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Abstract—Vegetation optical depth (VOD) has contributed to 

monitor vegetation dynamics and carbon stocks at different 

microwave frequencies. Nevertheless, there is a need to determine 

which are the appropriate frequencies to monitor different 

vegetation types. Also, as only a few VOD-related studies use 

multi-frequency approaches, it is needed to evaluate their 

applicability. Here, we analyze the sensitivity of VOD at three 

frequencies (L-, C- and X-bands) to different vegetation covers by 

applying a global-scale unsupervised classification of VOD. A 

combination of these frequencies (LCX-VOD) is also studied. Two 

land cover datasets are used as benchmarks and, conceptually, 

serve as proxies of vegetation density. Results confirm that L-VOD 

is appropriate for monitoring the densest canopies but, in contrast, 

there is a higher sensitivity of X-, C- and LCX-VOD to the 

vegetation cover in savannahs, shrublands and grasslands. In 

particular, the multi-frequency combination is the most suited to 

sense vegetation in savannahs. Also, our study shows a vegetation-

frequency relationship which is consistent with theory: the same 

canopies (e.g., savannahs and some boreal forests) are classified as 

lighter ones at L-band due to its higher penetration (e.g., as 

shrublands), but labeled as denser ones at C- and X-bands due 

their saturation (e.g., boreal forests are labeled as tropical forests). 

This study complements quantitative approaches investigating the 

link between VOD and vegetation, extends them to different 

frequencies, and provides hints on which frequencies are suitable 

for vegetation monitoring depending on the land cover. 

Conclusions are informative for upcoming multi-frequency 

missions, such as the Copernicus Multi-frequency Image 

Radiometer (CIMR). 

 
Index Terms— Vegetation Optical Depth, remote sensing, 

vegetation density, unsupervised classification, clustering. 

 

 

I. INTRODUCTION 

emote sensing is a useful tool for the regular and global 

monitoring of the ecosystem’s health, vegetation 

distribution and its dynamics, and changes in global carbon and 

water cycles. This is paramount to develop climate change 

mitigation strategies to reduce the global atmospheric CO2 [1], 

[2]. The most widely used techniques for vegetation monitoring 

are based on visible - near infrared vegetation indices 

(VIS/NIR), such as the Normalized Difference Vegetation 

Index (NDVI), which measures the photosynthetic activity and 

its spatial and temporal changes [3]. Still, VIS/NIR indices are 

limited by (i) the influence of clouds and aerosols, and (ii) the 

fact that the relationship of these indices with biomass is limited 

by saturation at high biomass density, as it is only representative 

of the top layer of the vegetation [4]. 

Emerging as a complementary tool overcoming these issues, 

passive microwave remote sensing is nearly transparent to 

clouds and -although with a coarse resolution- is able to sense 

the vegetation at different layers and depths, depending on the 

frequency. In particular, microwave radiometers measure the 

radiation emitted by the Earth’s surface which is a function of 

several parameters including its temperature, soil moisture, soil 

roughness, vegetation water content, and vegetation biomass 

and structure [5]. Vegetation effects are represented in radiative 

transfer models by the scattering albedo and by the attenuation 

of the vegetation over soil and plant microwave emissions. The 

latter is measured by the dimensionless parameter vegetation 

optical depth (VOD), being effective to monitor vegetation 

response to drought [6]. At the low frequencies (i.e., L- band; 

1.4 GHz) the penetration depth of microwaves through the 

vegetation canopy is greater, sampling the vegetation for most 

of the canopy layer thickness [7], [8].  

Several studies have used the VOD to analyze different 

vegetation properties, choosing the appropriate frequency 

depending on which characteristics were to be studied. X-band 

VOD (X-VOD) has been applied to study gross primary 

production and evapotranspiration, as it is representative of the 

photosynthetically active biomass of plants (i.e., canopy leaves; 

[9], [10]). Similarly, [11] provided estimates of the degree of 

iso-hydricity of plants by using the X-VOD in order to exclude 

the stem contribution to the retrievals and keep only a VOD 

signal which is sensitive to the leaf water potential. In contrast, 

when the full vegetation layer in dense canopies is the subject 

under study, the application of L-band VOD (L-VOD) is needed 
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to ensure a larger penetration of the measured microwave 

emissions. L-VOD has been used to study deforestation in 

tropical forests of South America and Africa [12], [13], it has 

been related to vegetation height [14], [15] and it has been 

widely applied to map biomass and to analyze carbon trends 

(e.g., [16], [17], [18]).  

Regarding multi-frequency VOD studies, research in [8] 

compared the sensitivity of L-, C- and X-band VOD to above-

ground carbon measured from airborne Lidar in South and 

Central American forests, showing that L-band is more 

sensitive to carbon density in the dense tropical forests. 

However, the authors also indicated that the synergy of multi-

frequency observations would be appropriate for measuring 

biomass in less dense canopies such as grasslands, shrublands, 

or low forests in the Andes range. Pringent & Jiménez ([19]) 

evaluated the synergy of satellite passive microwave 

observations between 1.4 and 36 GHz for vegetation 

characterization over the tropics also showing the potential of a 

multi-frequency approach. Nevertheless, global analyses of 

vegetation characteristics from multi-frequency VOD are still 

lacking. They are needed to understand which frequencies are 

appropriate to monitor the vegetation density and water content 

from the different vegetation types over the Earth surface. This 

would provide further knowledge on how to study vegetation 

properties with future multifrequency passive microwave 

missions, such as the Copernicus Imaging Microwave 

Radiometer (CIMR), which will operate at L-, C-, X-, Ku-, and 

Ka-bands [20]. 

In this study, we aim to qualitatively analyze, at global scale, 

the sensitivity of VOD at different frequencies (L-, C- and X-

bands) to the vegetation density. To achieve this, an 

unsupervised global scale classification of VOD has been 

implemented, by using these frequencies both separately and 

combined, and compare it to land cover classes, serving here as 

a proxy of vegetation density. Our research questions are: which 

is the qualitative relationship between VOD frequencies and 

land cover classes? And which VOD frequencies could be more 

appropriate to monitor vegetation for the different land cover 

classes? By answering these questions, we will clarify which 

VOD frequencies are more sensitive to the different land cover 

classes, in which regions, and to what extent the result is 

consistent with the fact that lower frequencies are more 

sensitive to denser canopies. 

 

II. DATA  

A. Vegetation Optical Depth 

L-band VOD (L-VOD; 1.4 GHz) is derived from the SMOS- 

IC version 2 product (produced by INRA-CESBIO from the 

SMOS mission; [21]). L-VOD is shown in Figure 1a. In this 

product, both soil moisture and VOD are retrieved 

simultaneously by using the radiative transfer model L-MEB 

(L-band Microwave Emission of the Biosphere), where the 

vegetation layer contributes to the radiative emission at L-band 

by attenuating and scattering the soil emission and by adding its 

own contribution to the total radiation measured above the 

canopy. The SMOS-IC product [22] has the advantage of being 

as independent as possible of auxiliary data, as it considers the 

footprints to be homogeneous in order to avoid uncertainties 

and errors linked to inconsistent auxiliary datasets [21], making 

it more suitable to perform vegetation studies, such as 

vegetation seasonality [23], crop modeling [24], and biomass 

estimation [18], [25]. The SMOS-IC dataset is provided on the 

Equal-Area Scalable Earth Grid version 2 (EASE2) [26] with a 

spatial resolution of 25 x 25 km at 30º of latitude.  

C1-band (C-VOD; 6.9 GHz) and X-band VOD (X-VOD; 

10.7 GHz) products, shown in Figure 1 (b and c), are derived 

from the Advanced Microwave Scanning Radiometer 2 

(AMSR-2) carried on the Global Change Observation Mission 

1st Water (GCOM-W1) satellite. Soil moisture and VOD are 

retrieved by using the land parameter retrieval model (LPRM) 

through a non-linear iterative procedure by applying the 

microwave polarization index [27]. The ground resolutions of 

C- and X-VOD are 35 x 62 km and 24 x 42 km, respectively. 

The dataset is provided on a 25 km grid [28]. The period 

covered in this study spans from 2016 to 2018. 

 

B. Land cover maps 

Two different land cover products are used to study the VOD-

frequency – land cover relationship, as well as to understand 

how different land cover products can impact the results and 

their interpretation. On the one hand, the International 

Geosphere-Biosphere Program (IGBP) has been applied 

(Figure 2a). This is a 17-class land cover dataset obtained with 

unsupervised classification using data from the MODerate 

Resolution Imaging Spectroradiometer (MODIS), and with 

post-classification refinement. Its spatial resolution is 500 

meters [29]. On the other hand, the Copernicus Climate Change 

Service (C3S) provides global 22-class land cover maps at 300 

m spatial resolution for the years 2016 to 2019. Here, the map 

for 2018 has been applied (Figure 2b). C3S global land cover 

maps are consistent with the global annual land cover map 

series from 1992 to 2015 produced by the European Space 

Agency (ESA) Climate Change Initiative (CCI). 

 

III. METHODOLOGY 

A. VOD processing 

C- and X-VOD datasets have been linearly interpolated to 

match the EASE2 25-km grid of L-VOD. Also, four screening 

steps were applied.  

1. Pixels with a fraction of open water bodies, ice/snow, 

and/or urban areas larger than 5% have been screened out.  

2. L-VOD values have been filtered by removing strong 

topography as it may impact the angular signature of 

radiometers brightness temperatures [30].  

3. Since the presence of Radio Frequency Interferences (RFI) 

can affect the quality of the retrievals, the RMSE between 

the modeled brightness temperature (obtained with the L-

MEB model) and the SMOS measured brightness 

temperature was used as an indicator of the retrieval 

quality. Values with RMSE > 6 K have been screened out 

[22]. Note that the second and third steps were only applied 

to SMOS data, as the AMSR2 product is already filtered 

by those parameters. 
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4. Outliers for the three VOD products have been removed by 

(i) computing the differences between raw VOD data and 

30-day smoothed VOD data (moving average) and (ii) 

removing values lower/higher than the 10th/90th percentiles 

of this result.  

The VOD values have been yearly averaged using both the 

ascending and descending orbits to remove the VOD diurnal 

variations due to their sensitivity to the vegetation water content 

and canopy rain interception. The coefficient of variation of the 

year time-series has also been calculated, where all the pixels 

with a coefficient of variation higher than 1 were excluded due 

to their high dispersion. Moreover, only pixels with a ample 

higher than 50 days per year have been considered in this 

analysis. 

                

Fig. 1. Mean VOD (January 2017-December 2018): (a) L-VOD derived from SMOS-IC; (b) C-VOD and (c) X-VOD 

derived from AMRS2. 
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Fig. 2. Land Cover datasets: IGBP (a) and C3S (b). The categories in this figure have been modified, as shown in Table 
I, to dist inguish both datasets (the original IGBP Land Cover has 17 categories, while C3S has 22). Categories not 
mentioned in Table 1 were modified based on the closest correspondence between IGBP and C3S. 

 
 

 
 

TABLE I 
LAND COVER AGGREGATION 

 

IGBP Land Cover C3S Land Cover Grouped class 

Evergreen needleleaf forests 

Deciduous needleleaf forests 

Deciduous broadleaf forests 

Tree cover, needleleaved, evergreen, closed to open 

Tree cover, needleleaved, deciduous, closed to open 

Tree cover, broadleaved, deciduous, closed to open 

Forests (except Tropical) 

Evergreen broadleaf forests Tree cover, broadleaved, evergreen, closed to open Tropical forest 

Closed shrublands 

Open shrubland 

Shrubland Shrubland 

Woody savannas 

Savannas 

Mosaic tree and shrub (>50%)/ herbaceous cover (<50%) 

Mosaic herbaceous cover (>50%)/tree and shrub (<50%) 

Savanna 

Grasslands 

Croplands 

   Grassland 

   Cropland, rained Cropland, irrigated or post flooding 

Grassland and Cropland 
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B. Unsupervised classification analysis of VOD 

A K-means clustering for the three VOD frequency bands 

individually, and for the combination of the three frequencies, 

has been applied. For the latter (LCX-VOD), the three 

frequencies have the same weight, meaning that are equally 

important for the clustering process. Each VOD cluster is 

compared to each land cover class. The land cover is used as a 

qualitative proxy of the density of vegetation. The unsupervised 

machine learning K-means algorithm allocates each data point 

to the nearest cluster by finding the smallest Euclidean distance 

between the input vector and the centroid vector [31]. The 

number of clusters was selected from a silhouette analysis [32] 

on K-mean clustering computed from 5 to 9 labels. Silhouette 

analysis is a goodness-of-clustering index which studies the 

separation distance between the resulting clusters. It ranges 

between - 1 and 1. Coefficients near to +1 indicate that the 

sample is far away from the neighbor clusters (i.e., it can be 

only assigned to one cluster), while coefficients close to 0 

indicate that the cluster is very close to the decision boundary 

between two clusters (i.e., its classification is not clear). 

Negative values indicate that those samples might have been 

assigned to the wrong cluster. The silhouette analysis displayed 

in Figure 3 shows that using five clusters provides an 

appropriate clustering, with all their silhouette coefficients over 

0.6, being greater than those found for 6 to 9 clusters divisions 

(Figure S1). For the 5-clusters configuration, the combination 

of the three frequencies only shows few negative values. For 

these reasons, finally five different clusters were applied to 

study the relationship between single frequency and multi-

frequency VODs and the different land cover classes.  

 

C. Reclassification of land cover 

IGBP and C3S land cover maps have been resampled to the 

EASE2 25-km grid by assigning to each pixel the dominant 

class. Only the pixels with a dominant fraction of a single class 

higher than 60% have been included in the analysis, to 

guarantee a more representative and homogeneous sample. To 

compare the same number of clusters and land cover classes, 

both LC datasets were reclassified in 5 categories which 

encompass all major vegetation types on Earth. Table I shows 

the aggregation of land cover classes according to their 

vegetation canopy density. Figures 4a and 4b show the maps of 

the resulting reclassifications. Note that the homogeneity filter 

mentioned above removed more pixels in the C3S dataset than 

in the IGBP land cover dataset. Therefore, the fact that C3S raw 

dataset is more heterogeneous than IGBP dataset, representing 

the land with 5 more classes, causes a larger loss of data when 

filtered (e.g., no data is available in large regions of North 

America and Australia; Figure 4b).  

Concerning to differences between land cover classifications 

and the accuracy of the products, some studies [33], [34] have 

shown that the accuracy of the different land cover maps is 

below 60%. Part of the differences between IGBP and C3S are 

also due to their different spatial resolutions. The higher 

resolution of C3S can partially explain its higher heterogeneity. 

Therefore, results will be also interpreted and discussed 

according to differences between land cover products. 

 

 

 

 

Fig. 3. Silhouette analysis for K-means clustering on sample data with 5 labels. Each cluster is represented by a horizontal 
“fin shark” shape. It indicates a decreasing number of pixels from the upper, widest part, to the lower, thinnest part (e.g., in 
cluster 2 a lot of pixels are closer to cluster 1 than to cluster 3). Please refer to the supplementary material for a detailed 
description of the silhouette analysis from 6 to 9 labels. 
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D. Performance of the classification 

The resulting clusters (Section III.B) have been matched to 

each land cover class (Section III.C), and interpreted according 

to vegetation density. The performance of the classification 

algorithm has been analyzed by comparing the VOD clustering 

with the land cover types in two steps.  

First, the performance has been assessed globally by doing 

an overall cluster-class fitting analysis (i.e., without evaluating 

the specific cluster-class pairs performances) for each 

frequency and for the combination of frequencies. To that goal, 

three metrics have been used:  

a. Homogeneity (of VOD clusters): measures the 

normalized conditional entropy of the class 

distribution given the proposed clustering (hk). Thus, 

it serves to evaluate how homogeneous the proposed 

clustering is. It is computed as 1-hk to fulfill the 

convention of 1 being desirable (full homogeneity) 

and 0 undesirable (full heterogeneity). Here, we 

express it as a percentage to ease the interpretation. 

b. Completeness (of land cover classes): measures the 

normalized conditional entropy of the clusters 

distribution given the proposed land cover classes (hc). 

Thus, it serves at evaluating how complete the 

proposed land cover classes are. It is computed as 1-hc 

to fulfill the convention of 1 being desirable (full 

completeness) and 0 undesirable (full 

incompleteness). Here, we express it in percentage to 

ease the interpretation. 

c. V-measure: it corresponds to an entropy-based 

measure that evaluates the accuracy by using a 

combination of homogeneity and completeness. It is 

computed as the harmonic mean of distinct scores of 

these two metrics. Here, it is expressed as a percentage 

to ease its interpretation. 

Further description of the three overall performance metrics 

is found in [35].  

Second, the specific performance of each cluster-class pair 

has been calculated for each frequency and for the combination 

of frequencies. This has been done (i) for both land cover 

classifications separately, and (ii) only considering the pixels 

with the same land cover label in both classifications in order 

to test the consistency of the results given some inaccuracies 

and mismatching in land cover datasets (Section III.C). To do 

so, matching matrices between clusters and classes have been 

computed, with diagonal cells indicating the expected land 

cover class – VOD cluster matchings. Then, two metrics have 

been used to test the cluster-class performances: 

a. The cluster consistency (i.e., for VOD): measures the 

percentage of a VOD cluster which is formed by the 

same land cover class. It ranges from 0%, when the 

cluster is totally inconsistent, to 100%, when the result 

is totally consistent.  

b. The class consistency (i.e., for land cover classes): 

measures the percentage of a land cover class which is 

assigned to the same VOD cluster. It ranges from 0%, 

when the class is totally inconsistent, to 100%, when 

the class is totally consistent. 

Finally, note that the goal of the performance analysis is not 

to determine how accurate is the land cover classification. This 

is out of context given the low spatial resolution of passive 

microwave measurements: VIS/NIR sensors are the appropriate 

tools to this task. Instead, we aim at determining a qualitative 

correspondence between land cover classes and VOD clusters 

and frequencies (see Section I).  

 

E. Changes in vegetation density and wetness between seasons 

Further study of vegetation patterns has been conducted by 

including seasonal analyses. In that sense, the K-means 

clustering has been computed separately for VOD averages of 

the periods December-February, March-May, June-August, and 

September-November. The changes between March-May and 

June-August, and between June-August and September-

November have been evaluated both globally and regionally. 

Five regions including different land covers and seasonal 

patterns have been studied: (i) the US Corn Belt and southern 

Canada, (ii) the Sahel, (iii) the Iberian Peninsula, (iv) the 

Miombo woodlands in southern Africa, and (v) boreal forests 

in Russia. Results have been compared to the expected 

vegetation patterns and literature and have been interpreted not 

only according to vegetation density, but also to vegetation 

wetness/dryness, as seasonal patterns of VOD are indicative of 

both magnitudes.  

Transitions including the December-February period have 

been excluded after checking that the screening of snow and 

frozen ground regions in the Northern Hemisphere involved 

losing too much information, thus making clustering results not 

comparable with other seasons.   

 

IV. RESULTS AND DISCUSSION 

A. Enhanced sensitivity of L-band to vegetation density at 

global scale 

Table II shows the three metrics applied to evaluate the 

performance of the classification method for each VOD 

frequency and their combination. Results show that K-means 

clustering performs better at L-VOD for both IGBP and C3S 

classifications (V-measures = 45.5% and 50.4%, respectively), 

followed by LCX- VOD (34.8% and 37.4%), and decreasing as 

TABLE II 
CLUSTER   EVALUATION MEASURE: HOMOGENEITY, COMPLETENESS 

AND V-MEASURE (IN %)  

 

IGBP classification 

Frequency Homogeneity Completeness V-measure 

X-VOD 29.0 28.6 28.9 

C-VOD 32.5 32.8 32.6 

L-VOD 45.3 45.6 45.5 

LCX-VOD 34.6 34.9 34.8 

C3S classification 

Frequency Homogeneity Completeness V-measure 

X-VOD 29.6 32.3 31.0 

C-VOD 32.9 37.0 34.9 

L-VOD 47.7 53.4 50.4 

LCX-VOD 35.4 39.6 37.4 
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frequency increases (C- and X-VOD; V-measures ~34% and 

~30%, respectively; Table II).  

These results are consistent with the enhanced sensitivity 

(due to low saturation) of the L-VOD in the densest vegetation, 

in contrast to the VOD at higher frequencies (e.g., [7], [14]). In 

addition, the fact that metrics’ results for LCX-VOD are in the 

same range as those for single frequencies (Table II), suggests 

that complementarity between VOD frequencies exists, as 

reported in previous research [8], although it needs further 

study. Still, it is important to mention that the performance 

analysis reported in Table II includes the five VOD clusters at 

global scale. Hence, these results are not able to indicate the 

best-suited band for monitoring each type of vegetation. 

 

B. Global relationship between VOD clusters and land cover 

classes 

Figures 4c to 4f show the maps of clusters obtained by the 

unsupervised K-means classification using L-, C-, X-VOD 

bands, and their combination, LCX-VOD. Visually, clusters 1 

and 4 are linked to low vegetation in large grassland and 

shrubland regions over the world, while clusters 2 and 5 are 

linked to tropical and other (mainly boreal) forests (Figure 4). 

These patterns are general and show relevant exceptions in 

some frequency-land cover correspondences which are 

discussed in next sections (e.g., northernmost boreal regions at 

L-band are linked to the shrubland-like cluster 4 in the IGBP, 

while the area is partially covered by forests in the C3S). 

Figure 5 shows the matching matrices between VOD clusters 

and land cover classes together with their consistencies. It also 

shows that cluster 3, which has a fragmented distribution in 

Figure 4, is mostly linked to savannas according to the IGBP 

classification. Figure 5 confirms the expected relationship 

between clusters and land covers. In that sense, the diagonal 

cells in Figure 5 match with the highest number of pixels of 

each cluster in 85% of cases (17 out of 20) for the IGBP 

classification. In the case of C3S, this percentage is lower (12 

out of 20; 60%), mainly because there is a low number of 

samples of savannah pixels in the C3S land cover classification. 

Nevertheless, a qualitative trend is appreciated with two low 

vegetation density clusters (3 and 4) being assigned also to a 

low vegetation density land cover (grasslands/croplands). 

Therefore, a general cluster-land cover linkage can be defined 

as in Table III. 

Importantly, this relationship is only used for a general 

interpretation of the results and requires further investigation as 

it is not homogeneous for all land cover–frequency pairs. 

Hence, results shown in Figures 4 and 5 are hereafter detailed 

and interpreted. The explanation is structured in two 

subsections ordered by increasing vegetation density to ease the 

interpretation. 

 

C. Multifrequency and high frequency approaches are suited 

to sense low vegetation canopies and savannahs 

Qualitatively, the spatial distribution of clusters 1 and 4 is 

linked to low vegetation density land cover classes. They are 

mainly found in grassland and open shrubland regions in central 

Australia, the Sahel, southern Africa, central and southern 

Argentina, central Asia, and -partially- the Great Plains in North 

America (Figure 4). Also, at L-band, the shrubland-like cluster 

4 is found in African subtropical savannahs, as well as in 

northernmost boreal regions dominated by either forests or 

shrublands depending on the land cover map studied. These two 

cases are discussed in Section IV.D.  

According to Figure 5, the grass-like cluster 1 is mostly built 

by pixels of the class cropland/grassland (~50% for IGBP, 

~60% for C3S), and by pixels of savanna and shrubland in a 

lower proportion. The cluster consistency of cluster 1 is very 

similar among frequencies, being moderate to high (52% to 

68%, Figure 5). It is the highest for the LCX-VOD combination, 

according to the IGBP, and for the L-VOD, according to the 

C3S (Figure 5). The low density of grasslands and croplands 

suggests that an improved sensitivity of high and 

multifrequency approaches should be expected, and that L-band 

should be less prone to study this kind of vegetation. The 

seasonal changes shown in Figures 6, 7, S3 and S4 confirm this 

fact. On the one hand, grass-like (cluster 1), and shrub-like 

(cluster 4) vegetation increase their density in the Sahel both for 

the beginning of the rainy season (June) and until the last rain 

dates in the region (October). This is detected in a much larger 

extension by X-band than by L-band (Figures 6 and 7). 

Spatially, similar patterns to those of X-band are found for C- 

and LCX-bands (Figures S3 and S4). On the other hand, in the 

Iberian Peninsula, the summer drying trends captured by L-

band are specifically found in the southwestern region, 

dominated by savannahs. In contrast, X-, C- and LCX-bands 

detect losses of vegetation density/wetness in the entire Iberian 

Peninsula, including the central regions of Spain where large 

extensions of wheat crops are harvested in June-July (Figure 6). 

At the X-band frequency this is detected as a transition from a 

savannah-like cluster 3 to a grass-like cluster 1, likely due to 

some saturation of X-band when the crop fields are wet during 

spring. At L-band, the crop harvesting regions are not detected 

(Figure 6a). 

Still, the behavior of croplands is complex and depends on 

their density. In the large crop extensions of the US Corn belt 

and southern Canada, all frequency bands detect the growth of 

vegetation between spring and summer (Figures 6, S3 and S4). 

Changes detected by X-band (35%) are larger in extension than 

those detected by L-band (22%), but the latter has shown a good 

capacity to capture crop phenology and to model crop yield in 

the region [36], [37]. 

 Also, it should be noted that grasslands show a complex 

behavior at L-band, since the presence of a litter layer of dead 

grass below the green vegetation can have a disproportionate 

effect on the L-band emission if wet [38]. This could impact the 

TABLE III 
CLUSTER-LAND COVER RELATIONSHIP 

Cluster label Dominant land cover 

1 Croplands and grasslands 

2 Tropical forests 

3 Savannahs 

4 Shrublands 

5 Other forests 
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interpretation of results in grasslands, which are also limited by 

uncertainties between IGBP and C3S products and by lack of 

homogeneous data for the latter (especially in grasslands and 

shrublands in Australia and Argentina for the C3S 

classification; Figures 4a and b). 

Concerning to cluster 4 (shrub-like vegetation), for C-, X-, 

and LCX-VOD, it is dominated (>55%) by shrublands in the 

IGBP classification, and by croplands/grasslands in the C3S 

classification (where shrublands account for ~30% of the 

cluster). For these frequencies, according to the IGBP, the 

spatial patterns of clusters 1 and 4 distinguish well the 

distribution of grasslands and shrublands, respectively, in 

Australia, southern Africa and Argentina. At these frequencies, 

cluster 4 is also found in the driest areas of the Asian steppes 

and the Sahel (Figure 4). In that sense, note that the shrub-like 

cluster 4 is linked to the driest and sparsest vegetation (closer 

to the deserts), while the grass-like cluster 1 is its natural 

continuation in the biogeographic gradient towards more humid 

climates (e.g., from north to south in the Sahel, and from inner 

to outer regions in Central Asia and Australia). Cluster 4 is thus 

mostly representing open shrublands, with the lowest 

vegetation density. 

At L-band, instead, shrubland pixels in Central Asia, 

Argentina, Australia, and the Sahel are aggregated into the 

widely extended, grassland-dominated cluster 1 (Figures 4 and 

5). This is relevant as it shows a poor capacity for 

discriminating shrublands from grasslands at L-band 

(shrubland class consistency of 22% for IGBP and 6% for C3S; 

Figure 5). In contrast, the consistency of cluster 4 is the highest 

for the X-VOD product in the IGBP analysis. In the C3S 

classification, a lower agreement (~30%) is found for the high 

 
Fig. 4.  Maps of the land cover aggregations: (a) for IGBP; (b) for C3S. Maps of the resulting classifications at: (c) LCX-VOD combination; 

(d) L-band; (e) C-band, and (f) X-band. 
 

d) L-VOD

e) C-VOD

a) IGBP b) C3S

c) LCX-VOD

f) X-VOD
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frequency bands and the combination, but it is still much higher 

than that for L-band (6%).  

To sum up, the better suitability of high frequencies (and 

especially X-VOD) in open shrublands is consistent with their 

lower penetration capacity. In contrast, L-VOD can penetrate 

deeply the vegetation and remains unsensitive to differences 

between grasslands and shrublands, which suggests that the 

higher penetration of this frequency may reduce its sensitivity 

to vegetation properties (e.g., density) in short canopies. 

Finally, cluster 3 is partially linked to savannahs according 

to the IGBP (~45% in the class consistency; Figure 5). 

Nevertheless, its distribution is fragmented and dominates 

savannahs and shrublands in northeastern Brazil, some regions 

in Africa and Europe which are linked to low forests, 

savannahs, and/or transition regions and, mainly at X-band, an 

important part of the US Corn Belt (Figure 4). No analysis is 

feasible with the C3S land cover classification due to a very low 

consistency of cluster 3 at all frequencies (≤3%). This is due to 

a much lower number of savannah samples if compared to other 

land covers for C3S (Figure 5 and Section IV.E). For the IGBP 

product, the consistency of cluster 3 increases when the 

clustering algorithm combines the three frequency bands (LCX-

VOD; 48%; Figure 5). Slightly lower cluster consistency values 

are found at C-band (42%) and at L- and X-bands (39% and 

37%, respectively). 

The analysis of cluster changes in African savannahs 

(Miombo woodlands) between March and August reports 

drying trends at X-band, and no changes at L-band, consistently 

with the coupling of water storage and leaf phenology in the 

region (see Fig. 3c.i. in [23]). At X-band, the changes from 

cluster 2 (very dense forest) to cluster 5 (other forest), and from 

cluster 5 (other forest) to cluster 3 (savannahs), show how 

drying patterns lead to the reduction of saturation at X-band. 

Concerning the June-August to September-November 

variations, X-band clusters keep showing vegetation 

density/wetness loss, which is unexpected according to the 

patterns reported in [23]. This might be caused by no recovery 

of leaf greenness in these periods due to extreme droughts in 

the region (values of the Standard Precipitation 

Evapotranspiration Index, SPEI, are close to -2 at the 3-month 

time scale during the study periods; [39]). 

Overall, results are coherent with the fact that high-frequency 

data is more sensitive to leaves than L-VOD, which is more 

sensitive to stems and other woody components [40]. These 

results suggest that multifrequency approaches and high 

frequencies could improve our capability to estimate vegetation 

properties from passive microwave sensors in low vegetation, 

especially in shrublands. The use of a combined LCX-VOD 

data synergy is promising, with its highest sensitivity being 

found in savannahs.  

 

D. Relationship between frequencies and vegetation density 

through forests and savannahs  

Figure 4 shows that cluster 2 is qualitatively linked to the 

densest forests in tropical regions, regardless of the frequency 

band and the land cover. Instead, cluster 5 is linked mainly to 

IGBP boreal forests at L-band, and to African subtropical 

savannahs at LCX-, C- and X-bands. In addition, it must be 

noted that the dense-forest cluster 2 is also observed in boreal 

forests at LCX-, C- and X-bands, with larger extension with 

increasing frequency, and that this cluster also dominates the 

forest-to-tundra transition of the northernmost latitudes at X-

band (Figure 4). Also, at X-band boreal forests show increasing 

cluster 2 extension when the vegetation becomes denser (June-

August; Figure 6). 

In contrast, it is worth noting that, according to the C3S 

classification, northernmost boreal forests at L-band are 

dominated by a low-density vegetation cluster (cluster 4; Figure 

4). The mismatch between land cover maps in this transition 

region is likely due to the presence of sparser and lower trees if 

compared to the densest taiga regions. Also, the shrub-like 

cluster 4 (low density vegetation) is clearly dominant in sub-

tropical African savannahs al L-band.  

These contrasting patterns provide evidence of the 

relationship between frequency and vegetation density: boreal 

forests (which are not as dense as tropical ones) are sensed as 

very dense canopies with increasing frequencies, due to 

saturation, but the forest-to-tundra transition is sensed 

homogeneously as low-density vegetation by the lowest 

frequency, due to its higher penetration capacity (Figure 4). 

Similarly, high frequencies saturate in savannah regions 

sensing forest-density vegetation, while the highest penetration 

of L-band ignores the presence of tree canopies in these areas 

(Figure 4). 

A global scale quantitative analysis of this relation is reported 

in Figure 5. Cluster 2 is dominated by tropical forests. 

Decreasing cluster consistency is observed for increasing 

frequencies (99% for L-VOD, ~77% for LCX-VOD, ~72% for 

C-VOD and ~52% for X-VOD). This is regardless of the land 

cover map applied. In that sense, at C- and X-VOD, the 

construction of this cluster is mixed with other types of forests, 

and with shrubland to a lesser extent in X-VOD. As in the 

qualitative analysis of Figure 4, the effect of saturation at high 

frequencies is also self-evident here, confirming the need of L-

band VOD for vegetation monitoring in tropical rainforests [7], 

[8].  

In contrast, the consistency of the tropical forest land cover 

class is higher for X-VOD and LCX-VOD (~73%) and 

decreases for L-VOD (69%) and C-VOD (66%). Hence, the 

spatial patterns of the highest frequency and the combination of 

frequencies are similar to those of optical-infrared-based land 

cover maps. Note that, when comparing optical-infrared 

vegetation indices to X-band VOD, they show a high 

correlation, and a lack of saturation. In contrast, when 

comparing these indices to L-band VOD, they saturate and 

show lower correlation (e.g., see Figure 4 in [41]). 

Concerning to the cluster 5 (lighter forest density), Figure 5 

shows that it has the highest cluster consistency for LCX-VOD 

according to the C3S land cover, and for L-VOD according to 

the IGBP. Cluster consistency decreases with increasing 

frequencies for both land cover maps, in line with the 

penetration depth (Figure 5).  

In addition, note that non-tropical forests are formed by a mix 

between evergreen and deciduous forests, and by both broadleaf 

and needleleaf forests. Future studies should address time and 

spatial dynamics in the relationship between vegetation density 

and microwave frequencies in these forests, which could reflect 

time-variations in absorption and volume scattering effects on 

VOD [42], [43]. 
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Fig. 5. Matching matrices among VOD frequencies and land cover datasets (IGBP: left; C3S: right). Bold numbers indicate 

which land cover class is dominant in each VOD cluster. Light blue is used to highlight which diagonal cells contain the 

dominant land cover (i.e., in which cases the VOD cluster and the expected land cover class match). The row summary (far 

right column) displays the consistency of VOD clusters (Clust. cons.; i.e., the percentage of a VOD cluster which is formed 

by the dominant land cover). The column summary (bottom row) displays the consistency of land cover classes (Class cons.; 

i.e., the percentage of a land cover class which is assigned to the corresponding VOD cluster).  
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Fig. 6. Maps of vegetation density/wetness gain (green) and loss (red) at X-band (a) and L-band (b) between March-May and 

June-August. Gains (losses) correspond to changes from either lower/drier (denser/wetter) vegetation to denser (lower) 

vegetation clusters. (c) Percentages of main cluster changes in five regions: (i) Croplands in southern Canada and the US Corn 

Belt; (ii) the Sahel; (iii) the Iberian Peninsula; (iv) the Miombo woodlands; and (v) boreal forests in Russia. Greenish colors 

show gain of density/wetness while reddish colors show loss of it. Examples of cluster changes are grass/crop to savannah 

(1→3, and vice versa), shrub to grass/crop (4→1), forest to savannah (5→3), forest to densest-canopy forest (5→2, and vice 

versa), and shrub to forest (4→5). 
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Fig. 7. Maps of vegetation density/wetness gain (green) and loss (red) at X-band (a) and L-band (b) between June-August and 

September-November. Gains (losses) correspond to changes from either lower/drier (denser/wetter) vegetation to denser/wetter 

(lower/drier) vegetation clusters. (c) Percentages of main cluster changes in five regions: (i) Croplands in southern Canada and 

the US Corn Belt; (ii) the Sahel; (iii) the Iberian Peninsula; (iv) the Miombo woodlands; and (v) boreal forests in Russia. 

Greenish colors show gain of density/wetness while reddish colors show loss of it. Examples of cluster changes are grass/crop 

to savannah (1→3, and vice versa), shrub to grass/crop (4→1), savannah to forest (3→5, and vice versa), and shrub to savannah 

(4→3). 
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E. Limitations and future work 

The main limitations found in this study correspond to the 

differences between both land cover datasets, and to the non-

perfect accuracy of land cover products. Further, the 

generalization of IGBP and C3S from 13 and 19 classes (water 

bodies, bare soils and snow were excluded), respectively, to 5 

classes, naturally led to the loss of the ability to describe 

detailed land cover characteristics. For example, open 

shrublands are much less dense than closed shrublands. The 

same occurs with savannahs and woody savannahs, where the 

latter may be more sensitive to L-VOD as the volume of woody 

structure is higher and because woody savannas might be 

covered with forest canopy up to 60%. On the other hand, non-

woody savannas are more sensitive to higher frequencies, as 

these areas are regions of transition between forests and low-

density vegetation zones, such as grasslands.  

In addition, various studies [33], [34] have shown that the 

accuracy of different land cover maps is below 60%. Some 

mismatching regions can be found, for instance, in the north of 

Russia, where IGBP-shrubland pixels are classified as forests 

by the C3S dataset, or in northeastern Brazil between savannah 

(IGBP) and shrublands (C3S), to name a few. Lastly, the 

aggregation needed due to the different spatial resolutions of 

the land cover and the VOD products mixed different types of 

vegetation, explaining a reduced accuracy of the matching 

matrices. It must be recall again that, for this study, the absolute 

accuracy of the land cover-VOD matches is not relevant, while 

the focus is instead on the relative comparison across 

frequencies and land cover types. 

To assess the impact of the inconsistencies in the results, 

Figure 5 has been replicated by only considering those pixels 

where IGBP and C3S land cover labels are the same (Figure S2 

in the Appendix). Results are consistent in general terms. In that 

sense, diagonal cells in Figure S2 match with the highest 

number of pixels of each cluster in 60% of cases (12 out of 20), 

compared to 85% for IGBP alone and to 60% for C3S alone 

(Section IV.B). Importantly, the results show again the higher 

cluster consistency for tropical forests at L-band, the decreasing 

consistency with increasing frequency in this forest type, or the 

similar behavior of all bands in the grasslands/croplands 

category (Figure S2), thus driving to the same main conclusions 

that have been derived from the separate IGBP and C3S 

analyses. Still, note that the main inconsistency between both 

land cover classifications relies on the low number of pixels 

simultaneously classified as savannahs (n ~ 500) due to a low 

sample in this land cover for C3S (n ~1000) in front of IGBP (n 

~20000).  

Also, a lower sample is found for shrublands (n ~ 4000) if 

compared to C3S (n ~ 12000) and IGBP (n ~ 23000). 

Consequently, a low number of pixels are assigned to the VOD 

clusters matching these land cover types, thus suggesting that 

the separate analysis presented in Figure 5 shows greater 

completeness than that using only the coincident IGBP-C3S 

pixels (Figure S2), which has been used complementarily to 

confirm the consistency of the results.  

This study has shed light on the qualitative relationship 

between vegetation types/density and VOD frequencies at a 

global scale, showing that distinct density-frequency patterns 

emerge in most biomes and suggesting the application of high-

frequency and multi-frequency approaches to sense low and 

mid-density vegetation covers. This is, therefore, a starting 

point for globally assessing which frequencies and in which 

regions are more appropriate to sense different vegetation 

canopies. To that goal, future work could take advantage of 

biomass [44], new global canopy height models [45], and/or 

future missions. In that regard, active microwave measurements 

from the NISAR (L-band; [46]) and BIOMASS (P-band; [47]) 

missions, which are planned to be launched in 2023, will 

provide further information to determine the capability of 

different low frequencies to study forests worldwide. 

Furthermore, passive multifrequency microwave information 

will be available from the Copernicus Imaging Multifrequency 

Radiometer (CIMR; [48], planned for 2029) to precisely 

quantify the suitability of different frequencies and of multi-

frequency approaches to sense different vegetation canopies.  

V. CONCLUSION 

This research provides an unsupervised classification of L-, 

C- and X-VOD bands and of the multi-frequency combination 

of them, and qualitatively compares its results with land cover 

maps. Because land cover maps are used here as proxies for 

vegetation density, a qualitative assessment of the suitability of 

different VOD frequencies to sense different vegetation 

densities is provided at a global scale. The results derived from 

the present work complement quantitative approaches 

investigating the link between VOD and biomass and extend 

them to different frequencies, to potential multi-frequency 

synergies, and to all major vegetation types in Earth.  

The clustering analysis confirms that using L-VOD is more 

reliable for vegetation density monitoring at global scale. 

Nevertheless, L-band is distinctly best-suited for vegetation 

monitoring only in dense canopies. In contrast, the spatial 

distribution of C- and X-VOD clusters shows that these 

frequencies are tightly linked to areas with very low vegetation 

density, such as grasslands and shrublands. Medium-low 

density vegetation areas, such as savannas, can be sensitive to 

either L-VOD or C-VOD, but the performance of the 

combination of three frequency bands is considerably better, 

suggesting that multifrequency approaches are the most 

indicated in this biome.  

Importantly, a relationship between vegetation density, 

microwave frequencies, and their penetration capacity is found 

across most biomes. On the one hand, at the lowest frequency 

(L-band), some denser canopies are classified (i.e., sensed) as 

lighter ones (e.g., some boreal forests, savannahs and 

grasslands are classified as open shrublands). On the other 

hand, at the highest frequencies (C- and X-bands), similar 

canopies are classified as even denser ones (e.g., boreal forests 

as tropical ones). The physical explanation of these results is 

based on the fact that lower frequency bands capture the 

attenuation of soil emissivity due to vegetation as it passes 

through the whole canopy, while higher frequencies capture the 

emission of the upper layers of the vegetation canopy, such as 

leaves and stems, and saturate in dense vegetation conditions. 
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The higher penetration at L-band entails a reduced 

discrimination of vegetation densities in short canopies. These 

results are also confirmed by the increased capacity of high 

frequencies to sense short vegetation greening in the Sahel, by 

crop harvesting in the Iberian Peninsula being detected by X-

VOD but not by L-VOD, and by saturation of the X-band VOD 

when the summer biomass peak in boreal forests occurs. 

Overall, this study shows that the use of different microwave 

frequency bands improves or complements the estimation of 

vegetation properties, such as density. The results provide hints 

on which frequency is more suitable for such estimations 

depending on the land cover. This is especially relevant in semi-

arid regions, where the applicability of multi-frequency 

approaches seems more appropriate, because these regions 

account for 40% of global vegetation and drive important global 

carbon cycle variations. The results presented are informative 

for future vegetation studies relying on upcoming multi-

frequency missions, such as the Copernicus Imaging 

Microwave Radiometer (CIMR). 
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Fig. S1. Silhouette analysis for k-means clustering on sample data a) 6 labels, b) 7 labels, c) 8 labels and d) 9 labels. Each cluster is 

represented by a horizontal “fin shark” shape. It indicates a decreasing number of pixels from the upper, widest part, to the lower, 

thinnest part (e.g., in cluster 2 a lot of pixels are closer to cluster 1 than to cluster 3). 
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Fig. S2. Matching matrices among VOD frequencies and land cover datasets (for pixels with the same land cover labels in 

IGBP and C3S classifications). Bold numbers indicate which land cover class is dominant in each VOD cluster. Light blue is 

used to highlight which diagonal cells contain the dominant land cover (i.e., in which cases the VOD cluster and the expected 

land cover class match). The row summary (far right column) displays the consistency of VOD clusters (Clust. cons.; i.e., the 

percentage of a VOD cluster which is formed by the dominant land cover). The column summary (bottom row) displays the 

consistency of land cover classes (Class cons; i.e., the percentage of a land cover class which is assigned to the corresponding 

VOD cluster).  
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Fig. S3. Maps of vegetation density/wetness gain (green) and loss (red) at C-band (a) and LCX-bands (b) between March-

May and June-August. Gains (losses) correspond to changes from either lower/drier (denser/wetter) vegetation to denser 

(lower) vegetation clusters.  

 

a)

b)

C-VOD

LCX-VOD

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3226001

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing 20 

 

 
Fig. S4. Maps of vegetation density/wetness gain (green) and loss (red) at C-band (a) and LCX-bands (b) between June-August 

and September-November. Gains (losses) correspond to changes from either lower/drier (denser/wetter) vegetation to denser 

(lower) vegetation clusters.  
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