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Abstract. An independent set of a graph G is a vertex subset I such that there is no edge joining any
two vertices in I. Imagine that a token is placed on each vertex of an independent set of G. The TS- (TSk-)
reconfiguration graph of G takes all non-empty independent sets (of size k) as its nodes, where k is some
given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on
some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these
reconfiguration graphs. More precisely, we study two main questions for a given graph G: (1) Whether the
TSk-reconfiguration graph of G belongs to some graph class G (including complete graphs, paths, cycles,
complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus
one edge) and (2) If G satisfies some property P (including s-partitedness, planarity, Eulerianity, girth,
and the clique’s size), whether the corresponding TS- (TSk-) reconfiguration graph of G also satisfies P,
and vice versa. Additionally, we give a decomposition result for splitting a TSk-reconfiguration graph into
smaller pieces.

Keywords: Token sliding · Reconfiguration graph · Independent set · Structure · Realizability · Geometric
graph.

1 Introduction

Reconfiguration problems arise when we want to study the relationship between solutions of some given com-
putational problem (called a source problem) such as Satisfiability, Independent Set, Dominating Set,
Vertex-Coloring, and so on. The main goal of reconfiguration problems is to study the so-called reconfigura-
tion graph—a graph whose nodes are solutions and their adjacency can be defined via some given reconfiguration
rule. A typical example is the well-known classic Rubik’s cube puzzle, where each configuration of the Rubik’s
cube corresponds to a solution, and two configurations (solutions) are adjacent if one can be obtained from
the other by rotating a face of the cube by either 90, 180, or 270 degrees. The question is whether there exists
a path from an arbitrary node to the one where each face has only one color. Reconfiguration graphs have
been studied in the literature from three major viewpoints: structural properties (connectivity, Hamiltonicity,
planarity, and so on), realizability (which graph can be realized as a certain type of reconfiguration graph), and
algorithmic properties (whether certain question, such as finding a (shortest) path between two given nodes, can
be answered efficiently, and if so, design an algorithm to do it). For an overview of this research area, readers
are referred to the surveys [10,15,16].

One of the classic reconfiguration rules is the so-called Token Sliding (TS). Any vertex subset of a graph
G can be seen as a set of tokens placed on some vertices of G. Under TS, a token on some vertex v can only
be moved to one of v’s unoccupied adjacent vertices. Two vertex subsets are adjacent under TS if one can be
obtained from the other via a single TS-move. The token graph Fk(G) [14] is a reconfiguration graph whose nodes
are size-k vertex subsets of G and edges are defined under TS. The study of Fk(G) dates back to the 1990s, when
Alavi, Behzad, Erdős, and Lick [1] considered several basic structural properties (e.g., regularity, bipartitedness,
Eulerianity, etc.) of F2(G) (which they called the double vertex graph). Other well-known reconfiguration rules
are Token Jumping (TJ) and Token Addition/Removal (TAR), which respectively involve moving a token to
any unoccupied vertex and adding/removing a single token to/from some unoccupied/occupied vertex.

In this paper, we take Independent Set as the source problem and consider two types of reconfiguration
graphs whose edges are defined under TS: the TSk-reconfiguration graphs, for some given positive integer k,
whose nodes are size-k independent sets of G (i.e., vertex subsets whose members are pairwise non-adjacent,
also called stable sets) and the TS-reconfiguration graphs whose nodes are independent sets of arbitrary size.
We denote these graphs by TSk(G) and TS(G), respectively. (Similar definitions hold for TJ.) In particular,
each TSk(G) is an induced subgraph of TS(G) and also a subgraph of Fk(G).

The focus of this paper is on purely graph theoretic properties of TS(G) and TSk(G) as opposed to algorithmic
properties, which have been well-studied in the literature. In particular, the tractability/intractability of whether
there is a path between two given nodes and several subsequent questions (e.g., if yes, whether a shortest one can
be found efficiently; whether the statement holds for any pair of nodes; and so on) have been well-investigated
for several graphs G. Readers are referred to [16, Sections 4–5] for a quick summary of the recent results. In
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2 D. Avis and D.A. Hoang

particular, some structural properties regarding the connectivity and diameter of TSk(G) can be derived from
many of these algorithmic results [3,4,5,7,9,11,12]. (See Appendix A.) On the other hand, the realizability and
structural properties of TS(G)/TSk(G) have not yet been systematically studied and we initiate this study here.
More precisely, given a graph G, we provide some initial results regarding two main questions: (1) Whether the
TSk-reconfiguration graph of G belongs to some graph class G and (2) If G satisfies some property P, whether
TS(G)/TSk(G) also satisfies P too, and vice versa.

The outline of this paper is as follows. In Section 2, we give an example of TSk-reconfiguration graphs used
as a model for a problem in computational geometry. In Section 3, we define some terminology and notation
that are used throughout this paper. In Section 4, for different graph classes G (including complete graphs,
paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete
graphs minus one edge), we study whether there is a graph G whose TSk-reconfiguration graph belongs to G.
(See Table 1.) In Section 5, for different graph properties P (including s-partitedness, planarity, Eulerianity,
girth, and the clique’s size), we focus on answering the following question: if a graph G satisfies P, whether
TS(G) (TSk(G)) does too, and vice versa. (See Table 2.) In Section 6, we present a simple way of decomposing
TSk(G) into TSk-reconfiguration graphs of G’s subgraphs, provided that G contains certain structure. Finally,
in Section 7, we summarize our results and propose some problems and directions for future study.

2 A Geometrical Example

Fig. 1. Point set P with its line segments. A triangu-
lation is shown by the black lines.

1346 25 36

15

56

24

35

Fig. 2. Edge intersection graph G. Each number ab
inside a node represents an intersecting line segment
of P . The stable set corresponds to the triangulation
in Fig. 1 is shaded grey.

In this section we present an example of a TS-reconfiguration graph arising from a well studied problem
in computational geometry: triangulations on a set of planar points. For terminology and notation related to
computational geometry which are not defined here, readers are referred to [17].

Given a set P of n points in the plane, no three collinear and no four co-circular. Two line segments are
intersecting if they cross each other at an interior point of each segment, and non-intersecting otherwise. A
triangulation of P is any maximal set on non-intersecting segments. It is well known that all triangulations
have the same number of edges. The edge intersection graph G of P is the graph whose vertices V are the line
segments with endpoints in P that intersect at least one other line segment. Let L be the remaining set of line
segments defined by P . Note that any edge on the convex hull of P is in L and there may be other such line
segments. In Fig. 1 we give a set of 6 points and show the 15 segments they define. A triangulation is shown by
the solid black lines. The set L consists of the seven segments {12, 14, 16, 23, 26, 34, 45}. We see that the edges
{16, 26, 45} are internal to the convex hull. Two vertices in G are connected by an edge if their corresponding
line segments intersect. In Fig. 2 we give the intersection graph G for the example, which has α(G) = 4. The
triangulation appears in G as the stable set {15, 35, 36, 56}.

Each vertex of TSk(G) corresponds to a set of k pairwise non-intersecting line segments. Fig. 3 shows
TS4(G) for the example, where the independent sets are shown as their corresponding triangulations. The top
left triangulation corresponds to the stable set {15, 35, 36, 56}. By token sliding we see that it is adjacent in
TS4(G) to stable sets {15, 35, 25, 56}, {46, 35, 36, 56} and {15, 35, 36, 13} corresponding to the triangulations T2,
T6 and T7. Geometrically we see that token sliding corresponds to fliping the diagonal of a convex quadrilateral in
the triangulation. Lawson [13] showed that flipping well-chosen intersecting diagonals of convex quadrilaterals
will lead to the unique Delaunay triangulation, which proves that TSα(G)(G) is connected. This result was
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Fig. 3. Triangulations of P . The red edges correspond to edge flips. In T1 (the triangulation in Fig. 1) the three possible
edge flips, corresponding to token slides 15-46, 56-13 and 36-25 in G (Fig. 2), are shown in blue.

generalized by Bern and Eppstein [2] to the case where a non-intersecting set of the line segments can be
specified and the triangulations are constrained to include these segments. In this case we add these constrained
segments and any segments that intersect them to L. They were able to show that the corresponding constrained
Delaunay triangulation could be obtained after at most O(n2) diagonal flips, giving a corresponding bound on
the diameter of TSα(G)(G). Similar results on connectivity and diameter for some other graph classes are given
in the Appendix A.

3 Preliminaries

For terminology and notation not defined here, readers are referred to [8]. Let G be a simple, undirected graph.
We respectively use V (G) and E(G) to denote its vertex-set and edge-set. For two sets I, J , we sometimes use
I −J and I +J to indicate I \J and I ∪J , respectively. Additionally, if J = {u}, we sometimes write I −u and
I+u instead of I−{u} and I+{u}, respectively. The symmetric difference of I and J , denoted by I∆J , is simply
the set (I−J)+(J−I). The neighbors of a vertex v in G, denoted by NG(v), is the set {w ∈ V (G) : vw ∈ E(G)}.
The closed neighbors of v in G, denoted by NG[v], is simply the set NG(v) + v. Similarly, for a vertex subset
I ⊆ V (G), its neighbor NG(I) and closed neighbor NG[I] are respectively

⋃
v∈I NG(v) and NG(I) + I. The

degree of a vertex v in G, denoted by degG(v), is |NG(v)|. For a vertex subset I, we denote by G[I] the subgraph
of G induced by vertices in I. An independent set (or stable set) of G is a vertex subset I such that for any
u, v ∈ I, we have uv /∈ E(G). On the other hand, a clique of G is a vertex subset K such that for any u, v ∈ K,
we have uv ∈ E(G). We denote by α(G) and ω(G) the maximum size of an independent set and a clique of
G, respectively. The girth of G, denoted by girth(G), is the smallest size of a cycle in G. In case G has no
cycles, we define girth(G) =∞, and say that it has infinite girth, and otherwise G has finite girth. Two graphs
G1 and G2 are isomorphic if there exists a bijection f : V (G1) → V (G2) such that uv ∈ E(G1) if and only if
f(u)f(v) ∈ E(G2). For isomorphic graphs G1 and G2, we write G1 ' G2 or G1 'f G2 to emphasize that their
isomorphism can be verified by the bijection f . A graph is H-free if it has no graph H as an induced subgraph.

We respectively denote by Kn, Pn, and Cn a complete graph, a path, and a cycle on n vertices. The graph
K3 ' C3 is also called a triangle. Kn − e is the graph obtained from Kn by removing exactly one edge. We
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denote by Km,n a complete bipartite graph whose partite sets are of sizes m and n, for some positive integers
m ≤ n. The graph K1,n is also called a star. G is a split graph if V (G) can be partitioned into two sets K and
S, called a KS-partition of V (G), such that K is a clique and S is a stable set of G. It is well-known that any
split graph G has a unique K-max KS-partition of V (G) such that |K| = ω(G) (e.g., see [6]) and we write
G = (K ∪ S,E)K-max.

For a graph G and a positive integer k, the TSk-reconfiguration graph of G, denoted by TSk(G), takes all
size-k independent sets of G as its nodes. Similarly, the TS-reconfiguration graph of G takes all independent
sets of G as its nodes. Two nodes (independent sets) I and J are adjacent in either TS(G) or TSk(G) if there
exist u, v ∈ V (G) such that I − J = {u}, J − I = {v}, and uv ∈ E(G). Naturally, we call a graph F a TSk-
reconfiguration graph if there exists a graph G such that F ' TSk(G) or more precisely F 'f TSk(G) where f
is some bijection that can be used for verifying their isomorphism. One can think of f as a way to label vertices
of F by size-k independent sets of G.

4 Graphs That Are (Not) TSk-Reconfiguration Graphs

In this section, we study the realizability of TSk-reconfiguration graphs. It is trivial that any graph G is also a
TS1-reconfiguration graph, since G ' TS1(G). Therefore, in this section, we always assume k ≥ 2.

For a graph G, let Lk(G) be the graph whose nodes are size-k cliques of G and two nodes are adjacent if
they have exactly k − 1 vertices in common and its complement G is the graph whose vertices are V (G) and
two vertices are adjacent in G if they are not adjacent in G. In particular, L2(G) is also known as the line graph
of G. The following lemma describes a relationship between Lk(G) and the TSk-reconfiguration graph of its
complement G. Fig. 4 illustrates this relationship for k = 2.

Lemma 1. Given a graph G. Then, TSk(G) is a subgraph of Lk(G). Moreover, Lk(G) ' TSk(G) if and only if
G is Kk+1-free.

Proof. By definition, for any I = {a1, . . . , ak} ∈ V (TSk(G)), we have aiaj /∈ E(G) and therefore aiaj ∈ E(G) for
1 ≤ i < j ≤ k, which implies that a1 . . . ak ∈ V (Lk(G)). As a result, the mapping f : V (TSk(G)) → V (Lk(G))
defined by f({a1, . . . , ak}) = a1 . . . ak is bijective. Moreover, if I = {a1, . . . , ak} and J = {a′1, . . . , a′k} are
adjacent in TSk(G), we must have |I ∩ J | = k − 1, and therefore a1 . . . ak and a′1 . . . a′k are adjacent in Lk(G).
Therefore, TSk(G) is a subgraph of Lk(G).

We now claim that TSk(G) 'f Lk(G) if and only if G is Kk+1-free.

(⇒) Suppose to the contrary that TSk(G) 'f Lk(G) and G has a Kk+1 = a1 . . . akak+1. Thus, I = {a1, . . . , ak−1,
ak} and J = {a1, . . . , ak−1, ak+1} are vertices of TSk(G). Since a1 . . . ak−1ak and a1 . . . ak−1ak+1 are adjacent
in Lk(G), we have IJ ∈ E(TSk(G)). It follows that akak+1 ∈ E(G), which means akak+1 /∈ E(G), which is
a contradiction. Therefore, G is Kk+1-free.

(⇐) Suppose that G is Kk+1-free. It suffices to show that IJ ∈ E(TSk(G)) if and only if f(I)f(J) ∈ E(Lk(G)).
Since TSk(G) is a subgraph of Lk(G), the only-if direction is clear. We now show the if direction. Without loss
of generality, let a1 . . . ak−1ak and a1 . . . ak−1ak+1 be two adjacent vertices in Lk(G). Since G is Kk+1-free,
akak+1 /∈ E(G), which means akak+1 ∈ E(G) and therefore IJ ∈ E(TSk(G)), where I = f−1(a1 . . . ak−1ak)
and J = f−1(a1 . . . ak−1ak+1).

ut

In Fig. 4 we see that G contains a triangle and indeed L2(G) is not isomorphic to TS2(G). If we break the
triangle by deleting the edge v1v2 this corresponds to deleting the vertex 12 in L2(G) and TS2(G) along with
adding the edge from 15 to 25. We now see that L2(G) ' TS2(G).

In the rest of this section, for some graph class G, we answer the following question: Does there exist a graph
G such that TSk(G) ∈ G? Our results are described in Table 1.

We now prove some useful observations.

Proposition 2. If H is an induced subgraph of G, then TSk(H) is an induced subgraph of TSk(G). The reverse
does not hold for any k ≥ 2.

Proof. Suppose that there exist I, J ∈ V (TSk(H)) such that IJ ∈ E(TSk(G)). Since IJ ∈ E(TSk(G)), there
exists u, v ∈ V (G) such that I − J = {u}, J − I = {v}, and uv ∈ E(G). Since I, J ∈ V (TSk(H)), it follows
that u, v ∈ V (H). As H is an induced subgraph of G and uv ∈ E(G), we must have uv ∈ E(H). Therefore,
IJ ∈ E(TSk(H)).

Now, if H = C2k and G = K1,k+1, one can readily verify that TSk(H) is an induced subgraph of TSk(G)
but H is clearly not an induced subgraph of G. ut

Proposition 3. Given a graph H and let G = TSα(H)(H). Then, for every k ≥ α(H), G is a TSk-reconfiguration
graph. More precisely, there exists a graph H ′ having |V (H)| + k − α(H) vertices and |E(H)| edges such that
G ' TSk(H

′).
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v1

v2

v3 v4

v5

G

v1

v2

v3 v4

v5

G

12 15

23 25

34 45

L2(G)

12 15

23 25

34 45

TS2(G)

Fig. 4. A graph G, its complement G, its line graph L2(G), and the graph TS2(G). Each number of the form ab inside
a node represents a vertex subset {va, vb} which forms both a node in L2(G) and an independent set of G.

Table 1. Does G such that TSk(G) ∈ G exist (k ≥ 2)?

G Does G exist? Ref.

Kn

yes
Cor. 4|V (G)| = n+ k − 1

|E(G)| = n(n− 1)/2

Pn

yes
Cor. 5|V (G)| = (n+ 1) + k − 2 = n+ k − 1

|E(G)| = n(n− 1)/2

Cn

yes
Cor. 5|V (G)| = n+ k − 2

|E(G)| = n(n− 3)/2

Km,n (m ≤ n)
yes, iff m = 1 and n ≤ k or m = n = 2

Prop. 7|V (G)| = n+ k or |V (G)| = k + 2
|E(G)| = n(n+ 1)/2 or |E(G)| = 2

connected
F = (K ∪ S,E)K-max

yes, iff |NF (v) ∩ S| ≤ k − 1 and |NF (w)| = 1
for every v ∈ K and w ∈ S

Prop. 9|V (G)| = |K|+ |S|+ k − 1

|E(G)| =
(|K|

2

)
+
(|S|

2

)
+
∑

v∈K |NF (v) ∩ S|+
+
∑

v∈K
|NF (v)∩S|6=0

(|K| − 1)

maximal outerplanar yes, iff n ≤ 3 Prop. 10
Kn − e

Proof. Let H ′ be the graph obtained by adding a set X of (k−α(H)) new vertices to H. Any size-k independent
set in H ′ is a disjoint union of X and a maximum independent set in H. Then, G = TSα(H)(H) ' TSk(H

′).

A direct consequence of Proposition 3 when H = Kn is as follows.

Corollary 4. Kn is a TSk-reconfiguration graph, for any integers k ≥ 2 and n ≥ 2.

A direct consequence of Lemma 1 and Proposition 3 is as follows.

Corollary 5. (a) Pn is a TSk-reconfiguration graph, for any integers k ≥ 2 and n ≥ 1.
(b) Cn is a TSk-reconfiguration graph, for any integers k ≥ 2 and n ≥ 3.

Proof. (a) Since Pn is triangle-free, from Lemma 1 we have

Pn ' L2(Pn+1) ' TS2(Pn+1).
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This settles the case k = 2. For k = 3, note that α(Pn+1) = ω(Pn+1) = 2, therefore it follows from
Proposition 3 that Pn is a TSk-reconfiguration graph for every k ≥ 2.

(b) Since C3 ' K3, Corollary 4 settles the case n = 3. For n ≥ 4, again, since Cn (n ≥ 4) is triangle-free, from
Lemma 1 we have

Cn ' L2(Cn) ' TS2(Cn).

This settles the case k = 2. Again, for k = 3, note that α(Cn) = ω(Cn) = 2, therefore it follows from
Proposition 3 that Cn (n ≥ 4) is a TSk-reconfiguration graph for every k ≥ 2.

Under certain conditions, one can construct a new TSk-reconfiguration graph from a known one, as in the
following proposition.

Proposition 6. Let I be an independent set of a given graph G. Let k = |I|+ 1. Let G′ be the graph obtained
from G by adding a new vertex vG and joining it to every vertex in V (G)− I. Then, TSk(G′) is obtained from
TSk(G) by adding a new node I + vG and all incident edges.

Proof. By definition, G is an induced subgraph of G′, and therefore by Proposition 2, TSk(G) is an induced
subgraph of TSk(G′). It suffices to show that I + vG is the unique node in V (TSk(G

′))− V (TSk(G)). Observe
that for any J ∈ V (TSk(G

′)) − V (TSk(G)), we must have vG ∈ J . Now, if J 6= I + vG, there must be some
w ∈ V (G) − I such that w ∈ J . However, by definition of G′, we have wvG ∈ E(G′), which contradicts
{w, vG} ⊆ J ∈ V (TSk(G

′)). Therefore, J = I + vG. Our proof is complete. ut

Proposition 7. Km,n is a TSk-reconfiguration graph for some integers k ≥ 2 and n ≥ m ≥ 1 if and only if
m = 1 and n ≤ k or m = n = 2.

Proof.(⇐) Corollary 5 settles the case m = n = 2, since K2,2 ' C4. It remains to consider the case m = 1 and
n ≤ k. In this case, we claim that there exists a graph G such that TSk(G) ' K1,n. Let I1 = {a1, . . . , ak}
be an independent set of size k, and let Kn be a clique whose vertices are b1, . . . , bn. We construct G by
joining each ai with bi, for 1 ≤ i ≤ n.
It remains to show that TSk(G) ' K1,n. Note that V (TSk(G)) = I1 ∪

⋃n
i=1 Ji, where Ji = I1 − ai + bi

for 1 ≤ i ≤ n. It follows that TSk(G) has exactly n + 1 vertices. Additionally, from the construction of G,
the set I1 is adjacent to every Ji (1 ≤ i ≤ n) in TSk(G), and for every 1 ≤ i < j ≤ n, we always have
|Jj − Ji| = |Ji − Jj | = 2, which implies that JiJj /∈ E(TSk(G)). Therefore, TSk(G) ' K1,n.

(⇒) We first show that if m = 1 and n ≥ k + 1, there does not exist any G such that TSk(G) ' Km,n, where
k ≥ 2. Suppose to the contrary that n ≥ k + 1 and G exists. Let V (TSk(G)) = {I1, J1, . . . , Jn} and assume
without loss of generality that I1 is adjacent to Ji in TSk(G) for 1 ≤ i ≤ n. Since n ≥ k + 1, by the
pigeonhole principle, there must be some vertex u ∈ I1 such that sliding the token on u results at least
two different size-k independent sets of G, say J1 and J2, that are both adjacent to I1. Then, we can write
I1 = I + x+ u, J1 = I + x+ v, and J2 = I + x+w, for some size-(k − 2) independent set I of G such that
none of the distinct vertices u, v, w, x is in I. By definitions of J1 and J2, both v and w are not in I1. Now,
let J3 = I + v + w. One can verify that J3 ∈ V (TSk(G)) and therefore must be adjacent to I1 in TSk(G),
which implies |J3 − J1| = 1. However, note that {v, w} ⊆ J3 − I1, which is a contradiction.

I + x+ a1

I1

I + x+ b1

J1

I + x+ a2

I2

I + x+ b2

J2
(a)

I + a1 + a2

I1

I + b1 + a2

J1

I + b1 + b2

I2

I + a1 + b2

J2(b)

Fig. 5. Two possible forms of the 4-cycle I1J1I2J2 in the proof of Proposition 7. Here I is a size-(k− 2) independent set
of a graph G.

It remains to show that if m ≥ 2 and n > 2, there does not exist any G such that TSk(G) ' Km,n.
Again, suppose to the contrary that m ≥ 2, n > 2, and G exists. Suppose that TSk(G) has the partite sets
X = {I1, . . . , Im} and Y = {J1, . . . , Jn}, where Ii (1 ≤ i ≤ m) and Jj (1 ≤ j ≤ n) are size-k independent
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sets of G. Let consider the length-4 cycle I1J1I2J2, and suppose that we initially slide tokens in I1. To form
such a cycle, at most two tokens in I1 can be moved from their original positions, otherwise we need to
perform more than four token-slides to obtain a cycle. More formally, for some size-(k− 2) independent set
I of G, the sets I1, J1, I2, J2 can only be in one of the following two forms (see Fig. 5):
(a) Ii = I + x+ ai and Ji = I + x+ bi (1 ≤ i ≤ 2). Intuitively, this corresponds to sliding a single token in

I1 along the cycle a1b1a2b2 of G.
(b) I1 = I + a1 + a2, J1 = I + b1 + a2, I2 = I + b1 + b2, and J2 = I + a1 + b2. Intuitively, this corresponds

to sliding tokens “back and forth” along the edges a1b1 and a2b2 of G.
In both cases, none of x, ai and bi is in I, for 1 ≤ i ≤ 2. It remains to show that both cases lead to some
contradiction. Now, if (a) happens, let J = I+a1+a2. One can verify that J ∈ TSk(G). By definition of J , it
cannot be adjacent to I1 in TSk(G), otherwise xa2 ∈ E(G), which contradicts I2 = I+x+a2 ∈ V (TSk(G)).
Additionally, J cannot be adjacent to J1, because {a1, a2} ⊆ J − J1. However, since TSk(G) ' Km,n, it
follows that J must be adjacent to either I1 or J1, which is a contradiction.
It remains to consider the case (b) happens. In this case, let J ∈ TSk(G) be such that J is adjacent to
both I1 and I2 and J /∈ {J1, J2}. Since n > 2, such a set J exists. Now, if {a1, a2} ⊆ J , we also have
{a1, a2} ⊆ J − I2 = J − (I + b1 + b2). (Both a1 and a2 are not in I.) This contradicts the adjacency of J
and I2. Therefore, {a1, a2} * J , and similarly, so does {b1, b2}. Since J is adjacent to both I1 and I2, it
contains at least one member of {a1, a2} and {b1, b2}, respectively. It follows that either {a1, b2} or {a2, b1}
is in J . Now, if {a1, b2} ⊆ J , it follows that J = I + a1 + x = I + b2 + y for some x, y ∈ V (G) such that
xa2, yb1 ∈ E(G). Then, it follows that x = b2 and y = a1, that is, J = I + a1 + b2 = J1, a contradiction.
The case {a2, b1} ⊆ J can be showed similarly. Our proof is complete.

ut

Lemma 8. Given a graph G. Then, if TSk(G) has a Kn, so does G, for integers k ≥ 2 and n ≥ 3.

Proof. We first consider the case n = 3, fix any k ≥ 2 and suppose that TSk(G) has a triangle labelled
by independent sets I1, I2, I3. Without loss of generality we may assume I1 = {a1, . . . , ak−1, w} and I2 =
{a1, . . . , ak−1, x}, where wx ∈ E(G). Now, there are two possibilities for I3: either (1) I3 = {a1, . . . , ak−1, y}
where xy ∈ E(G) or (2) I3 = {a1, . . . , ai−1, y, ai+1, . . . , ak−1, x} where aiy ∈ E(G) for some i ∈ {1, . . . , k − 1}.
Since I1 and I3 are adjacent in TSk(G), only (1) can happen. Therefore, we must have yw ∈ E(G) and so w, x, y
define a triangle in G. ut

To conclude this section, we show that a connected split graph is a TSk-reconfiguration graph if and only if
it satisfies certain restricted conditions, as described in the following lemma.

Proposition 9. Fix k ≥ 2. A connected split graph F = (K ∪S,E)K-max is a TSk-reconfiguration graph if and
only if |NF (v) ∩ S| ≤ k − 1 and |NF (w)| = 1 for every v ∈ K and w ∈ S.

Proof.(⇐) For a connected split graph F = (K ∪S,E)K-max suppose that |NF (v)∩S| ≤ k− 1 and |NF (w)| = 1
for every v ∈ K, w ∈ S. Additionally, let m = |K| and n = |S|. Suppose that K = {v1, . . . , vm} and let
ni = |NF (vi)∩S| = |{wi1, . . . , wini

}| for 1 ≤ i ≤ m. Observe that n =
∑m
i=1 ni and by assumption ni ≤ k−1

for every 1 ≤ i ≤ m. We construct a graph G such that TSk(G) ' F as follows. (See Fig. 6.)
• Let I = {a1, . . . , ak−1} be an independent set. Let Km be a size-m complete graph with V (Km) =
{b1, . . . , bm}. Let Kn be a size-n complete graph with V (Kn) =

⋃m
i=1

⋃ni

j=1{xij}.
• The graph G has V (G) = I ∪ V (Kn)∪ V (Km). The edges of G are defined by joining each xij ∈ V (Kn)

to aj ∈ I (1 ≤ j ≤ ni) and every vertex in V (Km)− bi.
Let f : V (F )→ V (TSk(G)) be such that f(vi) = Ki = I + bi and f(wij) = Ki − aj + xij , for 1 ≤ i ≤ m and
1 ≤ j ≤ ni. One can verify that f is well-defined and bijective. We claim that F 'f TSk(G), i.e., uv ∈ E(F )
if and only if f(u)f(v) ∈ E(TSk(G)).

(⇒) Suppose that uv ∈ E(F ), i.e., either both u, v are in K or u ∈ K and v ∈ S. If u = vi ∈ K and
v = vj ∈ K, since Km is a complete subgraph of G, we have f(u)f(v) = KiKj ∈ E(TSk(G)). Otherwise,
if u = vi ∈ K and v = wij ∈ S, since aj is the only vertex in {a1, . . . , ak−1} adjacent to xij in G, we have
f(u)f(v) = Ki(Ki − aj + xij) ∈ E(TSk(G)).

(⇐) Suppose that f(u)f(v) ∈ E(TSk(G)), i.e., either both f(u), f(v) are in
⋃m
i=1K

i or f(u) ∈
⋃m
i=1K

i and
f(v) ∈

⋃m
i=1

⋃ni

j=1(K
i−aj+xij). If f(u) = Ki and f(v) = Kj , by definition, we have uv = vivj ∈ E(F ).

Otherwise, if f(u) = Ki and f(v) ∈
⋃m
i=1

⋃ni

j=1(K
i − aj + xij), since f(u)f(v) ∈ E(TSk(G)), we must

have f(v) = Ki − aj + xij for some j ∈ {1, . . . , ni}, and therefore uv = viw
i
j ∈ E(F ).

(⇒) Suppose that either (1) there exists w ∈ S such that |NF (w)| ≥ 2 or (2) |NF (w)| = 1 for every w ∈ S and
there exists v ∈ K such that |NF (v)∩S| ≥ k. We claim that F is not a TSk-reconfiguration graph. Suppose
to the contrary that there exists a graph G such that F 'f TSk(G). Since F is connected, so is TSk(G).
From Lemma 8, we must have f(vi) = I + bi (1 ≤ i ≤ m) where

⋃m
i=1{bi} forms a complete subgraph Km

of G and I = {a1, . . . , ak−1} is an independent set of G−NG[V (Km)].
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K
S

I

Kn

Km

a1a2 . . . ak−1b1

a1a2 . . . ak−1b2

a1a2 . . . ak−1bm

x1
1a2 . . . an1 . . . b1

a1x
1
2 . . . an1 . . . b1

a1a2 . . . x
1
n1
. . . b1

xm
1 a2 . . . anm . . . bm

a1a2 . . . x
m
nm

. . . bm

F = (K ∪ S,E)K-max

a1 a2 an1 anm
ak−1

x1
1 x1

2 x1
n1

xm
1 xm

2 xm
nm

b1 b2 bm−1 bm

G

Fig. 6. Construction of a graph G such that F ' TSk(G), where F is a connected split graph satisfying Proposition 9.
Vertices of F are labeled by size-k stable sets of G. Vertices in a light gray (resp., dashed) box forms a clique (resp.,
stable set).

If (1) holds, since |K| = ω(F ), there exists i ∈ {1, . . . ,m} such that viw /∈ E(F ), otherwise K + w forms
a clique in F of size ω(F ) + 1, which is a contradiction. Lemma 8 also implies that f(w) = I + x for
some x ∈ V (G) − V (Km) − I. Since viw /∈ E(F ), we also have f(vi)f(w) = (I + bi)(I + x) /∈ E(TSk(G)),
which implies bix /∈ E(G). Then, one can verify that J = (I − a1) + bi + x ∈ V (TSk(G)). Note that
bi /∈ f(vj) = I + bj for j 6= i and 1 ≤ j ≤ m. Since bix /∈ E(G), we have x 6= bj . Additionally, since x /∈ I,
we must also have x /∈ f(vj). Since TSk(G) is connected, J must be adjacent to some f(vj) (1 ≤ j ≤ m),
which is a contradiction since {bi, x} ⊆ J − f(vj) for j 6= i (i.e., J is not adjacent to any f(vj) for j 6= i)
and a1x /∈ E(G) (i.e., J is not adjacent to f(vi) = I + bi).
If (2) holds, suppose that v = vi for some i ∈ {1, . . . ,m}. As before, one can show that if f(w) = I + x for
some w ∈ NF (v)∩ S, there must be some contradiction. Therefore, for every w ∈ NF (v)∩ S, we must have
f(w) = (I − aj) + x + bi for some j ∈ {1, . . . , k − 1}. Since |NF (v) ∩ S| ≥ k, by the pigeonhole principle,
there exists j ∈ {1, . . . , k − 1} such that f(v) = f(vi) = I + bi has two distinct non-adjacent neighbors
J1 = (I − aj) + x1 + bi and J2 = (I − aj) + x2 + bi. Again, both x1 and x2 are not in I, and since none of
them are adjacent to bi, they are also not in {b1, . . . , bm}. This implies {x1, x2} ∩ f(vi) = ∅ for 1 ≤ i ≤ m.
One can verify that J = (I − aj) + x1 + x2 ∈ V (TSk(G)) and it is not adjacent to any f(vi) (1 ≤ i ≤ m)
since {x1, x2} ⊆ J − f(vi). This contradicts the connectivity of TSk(G).

ut

We conclude this section with a general result that applies to all graphs. K1,3 is also known as the claw and
adding an edge between any two of its degree-1 vertices results the paw. K4 − e is also known as the diamond.
(See Fig. 7.)

P4 claw paw

C4 diamond K4

Fig. 7. Connected graphs on four vertices.

Proposition 10. (a) Let G be a graph whose components are G1, G2, . . . , Gp, for some p ≥ 1. Suppose that all
Gi (1 ≤ i ≤ p) are TSk-reconfiguration graphs for some fixed integer k ≥ 2. Then, so is G.

(b) The diamond K4 − e is the unique smallest graph that is not a TSk-reconfiguration graph for any k ≥ 2.
(c) The following generalized graphs on n ≥ 4 vertices of the diamond are not TSk-reconfiguration graphs for

any k ≥ 2: Maximal outerplanar graphs and Kn − e.
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(d) There exists a disconnected TSk-reconfiguration graph G such that one of its components is not a TSk-
reconfiguration graph for any k ≥ 2.

Proof. (a) Let Hi (1 ≤ i ≤ p) be such that Gi = TSk(Hi). Let H be the graph obtained by joining each vertex
of Hi to all vertices of Hj , for every 1 ≤ i < j ≤ p. From the above construction, any size-k independent
set of H must be also an independent set of Hi, for some i ∈ {1, . . . , p}. As a result, TSk(H) is the disjoint
union of TSk(Hi) for all i, that is, G = TSk(H).

(b) Graphs on at most three vertices are disjoint union of paths and cycles, and since any path or cycle is a
TSk-reconfiguration graph for k ≥ 2 (Corollary 5), it follows from (a) that so are their disjoint unions. If a
graph on four vertices is disconnected, each of its components has at most three vertices, and we are done.
Thus, it suffices to consider six connected graphs on four vertices described in Fig. 7. Among these graphs,
P4, C4, and K4 are always TSk-reconfiguration graphs for k ≥ 2 and the claw K1,3 is a TSk-reconfiguration
graph for k ≥ 3. Let H be the kite—the graph obtained from a diamond by attaching a leaf to one of
its degree-2 vertices. One can verify that TS2(H) is indeed a paw, and since α(H) = 2, it follows from
Proposition 3 that TSk(H + (k − 2)K1) is also a paw, i.e., the paw is always a TSk-reconfiguration graph
for k ≥ 2.
It remains to show that the diamond is not a TSk-reconfiguration graph for any k ≥ 2. Suppose to the
contrary that there exists a graph Q such that K4 − e = TSk(Q). It follows from Lemma 8 that vertices
of K4 − e must be of the form I1 = I + a, I2 = I + b, I3 = I + c, I4 = I + d, where I is a size-(k − 1)
independent set of Q and {a, b, c, d} ⊆ V (Q)− I induce a diamond in which, say a and c are non-adjacent.
However, for any x ∈ I, note that J = (I −x)+ a+ c is a size-k independent set of Q, and therefore it must
be a vertex of K4 − e, which is a contradiction since J /∈ {I1, . . . , I4}.

(c) Use a similar argument as in the proof for the diamond.
(d) Take G = TSk(diamond + (k − 1)K1). It is not hard to verify that the diamond is a component of G and

from (b) it is not a TSk-reconfiguration graph for any k ≥ 2.

5 Properties of Reconfiguration Graphs

In this section we study various graph properties to see if they are inherited by their TS-reconfiguration graphs,
and vice versa. More precisely, for a graph property P and a given graph G, we write P(G) to indicate G
satisfies P and if P is inherited by TS(G) we write P(G) ⇒ P(TS(G)). Conversely, P(TS(G)) ⇒ P(G) means
that if P holds for TS(G) then it holds for G. For any fixed k we define similar notations P(G) ⇒ P(TSk(G))
and P(TSk(G)) ⇒ P(G). Since G ' TS1(G), the case k = 1 is uninteresting and therefore we only consider
k ≥ 2. Our results are summarized in Table 2.

Table 2. Some properties of (reconfiguration) graphs. Here n = |V (G)|. There are four cases: (a) P(G) ⇒ P(TS(G)),
(b) P(TS(G))⇒ P(G), (c) P(G)⇒ P(TSk(G)), and (d) P(TSk(G))⇒ P(G).

P G (a) (b) (c) (d) Ref.
s-partite general yes no Prop. 11

planar

Pn yes, iff n ≤ 8
yes, iff k = 2, n ≥ 3
or k ≥ 3, n ≤ 8

Prop. 12

tree yes, iff n ≤ 7 Prop. 13
Cn yes, iff n ≤ 6 Prop. 14connected

Eulerian Cn no yes yes, iff 1 ≤ k < n/2 Prop. 16
general no yes no no Prop. 17

infinite girth Pn yes, iff n ≤ 4 yes, iff n ≤ 2k Prop. 18
finite girth Cn yes yes, iff 1 ≤ k < n/2 Prop. 19
having Ks general yes no yes Prop. 20

5.1 s-Partitedness

A proper s-coloring of a graph G is a mapping f : V (G)→ {0, . . . , s− 1} such that f(u) 6= f(v) if uv ∈ E(G),
where u, v ∈ V (G) and s is a positive integer. If G has a proper s-coloring, we call it a s-partite graph. The
chromatic number of a graph G, denoted by χ(G), is the smallest number s such that G has a proper s-coloring.

Proposition 11. (a) G is s-partite if and only if TS(G) is s-partite. In other words, χ(G) = χ(TS(G)).
(b) For each s ≥ 2, one can construct a graph G such that χ(TSk(G)) < χ(G) = s, for every 2 ≤ k ≤ α(G).
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Proof. (a) (by Masahiro Takahashi.) The if direction is directly followed from G ' TS1(G). It remains to
show that if G is s-partite, so is TS(G). Since G is s-partite, there exists a proper s-coloring f : V (G) →
{0, . . . , s − 1} of vertices of G. For each independent set I of G, let g(I) =

(∑
v∈I f(v)

)
mod s. Since G

is s-partite, each TS-step only slides a token from one color class to another, and therefore if I and J are
adjacent in TS(G), g(I) 6= g(J). As a result, g is a s-coloring of TS(G), which means TS(G) is s-partite.
To see that χ(G) = χ(TS(G)), note that since G ' TS1(G) is a subgraph of TS(G), we have χ(G) ≤
χ(TS(G)). On the other hand, if G has a χ(G)-coloring, so does TS(G), i.e., χ(TS(G)) ≤ χ(G).

(b) Fix s ≥ 2. Let G′ be any graph with χ(G′) = s and construct G from G′ by adding an additional vertex
x adjacent to all vertices in V (G′). We have α(G) = α(G′) and since a new colour is required for x,
χ(G) = χ(G′) + 1. For each 2 ≤ k ≤ α(G) the stable sets of size k in G and G′ are identical and so is their
adjacency, hence TSk(G) ' TSk(G

′). Since TSk(G
′) is a subgraph of TS(G′) we may use part (a) to obtain:

χ(TSk(G)) = χ(TSk(G
′)) ≤ χ(TS(G′)) = χ(G′) = χ(G)− 1.

ut

5.2 Planarity

A graph is planar if one can draw it in the plane such that its edges intersect only at their endpoints. The well-
known Kuratowski’s Theorem says that a graph G is planar if and only if it does not contain any subdivision
of K5 or K3,3 as a subgraph.

Proposition 12. (a) TS2(Pn) is planar for every n ≥ 3.
(b) TS3(Pn) is planar for every n ≤ 8 and non-planar otherwise.
(c) TS(Pn) is planar for n ≤ 8 and non-planar otherwise.

Proof. (a) Suppose that Pn = v1 . . . vn (n ≥ 3). For each node {vi, vj} ∈ V (TS2(Pn)) (1 ≤ i, j ≤ n and
|i−j| ≥ 2), its neighbors form a non-empty subset of

{
{vi−1, vj}, {vi+1, vj}, {vi, vj−1}, {vi, vj+1}

}
. Therefore,

TS2(Pn) can be embedded into a n× n planar grid graph, which means it is also planar.
(b) In Fig. 8, we show a planar embedding of TS3(P8). In Fig. 9 we show a subdivision of K3,3 that is contained

in TS3(P9).
(c) TS1(P8) ' P8 and it can readily be verified that TS4(P8) ' P5. From (a), TS2(P8) is planar. From (b),

TS3(P8) is planar and TS3(P9) is not.
ut

Proposition 13. TS(T ) is planar for all trees T having at most seven vertices and non-planar otherwise.

Proof. A computer search showed that:

– All eleven trees T on seven vertices satisfy TS(T ) is planar.
– Among twenty-three trees T on eight vertices, seven of them satisfy TS(T ) is non-planar.

See https://hoanganhduc.github.io/graphs/ for a list of the mentioned graphs and their corresponding TS-
reconfiguration graphs. ut

Proposition 14. (a) TS(Cn) is planar for n ≤ 6 and non-planar otherwise.
(b) With respect to the number of vertices, C7 is the unique smallest graph G for which TS(G) is non-planar.
(c) With respect to the number of edges, including C7, there are eight smallest graphs G for which TS(G) is

non-planar.

Proof. A computer search showed that

(i) For each of the 99 connected planar graphs G on six vertices, TS(G) is planar.
(ii) There are seven trees T on eight vertices whose TS(T ) is non-planar. (Proposition 13.)
(iii) TS2(C7) is non-planar. (Fig. 10)

See https://hoanganhduc.github.io/graphs/ for a list of the mentioned graphs and their corresponding TS-
reconfiguration graphs.

ut

Corollary 15. (i) If girth(G) ≥ 7, the graph TS(G) is non-planar.
(ii) There exists a graph G whose girth is 3 and TS(G) is non-planar.

Proof. (i) Let C be a cycle inG whose length is girth(G) ≥ 7. Note that C does not contain any chord; otherwise,
we can find a cycle smaller than C, which contradicts our assumption. Now, consider the subgraph H of
TS(G) induced by only independent sets in C. It follows from Proposition 14 that H is non-planar, and so
is TS(G).

(ii) Take G as the graph obtained by connecting every vertex of Pn to some vertex v not in Pn. The subgraph
of TS(G) induced by independent sets in Pn is non-planar when n ≥ 9 (see Proposition 12).

ut

https://hoanganhduc.github.io/graphs/
https://hoanganhduc.github.io/graphs/
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Fig. 8. A planar drawing of TS3(P8). Each number of the form abc inside a node represents an independent set {va, vb, vc}
of P8 = v1 . . . v8.
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Fig. 9. A subdivision of K3,3 that is contained in TS3(P9). Each number of the form abc inside a node represents an
independent set {va, vb, vc} of P9 = v1 . . . v9.

5.3 Eulerianity

A graph G is Eulerian if it has an Eulerian cycle—a cycle that visits each edge of G exactly once. It is well-known
that a graph G is Eulerian if and only if it is connected and every vertex has even degree.

Proposition 16. The graph TSk(Cn) is Eulerian, for 1 ≤ k < n/2

Proof. Suppose that Cn = w1w2 . . . wn. It is not hard to see that TSk(G) is connected, since any independent
set of size k, where 1 ≤ k < n/2, can be reconfigured to the canonical independent set {w1, w3, . . . , w2k+1}.
Let I be any independent set of Cn of size k. We show that degTS(Cn)(I) is even. Note that only the maximal
odd-length paths P = v1v2 . . . v2i+1 in Cn satisfying {v1, v3, . . . , v2i+1} ⊆ I affect degTS(Cn)(I), and each of such
path contributes either 0 or 2 to degTS(Cn)(I). Thus, degTS(Cn)(I) is even. ut
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61

Fig. 10. A subdivision of K3,3 that is contained in TS2(C7). Each number of the form ab inside a node represents an
independent set {va, vb} of C7 = v1 . . . v7v1.

Proposition 17. (a) For any Eulerian graph G on n ≥ 4 vertices, every component of TS2(G) is Eulerian.
(b) There exists an Eulerian graph G where TSk(G) is not Eulerian, for any k ∈ {3, . . . , α(G)}.
(c) For any graph G, if TS(G) is Eulerian, so is G. Moreover, for any k ≥ 2, one can construct a graph G such

that G is not Eulerian but TSk(G) is.

Proof. (a) It suffices to show that all nodes of TS2(G) have even degree. Take any independent set I = {v1, v2}.
We have

degTS2(G)(I) = degG(v1) + degG(v2)− 2|NG(v1) ∩NG(v2)|,

which is always even because G is Eulerian.
(b) For k ≥ 3, take G as the graph containing exactly two cycles: C3 and C2`+1 = v1v2 . . . v2`+1. Note that

α(G) = `+ 1. Suppose that vertices of C2`+1 are in counter-clockwise order, V (C3)∩ V (C2`+1) = {v1}. For
3 ≤ k ≤ ` + 1, let I = {w, v2`+1, v2, v4, . . . , v2(k−2)}, where w ∈ V (C3) − v1. In these cases, we all have
degTSk(G)(I) = 3, and therefore TSk(G) is not Eulerian.

(c) Clearly, if TS(G) is Eulerian, it must be connected, and therefore TS(G) ' TS1(G) ' G, which implies G is
also Eulerian. For k = 2, let G be a graph obtained by joining K4 with a single vertex. Since G has a vertex
of degree 1, it is not Eulerian. One can verify that TS2(G) ' C3 and therefore it is Eulerian. For k ≥ 3, let
G be a graph obtained by joining a vertex of C3 with an endpoint of P3 and with k− 2 new vertices. Again,
since G has a vertex of degree 1, it is not Eulerian. One can verify that TSk(G) ' C4 and therefore it is
Eulerian.

ut

5.4 Girth

Recall that the girth of a graph G is the smallest size of a cycle in G, and is ∞ if G is a forest, i.e., it has no
cycles.

Proposition 18. For every n ≥ 2k + 1, girth(TSk(Pn)) is 4 and ∞ otherwise. Consequently, girth(TS(Pn)) is
4 for every n ≥ 5 and ∞ otherwise.

Proof. From Proposition 11, since TS(Pn) is bipartite, it does not contain any C3, and therefore neither does
TSk(Pn). Let P2k+1 = v1v2 . . . v2k+1. One can readily verify that TSk(P2k+1) has a C4 which contains the
size-k independent set I = {v1, v4, v7, v9, . . . , v2k+1}. For n ≥ 2k + 1, since P2k+1 is an induced subgraph of
Pn, Proposition 2 implies that TSk(P2k+1) is also an induced subgraph of TSk(Pn), and therefore TSk(Pn) also
contains a C4. Thus, girth(TSk(Pn)) is 4 for every n ≥ 2k+ 1. It remains to show that when n ≤ 2k, the graph
TSk(Pn) has no cycles. To see this, note that we also have k ≤ α(Pn) = dn/2e. Therefore, either k = n/2 or
k = (n+ 1)/2 and in both cases one can verify that TSk(Pn) has no cycles. Consequently, since TS2(Pn) is an
induced subgraph of TS(Pn), we have girth(TS(Pn)) is 4 for every n ≥ 5 = 2× 2 + 1 and ∞ otherwise. ut

Proposition 19. For 1 ≤ k < n/2, girth(TSk(Cn)) = n. If k = n/2, we have girth(TSk(Cn)) =∞.
Consequently, girth(TS(Cn)) = n.

Proof. Suppose that I = {v1, v2, . . . , vk} is an independent set of Cn, where 1 ≤ k < n/2 and {vi}i=1,...,k

are ordered in counter-clockwise direction. Since no token can "jump" above any other tokens, any cycle C in
TS(Cn) containing I must be formed by moving tokens in counter-clockwise direction such that finally, the
token originally placed on vi is placed on vi+1 (i = 1, 2, . . . , k − 1), and the token originally placed on vk is
placed on v1. One can achieve this plan with exactly n token-slides, provided that 1 ≤ k < n/2. If k = n/2, the
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graph TSk(Cn) contains exactly two isolated vertices. Then, its girth is ∞. Consequently, since TSk(Cn) is a
subgraph of TS(Cn) for 1 ≤ k ≤ n/2, it follows that girth(TS(Cn)) = n.

ut

5.5 Clique of given size

Proposition 20. (a) G has a Ks if and only if TS(G) has a Ks (s ≥ 3).
(b) There exists a split graph G such that G has a Ks and TSk(G) (k ≥ 2) does not.

Proof. (a) G ' TS1(G) implies the only-if direction. Lemma 8 implies the if direction.
(b) Take a split graph G = (K ∪S,E)K-max such that |K| = s and there exists v ∈ K with

⋃
w∈S NG(w) = {v}.

Suppose to the contrary that TSk(G) (k ≥ 2) has a Ks. Thus, from Lemma 8, there must be a token t which
traverses through all vertices in K. Since k ≥ 2, there is always at least one token t′ 6= t in S, which implies
that t can never be slid to v, a contradiction. Thus, TSk(G) (k ≥ 2) has no Ks.

ut

6 Decompositions and Joins

A major problem in constructing the TSk-reconfiguration graph of a given graph G is that the number of
independent sets in G may be exponentially large and hence so may be TSk(G). However, the structure of G
may be such that it can be decomposed into smaller subgraphs for which the TSk-reconfiguration graphs are
more easily obtained. This will be useful whenever TSk(G) can be built from these smaller graphs. We present
one such decomposition in this section.

Definition 21. The H1, H2 join G of vertex disjoint simple graphs G1 and G2, where Hi ⊆ Gi, i = 1, 2, is
formed by adding all edges between H1 and H2.

Fig. 11(a) illustrates a join of the graphs G1 and G2. In cases where the graph G can be decomposed along a
join we can decompose TSk(G) into connected components. For the decomposition theorem we need a method
of combining stable sets of possibly different sizes from disjoint graphs.

Definition 22. Let G1 and G2 be simple connected graphs on different sets of vertices. For 1 ≤ s < k we
define the product TSs(G1) ⊗ TSk−s(G2). The vertices are of the form S1 ∪ S2 where S1 ∈ V (TSs(G1)) and
S2 ∈ V (TSk−s(G2)). The edges in the product are of the form (S1 ∪ S2, S

′

1 ∪ S2) where (S1, S
′

1) ∈ E(TSs(G1))
and (S1 ∪ S2, S1 ∪ S

′

2) where (S2, S
′

2) ∈ E(TSk−s(G2))

Fig. 11(b) shows some examples of this definition. In the following proposition we show that if graph G is the
join of G1 and G2 then TSk(G) is the union of TSk(G1), TSk(G2) and products of TSk-reconfiguration graphs
for smaller values of k. It is illustrated in Fig. 11.

G1 G2

H1 H2

TS3(G1) TS3(G2)

TS2(G1)⊗ TS1(G2 −H2)

TS1(G1 −H1)⊗ TS2(G2)

TS1(G1)⊗ TS2(G2 −H2)

1

2

3

4

5

6 7

8

9

(a) G is H1, H2 join of G1, G2.

234 569

238

239

237

248

249

247

348

349

347

178

278

378

478

156

159

169

(b) A decomposition of TSk(G).

Fig. 11. A graph G and a decomposition of TSk(G) using Proposition 23.
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Proposition 23. Let G be the H1, H2 join of graphs G1,G2. Choose an integer k ≥ 2 so that G1,G2 each
contain a stable set of size k.
(a) TSk(G) be decomposed into k + 1 (possibly empty) vertex disjoint subgraphs TSk(G1), TSk(G2), and for
1 ≤ s < k the union of

TSs(G1)⊗ TSk−s(G2 −H2) and TSs(G1 −H1)⊗ TSk−s(G2). (1)

(b) Fix i = 1 or 2. Every stable set Si of size k in Gi satisfies

|Si ∩ V (Hi)| 6= 1 (2)

if and only if TSk(Gi) is disconnected from the remaining k subgraphs of TSk(G).

Proof. Let S be an independent set of size k in G and, for i = 1, 2 let Si = S ∩ V (Gi). Define s = |S1|.

(a) We consider the three cases.
(i) s = k.

In this case S1 is an independent set in G1, so S ∈ V (TSk(G1)).
(ii) s = 0.

The symmetric case, which yields S ∈ V (TSk(G2)).
(iii) 0 < s < k.

First suppose that S ∩ V (H1) 6= ∅ implying, by construction of the join, that S ∩ V (H2) = ∅. We
have that S1 ∈ V (Ts(G1)), S2 ∈ V (Tk−s(G2 −H2)) and therefore (S1, S2) ∈ Ts(G1) ⊗ Tk−s(G2 −H2).
Symmetrically, if S ∩ V (H2) 6= ∅ we conclude that (S1, S2) ∈ Ts(G1−H1)⊗ Tk−s(G2). Note that S will
appear in both sides of the union in (1) if and only if S ∩ V (Hi) = ∅, i = 1, 2.
The vertices of the k+1 subgraphs of TSk(G) in (a) correspond to stable sets in G with different values
of s, so they are vertex disjoint.

(b) Suppose i = 1. A similar argument applies to the case i = 2.
(⇒) We show that it is impossible to slide a vertex v ∈ S1 to a vertex w ∈ G2 to create a new stable set.

Indeed, for such a slide to be possible we must have v ∈ H1 and so by (1) S1 ∩H1 must contain another
vertex u. Now w ∈ H2 so it is adjacent to u and hence v cannot be slid to w. Hence there are no edges
from TSk(G1) to any of the other k subgraphs in TSk(G).

(⇐) Suppose, by way of contradiction, that there is an edge between TSk(G1) and one of the other k
subgraphs. Then there is a vertex v ∈ H1 that can be slide to a vertex w ∈ H2. This is only possible if
|S1 ∩ V (H1)| = 1 yielding the required contradiction.

ut

Observe that equation (2) in (b) is automatically satisfied if for either i = 1 or 2 we have |V (Gi)| < |V (Hi)|+k−1.
We remark that even when part (b) applies there may be additional edges between the k − 1 graphs described
by the products in part (a).

7 Concluding Remarks

In this paper, we mainly studied the realizability and structural properties of reconfiguration graphs of inde-
pendent sets under Token Sliding.

We presented in Section 4 necessary and sufficient conditions for a graph G to be a TSk-reconfiguration
graph (k ≥ 2), where G belongs to certain restricted graph classes, namely complete graphs, paths, cycles,
complete bipartite graphs, and connected split graphs. Even for k = 2, it remains unknown what the necessary
and sufficient conditions for a forest to be a TSk-reconfiguration graph are. We remark that “being a TSk-
reconfiguration graph” is not hereditary, even for trees. For example K1,3 is not a TS2-reconfiguration graph
(Proposition 7) but if we replace one edge by a P4 it is (Fig. 12). Proposition 18 provided a useful insight: given
a forest F , if there exists G such that F ' TS2(G), the graph G must be P5-free (e.g., see the graph G in
Fig. 12).

In Section 5, we shifted our focus to some graph properties, namely s-partitedness, planarity, Eulerianity,
girth, and the clique’s size, and provided examples and proofs showing that for some given graph G, certain
TS(G) and TSk(G) graphs do (not) inherit some properties from G, and vice versa. As the structural properties
of TS(G) and TSk(G) have not yet been systematically investigated, a large number of open questions in this
direction can be obtained by strengthening our results or simply specifying either a graph class or a property
which has not yet been considered.

In Section 6 we showed a way of decomposing a graph that induced a decomposition of its TSk-reconfiguration
graphs. By inverting the construction we have a way of building larger reconfiguration graphs from smaller pieces.
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ab

ac

bd

ae ef ce

T ' TS2(G)

a b

cd

ef

G

Fig. 12. Replacing an edge of K1,3 by a P4 results a tree T which is also a TS2-reconfiguration graph. Each node ab in
T represents a size-2 stable set of G.
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A Connectivity and Diameter of TSk(G) for Specific Graph Classes

For certain graph G, Table 3 includes some properties of the connectivity and diameter of TSk(G) that can be
derived from known results.

Table 3. Connectivity and diameter of TSk(G) (2 ≤ k ≤ α(G)). Here n = |V (G)|.

G (simple, connected) TSk(G)(1 ≤ k ≤ α(G)) Ref.always connected? diameter
1 perfect no O(2n)

[11,12]2 even-hole-free yes, if k = α(G) O(n), if k = α(G)
3 P4-free no O(n2)

4 claw-free yes O(poly(n)) [4]
5 tree no

O(n2) [7]6 path yes
7 bipartite permutation no O(n2) [9]
8 interval no O(kn2) [3,5]

1. In [12], Kamiński et al. showed the PSPACE-completeness of Independent Set Reconfiguration (ISR)
under any of TS,TJ, or TAR when the input graph is a perfect graph. Combining their reduction from
Shortest Path Reconfiguration (SPR) and an example of a reconfiguration graph of SPR having
exponentially large diameter in the size of the input graph [11] gives us an example of TSk(G) with expo-
nentially large diameter in n = |V (G)|.
Observe that one can construct a perfect graph G where TSk(G) is not connected. For instance, take G as
the star K1,n. Then, for n ≥ k+1, TSk(G) is not connected. This also holds for other graph classes such as
P4-free graphs, trees, bipartite permutation graphs, and interval graphs.

2. They also showed that TJk(G) is connected and its diameter is O(n) when G is a connected even-hole-free
graph. Observe that when k = α(G), we have TJk(G) ' TSk(G).

3. Kamiński et al. [12] designed a linear-time algorithm that decides whether there is a path between I, J ∈
TSk(G), and if yes, outputs a shortest one, where G is P4-free. One can verify that their algorithm indeed
outputs a path in TSk(G) of length O(n2).

4. Bonsma et al. [4] show that when G is a connected claw-free graph, TSk(G) is always connected, and they
provided a polynomial-time algorithm for outputting a path between any pair I, J ∈ TSk(G).

5–6. Demaine et al. [7] designed a linear-time algorithm for deciding, whether there is a path between I, J ∈
TSk(G), and if yes, output a path of length O(n2), provided that G is a tree. They also gave an example of
an instance (G, I, J) where G is a path and the length of a shortest path between I, J ∈ TSk(G) is Ω(n2).

7. Fox-Epstein et al. [9] designed a cubic-time algorithm for deciding, whether there is a path between I, J ∈
TSk(G), and if yes, output a path of length O(n2), provided that G is a bipartite permutation graph.

8. Bonamy and Bousquet [3] designed a polynomial-time algorithm for deciding whether TSk(G) is connected
when G is an interval graph. However, they did not provide any estimation on its diameter. Motivated by
this question, Briański et al. [5] recently showed that the diameter of TSk(G) is O(kn2).
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