ2 obtaining four Maubach

simplices µ1 = (σ̄1, l = n, d = n), µ2 = (σ̄2, l = n, d = n), µ3 = (σ̄3, l = n, d = n),

and µ4 = (σ̄4, l = n, d = n), where

σ̄1 = ([vi1], [vi0 , vi1], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

σ̄2 = ([vi0], [vi0 , vi1], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

σ̄3 = ([vi0], [vi0 , vi2], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

σ̄4 = ([vi2], [vi0 , vi2], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]).

Analogously, the consistent bisection edges of level l = n − 1 are ([vi0], [vi1]) and

([vi0], [vi2]). Therefore, we have [vi0 , vi1] = [v1,n−1, v2,n−1] for σ̄1 and σ̄2, and [vi0 , vi2] =

[v1,n−1, v2,n−1] for σ̄3 and σ̄4. Finally, we have that [vi0] = [v1,n−1] and [vi1] = [v2,n−1]

for σ̄1 and σ̄2, and [vi0] = [v1,n−1] and [vi2] = [v2,n−1] for σ̄3 and σ̄4. Thus, all the

simplices can be expressed as

σ̄1 = ([v1,n−1], [v1,n−1, v2,n−1], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

σ̄2 = ([v2,n−1], [v1,n−1, v2,n−1], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

σ̄3 = ([v1,n−1], [v1,n−1, v2,n−1], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]),

σ̄4 = ([v2,n−1], [v1,n−1, v2,n−1], [v1,n−2, v2,n−2], . . . , [v1,0, v2,0]).

99

6. Suitability of marked bisection for local refinement

The obtained simplices are the same that the simplices obtained after n uniform

refinements with marked bisection. That is, σ̄1 and σ̄3 are equal to the simplex of

Line 5 of Algorithm 3.7, and σ̄2 and σ̄4 are equal to the simplex of Line 5 of Algorithm

3.7.

This procedure can be applied to the remaining two cases where the initial σ̄ is

defined by Equations (6.1b) and (6.1c). Thus, we have proved that we can map a

tree-simplex τ ∈ Qσ0n−2 to a Maubach simplex µ with descendant level l = n− 2 and

tag d = 2.

Now, we can state Theorem 6.3 where we give an upper bound Sn over the simi-

larity classes generated by our marked bisection algorithm.

Theorem 6.3 (Number of similarity classes of marked bisection). Let σ be a simplex

marked with the co-dimensional marking process. Assume that from iteration k, the

bisection process is equivalent to Maubach’s bisection. Then, the number of similarity

classes generated by our marked bisection method is at most

Sn = (2k − 1) + 2kMn = (2k − 1) + 2knn!2n−2.

Proof. Let σ be a simplex marked with the co-dimensional marking process. Con-

sider k uniform marked bisection refinements such that further refinements of marked

bisection are equivalent to Maubach’s bisection. By Equation (5.8), the number of

similarity classes generated from iteration 0 to k − 1 is 2k − 1. Since the number of

simplices of Qσk is 2k, the number of simplices generated using Maubach’s algorithm

is 2kMn, where Mn is a bound of similarity classes of Maubach’s algorithm, see The-

orem 4.5 of Arnold et al. (2000). Finally, summing the two values we obtain that the

number of similarity classes is at most Sn = (2k−1)+2kMn, as we wanted to see.

Corollary 6.3. In our marked bisection, k is at most n − 2, and the number of

similarity classes is at most

Sn = (2n−2 − 1) + 2n−2Mn = (2n−2 − 1) + 2n−2nn!2n−2.

Proof. By Proposition 6.3, at iteration n − 2 we can map all the simplices of Qσn−2
to Maubach simplices with tag descendant level l = n− 2 and tag d = 2. Therefore,

by Theorem 6.3, the number of similarity classes generated by our marked bisection

algorithm is at most

Sn = (2n−2 − 1) + 2n−2Mn.

100

6.5. Conclusions

6.5 Conclusions

In conclusion, we have seen that the proposed multi-stage marked bisection can be

used for local refinement of unstructured conformal meshes. Specifically, after illus-

trating the cases for two and three dimensions, we have outlined a worst case proof to

see that our multi-stage marked bisection is conformal, finite, and asymptotically lo-

cal. The proof only depends on the proving that our method satisfies Conjectures 6.1

and 6.2. Furthermore, we have derived an estimation of generated similarity classes,

an estimation that shows this bound is slightly bigger than the bound for the newest

vertex bisection. All these features justify the suitability for local refinement.

101

Chapter 7

Conclusions and future work

In this thesis, we have demonstrated conformal bisection methods in arbitrary dimen-

sions for local refinement of unstructured conformal simplicial meshes. To this end,

we have fulfilled the following objectives: proposing the first multi-stage bisection

method in four (Appendix D) and arbitrary (Chapter 3) dimensions; enabling and

guaranteeing for the first time newest vertex bisection advantages in three (Chapter

4) and arbitrary (Chapter 5) dimensions; and demonstrating the suitability of multi-

stage bisection method for local refinement in arbitrary dimensions (Chapter 6). To

demonstrate conformal bisection, we have used computer implementations, runtime

checks, and formal proofs. As central findings, to enforce strongly compatible meshes

suitable for local refinement, we have provided sufficient conditions to ensure mesh

reflectivity and conformity.

To ensure reflectivity, we have proved that it is sufficient to sort the simplex

vertices with a strict and total order of the mesh vertices, Chapter 5. We have

used this sufficient condition to guarantee reflectivity in arbitrary dimensions for

the newest vertex bisection and for the marked bisection. Remarkably, we might

use this sufficient condition to guarantee reflectivity of other bisection methods. For

instance, in the proposed 3D marked bisection with optimal similarity bound, the key

idea would be to reinterpret the proposed strict and total order of the mesh edges.

Actually, it is straightforward to check that the proposed edge ordering arises from

the strict and total order of the mesh vertices. Thus, we can apply the reflectivity

sufficient condition.

To ensure conformity, we have promoted checking conformity separately on faces

103

7. Conclusions and future work

determined by mesh simplices and on faces generated by bisection, Chapter 6. We

have used this check to demonstrate conformity for the marked bisection in arbitrary

dimensions. As a perspective, we might use this approach to guarantee conformity

for other bisection methods.

Moreover, we have constructively answered two open questions: Can a reflection

structure be extracted from any mesh? Is it possible to perform multi-stage bisection

in any mesh? First, we have extracted a reflection structure from any mesh in three

or more dimensions. Thus, we have enabled the advantages of the newest vertex bi-

section for local refinement of complex geometry. Second, we have performed marked

bisection in any mesh in four or more dimensions. Thus, we have provided methods

that almost fulfill the advantages of the newest vertex bisection for local refinement

of complex geometry.

The newest vertex bisection solution has been easier to guarantee and code than

the marked bisection solution, and it features optimal stability and locality. On the

contrary, the marked bisection solution has been easier to obtain than the newest

vertex bisection solution. However, it is more difficult to code, and it only almost

fulfills the optimal stability and locality properties. These differences are so because

the newest vertex bisection can be understood as a multi-stage method with a first

stage featuring zero refinements. Thus, the first answer also answers question two.

However, the first stages of our marking bisection methods are not equivalent to

the newest vertex bisection, and thus the second answer does not answer the first

question.

The work carried out in this thesis leaves open some research activities that should

be performed in the near future. First, although the proposed newest vertex bisec-

tion features theoretical and implementation advantages, it could be interesting to

empirically compare it with the proposed marked bisection. Specifically, we would

like to compare the resulting meshes for local refinement in arbitrary dimensions.

Second, all the methods use the same implementation to detect hanging vertices.

This operation might be optimized to accelerate bisection methods. We would like

to explore approaches that only check those elements that have been refined, and

different data structures. Third, propose and implement a parallelizable version of

the two n-dimensional bisection methods. Fourth, couple the bisection method with

a fast n-dimensional multi-grid method for the adaptive solution of high-dimensional

partial differential equations. Fifth, explore initial re-orderings of the mesh vertices

104

and edges in such a manner that the number of bisected elements to maintain the

conformal closure is reduced in the first bisection iterations. Sixth, add the capability

of coarsening the proposed local refinement method.

Nevertheless, we have enabled mesh local refinement in arbitrary dimensions for

unstructured conformal simplicial meshes. Specifically, we have proposed methods

that guarantee (almost guarantee) the advantages for local refinement of newest vertex

bisection on unstructured conformal meshes in more than two (three) dimensions.

In perspective, our n-dimensional bisection methods for unstructured conformal

methods will enable adaptive applications on n-dimensional complex geometry, appli-

cations that model physical and economic phenomena. In this case, the complexity of

the geometry would be handled by the flexibility of unstructured conformal meshes.

Furthermore, on these general meshes, our refinement methods will exploit the ad-

vantages of the newest vertex bisection for n-simplicial adaption.

105

Appendix A

Lemmas relating sets and unions

with simplices, concatenation and

vertex sorting

In this appendix, we introduce three technical results that are used in the proof of

Theorem 5.1.

Lemma A.1. Let l = (l0, . . . , ln) and r = (r0, . . . , rm) be two simplices without

vertices in common. Then,

set(l + r) = set(l) ∪ set(r).

Proof. We proof the result using the following chain of equalities

set(l + r) = set((l0, . . . , ln) + (r0, . . . , rm)) (By definition of l and r)

= set((l0, . . . , ln, r0, . . . , rm)) (By definition + in Equation (5.6))

= {l0, . . . , ln, r0, . . . , rm} (By definition of set in Equation (5.1))

= {l0, . . . , ln} ∪ {r0, . . . , rm} (Because they do not share vertices)

= set((l0, . . . , ln)) ∪ set((r0, . . . , rm)) (By definition of set in Equation (5.1))

= set(l) ∪ set(r). (By definition of l and r).

107

A. Lemmas relating sets and unions with simplices, concatenation
and vertex sorting

Lemma A.2. Let σ be a simplex and consider its decomposition σ = l + (v) + r as

in Equation (5.7). Let κ be the opposite face to the vertex v. Then,

set(κ) = set(l) ∪ set(r).

Proof. Recall that after decomposing the sorted simplex as σ = l + (v) + r, we

have that l, (v), and r do not have any vertex in common. Moreover, v /∈ set(κ).

Therefore, the result arises from the following chain of equalities

set(κ)

= set(κ) ∩ set(σ) (Because κ is a sub-simplex of σ)

= set(κ) ∩ (set(l + (v) + r)) (Using σ decomposition)

= set(κ) ∩ (set(l) ∪ {v} ∪ set(r)) (By Lemma A.1)

= (set(κ) ∩ set(l)) (Because the intersection distributes over union)

∪ (set(κ) ∩ {v})
∪ (set(κ) ∩ set(r))

= set(l) ∪ {∅} ∪ set(r) (l and r and are sub-simplices of σ, and v 6∈ κ)

= set(l) ∪ set(r) (∅ is neutral).

Lemma A.3. Let l = (l0, . . . , ln) and r = (r0, . . . , rm) be two sorted simplices without

vertices in common such that l0 � . . .� ln � r0 � . . .� rm. Then,

simplex(set(l) ∪ set(r)) = l + r.

Proof. The following chain of equalities proves the result

simplex(set(l) ∪ set(r))

= simplex(set(l + r)) (By Lemma A.1)

= sort(l + r) (By definition of sort in Equation (5.5))

= sort((l0, . . . , ln) + (r0, . . . , rm)) (By definition of l and r)

= sort((l0, . . . , ln, r0, . . . , rm)) (By definition of + in Equation (5.6))

= (l0, . . . , ln, r0, . . . , rm) (Because by hypothesis l0 � . . . ln � r0 � . . .� rm)

= (l0, . . . , ln) + (r0, . . . , rm) (By definition of + in Equation (5.6))

= l + r (By definition of l and r).

108

Appendix B

Visualization of pentatopic meshes

In order to devise, check, and illustrate the proposed refinement algorithm in the

particular case of 4D meshes, we devise a simple tool to visualize 4D unstructured

pentatopic meshes.

Our method is devised to exploit existent 3D visualization software which provides

mature user interfaces to interact in real-time with 2D projections of the 3D meshes.

To exploit these interfaces, we propose to slice unstructured 4D pentatopic meshes

with an arbitrary 3D hyperplane and obtain a conformal 3D unstructured tetrahedral

representation of the mesh slice that is ready to be read with standard 3D visualization

tools.

Other methods to visualize 4D pentatopic meshes have been outlined in Caplan

(2019); Neumüller and Steinbach (2011); Neumüller and Karabelas (2019). The main

difference with our approach is that our resulting 3D visualization mesh is composed

of tetrahedra, while the other methods provide meshes composed of polyhedra.

The input of the visualization algorithm is a 4D unstructured pentatopic mesh and

a 3D hyperplane. First, we intersect the 4D mesh with the 3D hyperplane. To this

end, we loop over the edges of the 4D mesh and intersect them with the hyperplane.

If the intersection leads to a single point, we store the point. If the edge is contained

inside the hyperplane, we store both endpoints of the edge. Otherwise, the edge does

not intersect the hyperplane. The obtained points belong to the 3D hyperplane and

109

B. Visualization of pentatopic meshes

(a) (b) (c)

(d) (e) (f)

Figure B.1: The first row corresponds to the application of the visualization to the
3D tetrahedral mesh that generate a 2D triangular visualization mesh. We slice a
tetrahedral mesh (a) with a 2D plane, obtaining a polygonal mesh (b). Then, we
generate a 2D triangular mesh (c). Analogously, the second row corresponds to the
visualization of a 4D pentatopic mesh. First, we slice a 4D pentatopic mesh with
a 3D hyperplane (d), obtaining a polyhedral mesh B.1(e). Then, we decompose the
obtained polyhedral mesh into tetrahedral mesh (f).

therefore, we map them using an orthonormal base of the 3D hyperplane using three

coordinates.

If the 4D mesh contains a field, we perform a linear interpolation to obtain the

value of the field at the intersection points. Thus, the visualization mesh also contains

the slice of the field.

Once we have the intersection points, we loop over the pentatopes of the 4D

mesh. For each pentatope, we recover the intersection points of its local edges. If

the points define a valid volume in the 3D space, we perform a local 3D Delaunay

using the intersection points of the pentatope. The main advantage of applying the

Delaunay method is that we do not need to generate all the possible templates for

all the possible configuration of points. We only need to ensure that the points lead

to a valid volume in the 3D space. Finally, we gather all the local tetrahedralizations

into a single 3D mesh. In Figure B.1 we illustrate the proposed visualization method

applied to a 3D and 4D case.

110

Appendix C

Conformity, reflectivity, and mesh

renumbering

C.1 Conformity check

The main goal of this appendix is to propose an algorithm to check the conformity

of the meshes generated by the local refinement algorithm. According to Theorem

2.1, to check that a mesh T is conformal, we only check conformity through mesh

faces. The main idea of the algorithm is to use the multi-indices of the vertices of

the original and bisected meshes.

Let T0 be a conformal simplicial mesh and M0 the set of simplices to bisect.

Consider the mesh T1 obtained after refining the set of simplices M0 of T0 using the

local refinement algorithm. Since we bisect edges during the refinement process, we

have two types of multi-indices in T1: the original vertices [vi] of T0, and the new

vertices [vi1 , vi2 , . . . , vik], which are generated during the bisection process. We know

that T0 is conformal, and we want to check that T1 is conformal, too.

The idea is devised in two steps. The first one is to check that there are no faces

shared by more than two simplices. The second one is to check that all the boundary

faces of T1 are contained in the boundary faces of T0. The boundary check allows us

to ensure that we do not create holes during the bisection process. For that purpose,

we use a dictionary data structure to define a map between a sorted face κ and the

simplices that contain it. We propose to create two dictionaries: a dictionary of inner

111

C. Conformity, reflectivity, and mesh renumbering

Algorithm C.1 Generation of a dictionary of faces

input: Mesh T
output: Dictionary I, Dictionary B
1: function getFaces(T)
2: D = {}; I = {}; B = {} . Dictionaries of all the faces, inner faces and

boundary faces, respectively.
3: for σ in T do
4: (vi0 ,vi1 , . . . ,vin) = sort(σ)
5: for j = 0, 1, . . . , n do
6: κj = oppositeFace((vi0 ,vi1 , . . . ,vin),vij)
7: if D[κj] = ∅ then
8: D[κj] = σ
9: else
10: D[κj] = append(D[κj], σ)
11: end if
12: end for
13: end for
14: for κ in keys(D) do
15: if length(D[κ]) = 1 then
16: B[κ] = D[κ]
17: else if length(D[κ]) = 2 then
18: I[κ] = D[κ]
19: else
20: Error: A face cannot be shared by more than two simplices.
21: end if
22: end for
23: return I, B
24: end function

faces, I; and a dictionary of boundary faces B. Thus, for a given sorted face κ, the

operation I[κ] and B[κ] return the simplices, or simplex, that contain the sorted face

κ.

The proposed method to generate I and B is shown in Algorithm C.1. First,

we do a loop over the simplices of the mesh T, see Line 3, and sort them using the

lexicographic order, see Line 4. Then, we compute the faces of the sorted simplex

using the opposite faces method, a procedure that for a given simplex σ and a given

vertex [v], returns the opposite face κ to the vertex [v] inside the simplex σ, see Line

6. Since the vertices of the simplex are ordered, the vertices of each face are also

ordered. After that, if the sorted face κ is not inside the dictionary D, we add it

112

C.1. Conformity check

Algorithm C.2 Checking of conformity

input: Mesh T1, Conformal Mesh T0
output: Bool isConformal

1: function isMeshConformal(T1, T0)
2: I0,B0 = getFaces(T0)
3: I1,B1 = getFaces(T1)
4: for κ1 in keys(B1) do
5: ([vi0], [vi1], . . . , [vin−1]) = getFathersVertices(κ1)
6: if ([vi0], [vi1], . . . , [vin−1]) not in keys(B0) then
7: return false

8: end if
9: end for

10: return true

11: end function

and assign as a value the simplex σ, see Line 8. If the sorted face κ is already in

the dictionary D, we append the simplex σ to the value D[κ], see Line 10. Now we

have created a dictionary D that contains all the faces of the mesh T. Thus, we can

determine if a face κ is a boundary face or an inner face checking how many values

has the sorted face κ inside D, see Lines from 14 to 22. If some face appears more

than two times, the algorithm stops because a face cannot be shared by more than

two simplices. Finally, we return as output the dictionaries I and B. We recall that

we sort lexicographically all the faces of T to create the keys of the dictionaries I and

B. The order of those faces inside the simplices that contain them could be different

from the lexicographical order used to define the keys of the dictionaries.

After the definition of the dictionaries I and B, we propose an algorithm to check

the conformity of the mesh, checking that the boundary faces of T1 are contained

inside the boundary faces of T0. The procedure is depicted in Algorithm C.2. Thus,

for a given conformal mesh T0 and a mesh T1, the function that check if a mesh is

conformal, returns a boolean value depending if the boundary of T1 is contained, or

not, inside the boundary of T0. That is, if T1 is conformal to T0. First, we compute

the boundary dictionaries of T0 and T1 respectively, see Lines 2 and 3. When we

compute the dictionaries, we are checking that there are no faces that appear more

than two times. After that, for each sorted boundary face κ1 of T1, we obtain its

parent face κ0 of T0. To do it so, we first collect in a list all the indices in all the

multi-indices of κ1. Then, we extract the unique indices of this list. We should obtain

a list of length n, ([vi0], [vi1], . . . , [vin−1]). This list of vertices is converted to a face κ0.

113

C. Conformity, reflectivity, and mesh renumbering

Algorithm C.3 Checking of reflected neighbors

input: ConformalMesh T
output: Bool

1: function isReflected(T)
2: I,B = getFaces(T)
3: for κ ∈ keys(I) do
4: ([v0], [v1], . . . , [vn−1]) = κ
5: σ1, σ2 = I[κ]
6: ([v1,0], [v1,1], . . . , [v1,n]) = σ1
7: ([v2,0], [v2,1], . . . , [v2,n]) = σ2
8: [w1] = oppositeVertex(σ1, κ)
9: [w2] = oppositeVertex(σ2, κ)
10: κ1 = remove(σ1, [w1])
11: κ2 = remove(σ2, [w2])
12: ([vi0], [vi1], . . . , [vin−1]) = κ1
13: ([vj0], [vj1], . . . , [vjn−1]) = κ2
14: for k = 0, 1, . . . , n− 1 do
15: if vik 6= vjk then
16: return false

17: end if
18: end for
19: end for
20: return true

21: end function

Since all the vertices are of length one, we check if the face belongs to the boundary

of T0 by checking the dictionary of boundary faces B0. Otherwise, the boundary face

κ1 is not contained inside a boundary face of T0, and the mesh is not conformal.

C.2 Reflectivity check

To check that Qn is reflected, we have to check that all neighboring simplices are

reflected neighbors. To do that, we use Algorithm C.3. First, we obtain the dictionary

D of the interior faces of Qn, see Line 2. For each inner face κ ∈ Qn, the operation

I[κ] return the two neighboring simplices σ1 and σ2 that share κ. The face κ =

([v0], . . . , [vn−1]), with v0 < v1 < . . . < vn, has lexicographic order in D, but it may

have a non-shared order inside σ1 and σ2. After obtaining the σ1 and σ2, we obtain

the different vertices [w1] and [w2] between the simplices σ1 and σ2 and the face κ,

respectively, see Lines 8 and 9. Then, we obtain the faces κ1 and κ2 inside σ1 and

114

C.3. Mesh renumbering

σ2 with the order in which they appear inside each simplex, see Lines 10 and 11. We

recall that κ1, κ2, and κ are composed of the same vertices, nevertheless, the vertices

may appear in a different order. What we want to check is that κ1 and κ2 have the

same order of vertices. To this end, we loop on the faces κ1 and κ2, see Lines 14–18,

checking that they have the same vertices and in the same order.

C.3 Mesh renumbering

After obtaining a locally refined mesh, we renumber the resulting multi-ids to have

new multi-ids of length one and thus, reduce the memory usage. In Line 4 of local

refinement algorithm, see Algorithm 2.3, we perform a renumber of the vertices of

the generated mesh. Our algorithm identifies the vertices of the mesh with multi-

ids, see Section 2.2. At the end of the local refinement algorithm, we perform a

renumber of the multi-ids of Tk+1 to multi-ids of length one. To that purpose, we sort

lexicographically all the multi-ids of Tk+1 obtaining a sorted list of multi-ids. Then,

we assign to the i-th multi-id of the sorted list the new multi-id of length one [i].

We have to perform that renumber of multi-ids in all the data structures where the

multi-ids appear.

115

Appendix D

Local bisection for conformal

refinement of unstructured 4D

simplicial meshes

We append the paper Belda-Ferŕın et al. (2019), presented at 27th International

Meshing Roundtable at Albuquerque, United States.

117

Local bisection for conformal refinement of
unstructured 4D simplicial meshes

Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

Abstract We present a conformal bisection procedure for local refinement of 4D
unstructured simplicial meshes with bounded minimum shape quality. Specifically,
we propose a recursive refine to conformity procedure in two stages, based on mark-
ing bisection edges on different priority levels and defining specific refinement tem-
plates. Two successive applications of the first stage ensure that any 4D unstructured
mesh can be conformingly refined. In the second stage, the successive refinements
lead to a cycle in the number of generated similarity classes and thus, we can en-
sure a bound over the minimum shape quality. In the examples, we check that after
successive refinement the mesh quality does not degenerate. Moreover, we refine a
4D unstructured mesh and a space-time mesh (3D + 1D) representation of a moving
object.

1 Introduction

In the last three decades refinement of 2D and 3D unstructured simplicial meshes
[1–14], based on red/green refinement [1–7] and bisection [8–14], has been shown
to be a key ingredient on efficient adaptive loops. Although one could expect the
same in 4D, a case of special interest for space-time adaption, this line of research
has not been extensively explored.

For our space-time applications, we are interested in conformal bisection meth-
ods since they are really well suited to implement fast geometrical multi-grid con-
formal solvers. Moreover, bisection methods have ensured either a maximum num-
ber of generated similarity classes [11–13] or a minimum lower quality bound over
the generated elements after successive refinements [8–10, 14]. Regarding 4D re-
finement, only a non-conformal local refinement method for pentatopic meshes has

Computer Applications in Science and Engineering, Barcelona Supercomputing Center, 08034
Barcelona, Spain.
∗Corresponding author e-mail: abel.gargallo@bsc.es

1

2 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

been proposed [15]. Unfortunately, existent conformal 4D (nD) bisection methods
with a bound over the number of generated similarity classes [11, 12] cannot be
applied to general unstructured meshes.

The main contribution of this work is to propose a local bisection procedure, with
a bound over the number of generated similarity classes, for conformal refinement
of 4D unstructured simplicial meshes. Specifically, we propose a recursive refine to
conformity procedure, in two stages, based on marking bisection edges on different
priority levels (Sec. 3.1). The marking procedure allows classifying the pentatopes
in different types (Sec. 3.2) and hence, determining different refinement templates
(Sec. 4), in an analogous manner to the 3D bisection method proposed in [13].

The refinement method is composed of two stages (Sec. 4). Two successive ap-
plications of the initial stage of the bisection strategy (Sec. 4.1), based on the pro-
posed element classification, ensure that any initial 4D unstructured simplicial mesh
can be conformingly refined. After the two initial refinements our recursive refine
to conformity strategy switches to the second stage (Sec. 4.2). This final stage is
analogous to Maubach’s algorithm, when it is successively applied to a single pen-
tatope. Therefore, we can ensure a bound over the number of generated similarity
classes. Thus, the minimum quality of the refined mesh is bounded, independently
of the number of performed refinements. The main advantage and difference of our
method when compared to Maubach’s algorithm [11] is the first stage of the method,
which allows the application of the method to any 4D unstructured simplicial mesh.

In all the examples (Sec. 5), we show that the proposed methodology leads to
a periodic evolution of the minimum element quality (shape quality measure [16])
illustrating the lower bound of the quality through successive refinement. We first
illustrate how to check that an implementation of the proposed method is valid by
successively refining a pentatope. With our implementation, we show that the pro-
posed bisection technique can be used to refine general unstructured 4D meshes.
Finally, we also illustrate our application of interest, the refinement of a 4D mesh
corresponding to a space-time representation, with varying resolution, of the tem-
poral evolution of a 3D moving object.

2 Preliminaries

In this section, we state some preliminary notions required for the rest of this work.
First, we detail how a pentatope in four dimensions is represented in the 2D plots of
this paper. Second, we state the definition of bisection and finally, we introduce the
strategy used in this work to refine a given mesh through edge bisection.

The element type considered in this work is the pentatope (4D simplex) which is
defined as the convex hull of a set of 5 points {x0,x1,x2,x3,x4} in R4. To represent a
given pentatope (4D) in the plane (2D), we focus on a perspective where the edges
connecting the vertices have a minimal number of edge crossings. Herein, the pen-
tatope [x0x1x2x3x4] is displayed plotting the edges of the tetrahedron [x0x1x2x3] and
the edges that connect the vertices of the tetrahedron [x0x1x2x3] with the extra ver-

Local bisection for conformal refinement of unstructured 4D simplicial meshes 3

(a) (b)

Fig. 1 (a) Three dimensional representation of a pentatope [x0x1x2x3x4], where the fifth vertex x4
is plotted in R3 inside the tetrahedron [x0x1x2x3]. (b) Potential edges [vx2], [vx3] and [vx4] of the
bisection of the pentatope [x0x1x2x3x4].

(a)

−−−→

(b)

+

(c)

Fig. 2 Bisection of a pentatope (a) into two children (b) and (c).

tex x4 located in the center of the tetrahedron, see Figure 1(a). This representation is
used to display the edge marking procedure for bisection proposed in this work. The
boundary of a pentatope is formed by 5 tetrahedra: the outer tetrahedron [x0x1x2x3]
and the four inner tetrahedra [x0x1x2x4], [x0x1x4x3], [x0x2x3x4] and [x1x2x3x4].

Once detailed the representation of a given pentatope, we particularize the defi-
nition of bisection to 4D simplicial elements. In particular, for a given pentatope σ
with vertices [x0x1x2x3x4], the element vertices are reordered so that the refinement
edge is [x0x1]. Let v be the midpoint of [x0x1]. The bisection of σ by [x0x1] corre-
sponds to removing the element [x0x1x2x3x4] and generating two new elements by
joining v with the tetrahedral faces [x0x2x3x4] and [x1x2x3x4].

We highlight that the tetrahedral face [vx2x4x3] is shared between the two chil-
dren. This shared face has three inherited edges ([x2x3], [x2x4] and [x3x4]) and three
new edges ([vx2], [vx3] and [vx4]). We denote the new edges of the shared face as
potential edges of the initial element. These potential edges are displayed in Fig-
ure 1(b) colored in red. This definition is required in Section 4.2 to characterize the
proposed mesh refinement templates.

Finally, we introduce the algorithm proposed in this work to refine a given mesh
by edge bisection. This algorithm uses a refine to conformity strategy similar to
the 3D refinement method proposed in [13]. Given a marked mesh M and a set of
elements to refine S, the mesh is refined according to Algorithm 1. In this algorithm,
while there is not an empty set of elements to refine, Line 2, the mesh is refined as
follows. In Line 3, the process BisectPentatopes bisects each pentatope in S:

4 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

Procedure 1 Refinement of a mesh ensuring conformity.
Input: Marked mesh M
Output: Marked mesh M′

1: function REFINETOCONFORMITY(M,S)
2: if S 6= /0 then
3: M̄ = BisectPentatopes(M,S)
4: S = {σ ∈M |σ has a hanging node}
5: M′ = RefineToConformity(M̄)
6: else
7: M′ = M
8: end if
9: end function

BisectPentatopes(M,S) = (M \S)∪
⋃

σ∈S

Bisect(σ), (1)

where Bisect performs the element bisection taking into account the element
marks (refinement edge) and sets the proper marks to the two generated elements.
In Sections 3 and 4 we will present the marking procedures proposed in this work
for pentatopic meshes, and the marks that are assigned to the two children.

Following, in Line 4 the set of elements to refine in the next step is set as the
elements with hanging nodes. In Line 5 the Algorithm RefineToConformity
is called recursively. These recursive calls are continued until there are no more
elements with hanging nodes in the mesh. We show that the marking processes
presented in Sections 3 and 4 lead to a conformal mesh.

3 Edge marking and element classification for compatible
refinement

In this section, we first present in Sec. 3.1 an edge marking process compatible
between neighboring elements for conformal mesh refinement. Next, in Sec. 3.2 we
present a classification of the elements of the mesh depending on the marks assigned
to their edges.

3.1 Edge marking for compatible refinement

In this work, we use a marking procedure organized by levels to determine the prior-
ity of the bisection edges used during the element refinement. Following, we present
a procedure to mark the edges of the pentatopes of a conformal mesh. These marks
are devised to ensure that for a given face shared between two pentatopes, succes-
sive bisection of surrounding elements determines the same mesh from both sides
of the shared face. Hence, this ensures mesh conformity along the bisection process.

Local bisection for conformal refinement of unstructured 4D simplicial meshes 5

(a) (b)

Fig. 3 (a) Marked pentatope and (b) marking diagram process at different levels.

We define three levels of marks in a pentatope. The level 0 features one edge, which
corresponds to the refinement edge of the current pentatope. The level 1 features two
edges, which correspond to the refinement edges of the two children of the first pen-
tatope. Finally, the level 2 features four edges, which correspond to the refinement
edge of the four grandchildren of the original pentatope.

Herein, to determine the marks assigned to each of the edges of the element, we
prioritize the edges in terms of their length with a well-defined tie-breaking rule. For
a given element we define its consistent bisection edge as the edge of longest length
and lowest global index. The lowest global index is a tie-breaking rule that ensures
that if there exist multiples edges with the same length, we select as the longest edge
always the same one, independently of the order in which the edges are compared.
In particular, with this tie-breaking rule we ensure that the edges of a common face
between two adjacent pentatopes are marked in the same manner from the two of
them. We remark that the longest edge is considered in the consistent bisection edge
sorting rule since it is an heuristic to enforce better element quality. Nevertheless, it
is not a key ingredient to ensure conformal mesh refinement. For instance, just by
sorting the mesh edges using their global index would also lead to a valid consistent
sorting rule.

Following, we detail the marking process for a given pentatope [x0x1x2x3x4]. The
process consists of three steps, illustrated in Figure 3(b):

1. Marked edge of level 0: consistent bisection edge of the pentatope [x0x1x2x3x4].
In the bisection process, the marked edge of level 0 corresponds to the bisection
edge of the element. In this work, the marked edges of level 0 are plotted with
a thick black line, see the first column of Figure 3(b).

2. Marked edges of level 1: the two marked edges of level 1 are determined as the
consistent bisection edge of the tetrahedra defined by [x1x2x3x4] and [x0x2x3x4].
These two tetrahedra are indeed the opposite tetrahedral faces of the pentatope
with respect to x0 and x1, respectively. These two tetrahedral faces are the faces
of the original pentatope preserved in each child. The two marked edges of level
1 correspond to the bisection edges of the two children of the current element.

6 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

(a) (b) (c) (d)

Fig. 4 Type of edge relations between the edges on level l +1 (red) and the edge of level l (blue):
(a) P, (b) A, (c) O, and (d) M.

A particular configuration of the marked edges of level 1 is illustrated in the
second column of Fig. 3(b). The marked edges of level 1 associated to the first
and second node of the bisection edge are colored in red and blue, respectively.

3. Marking edges of level 2: the four marked edges of level 2 are determined as
the consistent bisection edge of the opposite faces of the marked edges of level
1 in the tetrahedra [x1x2x3x4] and [x0x2x3x4]. The four marked edges of level
2 correspond to the bisection edges of the four grandchildren of the current
marked element. In the third column of Figure 3(b), we illustrate a particular
configuration of the marked edges of level 2, coloring them with the same color
of the associated marked edge of level 1. In addition, the edge associated to the
first node of the marked edge of level 1 is plotted with fully colored circles, and
the other edge is plotted with empty circles.

Figure 3(a) illustrates the resulting marked element for the test example of the
marking procedure of Fig. 3(b). We highlight an edge, for instance [x2x4] in Fig.
3(a), can have two marks once all the marks are displayed on the initial pentatope.
These two marks indicate that this edge has been marked from both of the faces
that remain after bisection. To differentiate them, we have used blue and red colors.
After bisecting a marked pentatope, the marked edges of the two children have to
be determined.

Remark 1 (Inheritance of marks). The marked edges of level 1 and 2 of the parent
shift marks in the corresponding children and become the marked edges of level 0
and 1 of the two children, respectively. However, it is not straight-forward to deter-
mine the marked edges of level 2 from the parent marks. In Section 4 two methods
are proposed to determine them.

3.2 Classification of marked pentatopes

In this section, we present a classification into different types of a pentatope result-
ing from the marking process detailed in Section 3.1. Several types of pentatopes
are obtained depending on the marks assigned to their edges. Before detailing the

Local bisection for conformal refinement of unstructured 4D simplicial meshes 7

classification, we introduce four definitions that state how the marked edges of level
l +1 are located with respect to the associated marked edge of level l for l = 0,1.

We propose a classification for different pentatope types, according to the config-
uration of the marked edges at the different levels. This classification is an extension
of the different tetrahedron types proposed in [13], where only two levels of marked
edges are required. Figure 4 illustrates the four different configurations between two
levels of marked edges, coloring the two marked edges of level l +1 with red color
and the marked edge of level l with dark blue color:

• Type P (Planar): the two marked edges of level l + 1 are coplanar with the
marked edge of level l, i.e., the three edges are connected defining a triangle. In
Figure 4(a) an example of edges of type P is illustrated.
• Type A (Adjacent): each marked edge of level l +1 has a common vertex with

the marked edge of level l but the two edges of level l + 1 do not have any
common vertex. In Figure 4(b) an example of edges of type A is illustrated.
• Type O (Opposite): the marked edges of level l + 1 of the opposite faces of

the marked edge of level l + 1 do not intersect the marked edge of level l. In
Figure 4(c) an example of edges of type O is illustrated. We highlight that a
possible configuration of edges of type O is that the two edges of level l+1 are
overlapped. For instance, the edge [x2x3] could be the marked edge of level l+1
for the two faces opposite to the edge of level l.
• Type M (Mixed): the marked edges of level l + 1 of just one of the opposite

faces have a common vertex with one marked edge of level l. In Figure 4(d) an
example of edges of type M is illustrated. We highlight that it is possible that the
marked edges of level l+1 have a common vertex between them. For example,
the marked edges of level l +1 could be [x1x4] and [x4x3].

Herein, in a pentatope we have marked edges of level 0, 1 and 2. We denote by α
the edge type determined by how marked edges of level 1 are located with respect
to the marked edge of level 0. Additionally, we denote by β and γ the edge relation
type between the marked edges of level 2 and the marked edge of level 1. In this
manner, a marked pentatope is classified into a type of the form αβγ .

In Figure 5, we illustrate three different types of marked pentatopes. First, Figure
5(a) illustrates a pentatope of type PPP. In particular, the marked edge of level 0
(bisection edge) configures a triangular face together with the marked edges of level
1. Thus, the first index, α , of the element is P. Next, each marked edge of level
1 defines also a triangular face with the corresponding marked edges of level 2,
determining β and γ equal to P. Hence, the element is of type PPP.

Analogously, for the element illustrated in Figure 5(b) we detail the same pro-
cess. For this element, α is A since the red and blue edges share a node with the
bisection edge, but they do not share any node between them. In addition, β and
γ are equal to P, since each of the blue and red edges determines a triangular face
with the corresponding blue and red circled edges. Thus, this element is of type APP.
Similarly, we can conclude that the element illustrated in Figure 5(c) is of type AAA.

After bisecting the element, the bisection edge [x0x1] is split into two edges, [x0v]
and [vx1], and thus this edge is not present in any of the children. However, the two

8 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

(a) (b) (c)

Fig. 5 Three different types of marked pentatopes: (a) PPP, (b) APP, and (c) AAA.

Stage 1
︷ ︸︸ ︷

Stage 2
︷ ︸︸ ︷

PAA

{αβγ}α,β ,γ∈{P,A,O,M} {δPP}δ∈{P,A,O,M} PPP AAA

APP

Fig. 6 Refinement process for a pentatope of type αβγ , where α,β ,γ ∈ {P,A,O,M}.

adjacent tetrahedral faces to this edge are preserved. Specifically, the face [x0x2x3x4]
is inherited by the child that preserves node x0 of the bisection edge, and the face
[x1x2x3x4] is inherited by the child that preserves node x1. Following we detail which
marks of the parent pentatope are preserved after its bisection and how these marks
are inherited by the two children.

Remark 2 (Inheritance of element type). Hence, after bisecting a marked pentatope
of type αβγ , where α,β ,γ can be {P,A,O,M}, the obtained children inherit the
marked edges of level 1 and 2 of the parent. These marks become the marked edges
of level 0 and 1 of the children, see Remark 1. Thus, one child inherits the edge
relation type β and the other child the relation type γ . However, the marked edges
of level 2 are not determined. Depending on the edges that are selected to be the
marked of level 2, the type of element of the children will be ββ1β2 and γγ1γ2 , where
β1,β2,γ1,γ2 ∈ {P,A,O,M}.

4 A refinement algorithm for 4D unstructured simplicial meshes
with bounded number of similarity classes

In this section, we detail a new procedure composed by two stages for refinement of
any 4D unstructured simplicial mesh. Given a mesh, we first mark it using the proce-
dure stated in Section 3.1, and following, we classify the elements into the different
types stated in Section 3.2. Next, given a marked element to be refined, the bisec-

Local bisection for conformal refinement of unstructured 4D simplicial meshes 9

Procedure 2 Element refinement with global mesh conformity
Input: Pentatope σ , set of marked edges mσ , descendant level k.
Output: Pentatopes σ1 and σ2, set of marked edges mσ1 and mσ2 , descendant level k′

1: function BISECT(σ , mσ , k)
2: σ1, σ2 = BisectPentatope(σ ,mσ)
3: mσ1 , mσ2 = inheritMarksFromFather(mσ)
4: if k < 2 then
5: mσ1 , mσ2 ←set marked edges of level 2 using Stage 1 from Sec. 4.1
6: else
7: mσ1 , mσ2 ←set marked edges of level 2 using Stage 2 from Sec. 4.2
8: end if
9: k′ = k+1

10: end function

tion of this element is performed according to Algorithm 2 and the diagram in Fig. 6.
Algorithm 2 is used as bisection procedure in the BisectPentatopes function,
Eq. (1), from the mesh refinement strategy RefineToConformity presented in
Algorithm 1.

The two stages bisect a given marked element according to the bisection edge,
Line 2 from Alg. 2, and following, according to Remarks 1 and 2, the marked edges
of level 0 and 1 of the children are determined from the marked edges of level 1 and
2 of the parent, Line 3. The difference between the two stages is the process to set
the marked edges of the children. The marks determine the type of the generated
element and at the same time, how the children will be bisected through successive
refinement.

The first two times that the element is bisected (Stage 1), Line 4 of Alg. 2, the
marks of level 2 of the children are determined using Sec. 4.1. A child generated
with one application of Stage 1 is of type δPP, being δ any edge relation type.
No element enters to Stage 2 before two refinements, and once it is bisected twice
in Stage 1, in Section 4.1 we show that it is of type PPP. Then, from the second
refinement and on, Line 7, Stage 2 is activated, see Section 4.2. In Section 4.3 the
properties of the two-stage method are presented.

4.1 Stage 1: refinement from any unstructured marked mesh to PPP
elements

Stage 1 determines the marked edges of level 2 following the ideas of the marking
strategy presented in Section 3.1. From the marking diagram presented in Figure
3(b) we observe that two of the edges of the triangular face of the third column
remain unmarked in the parent. After the element is bisected, these edges are still
present in the tetrahedral faces of the children. These edges can be enforced to be the
marked edges of level 2 of the children. This decision is consistent by construction
between adjacent elements since it is performed on the face shared between these

10 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

elements. This approach to determine the marked edges of level 2 of the children
leads to a conformal refinement procedure.

Remark 3 (Refinement towards PPP elements). Given an element of type αβγ for
α,β ,γ ∈ {P,A,O,M}, the application of two refinements of Stage 1 leads to ele-
ments of PPP, see Figure 6.
To show this, we first focus on the initial refinement step. From Remark 2 the chil-
dren will be ββ1β2 and γγ1γ2 , where β1,β2,γ1,γ2 ∈ {P,A,O,M} depend on how the
marked edges of level 2 are located with respect to the marked edges of level 1. By
construction (see Fig. 3(b)), the marked edges of level 2 have been chosen on the
same triangular face of the corresponding marked edge of level 1. Thus, the new
marked edges of level 2 are coplanar with the marked edges of level 1 for each child
and their edge relation is of type P. Hence, by setting these edges as marked edges
of level 2 of the children, we obtain two children of type βPP and γPP, respectively.
Applying this marking strategy again, the grandchildren of the original pentatope
are of type PPP.

Although the marking process is consistent between adjacent elements by con-
struction and the marks of level 2 are chosen consistently with the marking pro-
cess, following we analyze all the possible neighboring configurations between two
marked elements to illustrate that the stated bisection procedure is conformal.

Remark 4 (Conformal refinement). Given two neighbor marked elements, when the
shared face is bisected from the two sides, it is bisected by the same edge. That is,
the interface between the children of the two elements is still conformal. We analyze
three different configurations of the two elements:

• First, let us assume that both elements share a face that contains their consistent
bisection edge. This edge must be the same for each one of the elements, since
in particular, it is the consistent bisection edge of the face. Then, it is clear that
they are refined by that edge and that the new interface is conformal.
• Second, let us assume that the shared face does not contain the consistent bi-

section edge in any of the two adjacent elements. Following the stated marking
procedure, the shared tetrahedral face is marked in the second column of Figure
3(b), containing the marked edges of level 1. Thus, in the first refinement of the
elements, the face is not refined and the interface is still conformal. Next, when
we perform the second refinement, the shared face is refined by the same edge
from the two elements, ensuring a conformal bisection.
• Finally, the third case to be analyzed is when the face contains the consistent

longest edge of the pentatope in one element, but does not contain the consistent
longest edge of the adjacent pentatope. After refining once the elements, the
mesh is not conformal, since the face is bisected from one of the elements, but
is not bisected from the other one. However, the element that has not bisected
the initially shared face, does bisect it after the second refinement, since the
consistent longest edge of the adjacent pentatope is specifically the consistent
longest edge of the shared face, and thus it is marked in the level 1 of the second
element. Hence, after two iterations the mesh is already conformal.

Local bisection for conformal refinement of unstructured 4D simplicial meshes 11

Procedure 3 Bisection of a simplex from Maubach [11].
Input: Tagged n-simplex σ .
Output: Tagged n-simplices σ1 and σ2.
1: function BISECTSIMPLEXMAUBACH(σ)

2: Set d′ =
{

d−1, d > 1
n, d = 1

3: Create the new vertex z =
1
2
(x0 + xd).

4: Set σ1 = ((x0,x1, . . . ,xd−1,z,xd+1, . . . ,xn), d′).
5: Set σ2 = ((x1,x2, . . . ,xd ,z,xd+1, . . . ,xn), d′).
6: end function

In addition, in the three different presented configurations, the marks determined on
the children are always compatible by construction. Analogously, the same reason-
ing follows for the case where two pentatopes share a triangular face.

4.2 Stage 2: conformal refinement of all-PPP meshes

In this section, we present a conformal refinement algorithm with a bounded number
of generated similarity classes for meshes composed uniquely by elements of type
PPP. This algorithm determines the second stage of the refinement method for any
unstructured mesh presented in Section 4.

The procedure presented in this section is stated in terms of a cycle composed of
four steps, presented in Fig. 6. In Fig. 7 the templates for the bisection and setting
of the marked edges of the children are presented. Given an element of type PPP,
Fig. 7(a), this element is split into two PAA elements setting their marks using the
templates presented in Figs. 7(b) and 7(c). After that, the type PAA, Fig. 7(d), is
bisected into two AAA types applying the templates of Figs. 7(e) and 7(f). Following,
an element of type AAA, Fig. 7(g), is bisected into two APP using the templates
presented in Figs. 7(h) and 7(i). Finally, from the type APP, Fig. 7(j), we obtain
again two PPP types applying the templates of Figs. 7(k) and 7(l).

We highlight that in order to apply the templates of Figure 7 we need to reorder
the vertices of a given PPP element to match the canonical representation of Figure
7(a). Similarly, the two children in Figures 7(b) and 7(c) have to be reordered to
obtain the canonical PAA in Figure 7(d) and then apply the corresponding templates.
This node reordering has to be performed after each bisection to locate the marks in
the canonical representation of the templated fathers. In addition, we highlight that
in Figures 7(d), 7(b) and 7(c) the marked edges of level 2 are assigned on potential
edges (see definition in Sec. 2). Although those edges do not exist on the parent,
they exist in the children and grandchildren, where they will be used to determine
the bisection edge.

Next, in Remark 5 we detail that this templated refinement procedure is anal-
ogous to Maubach’s algorithm [11] when applied successively to one element.

12 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

(a)

−−−→

(b)

+

(c)

(d)

−−−→

(e)

+

(f)

(g)

−−−→

(h)

+

(i)

(j)

−−−→

(k)

+

(l)

Fig. 7 Templates to perform the refinement cycle presented in Figure 6. (a)-(c) An element of type
PPP is bisected into two PAA. (d)-(f) PAA is bisected into two AAA. (g)-(i) AAA is bisected into two
APP. (j)-(l) APP is bisected into two PPP.

Maubach’s algorithm cannot be applied in general to any given unstructured mesh
as detailed in [11, 13]. Thus, finally in Remark 6, we analyze the conformity of the
application of our approach for meshes composed of PPP elements.

Remark 5 (Analogy to Maubach’s algorithm). The refinement cycle in Fig. 6 per-
formed using the templates presented in Fig. 7 is analogous to Maubach’s algo-
rithm [11] (see Alg. 3) when applied to a single pentatope. This analogy is inter-
preted as follows. Given a pentatope to bisect using Maubach’s algorithm with a
tag d, we consider as marked edge of level 0 the tagged edge. Next, we consider as
marked edges of level 1 the tagged edges of the two children in the next application

Local bisection for conformal refinement of unstructured 4D simplicial meshes 13

Table 1 Permutations from the Maubach Algorithm 3 to canonical types in Figure 7

Canonical type Tag in Algorithm 3 Permutation to obtain canonical representation
PPP d = 2 (0,2,1,3,4)
PAA d = 1 (0,1,2,3,4)
AAA d = 4 (0,4,2,3,1)
APP d = 3 (0,3,2,1,4)

Fig. 8 Tetrahedral face of a pentatope of type PPP after five refinements of the face .

of Maubach’s algorithm. Analogously, we consider as marked edges of level 2 the
tagged edges of the four grandchildren. Next, we find the permutation of the ver-
tices [x0x1x2x3x4] to align the marks on the edges of the element with the canonical
representation from Fig. 7. The obtained permutations are presented in Table 1.

Remark 6 (Conformal refinement for all-PPP meshes). The refinement using Stage
2 of a marked mesh composed by elements of type PPP leads to a conformal mesh.
To illustrate the conformity of the refined mesh, we analyze two different cases:

• First, we analyze the case of the refinement of a single element. Since our
method is analogous to Maubach’s by Remark 5, it is also conformal when
there is a single element successively refined, see details in [11, 13].
• Second, we analyze the conformity between the interface of adjacent elements

of type PPP with compatible marks. Extending the reasoning for tetrahedra
in [13], it is sufficient to check if the bisection structure determined on a
shared face is the same from both sides. Given a PPP element to be refined,
if we obtain the same refined mesh on all its tetrahedral faces we can en-
sure that the refinement of two adjacent PPP is also conformal when using the
RefineToConformity strategy. In particular, if we refine five times any of
the five tetrahedral faces of a given PPP the same tetrahedral mesh is obtained
for all of them. This refined face mesh is illustrated in Figure 4.2 and is com-
posed by 32 tetrahedra. The same reasoning follows for the case where two
pentatopes share a triangular face.

Hence, if a pentatopic mesh can be marked with all elements as PPP, then it can be
conformingly refined using our analogy to Maubach’s algorithm combined with the
RefineToConformity strategy. This is the case when any given mesh is refined
two times with Stage 1 in Sec. 4.1.

14 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

4.3 Properties of the method

In this section, we analyze the two main properties of the refinement procedure
determined by Algorithm 2. Our refinement procedure requires as input a conformal
unstructured 4D simplicial mesh. Given a set of elements to refine, the resulting
mesh is a locally refined unstructured 4D simplicial mesh that is conformal and has
a bounded number of generated similarity classes. These properties are discussed in
the following remarks.

Remark 7 (Conformal refinement). The algorithm presented in Section 4 generates
a conformal mesh. To show this, we take into account that this algorithm combines
two refinement methods. The two first refinement steps in Stage 1 are performed by
the algorithm presented in Sec. 4.1. After two refinements the elements are refined
in Stage 2 according to the cycle in Fig. 6, see Sec. 4.2. In the worst case scenario,
to prove conformal mesh refinement, all the elements of the initial mesh have to
be twice refined at Stage 1. At this point, all the elements of the mesh are of type
PPP with compatible marks, as detailed in Remark 4. Then, the conformity of the
refinement is ensured by Remark 6.

Remark 8 (Bounded number of generated similarity classes). The number of simi-
larity classes produced by the repeated application of the cycle presented in Fig. 6
to an element is bounded by 1536. To prove this bound, we take into account that
in the refinement scheme of Figure 6 it is required to perform two bisection steps
before entering in the cycle. For each bisection, we generate at most two new sim-
ilarity classes. Hence, from the given initial element, the bound of the similarity
classes after the two first steps is 2 · 2 = 4. As highlighted in Remark 5 from Sec.
4.2, this second stage is analogous to Maubach’s algorithm when applied to a single
pentatope. In [13] it is proved that in 4D Maubach’s algorithm has a sharp bound of
384 generated similarity classes for an element. Thus, the bound for the procedure
of Figure 6 is 4 ·384, that is 1536.

5 Results

In this section, we present several results to illustrate the features and the applica-
bility of the presented refinement scheme. In all the examples, we plot the mini-
mum and maximum shape quality [16] in each refinement step of Alg. 1. To vi-
sualize the results we intersect each 4D mesh with a hyperplane to obtain a 3D
cut that can be visualized. In Section 5.1, we refine an equilateral pentatope with
two different initial marking configurations to illustrate that the similarity classes
are bounded. In Section 5.2, we refine an unstructured 4D mesh to capture a hy-
persphere and, finally, in Section 5.3 we refine a simplicial mesh on a hypercube
to capture a moving sphere.We highlight that in all the presented examples it has
been explicitly checked that the generated meshes are conformal after the applied

Local bisection for conformal refinement of unstructured 4D simplicial meshes 15

(a) (b)

Fig. 9 Quality versus the number of iterations of the RefineToConformity algorithm applied
to an equilateral pentatope marked as (a) PAA and (b) APO type. The blue (red) line corresponds to
the minimum (maximum) of the element shape quality at each iteration.

RefineToConformity strategy by checking that the only boundary faces of the
mesh are on the boundary of the domain.

5.1 Bounded quality: iterative refinement of one pentatope

In this example, we check that our implementation of the refinement algorithm does
not lead to degenerated elements after successive refinement of a given pentatope
type. We enforce an equilateral pentatope to be marked as PAA and a second equilat-
eral pentatope to be marked as APO. Then, both pentatope types are globally refined
20 times. Figure 9 shows the minimum and maximum element quality at each re-
finement step. We observe that the minimum quality (vertical axis) decreases on the
first refinement steps (horizontal axis) until a minimum value is reached. Then, the
minimum and maximum qualities start to cycle every 4 refinement steps. This is an
indicator of the bound of the number of generated similarity classes.

5.2 4D unstructured mesh: refining an extruded sphere octant

This example shows that the proposed refinement scheme can be applied to unstruc-
tured 4D pentatopic meshes. To this end, we generate an unstructured 4D mesh of a
3D sphere octant, of radius 1 and centered in the origin, extruded one unit along the
fourth dimension. Then, we successively refine those elements that intersect a hy-
persphere of radius 1/4 and centered in the origin. To generate the 4D mesh, we first
generate an unstructured 3D mesh of the sphere octant composed by 40 nodes and
95 elements, see Figure 10(a). Then, we embed two copies of the 3D mesh points
in the 4D space by setting the fourth coordinate to 0 and 1, respectively. Finally,

16 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

(a) (b) (c)

Fig. 10 A slice with the hyperplane t = 0 of the 4D simplicial mesh is illustrated for (a) the initial
configuration and (b) after 17 iterations of RefineToConformity. (c) Minimum (blue) and
maximum (red) element quality for each refinement step.

these 80 points are reconnected, using the implementation of the Delaunay algo-
rithm provided by QHull [17], to obtain the unstructured 4D mesh. After applying
17 times the RefineToConformity algorithm, we obtain a 4D mesh composed
by 8072909 elements and 433887 nodes. Figure 10(b), shows the tetrahedral mesh
that corresponds to the boundary of the 4D pentatopic mesh at the base of the extru-
sion along the fourth dimension. Figure 10(c) shows the quality at each refinement
step, where we can observe a lower quality bound is constant at value 0.11.

5.3 Space-time mesh: refining a sphere moving along the z-axis

Finally, we illustrate our application of interest, the refinement of a 4D mesh corre-
sponding to a space-time representation, with varying resolution, of the temporal
evolution of a 3D moving object. We consider a sphere of radius 1/5 centered
in the origin that moves along the z-axis from 0 to 1 with constant velocity 1.
We generate an initial mesh on the hypercube [0,1]4 composed by 24 pentatopes
using Freudenthal-Kuhn algorithm [1–3]. Next, we apply 25 times the algorithm
RefineToConformity to refine those elements that intersect the 4D sphere
extrusion that represents the moving sphere. The final 4D mesh is composed by
5233296 pentatopes and 251457 nodes and it is illustrated in Figure 11. Figures
11(a)-11(c) show three slices of the mesh at t = 0, t = 1/2 and t = 1, respectively.
We can observe that each one of the slices on t shows different positions of the
moving sphere, from the initial point (0,0,0) at t = 0 to the final point (0,0,1) at
t = 1. In contrast with these three slices, in Figure 11(d) we show an slice of the
mesh at x = 0. In the closest quadrilateral face of Fig. 11(d) we observe the path of
the sphere on the surface of dimension 2 defined by the axis z and t at x = y = 0. In
this quadrilateral face, we can see that the center of the sphere describes a straight
line going from the lower left corner (0,0,0,0) up to the top right corner (0,0,1,1).

Local bisection for conformal refinement of unstructured 4D simplicial meshes 17

(a) (b) (c)

(d) (e)

Fig. 11 Slice of the 4D simplicial mesh of the hypercube with the hyperplane: (a) t = 0, (b) t = 0.5,
(c) t = 1 and (d) x= 0. (e) Minimum (blue) and maximum (red) element quality for each refinement
step.

This is so since the sphere goes from z = 0 to z = 1 with constant velocity starting
at t = 0 and finalizing at t = 1. Specifically, the location on the z-axis of the sphere
is z = t.

6 Concluding remarks

In this work, we have presented a new refinement method via edge bisection for 4D
pentatopic meshes. This method ensures that the mesh quality does not degenerate
after successive refinements of a given element. To develop this method, we require
to classify the elements of the mesh into different types in a similar fashion to [13].
Using the pentatope classification we provide four refinement templates to perform
a cyclic bisection analogous to Maubach’s method [11]. Combining two initializing
refinements (Stage 1) with this templated refinement (Stage 2) we obtain a refine-

18 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

ment strategy that can be applied to any given pentatopic mesh. Using this method
a finite number of similarity classes are generated when a given element is refined.

We apply the refinement scheme to different meshes to illustrate its features.
First, we analyze that the mesh quality of the refinement of different element types
does not degenerate. Second, we illustrate the applicability of the technique to refine
unstructured 4D simplicial meshes. Finally, we analyze a space-time configuration
of a sphere moving along an axis.

Acknowledgements This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 715546. This work has also received funding from the Generalitat de Catalunya un-
der grant number 2017 SGR 1731. The work of X. Roca has been partially supported by the Spanish
Ministerio de Economı́a y Competitividad under the personal grant agreement RYC-2015-01633.

References

1. H Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Ann. Math., pages 580–
582, 1942.

2. H Kuhn. Some combinatorial lemmas in topology. IBM Journal of research and development,
4(5):518–524, 1960.

3. J Bey. Simplicial grid refinement: on freudenthal’s algorithm and the optimal number of
congruence classes. Numerische Mathematik, 85(1):1–29, 2000.

4. R Bank, A Sherman, and A Weiser. Some refinement algorithms and data structures for regular
local mesh refinement. Scientific Computing, 1:3–17, 1983.

5. J Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995.
6. A Liu and B Joe. Quality local refinement of tetrahedral meshes based on 8-subtetrahedron

subdivision. Mathematics of Computation, 65(215):1183–1200, 1996.
7. S Zhang. Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes.

Houston J. Math, 21(3):541–556, 1995.
8. MC Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid tech-

niques. International journal for numerical methods in Engineering, 20(4):745–756, 1984.
9. E Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing in Science

and Engineering, 3(3):181–191, 1991.
10. A Liu and B Joe. Quality local refinement of tetrahedral meshes based on bisection. SIAM

Journal on Scientific Computing, 16(6):1269–1291, 1995.
11. J Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM

Journal on Scientific Computing, 16(1):210–227, 1995.
12. C Traxler. An algorithm for adaptive mesh refinement in n dimensions. Computing,

59(2):115–137, 1997.
13. D Arnold, A Mukherjee, and L Pouly. Locally adapted tetrahedral meshes using bisection.

SIAM Journal on Scientific Computing, 22(2):431–448, 2000.
14. A Plaza and MC Rivara. Mesh refinement based on the 8-tetrahedra longest-edge partition. In

IMR, pages 67–78, 2003.
15. M Neumüller and O Steinbach. A flexible space-time discontinuous galerkin method for

parabolic initial boundary value problems. Berichte aus dem Institut für Numerische Mathe-
matik, 2, 2011.

16. P. M. Knupp. Algebraic mesh quality metrics. SIAM J. Numer. Anal., 23(1):193–218, 2001.
17. C Barber, D Dobkin, and H Huhdanpaa. The quickhull algorithm for convex hulls. ACM

Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996.

Bibliography

Alkämper, M., F. Gaspoz, and R. Klöfkorn (2018). A weak compatibility condition
for newest vertex bisection in any dimension. SIAM Journal on Scientific Comput-
ing 40 (6), A3853–A3872.

Arnold, D. N., A. Mukherjee, and L. Pouly (2000). Locally adapted tetrahedral
meshes using bisection. SIAM Journal on Scientific Computing 22 (2), 431–448.

Bänsch, E. (1991). Local mesh refinement in 2 and 3 dimensions. IMPACT of
Computing in Science and Engineering 3 (3), 181–191.

Belda-Ferŕın, G., A. Gargallo-Peiró, and X. Roca (2019). Local Bisection for Con-
formal Refinement of Unstructured 4D Simplicial Meshes. In 27th International
Meshing Roundtable, Volume 127, pp. 229–247. Springer International Publishing.

Belda-Ferŕın, G., E. Ruiz-Gironés, A. Gargallo-Peiró, and X. Roca (2019). Vi-
sualization of pentatopic meshes. Technical report, 28th International Meshing
Roundtable.

Belda-Ferŕın, G., E. Ruiz-Gironés, A. Gargallo-Peiró, and X. Roca (2022). Marked
bisection for local refinement of n-dimensional unstructured conformal meshes.
Computer-Aided Design. Submitted on April 22, 2022.

Belda-Ferŕın, G., E. Ruiz-Gironés, and X. Roca (2021). Bisecting with optimal sim-
ilarity bound on 3D unstructured conformal meshes. In 2022 SIAM International
Meshing Roundtable (IMR), Virtual Conference. Zenodo.

Belda-Ferŕın, G., E. Ruiz-Gironés, and X. Roca (2022a). Newest vertex bisection for
unstructured n-simplicial meshes. Paper in preparation.

Belda-Ferŕın, G., E. Ruiz-Gironés, and X. Roca (2022b). Suitability of marked bisec-
tion for local refinement of n-dimensional unstructured conformal meshes. Paper
in preparation.

Binev, P., W. Dahmen, and R. DeVore (2004). Adaptive finite element methods with
convergence rates. Numerische Mathematik 97, 219–268.

137

Bibliography

Caplan, P. C. (2019). Four-Dimensional Anisotropic Mesh Adaptation for Spacetime
Numerical Simulations. Ph. D. thesis, Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology.

Coxeter, H. S. (1934). Discrete groups generated by reflections. Annals of Mathe-
matics 35 (3), 588–621.

Freudenthal, H. (1942). Simplizialzerlegungen von beschrankter flachheit. Annals of
Mathematics 43 (3), 580–582.

Knupp, P. M. (2001). Algebraic mesh quality metrics. SIAM Journal on Scientific
Computing 23 (1), 193–218.

Kossaczký, I. (1994). A recursive approach to local mesh refinement in two and three
dimensions. Journal of Computational and Applied Mathematics 55 (3), 275–288.

Kuhn, H. W. (1960). Some combinatorial lemmas in topology. IBM Journal of
Research and Development 4 (5), 518–524.

Liu, A. and B. Joe (1994). On the shape of tetrahedra from bisection. Mathematics
of Computation 63 (207), 141–154.

Liu, A. and B. Joe (1995). Quality local refinement of tetrahedral meshes based on
bisection. SIAM Journal on Scientific Computing 16 (6), 1269–1291.

Maubach, J. M. (1995). Local bisection refinement for n-simplicial grids generated
by reflection. SIAM Journal on Scientific Computing 16 (1), 210–227.

Maubach, J. M. (1996a). The amount of similarity classes created by local n-simplicial
bisection refinement. preprint .

Maubach, J. M. (1996b). The efficient location of neighbors for locally refined n-
simplicial grids. 5th International Meshing Roundable 4 (6), 137–153.

Mitchell, W. F. (1991). Adaptive refinement for arbitrary finite-element spaces with
hierarchical bases. Journal of Computational and Applied Mathematics 36 (1), 65–
78. Special Issue on Adaptive Methods.

Mitchell, W. F. (2017). 30 years of newest vertex bisection. Journal of Numerical
Analysis, Industrial and Applied Mathematics 11 (1), 11–22.

Neumüller, M. and E. Karabelas (2019). Generating admissible space-time meshes
for moving domains in (d + 1) dimensions. In Space-Time Methods: Applications
to Partial Differential Equations, Chapter 6, pp. 185–206. De Gruyter.

Neumüller, M. and O. Steinbach (2011). Refinement of flexible space–time finite
element meshes and discontinuous galerkin methods. Computing and Visualization
in Science 14 (5), 189–205.

138

Bibliography

Persson, P.-O. and G. Strang (2004). A simple mesh generator in matlab. SIAM
Review 46 (2), 329–345.

Plaza, A. and G. F. Carey (2000). Local refinement of simplicial grids based on the
skeleton. Applied Numerical Mathematics 32 (2), 195–218.

Plaza, A. and M.-C. Rivara (2003). Mesh refinement based on the 8-tetrahedra
longest-edge partition. In Proceedings of the 12th International Meshing
Roundtable, pp. 67–78.

Rivara, M.-C. (1984). Algorithms for refining triangular grids suitable for adaptive
and multigrid techniques. International Journal for Numerical Methods in Engi-
neering 20 (4), 745–756.

Rivara, M.-C. (1991). Local modification of meshes for adaptive and/or multigrid
finite-element methods. Journal of Computational and Applied Mathematics 36 (1),
79–89. Special Issue on Adaptive Methods.

Stevenson, R. (2008). The completion of locally refined simplicial partitions created
by bisection. Mathematics of Computation 77 (261), 227–241.

Traxler, C. T. (1997). An algorithm for adaptive mesh refinement in n dimensions.
Computing 59 (2), 115–137.

139

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivation and background
	1.2 Research opportunity and questions
	1.3 Aim and objectives
	1.4 Scope
	1.5 Methodology
	1.6 Contributions and novelty
	1.7 Layout

	2 Preliminaries and definitions
	2.1 Preliminaries
	2.2 Definitions in this thesis

	3 Marked bisection in n dimensions
	3.1 Problem and outline of our solution
	3.2 Unequivocal edge selection per mesh entity: consistent bisection edge
	3.3 Pre-processing: codimensional marks
	3.4 First stage: tree-simplices
	3.5 Second stage: casting to Maubach
	3.6 Third stage: Maubach's bisection
	3.7 Examples
	3.8 Concluding remarks

	4 Marked bisection in three dimensions with optimal similarity bound
	4.1 Preliminaries and problem
	4.2 Solution: conformingly marking as planar
	4.3 Restricted marked bisection
	4.4 Examples
	4.5 Concluding remarks

	5 Newest vertex bisection in n dimensions: reflectivity
	5.1 Problem and outline of our solution
	5.2 Solution: strict total order of vertices leads to reflected meshes
	5.3 Examples
	5.4 Concluding remarks

	6 Suitability of marked bisection for local refinement in n dimensions
	6.1 Marked bisection on a triangle
	6.2 Marked bisection on a tetrahedron
	6.3 Conformity and reflectivity after n uniform refinements
	6.4 Estimation of the number of similarity classes
	6.5 Conclusions

	7 Conclusions and future work
	A Lemmas relating sets and unions with simplices, concatenation and vertex sorting
	B Visualization of pentatopic meshes
	C Conformity, reflectivity, and mesh renumbering
	C.1 Conformity check
	C.2 Reflectivity check
	C.3 Mesh renumbering

	D Local bisection for conformal refinement of unstructured 4D simplicial meshes
	Bibliography

