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Abstract

Advances in medical imaging have greatly aided in providing accurate and fast medical

diagnosis, followed by recent deep learning developments enabling the efficient and cost-

effective analysis of medical images. Among different image processing tasks, medical

segmentation is one of the most crucial aspects because it provides the class, location,

size, and shape of the subject of interest, which is invaluable and essential for diagnostics.

Nevertheless, acquiring annotations for training data usually requires expensive manpower

and specialised expertise, making supervised training difficult. To overcome these problems,

unsupervised domain adaptation (UDA) has been adopted to bridge knowledge between

different domains. Despite the appearance dissimilarities of different modalities such as MRI

and CT, researchers have concluded that structural features of the same anatomy are universal

across modalities, which unfolded the study of multi-modality image segmentation with UDA

methods.

The traditional UDA research tackled the domain shift problem by minimising the distance

of the source and target distributions in latent spaces with the help of advanced mathematics.

However, with the recent development of the generative adversarial network (GAN), the

adversarial UDA methods have shown outstanding performance by producing synthetic

images to mitigate the domain gap in training a segmentation network for the target domain.

Most existing studies focus on modifying the network architecture, but few investigate the

generative adversarial training strategy. Inspired by the recent success of state-of-the-art data

augmentation techniques in classification tasks, we designed a novel mix-up strategy to assist

GAN training for the better synthesis of structural details, consequently leading to better

segmentation results.

In this thesis, we propose SynthMix, an add-on module with a natural yet effective training

policy that can promote synthetic quality without altering the network architecture. SynthMix

is a mix-up synthesis scheme designed for integration with the adversarial logic of GAN
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networks. Traditional GAN approaches judge an image as a whole which could be easily

dominated by discriminative features, resulting in little improvement of delicate structures

in synthesis. In contrast, SynthMix uses the data augmentation technique to reinforce detail

transformation at local regions. Specifically, it coherently mixes up aligned images of real

and synthetic samples at local regions to stimulate the generation of fine-grained features

examined by an associated inspector for domain-specific details. We evaluated our method on

two segmentation benchmarks among three publicly available datasets. Our method showed a

significant performance gain compared with existing state-of-the-art approaches.
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CHAPTER 1

Introduction

1.1 Background

Modern medical science utilises medical imaging to achieve better diagnostics [1]–[3]. The

outcome of such examination often presents the anatomical or pathological status of the

patient using minimally invasive or completely non-invasive measures [4]. As the design

and manufacture of imaging devices advance, medical imaging is able to provide abundant

information to help with a patient’s diagnosis. However, evaluating and concluding these

results requires exhaustive manpower with expert viewings [5]. To more efficiently review

these results, computer vision is introduced to assist with the processing of the images while

attempting to provide a focus on the matter of interest [6]. In the medical image analysis

field, semantic segmentation has always been an essential task [7], [8]. The aim of medical

segmentation is to identify and separate anatomical structures in a 2D or 3D medical scan [9].

More specifically, semantic segmentation performs pixel-level classification in the image,

clustering pixels of the same semantic class. The segmentation of specific bodily structures

can be studied extensively for many purposes [10], [11]. For example, a heart segmentation

can be used for pathology screening for coronary artery disease [12], and a pelvis/hip CT

segmentation can be used as a reference for orthopedic designs. Reasonably, these kinds of

image analysis tasks could be greatly accelerated with the help of computer vision methods.

The deep learning solution has been used in medical imaging widely to investigate results

from different imaging approaches such as biopsy microscope readings, ultrasound, and

endoscopy [13]. Among them, tomography is a medical imaging method that sections through

the object using a kind of penetrating wave [14]. Without open surgery, it is able to project the
1
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internal structures of human bodies on specific planes. By concatenating the scanned slices of

a 3-D entity such as a lung, brain, or heart, it gives detailed information on the size, location,

and shape of the subject of interest (e.g. a lesion). There are different types of tomographs,

such as computed tomography (CT) and magnetic resonance imaging (MRI). The CT uses

X-ray to slice through the subject while MRI creates strong magnetic fields and scans with

radio waves [2]. Clinically, the CT scan is an easier operation than MRI in the aspects of cost

and operation duration, and therefore it is a preferred choice for emergency diagnostics or the

relatively basic examinations [15]. However, the MRI produces clearer images than CT, with

sensitivity in the soft tissues resulting in better details [1]. When CT and MRI examine the

same anatomical part of the human body, such as the brain or heart, they produce two sets of

images of the same subject. These are referred to as images of different modalities. Some

examples of different MRI and CT samples are shown in Fig. 1.1.

MRI

CT

Spine Head Hip

FIGURE 1.1: An illustration of sample images of MRI and CT for various
medical imaging areas. The first and second rows denote MRI and CT modal-
ities, while the columns show different imaging areas of the spine, head, and
hip.

By processing the information, the deep learning model develops knowledge of a certain

category of images, enabling it to acquire their unique patterns and features [16]. Ultimately

a well-trained model could be generalised and applied to analyse more medical images of
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FIGURE 1.2: An illustration of the domain gap between digit datasets. Left:
SVHN dataset [21]; right: MNIST dataset [25].

the same nature, relieving the burden of manual medical image analysis. Recently, models

trained on CT, MRI, or X-ray have shown exceptional results in learning-based diagnostics.

Some even exhibited better accuracy and sensitivity than human examinations [17].

However, there are limitations in learning-based solutions because training a model requires

large quantities of images and labels [18]. Therefore, to take advantage of existing datasets,

the transferring of knowledge from one domain to a similar or related domain is adopted [19],

[20]. As shown in Fig. 1.2, both the Street View House Numbers (SVHN) dataset [21] and

Modified National Institute of Standards and Technology (MNIST) [22] database contain

images of numbers. Although the shapes of numbers are universal in two domains, the

differences in their font and colour will cause performance degradation in cross-domain

performance [23]. Although traditionally, a pre-trained model can be fine-tuned by using

more training samples of a new dataset [24], in the medical domain, there might be few or no

labels for the target domain. For example, while a CT database provides images and sufficient

annotations that could be easily used to conduct supervised learning, an MRI database on the

same object could have no annotations due to the difficulty in annotation collection [5]. While

the subjects of both datasets are the same kind, the different medical imaging approaches put

them into different data distributions, i.e. they vary in orientation, contrast, brightness, and so

on. This is classified as the domain shift.

Domain adaptation is the study that aims to tackle this shift. The aim is to learn from the

source dataset and to use the information to achieve comparable performance on the target

dataset [26]. Specifically, the experimental environment of unsupervised domain adaptation

(UDA) is defined as having label-rich data in only the source domain and unlabeled data in
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Axial Sagittal Coronal Axial Sagittal Coronal

CT MRI

FIGURE 1.3: Examples of cardiac CT and MRI images from the MMWHS
dataset with labels [29]. The columns denote different views of the 3D volumes,
and the coloured annotations are the desired seven classes.

the target domain. As the two domains are related, they share some high-level features that

could be the key to linking the learning process of one domain to another [27]. In the case of

medical imaging, different modalities capturing the same anatomical structure could share

similar features, but there are differences in image characteristics across modalities [28]. For

example, MRI images tend to have higher contrast and more richness in details, while the CT

images of identical structures could show different appearances [15]. To bridge the common

information of the modalities, the UDA algorithm usually finds the mapping from one data

distribution to another, diminishing the gap between two domains.

In this thesis, we aim to develop an unsupervised domain adaptation algorithm that could

be applied in the medical image field of Multi-Modality tomograph, adapting the learning

from MRI databases to CT databases or vice versa. To fully address the medical needs in

these image analyses, we also aim to implement a segmentation component in the network to

perform semantic segmentation and produce an output of a segmentation mask for the input

image.

The MRI segmentation is an essential quantitative characterisation of diseases of multiple

organs such as the brain [30], kidney [31], prostate [32], and spine [33]. For example, one

of the typical biomarkers for brain diagnostic and therapy assessment is tissue atrophy [34].
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The segmentation boundary of the abnormal tissue and surrounding healthy tissue is vital

for surgical planning. Similarly, CT segmentation also plays a crucial part in analysing

medical conditions of anatomical sites such as the lung [35], the abdominal organs [36],

head and neck [37], and bones [38]. For some CT procedures, the application of iodine

contrast injection can result in better visibility of vascular structures and organs [39]. It is

also noteworthy that due to the low X-ray attenuation of cancellous bone and soft tissue, their

data densities are sometimes similar in the CT results, increasing difficulty in segmentation,

especially among elderly patients [40].

Meanwhile, heart image analysis has become an ever-important task due to a high fatality rate

caused by cardiovascular diseases [41]. The common modalities of heart imaging include

MRI and CT, and the clinical applications include diagnostics and treatment planning for

atherosclerosis (heart plaque), myocardial scars, and blood pool. The understanding and

delineation of the cardiac substructure are also crucial in the medical study of the heart.

Therefore, different modalities of heart imaging contain valuable information for image

analysis. In Fig. 1.3, we present some sample slices from one of the adopted datasets:

multi-modality whole heart segmentation (MMWHS). The segmentation classes are LV (left

ventricle), RV (right ventricle), LA (left atrium), RA (right atrium), Myo (myocardium of LV),

AO (ascending aorta), and PA (pulmonary artery). It can be seen that CT and MRI images

differ greatly in appearance: CT images show a lower brightness with lower contrast between

regions; the MRI images, however, display a higher contrast and clearer boundaries between

different types of soft tissues.

Finally, we include some example images in Fig. 1.4. These images include medical seg-

mentation experiments in four different modalities: cardiac MRI, cardiac CT, abdomen MRI,

and abdomen CT. The first and second columns show the source images used for training

and the target images segmented at test time. At the same time, the results contain target

modalities segmentation produced directly by the source segmentor (w/o adaptation in column

three), target modalities segmentation with the SIFA UDA techniques, and ground truth labels.

Evidently, without domain adaptation, the attempts to segment the target images produced

poor results. Not only did the network fail to capture the correct shape of structures of



6 1 INTRODUCTION

Cardiac
CT

Abdomen
CT

Training image Testing image W/o adaptation W adaptation Ground Truth

Training image Testing image W/o adaptation W adaptation Ground Truth

Cardiac
MRI

Abdomen
MRI

FIGURE 1.4: An example illustration of medical segmentation study in the
MRI and CT domain. The four rows denote the cardiac MRI, cardiac CT,
abdomen MRI, and abdomen CT modalities from top to bottom. The columns
show the training image, testing image, segmentation without adaptation,
segmentation with SIFA domain adaptation, and ground truth labels [28].

interest, but it also completely missed some desired classes present in the image. However, as

shown in column four, the domain adaptation method was able to improve the performance

significantly—the correct classes were identified with relatively accurate segmentation shapes

obtained compared to the ground truth labels (column five) [28].

1.2 Contributions

Our contributions to tackling the challenge of multi-modality image segmentation are as

follows.
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We surveyed a wide range of literature and produced an exhaustive review detailing the

research problem domain and up-to-date studies. We gathered knowledge on existing methods

and their limitations as well as addressed the research gap—lack of attention to the cross-

domain synthesis. We determined that the image synthesis requires further assurances,

especially when the generative methods heavily rely on image alignment to perform cross-

modality segmentation training.

Next, we developed a computational framework to improve segmentation accuracy as well

as image synthesis quality that can be studied in three stages. (1) We first developed the

cross-modality segmentation network based on multiple previous studies [28], [42] and

investigated the learning objectives for next-stage modifications. (2) Then, we designed a

novel mix-up technique termed SynthMix to further stimulate synthesis from the generators,

thereby improving synthetic image quality as well as promoting segmentation accuracies.

(3) Lastly, we determined and constructed a Mixup Inspector specifically for our SynthMix

to perform patch-level domain classification. It is used to examine the mixed and unmixed

images to simultaneously learn about domain characteristics and also motivate the generators

to produce local, fine-grained features.

To validate our proposed framework, we conducted comprehensive evaluation studies on

various benchmarks against several state-of-the-art methods, such as CycleGAN [23] and

SIFA [28]. We present quantitative and qualitative results to prove the superiority of our

model on the segmentation accuracies in both MRI-to-CT and CT-to-MRI directions, as

well as the handling of different datasets of heart substructure and abdominal organs. To

demonstrate the improvement of image synthesis, we submit a qualitative illustration of image

comparison with synthetic outcomes of SIFA, SynthMix synthesis, and the authentic test data.

We also conducted a classification study to quantify the similarity of domain traits that our

synthesis possesses as opposed to SIFA. Further studies were carried out in numerous ablative

experimental settings to verify that SynthMix held the optimal configuration.
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1.3 Thesis Outline

In Chapter 1, the research background, current challenges, motivations, and main contribution

are described.

In Chapter 2, related work in domain adaptation, segmentation network, mixup and data

augmentation, and SOTA methods for medical image segmentation are reported.

In Chapter 3, the technical details of our framework are presented, respectively, as cross-

modality segmentation with image synthesis, backbone architecture, SynthMix design and

implementation, and construction for Mixup Inspector.

Chapter 4 reports the pre-processing procedures for various datasets as well as the evaluation

metrics.

Chapter 5 details the experimental results, including quantitative and qualitative results of

the MMWHS dataset and AOS dataset, performance evaluation of medical image synthesis,

ablation studies, and additional material for the extended experimental setup.

Chapter 6 includes a discussion of the experimental set-up and results, limitations, and further

analysis of the extended experiment.

Finally, Chapter. 7 summarises the contribution of this thesis and provides recommendations

for future research aspects.



CHAPTER 2

Literature Review

2.1 Domain Adaptation

Machine learning algorithms usually perform best with the same kind of datasets that they

were trained for. Hence, when applied to an unseen test dataset, they can handle it poorly [20],

[43]. The algorithms designed to learn from a source dataset and generalise it for a related

dataset are called transfer learning. Domain adaptation is a specific subcategory of transfer

learning where the source and target datasets share the same features but have different

distributions, as shown in Fig. 2.1. Let xS and xT denote data in the source domain and target

FIGURE 2.1: Domain adaptation produces a network that learns from the
source domain and adapts it for a similar dataset in the target domain.

9
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domain, respectively, and let zS denote a segmentation label for source data. The ultimate

aim for unsupervised domain adaptation (UDA) is to train a segmentor that could produce yT .

2.1.1 Shallow Domain Adaptation

Predating the deep learning era, shallow networks were employed to achieve basic domain

adaptation based on human-engineered features. An instance weighting supervised DA

method was proposed for Alzheimer’s disease classification by re-weighting source data into

the distribution of target data [44]. Another instance weighting method calculated weights

for each training image to solve for the minimum difference of weighted probability density

function between source and target voxels, followed by the re-weighting of source data [45].

In both methods, the re-sampled source data were used to train a target domain applicable

network, which was then fine-tuned by the small amount of labelled target data.

Becker et al. proposed a method based on feature transformation where a non-linear mapping

of both domains was learned via a discriminative objective in the same latent space. Then a

classifier was applied to the extracted features to perform classification. In [47], the Gaussian

texture features were first extracted, where source images with higher similarity to the target

domain would gain higher weighting in the training of the weighted classifier. The trained

classifier was then directly applied to the target data.

Other characterisation methods, such as principal components, were also incorporated into

DA methods. Yang et al. performed a two-step DA where the principal components were

determined first, followed by transformation of both source and target domains into a uniform

distribution for classifier training [48].

2.1.2 Deep Domain Adaptation

With the advances of deep networks, large trainable parameters allowed domain adaptation

to learn more information with higher complexity. A popular categorical approach in deep

domain adaptation is to focus on minimising the domain distance, and a visualised example is
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FIGURE 2.2: An illustration showing the impact of the DANN domain adapt-
ation network on extracted feature distributions [49].

shown in Fig. 2.2. Evidently, after training with domain adaptation, the extracted features

from two domains are pulled closer to each other, especially the output features from the last

hidden layer of the label predictor.

In an unsupervised fashion, Kumar et al. adopted ResNet as the backbone to validate three

different methodologies: TCA (Transfer Component Analysis), CORAL (Correlation Align-

ment), BDA (Balanced Distribution Adaptation) [50], and the experiment demonstrated great

results on several datasets from different domains.

Pan et al. proposed TCA where the transfer components were learned in a kernel Hilbert

space by reducing the distance between the source and target datasets, where the conventional

machine learning methods could then be employed to further achieve classification.

Deep CORAL is a method that attempts correlation alignment of two datasets by applying

restraints on second-order statistics of both source and target activation layers [52]. The

CORAL loss is defined as the distance between the second-order feature covariance matrices
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between two domains. By training a batch loss and sharing network parameters, combined

with a classification loss, Deep CORAL can achieve end-to-end adaptation from the target to

the source domain with great results.

Tzeng et al. proposed a domain confusion loss based on the Maximum Mean Discrepancy

(MMD) in a weakly supervised method [53]. A classification loss of the source network is also

included in the training. The combined loss is used to learn a representation that minimises

the distance between the source and target domains. MMD is also used in other studies [54]

and [55], where the Multi-Kernal MMD was adopted to reduce the domain difference in fully

connected layers and learn domain invariant features. The fully connected layers are not

shareable and therefore need to be adapted by MK-MDD.

Wang et al. reported a balanced distribution adaptation (BDA) method to address the im-

balances in the source or target domains [56]. The BDA objective introduced weighting

factors for marginal and conditional distribution, followed by empirical experiments which

achieved superior results compared to traditional distance minimisation methods. However,

the selection of weighting factors was manual, and the authors did not provide a scheme for

calculating these coefficients.

Similarly, Huang et al. employed LeNet-5 for feature extraction, projecting source and target

data into a subspace via Principal Component Analysis (PCA) [48], followed by fine-tuning

on target data and labels to achieve epithelium and stroma classification. Samala et al. first

performed pre-training for AlexNet on the ImageNet dataset and then fine-tuned on medical

lesion classification for identifying breast cancer [58]. Khan et al. also trained VGG on

ImageNet, followed by fine-tuning on brain MRI images and annotations for Alzheimer’s

disease detection [59]. Abbas et al. pre-trained a convolutional network with ImageNet, then

adopted fine-tuning to validate chest X-rays, histological images of human colorectal cancer,

and digital mammograms.

In a similar fashion, Tsai and Chien incorporated the MMD loss along with three other losses:

cross-entropy loss, reconstruction loss, and a difference loss between shared and individual
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features in [61]. This method ensures the distribution of shared and individual features from

both source and target domains for equal and distinct contributions to the network weight.

A common approach for the traditional domain adaptation algorithm is to learn the strong

semantic features that train good classifiers and segments that can apply domain independ-

ently [52]–[55], [61]. Sharing high-level semantic activation maps is a popular choice in

building such networks [52], [53], [62]. However, in some cases, fully connected layers were

added before classifiers to learn high-level and specific features. These layers often require

individual weights while needing to be bridged by means such as MK-MMD loss [54], [55].

In [63], an innovative idea was proposed that an embedding should exist for each category

independent of domains. SimNet computes the average representation of all source samples

belonging to the category and uses a reverse gradient for domain confusion. Furthermore, a

study by Hong et al. brought in an encoder-decoder system with an attention unit to transfer

segmentation knowledge in different categories [64]. Curriculum Domain Adaptation is an

intuitive supervised design that opts to train the model to learn easy tasks first [65]. The

model eventually achieves great results in target domain predictions.

2.1.3 GAN-related Domain Adaptation

With the rise of GAN in image synthesis, the generators or discriminator networks are often

incorporated in domain adaptations. The most primitive methods employ one set of GAN to

inject noise with source images to complete image transformation to the target domain. These

networks are often lightweight and perform decently in the classification of the low-resolution

dataset but are likely to induce artifacts leading to a relatively low synthesis quality. The

second subfamily of methods utilises two sets of GAN to learn a bidirectional mapping

between two related distributions, such as between image space and latent space or source

domain and target domain. They often render good results on larger images due to the better

constraints from two sets of GAN networks subject to the network magnitude. The third

group of solutions extracts the adversarial concept from GAN and performs non-generative

domain adaptation: they force an adversarial loss to learn domain-invariant features.
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FIGURE 2.3: The GAN network: the generator produces sample images to be
fed into the discriminator with the real images while the discriminator attempts
to distinguish the authenticity of the images [68].

The Generated Adversarial Networks (GANs) are a structure proposed by Goodfellow et al.

in 2014 [66]. In this design, a generator G and a discriminator D compete for a mini-max

game until they reach an equilibrium (illustrated in Fig. 2.1). The generator should attempt

to generate indistinguishable synthesised photos that can fool the discriminator while the

discriminator attempts to differentiate between synthesised photos and real ones. As a result

of GAN training, the network should have an optimal way to synthesise images that are

similar to some considerable extent to our source. (real) images. However, the original GAN

network has a very delicate training process and often leads to model failures. Wasserstein

GAN (WGAN) improved the training ability and the net stability [67] by replacing the GAN

minimisation of an objective that locally saturates with a continuous and more differentiable

Wasserstein distance.

Inspired by the work of Goodfellow et al., several frameworks employed the idea of GAN.

These generative networks leverage the fact that GAN could synthesise images that are

indistinguishable from source images, to move distribution from one domain to another.

PixelDA uses GAN to generate synthesised images with automatically presented ground

truth annotations at the pixel level [69]. Similarly, a study from Hoffman et al. incorporates
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FIGURE 2.4: The CycleGAN network: the generators G and F transform
images from X to Y domain and Y to X domain, respectively, while the
domains X and Y are examined by associated discriminators DX and DY . The
cycle of an image where it goes from the original domain to another and back
is overseen by the cycle-consistency loss [42].

GAN and fully convolutional layers to achieve domain adaptation in semantic segmentation

of specific categories [70]. Some networks even include more than one GAN to acquire

more knowledge or to achieve better transfer quality, such as Bi-GAN [71], Co-GAN [72],

Pix2Pix [73], and Cycle-GAN [42].

Bi-GAN uses two GAN networks to achieve a bi-directional mapping, learning additional

information on transfer from generated data to latent representation [71]. By sharing weights

in the first few layers in the generator and the last few layers of the discriminator, Co-GAN

learns from a joint data distribution from multi-domain images, bypassing the need for

corresponding images in different domains [72]. As a furtherance of Pix2Pix, which uses

paired images for training [73], Cycle-GAN improved the method by accomplishing unpaired

domain adaptation [42]. By implementing a repetitive cyclic GAN network on two sets of

unpaired images, Cycle-GAN can simultaneously learn from Set A to Set B and from Set B to

Set A using a cycle consistency loss. Cycle-GAN monitors the forward and cycles consistency

to ensure the transformation is unique and reversible. The network exhibits excellent results

with strong stability and consistency.

A few other models based on Cycle-GAN were proposed in [74] and [75]. While the cycle-

consistency loss was used to preserve clinical knowledge between transformation [75], the

study in [74] constructed a nested GAN to regularise the synthesis.
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Aligning with the GAN philosophy, ideas of non-generative nets have also been put into

designs. These nets usually utilise adversarial training to discriminate classifier or segmentor

output from target and source domains and use the loss to train the network to achieve better

indistinguishable output that overlooks domain differences.

In [76], the proposed network ADDA initialised the target domain CNN with shared weights

of the source CNN and pitted the discriminator against a uniform distribution of target and

source domains during training. ADDA eventually completes a universal classifier for both

source images and adapted target images. Ganin et al. thought that to learn a model that can

generalise well from one domain to another, the internal representation of the convolutional

network cannot have discriminative information about the origin of the input [49]. Therefore,

the DANN network uses adversarial loss to purposely prevent the classification of the domain,

rendering the model eventually domain-independent. Additionally, DANN also introduced a

gradient reversal layer to ensure distribution over the two domains is made similar. Another

interesting approach in [77] uses an additional adversarial network to achieve domain adapta-

tion in the output space. That is based on the motivation that, despite the great difference in

appearance, the output segmentation masks have more shared features. This method greatly

improved the accuracy and visibility of the output segmentation masks. Similar inspiration

was also implemented in the JAN framework [78]. However, while DANN incorporated an

adversarial network to achieve logistic regression, JAN utilises an adversarial network in a

Joint MMD (JMMD) layer.

2.2 Mix-up and Data Augmentation

Deep convolutional networks often rely on big data to reduce overfitting to the training

datasets. However, the acquisition of data is often difficult, especially in the medical domain.

Therefore, data augmentation techniques are often adopted to expand training data or to

interpolate between data points to present a more comprehensive distribution. The basic

data augmentation techniques include geometrical transformations such as flipping, cropping,

rotation, and skewing, as well as colour jitter and noise injection. These techniques help
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FIGURE 2.5: An overview of the existing data augmentation techniques. Input
A and input B are two images from the dataset. The second column shows the
cutout technique applied to both images. CutMix crops a patch from input B
and replace the patch in the same position as input A. Mixup performs a λ and
1− λ ratio weighted addition of both inputs. Attentive CutMix crops out six
of the highest attention response patches of input A and pastes them onto input
B. TransMix follows the procedure of CutMix but calculates the lambda as the
sum of softmax attention values of the pasted patch. SaliencyMix performs
crop and pastes based on a saliency detection map.

improve the robustness by compelling the neural network to learn from more data points and

simultaneously preventing it from learning irrelevant patterns.

In recent years, more research has been conducted to integrate deep learning methods into

data augmentation.

In [79], Zhang et al. proposed to mix two of the sample images by adding their pixel values

according to a pre-designated ratio, termed Mixup. The new mixed image would then be fed

to the neural network as an augmented data point. This method improved the classification

performance without introducing new data, further using the existing data. The method creates

soft labels interpolated from existing labels assuming a linear correlation between data space

and label space. The Mixup broadened the model’s knowledge by filling the discrepancy

among different labels and, therefore, greatly promoted its robustness. More work was

completed to further explore Mixup, such as mixing up latent code of two samples [80] and

mixing up both image level and feature level values [81].
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Another popular data augmentation technique is Cutout [82]. Cutout introduced random black

square patches covering part of the sample. Masking out the random position of the data

forces the neural network to learn the less distinctive features in the image, greatly benefiting

the generalisation of the model.

Combining the concept of both Mixup and Cutout, CutMix took the merits of both and re-

placed the black patch cut out from the image with a patch pasted from a different sample [83].

This method preserved the benefit of regional dropout, encouraging the learning of less

distinctive features and the mixing of two sample contents reduces overfitting by extrapolating

the discrepancy of data.

Several variants were also proposed based on the CutMix concept, addressing a different

concern: not all pixels are equally important in image analysis. Attentive CutMix chose to

paste six high-response patches selected based on the feature map produced by a pre-trained

network [84]. SaliencyMix took a similar approach where they selected the salient peak

region of the feature map learned by a bottom-up salient detection network to paste over a

second image [85]. While the previous variants focused on the selection of the pasted patch,

TransMix simply followed CutMix in pasting a random patch from the sample but calculated

the label assignment with the help of transformer self-attention [86]. The label assignment

ratio lambda was computed as the total sum of the softmax attention values within the pasted

area.

Additionally, the use of vision transformers (ViT) [87] was introduced in TransMix [86] to

accommodate for data augmentation. The vision transformer takes a 2D image as input and

immediately splits them into patches, followed by linear projecting into a vector. The vector

was then fed through multiple blocks of transformer encoder, which consists of a multi-head

attention layer and a Multilayer perceptron (MLP) module, where two skip connections were

inserted to preserve lower-level features. By stacking the transformer encoder, the module

can go deep into any desired depth for the specific task, while the built-in attention mapping

optimises for ultimate filters to capture the relevant features in images. ViT usually requires a

large quantity of data, such as the ImageNet-21k dataset, for pre-training but obtains superior

results after transferring compared to state-of-the-art convolutional models.



2.3 IMAGE SEGMENTATION 19

FIGURE 2.6: A representation of a typical encoder-decoder-like semantic
segmentation network, where the image gained pixel-level classification with
the same resolution [93].

2.3 Image Segmentation

A segmentation network usually outputs a mask with segments that represent different objects

or parts of an object that are of interest in the input image. In a way, segmentation can be

seen as a pixel-level classification. Therefore, classifiers such as VGG [88], GoogLeNet [89],

and ResNet [90] are often used as a base framework in the segmentation networks. A typical

structure of the segmentation network adopts an encoder-decoder framework that encodes

the image information into the feature space and decodes it back to the spatial latent space to

acquire the segmentation map (Fig. 2.6).

U-Net is a method proposed in [91]. The network is fully convolutional based on a contracting

path and an expansive path with convolutional activation and up-sampling. The use of a

weighted loss was proposed to separate touching cells in the same class, assigning larger

weights to the separating background labels in the loss function.

A fully convolutional network (FCN) was presented in [92] to tackle the limitations in the

segmentation task–the poor scale of details caused by upsampling layers. It defined a novel

"skip" architecture to connect and combine deep, coarse, semantic information and shallow,

fine-appearance information in the final output.

Feature Pyramid Networks (FPN) were originally designed for object detection. The network

has a bottom-up and top-down architecture with lateral connections to build feature maps at



20 2 LITERATURE REVIEW

multiple scales. As the higher resolution maps hold important information about the small

objects, reviewing these feature maps will increase small object detection massively.

Yu et al. noted an interesting observation: subsampling reduces the resolution with spatial

acuity, which is bad for tasks that require detailed spatial features; however, removing

subsampling leads to loss of receptive field density for subsequent layers [94]. Based on

ResNet [90], they proposed a dilated residual network (DRN) that removes striding in some

layers and then dilates the same group by a certain factor. It also removes global average

pooling maps to achieve localisation and removes the max pooling layer, and adds dilated

layers for degridding.

Based on VGG 16 [88], SegNet presented a segmentation network with a novel decoder

structure [95]. The decoder collects pooling indices from the symmetrical encoder’s max

pooling layer, completing a non-linear upsampling. The decoder component of SegNet,

therefore, is able to increase the resolution of encoder feature maps to full input resolution.

Compared to FCN [92] and several other segmentation networks, this net has superiority in

processing time during inference and also low demand of memory.

Trying to achieve efficiency further, LinkNet was presented as a different approach in [96].

Like many other networks, LinkNet also chose to implement an encoder-decoder architecture.

However, the author proved in the paper that although the loss of spatial information resulting

from strided convolution and the pooling layer can be recovered by up-convolution or using

pooling indices, it is more efficient and accurate to directly link the spatial information from

the encoder to the corresponding decoder.

2.4 Domain Adaptation for Medical Image Segmentation

Successful cross-modality domain adaptation in medical segmentation enables learning

despite the lack of expert annotation in the target domain, reducing the expenses of label

acquisition. The state-of-the-art methods adopted the adversarial approach due to its superior
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ability to perform segmentation on relatively large-sized medical images and its straight-

forward configuration over the task-sensitive hyper-parameter choices in traditional UDA

methods such as MMD [53]. The early methods followed [66] to adopt an adversarial loss

against discrimination to different domains in feature extraction or further developed [42] to

introduce an image-level alignment. The highest-performing method combined the feature

alignment with the image alignment and, by partially sharing weights for the multi-level

domain adaptation, achieved an impressive improvement over other SOTA methods.

PnP-AdaNet was one of the earliest methods proposed to achieve cross-modality medical

segmentation with the means of domain adaptation [62]. The method described a two-phased

network with a domain adaptation module (DAM) and a source segmentor. The first phase

included the training of an end-to-end source segmentation path entirely on source images and

source ground truth labels. Then, in the second phase, the parts of the network are reused in the

training of DAM. The intuition is that the discrepancy between modalities was mostly lower-

level features such as brightness and contrast as opposed to semantic structures. Therefore,

the higher layers trained source segmentation weights were frozen while the low levels of the

network were trained from scratch with target data. In this phase, the network was trained to

produce segmentation predictions from source and target images that are domain independent.

It was achieved by two discriminators supervising the alignment of extracted features and the

alignment of produced segmentation mask, respectively. As the network trained adversarially

against the discriminators, the features and the final segmentation prediction became more

indistinguishable from domain labels, ultimately achieving domain adaptation by shifting the

target image processing into the source data space.

Inspired by the unpaired image translation approach CycleGAN [42], SynSeg-Net first adopted

the idea of a cross-modality image transformation into the medical image field. With a specific

agenda for image segmentation, [97] trained an end-to-end network that first performed a

cyclic image synthesis and then used the translated image for image segmentation. The

generated target images were used as input to train a segmentation network, which was

directly deployed at test time for test target images. The method achieved great results in

medical segmentation by transferring a general data method into the medical imaging field.
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Advancing the research in this area, SIFA was proposed in [28] for medical segmentation and

outperformed existing methods in almost every category. Like [97], SIFA also employed the

CycleGAN framework for target-like source image generation, followed by a segmentation

network to compute a pixel-level classification mask. The model saw performance improve-

ment through the addition of modules, including feature alignment, where two discriminators

monitored the segmentation output of target images and target-stylised source images and an

auxiliary discriminator layer in the source discriminator for differentiating source images and

cycle source images. However, its most attributable design was the shared encoder between

the target-to-source generator and segmentor. The feature extraction pathway was optimised

under the influence of both image alignment and feature alignment, as well as semantic

learning. This maneuver allowed for synergistic learning between cross-modality image

translation and semantic segmentation.
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Methods

Despite existing GAN-related state-of-the-art methods showing great success in domain

adaptation, we noticed the limitation where the GAN inspects the image as a whole. Spe-

cifically, the discriminators output a scalar score for each image to measure whether the

image could pass as an image from the source or target domain, while the generators op-

timise from these examinations and try to synthesise the entire image towards the domain

standard. We noticed that the detailed structures could be easily overlooked if they were

not the most distinctive domain-specific features in the image, resulting in little motivation

for transformation. Namely, the GAN can refine synthesis on the most distinctive parts as

they would be considered more heavily by the discriminator. However, due to the nature of

medical image segmentation, the delicate anatomy and small features are of great value and

need to be noticed. Meanwhile, we realised that the two discriminators only learn features

and image characteristics from a single domain and are unaware of domain-invariant repres-

entation. Therefore, we are inspired to design a solution that enhances inspection at image

locality and simultaneously learns characteristics from both domains. The novel mix-up

strategy SynthMix randomly mixes up the original image and transformed image and has

the mixed image inspected by a Mixup inspector to evaluate its domain at each locality. The

method randomly masks patches belonging to different domains, forcing the Inspector and

generators to synthesise local structures with more fine-grained details, ultimately enhancing

the segmentation precision.

The early benchmark solution PnP-AdaNet [62] first included the adversarial losses in the

domain adaptation challenge, with a movable module that can be swapped for either do-

main for semantics alignment. In further development, SIFA [28] recreated and re-designed

23



24 3 METHODS

a CylceGAN-like [42] network to utilise both the generator and discriminator to achieve

domain adaptation at both the image level and feature level. Our method SynthMix, es-

tablished on SIFA, also adopts the popular and effective generative networks to perform

image-level translation to combat domain shift by directly alleviating contextual differences

while simultaneously aligning features in the semantic spaces through adversarial losses.

More importantly, we design a GAN-suited data augmentation solution to achieve more

localised GAN processing while promoting detail-filled domain-adapted synthetic images,

which not only improves the segmentation accuracy but also invites various potential uses in

medical image studies.

3.1 Method Overview

Let xS and xT denote data in the source domain and target domain, respectively, and let

zS denote a segmentation label for the source data. The ultimate aim for UDA is to train a

segmentor that could produce zT . This objective can be studied through several stages: GAN-

based image synthesis to perform the source-to-target translation and to train a segmentor

applicable in the target domain (Sec. 3.2, Sec. 3.3), training via the SynthMix scheme

(Sec. 3.4), and designing an associated Inspector (Sec. 3.5). An overview of the model is

shown in Fig. 3.1.

The network takes in input unpaired target and source images xS and xT . First, the inputs are

fed into the generative networks GS→T and GT→S to commence cross-modality translation,

where the generated output xS→T and xT→S will be examined by discriminators DS and DT .

The networks will be optimised based on the loss concerning the product of DS and DT and

domain labels of xS , xT , xS→T , and xT→S . By alternatively updating, the generators and

discriminators will improve in producing convincing fakes and distinguishing fakes from

real images. Next, the images will be augmented following the SynthMix protocol, where

the source-originated images xS and xS→T are mixed and the target-originated images xT

and xT→S are mixed to create Smix and Tmix. These outputs will then be examined with xS

and xT by the Mixup Inspector for patch-level domain prediction. The Mixup Inspector is
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FIGURE 3.1: An overview of the proposed method. The inputs S and T go through a generative path for image
translation, a SynthMix path for mix-up augmentation, and a segmentation mask for semantic label prediction.
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trained with the pre-designated SynthMix maps for better knowledge of patch-wise domain

characteristics, while the back-propagated gradient trains the generators to produce a more

detailed synthesis. Lastly, the features pulled from the encoder ET→S (the first part of the

GS→T ) will be evaluated by the feature discriminator Df . With the supervision of their

domain label, Df can learn domain traits in these latent codes, and the learned knowledge

would be used to train the encoder to project xT and xT→S closer in the latent space. These

features will also be passed to a segmentor to perform semantic segmentation. Ground truth

segmentation masks for xS will be used to optimise ET→S and the segmentor. After training

is complete, the prediction of xT will be used for inference in determining the segmentation

of target images.

3.2 Image Synthesis for Cross-modality Segmentation

To perform the cross-modality image processing, we first needed to produce passable target

images for neural network training. Following CycleGAN [42], we employed two sets of

generative adversarial networks to achieve cross-domain image synthesis.

Given unpaired source images and target images, the networks produced source images in

target appearances (xS→T ) and target images in source appearances (xT→S). The source

to target generator (GS→T ) took in a source image and outputted an image of the same

substructure but with an appearance similar to a target image. A target discriminator (DT ) was

assigned to distinguish whether the synthetic image was real or fake. The target discriminator

would also be trained with real target images and the transformed source images to learn

the target domain characteristics and possible traits of a fake image. The source to target

generator and target discriminator worked adversarially while the generator tried to produce

fakes with on par quality as the real samples to fool the discriminator, and the discriminator

attempted to identify the fakes and reject them. The same process proceeded with the target

to source generator (GT→S) and source discriminator (DS).

The two generative networks were optimised on an adversarial loss defined as below:
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LGAN =ExS∼XS [logDS(x
S)] + ExT∼XT [log(1−DS(GT→S(x

T )))]

+ ExT∼XT [logDT (xT )] + ExS∼XS [log(1−DT (GS→T (xS))],
(3.1)

where GT→S tries to output images to fool DS and DS trained to distinguish the fakes

generated by GT→S . The system is optimised as a mini-max game for an equilibrium where

GT→S generates passable fakes, and DS is sometimes able to identify the fakes. The same

adversary combat governs the DT and GS→T optimisation.

The cycle consistency was enforced to maintain stability and guide the image-scale domain

adaptation, for generators GS→T and GT→S and discriminators DS and DT . As mentioned

in the previous chapter, an image transferring across the domain and back should preserve

the exact same value in an ideal cross-domain transformation where the mapping from one

domain to the other is perfect. For instance, the source image xS fed through GS→T followed

by GT→S should be the same as the output product xS→T→S . The cycle consistency loss is an

L1 loss that forces the cycle-transformed images to be identical, and the weight coefficient

determines the conservativeness of the image transformations. The loss composition is:

Lcyc = ExS∼XS [||GT→S(GS→T (x
S))−xS||1]+ExT∼XT [||GS→T (GT→S(x

T ))−xT ||1]. (3.2)

After the simple domain adaptive image generation, there exist the transformed source images

that could pass for target appearance by the target discriminator standards. Along with the

ground truth for source images, a segmentor network could be trained to learn the semantic

segmentation for the target domain data.

To further alleviate the gap between the source and target domains, we followed SIFA’s

protocol to perform the feature-level alignment [28]. The target to source generator was

dismantled into an encoder-decoder structure while still bounded by the cycle consistency loss.

The pixel classifier consists of a convolutional layer followed by an interpolation layer. It took

the latent code, product of the target to source encoder, as the input to perform a semantic

segmentation task under the supervision of the source ground truth label yS . That means the

encoder ET→S and the classifier combined forms a segmentor Seg for target domain images.
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The training is guided by a hybrid segmentation loss LSeg:

Lseg(Seg) = H(yS, Seg(xS) +Dice(yS, Seg(xS)), (3.3)

where H denotes a cross-entropy loss and Dice denotes a dice-coefficient loss.

Simultaneously, a latent feature discriminator (Dp) was placed to inspect the encoded target

image and the encoded transformed source image. With the adversarial learning, the encoder

ET→S is trained to extract information from both the real target images and fake target images

to produce alike latent code, pulling the extracted features closer in latent space. By sharing

the encoder, the segmentor and target to source decoder entered a delicate equilibrium to not

only produce synthetic images that were indistinguishable for the target discriminator but also

to guide the encoding of the target domain images to be accurately segmented with feature

alignment. The process is supervised by an adversarial loss LDf

adv:

L
Df

adv(ET→S, Df ) = ExS→T∼XS→T [log(Df (ET→S(x
S→T )))]

+ ExT∼XT [log(1−Df (ET→S(x
T )))],

(3.4)

where the XS→T stands for the data distribution of the detached target-appearance images

synthesised by the source to target generator GS→T .

In summary, the semantic segmentation flow can be divided into three parts: the cyclic

cross-domain image transformation, the target domain feature extraction alignment, and the

target domain semantic segmentation. The overall objective is:

L =LT
adv(GS→T , DT ) + LS

adv(GT→S, DS) + λcycLcyc(GS→T , GT→S)

+ λsegLseg(Seg) + λadvL
Df

adv(ET→S, Df ),
(3.5)

where GS→T , GT→S , DS , DT , Seg, and Dp are the source to target generator, the target to

source generator, the source discriminator, the target discriminator, the target segmentor,

the feature discriminator, and λcyc, λseg, λadv are trade-off parameters set as 10, 0.1, 0.1

respectively.
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3.3 PatchGAN Architecture

We constructed our source to target generator GS→T following [28], [42]. The source to

target generator is a basic ResNet with nine ResNet blocks consisting of two Convolution-

InstanceNorm-ReLU blocks with a residual addition from input to the second ReLU layer

each. It takes an input of a size 256×256 image and returns a 256×256 image. The generator

processes the initial image with a 7×7 Convolution-InstanceNorm-ReLU layer with 32

filters and a stride of 1, followed by two downsampling Convolution-InstanceNorm-ReLU

layers with 64 filters and a stride of 1. Nine consecutive ResNet blocks further analysed the

feature maps before it was passed through two upsampling fractional-strided-Convolution-

InstanceNorm-ReLU layers and a 7×7 Convolution layer to reduce the channel size. Finally, a

skip connection was joined between the input and activation layer, finished by a Tanh activation

layer. The generator was able to extract and recreate features to preserve structural contents

due to the residual block’s superior ability to support a deep network and simultaneously

preserve the shallow features.

7 × 7 conv, 32

3 × 3 conv, 64

3 × 3 conv, 128

3 × 3 conv, 128

3 × 3 conv, 128

3 × 3 convTr, 64

3 × 3 convTr, 32

7 × 7 conv, 1

4 × 4 conv, 64, /2

4 × 4 conv, 128, /2

4 × 4 conv, 256, /2

4 × 4 conv, 512

4 × 4 conv, 1

ResNet Generator

Discriminator

× 9

…

FIGURE 3.2: Block diagrams for generator and discriminator architecture.
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Similarly, we implemented the deconstructed target to source generator GT→S as the target

to source encoder ET→S and target to source decoder. The encoder ET→S not only bears

the burden of analysing features from the target domain images for image synthesis but also

plays the role of classifying the extracted embedding for semantic segmentation. There-

fore, following [28] the encoder comprises a 7×7 Convolution-BatchNorm-ReLU layer,

two ResNetBlock-Maxpooling layers, two ResNet Blocks, a maxpooling layer, eight Res-

Net blocks, two dilated ResNet blocks, and a 3×3 Convolution-BatchNorm-ReLU layer.

The dilated residual layers were implemented to increase the size of receptive fields to aid

dense prediction in the semantic segmentation task. The decoder is composed of a 3×3

Convolution-InstanceNorm-ReLU layer, four ResNet blocks, three upsampling fractional-

strided-Convolution-InstanceNorm-ReLU layers to recover for generated synthetic image

size, and a 7×7 Convolution layer. Likewise to GS→T , a skip connection was inserted after

input of ET→S and before activation of the target to source decoder.

The discriminator’s composition followed PatchGAN in [73]. The network consists of

three 4×4 Convolution-InstanceNorm-ReLU layers with a stride of 2, followed by a 4×4

Convolution-InstanceNorm-ReLU layer with a stride of 1, and finally a 4×4 Convolution layer.

The discriminator creates an output of 35×35. The domain label for the source discriminator

DS and the target discriminator DT are predicted as 35×35 scalars in a tensor. The ground

truth for both discriminators is defined as 0 for fake and 1 for real, which is interpolated

into 35×35 tensors to calculate the prediction to ground truth error. It is explained by [73]

that each output scalar of PatchGAN covers a receptive field of a 70×70 field in the original

image. Therefore, the output of PatchGAN is equivalent to an image discriminator of 70×70

sliding upon the 256×256 image, examining the domain label of each overlapping patch. The

errors of each scalar are then averaged to compute a comprehensive discriminator rating for

the whole image. It is worth noting that although PatchGAN took into consideration different

patches receiving different ratings in discriminator output, it was still trained under an either

0 or 1 ground truth label based on the explicit spatial correlation between the 256×256

original image and the 35×35 discriminator output. Therefore, we decided to design a new

architecture for our SynthMix procedure.
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3.4 SynthMix for Adversarial Networks

During training, an initial random binary mask M of size k × k was generated, whose

occurrences of zeros and ones were controlled by a probability ratio λ [79]. This mask would

next be interpolated to reach the desired mix-up mask M of size 256× 256 to match input

size, guiding our SynthMix procedure described below.

The SynthMix procedure of two given samples is defined as:

x̃ = M⊙ xT + (1−M)⊙ xS, (3.6)

ỹ = M ⊙ yT + (1−M)⊙ yS, (3.7)

where M is the interpolated mask deciding at pixel which image to draw from, 1 is a mask of

256×256 filled with ones, and ⊙ is element-wise multiplication. In the mixed image, the 0

labeled patches would be the same positional patches cut from the source domain, while the 1

labeled patches would be the same positional patches cut from the target domain.

The masking procedure described in Equations 3.6 and 3.7 aims to provide a random mix-up

of the paired original and transformed images that share the same physical contents but differ

in imaging context. Equation 3.6 will render a mixed image where each patch might belong to

different domains (either source or target domain), and Equation 3.7 will calculate accordingly

the destination mapping of the patch domains that the Inspector should later try to predict.

Given source xS , target xT , xS→T (synthetic target image from a source image), and xT→S

images, at each training iteration, SynthMix saw five kinds of input images: the unmixed

source and target images, the unaligned mixed source and target images, the aligned mixed

Smix images (source and xS→T ), and the aligned mixed Tmix images (target and xT→S). The

first three were used to train the ISynthMix while the rest were used to optimise the generators

GS→T and GT→S . All selected input compositions preserved partial or complete authentic

samples from either the source or target domains to maintain the integrity of the ISynthMix

results. The pseudocode of the SynthMix scheme is shown in Alg. 1, where the original images

xS, xT are transformed by GS→T and GT→S , coherently mixed up following the guidance of
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M, and processed by SynthMix Inspector to compute loss for GS→T , GT→S , and Inspector

optimisations. The pseudocode for the SynthMix procedure is shown in Algorithm 1.

A visualisation of SynthMix operation with the xS, xt example is shown in Fig. 3.3. It can

be seen that Smix and Tmix look coherently aligned regarding the anatomical structure while

having distinctive appearance differences between the patches from different domains. The

Inspector will examine the image to determine if the synthetic patches themselves could stand

out as the desired domain patches as opposed to the real patches from the original domains.

It is also evident that the unaligned mix has no visual artifacts as they are mixed from real

samples captured in medical fields. The experiment determined that using the unaligned mix

for Inspector update gained the best results. Further details can be found in section 5.4.

In SynthMix operation, an image and its cross-domain synthetic fake were mixed following

the protocol and processed by the SynthMix Inspector to output a map differentiating the

Algorithm 1 Pseudocode for SynthMix procedure

for (xS, xt) in loader do
...
xS→T = GS→T (x

S)
xT→S = GT→S(x

T )
M = interpolate(M, (256, 256))
Smix = xS × (1−M) + xS→T ×M

Tmix = xT→S × (1−M) + xT ×M
Unaligned mix = xS × (1−M) + xT ×M

ySmix = M
yTmix = M
yUnaligned mix = M

logitsSynth = Inspector(Smix, Tmix)
logitsReal = Inspector(xS, xt, Unaligned mix)

Loss(logitsSynth, (y
Smix , yTmix)).backward()

Optimise GS→T (x
S), GT→S(x

T )
Loss(logitsReal, (0,1, y

Unaligned mix)).backward()
Optimise Inspector
...

end for



3.4 SYNTHMIX FOR ADVERSARIAL NETWORKS 33

domains of each location. The Inspector, trained with real source and target samples and mixed

samples of both, learned to classify the domain of each location from a classification loss

Lcls. With the Inspector’s knowledge of the features and characteristics of both domains, the

generators had to produce better details and locally distinctive features to pass the Inspector.

For example, the GS→T must generate on par target appearance images xS→T which stand

out as target patches in the semantically coherent mixed image Smix and vice versa for GT→S .

The generators were optimised on an adversarial loss Lmix
adv :

L
Df

adv(GS→T , GT→S) = ExS∼XS [log(1− ISynthMix(GS→T (x
S)))]

+ ExT∼XT [log(1− ISynthMix(GT→S(x
T )))],

(3.8)

𝑥!𝑥!→#

𝑥# 𝑥#→!

𝑆$%&

𝑇$%&

𝑥! 𝑥# 𝑢𝑛𝑎𝑔𝑙𝑖𝑛𝑒𝑑 𝑚𝑖𝑥

FIGURE 3.3: Visualisation of SynthMix Mixup. The first column denotes the
source domain images, while the second column denotes the target domain
images. They were mixed accordingly following the batch SynthMix map in
the third column to produce SynthMix in the last column. Images in orange
boundaries contain synthetic contents.
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where GS→T , GT→S , and ISynthMix are the source to target generator, target to source gener-

ator and Mixup Inspector respectively.

A significant difference that distinguishes our method is that we mixed up two images with

the same semantic contents for generator training. The mixed image containing generator

products would be assessed by the ISynthMix, which we train to learn both the source and the

target characteristics. We found that spatially mixing up an image of the same contents would

force the generators GS→T , GT→S to produce refined details in the synthetic images to fool

ISynthMix, further fulfilling the potential of the generator. Our mix-up approach helped the

generator to achieve better domain transformation at no additional data cost, improving the

efficiency of data use.

The training objective for SynthMix is:

LISynthMix
= λIL

mix
adv (GS→T , GT→S, ISynthMix) + λISynthMix

Lcls(ISynthMix), (3.9)

where λI is a hyper-parameter set at 0.1.

3.5 Mixup Inspector

After analysis of the PatchGAN [73] architecture, we noticed that the discriminator is just a

convolutional network trying to classify the image into real and fake categories. For example,

when taking an image, the source discriminator produces a single scalar as a domain score to

determine whether this image belongs to the source domain. As the image is being judged as

a whole to satisfy the discriminator, the generator can easily focus on producing large-scale

distinctive features and neglect detailed, delicate structures.

We also noticed that state-of-the-art data augmentation solutions are primarily used for

classification; hence, their output is also a scalar item. However, our model aims to improve

the transformation of detailed structures, often less predominant as domain-specific traits.

Necessarily, we need to assign and learn labels and local regions.
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Therefore, we are inspired by various mix-up techniques to design a novel Mixup Inspector

training scheme: we train the Inspector to learn the domain of each patch location through

an encoder-decoder architecture. Thanks to the random mixing of SynthMix, the Mixup

Inspector will adapt to learn less prominent features at the locality, which stimulates the

transformation of these details through backpropagation.

The associated Mixup Inspector ISynthMix is proposed to enhance the training supervisions to

monitor the training of SynthMix. It takes as input an image of size 256× 256 and produces

a k × k domain mask, whose entries denote the domain classifications of their corresponding

local patches of size 256
k

× 256
k

. Extending the PatchGAN [73] to an encoder-decoder archi-

tecture, this Inspector ISynthMix is designed to learn the domain-specific characteristics on

images from both domains by training adversarially against SynthMix. Following [28], its

encoder comprises four consecutive blocks of 4×4 convolutional layer, instance normalisation,

and leaky ReLU to extract the downsampled feature maps. In contrast, these feature maps are

further processed within the decoder through two 4×4 convolutional blocks, a 3×3 dilated

convolutional block, and a 3×3 convolutional block to provide the domain mask predictions.

To provide extra supervision in helping the model converge, an additional branch is added to

pass these feature maps through a 4×4 convolution and global average pooling layers, which

is later supervised by the domain-specific scores averaged among M. Skip connections are

added in between to preserve spatial information.

It is worth noting that in CycleGAN [42], the PatchGAN was explained as a convolutional

network whose output pixels had overlapping receptive fields of 70×70 area, but it was still

trained with universal samples and labels, namely entirely real or fake. SynthMix processed

samples with mixed labels, training the Inspector to analyze the image at the locality and

ultimately learning the domains at the pre-designated disjoint patches.

We provide a visualisation of SynthMix in Fig. 3.4. The first row visualises the experimental

setting of a CT-to-MRI transformation, while the second row illustrates that of an MRI-to-CT

transformation. The first three columns denote the input source image, transformed synthetic

target image, and an aligned mix of them both. The third and fourth columns visualise the

ground truth mask and output of the Inspector. It is apparent that our Inspector responds to
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SynthMix at the correct positions, which can ultimately result in performance gains for the

adversarial UDA method.

MRI Synthetic CT MRI SynthMix GT Mask 𝐼!"#$%&'( Pred

CT Synthetic MRI CT SynthMix GT Mask 𝐼!"#$%&'( Pred Mixup (λ=17/64)

Mixup (λ=8/64) CutMix (λ=8/64)

CutMix (λ=17/64)

FIGURE 3.4: Visualisation of SynthMix and output of the trained ISynthMix.
The rows represent the transformation of CT and MRI images from the cardiac
dataset. The columns denote the original images, synthetic translated images,
the coherent mix of the first and second columns, the ground truth label for
Mixup Inspector, the output prediction of Mixup Inspector, the Mixup sampled
images, and the CutMix sampled images.

3.5.1 Extended Mix-up Experimental Setup

In the method development stage, we also implemented different Mixup methods: Mixup [79]

and CutMix [83].

During training, a random mix ratio number λ was produced for Mixup by a random generator

drawn from a beta distribution (1, 1). It was then used to perform Mixup augmentation

on training images, including source and target images and the byproducts of CycleGAN

translation xS→T and xT→S . The Mixup procedure of two given samples from the target and

source domains is:

x̃ = λxT + (1− λ)xS, (3.10)

ỹ = λyT + (1− λ)yS, (3.11)

where λ is the mix ratio deciding the weight of the value mixup at the pixel level. The

augmented image would have at each pixel the value of the addition of λ times xT pixel value
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and (1−λ) times xS pixel value. The Mixup pairing protocol was kept the same as SynthMix,

where a coherent mix of xS and xS→T and coherent mix of xT and xT→S were computed to

update the generators and an unaligned mix of xS and xT were produced to optimise Mixup

Inspector.

For CutMix implementation, a random mix ratio number λ was produced by a random

generator drawn from a beta distribution (1, 1) during training, which was further sampled

into a set of coordinates defining a bounding box of size k × k, whose coverage is λ of the

image size. It was then used to perform CutMix augmentation on training images, including

source and target images and the byproducts of CycleGAN translation xS→T and xT→S . The

CutMix procedure of two given samples from the target and source domains is:

x̃ = M⊙ xT + (1−M)⊙ xS, (3.12)

ỹ = λyT + (1− λ)yS, (3.13)

where M is the interpolated mask deciding at pixel which image to draw from, 1 is a mask of

256×256 filled with ones, and ⊙ is element-wise multiplication. In the mixed image, the 0

labelled pixels would be the same positional pixels cut from the source domain, while the 1

labelled pixels would be the same positional pixels cut from the target domain. The CutMix

pairing protocol was kept the same as SynthMix, where a coherent mix of xS and xS→T and

coherent mix of xT and xT→S were mixed for updating the generators, and an unaligned mix

of xS and xT were mixed to optimise the Mixup Inspector.
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Experiment Settings

4.1 Data Preparation

Following SIFA [28], we evaluated our unpaired CT-MRI adaptation model on two segment-

ation benchmarks, including the segmentation of cardiac structures and abdominal organs,

among three publicly available biomedical segmentation datasets. More specifically, we

adopted the Multi-Modality Whole Heart Segmentation (MMWHS) [98] dataset for cardiac

structure segmentation. Following [1], we merged the Combined Healthy Abdominal Organ

Segmentation (CHAOS) dataset [99] and the Multi-Atlas Labeling Beyond the Cranial Vault

challenge (Multi-Atlas Labeling) dataset [100] into an Abdominal Organ Segmentation (AOS)

benchmark dataset for evaluation.

The MMWHS dataset includes 20 MRI and 20 CT volumes. This benchmark contains

segmentation labels for four semantic classes: ascending aorta (AA), left atrium blood cavity

(LAC), left ventricle blood cavity (LVC), and myocardium of the left ventricle (MYO).

Following [28], its containing images were pre-processed by saturating intensity and cropped

to cover more of the heart structure, followed by resizing to 256x256 patches. The AOS

dataset [28] contains 20 T2-SPIR MRI volumes (from CHAOS [99]) and 30 CT volumes

(from Multi-Atlas Labeling [100]). It provides 4-class segmentation targets: the liver, right

kidney, left kidney, and spleen. Similar pre-processing techniques were performed on AOS

images but without the last resizing step for MRI images. Some sample images and their

labels are presented in Fig. 4.1. We followed the same dataset split as reported in [28] for both

MMWHS and AOS datasets, with a split ratio of 80%:20%. To study the weakly-supervised
38
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MMWHS
CT

MMWHS
MRI

AOS
CT

AOS
MRI

FIGURE 4.1: Example images from the MMWHS [98] and AOS datasets [99],
[100]. The rows denote heart CT, heart MRI, abdomen CT, and abdomen MRI.
The first and third columns show 2 sample images from the same modality,
and the second and fourth columns present their segmentation ground truth,
respectively. The classes in MMWHS dataset are: AA (green), LAC (blue),
LVC (yellow), and MYO (red); the classes in AOS dataset are: left kidney
(green), spleen (blue), right kidney (yellow), and liver (red).

CT-to-MRI and MRI-to-CT syntheses, we shuffled the unpaired training data to avoid over-

fitting specific fixed pairs. All images were normalised to [-1,1] before being fed into the

networks, while random rotation of degrees [-180, 180] was applied to AOS images for data

augmentation. The models were implemented in Pytorch v1.10 and trained on an NVIDIA

GeForce RTX 2080 Ti GPU with a batch size of 8. Following [28], [42], the Adam optimisers

were adopted with a learning rate of 0.0002.
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4.2 Evaluation Metrics

The model was evaluated with two standard metrics: the Dice coefficient and the Average

Symmetric Surface Distance (ASSD). Both metrics reflect the similarity between two 3D

volumes. During the evaluation, the segmentation prediction produced by ConvNet will be

concatenated as its original 3D shape and compared against its 3D ground truth labels for

accuracy.

4.2.1 Dice Coefficient

The Dice coefficient calculates the similarity of the prediction and reference masks by

promoting overlapping volumes and punishing non-overlapping volumes. The formula is

defined as

DSC =
2|X ∩ Y |
|X|+ |Y |

, (4.1)

where X denotes the voxels in segmentation predictions and Y denotes the voxels in ground

truth segmentation masks. For every single class of segmentation, the numerator 2|X ∩ Y |

represents two times the number of voxels that both belong in the segmentation results and

ground truth label, while the denominator |X|+ |Y | is the addition of the number of pixels

in the prediction and the number of voxels in the label. The results of all classes were

then averaged to represent the Dice of the overall segmentation quality. As the Dice metric

encourages the similarity of predicted results and labels, a higher value is preferred to dictate

better segmentation, spanning from 0% to 100%.

4.2.2 Average Symmetric Surface Distance

The Average Symmetric Surface Distance (ASSD) measures the distances between the

surfaces of segmentation prediction volume and the ground truth masks in 3D. First, let

border voxels of both prediction and ground truth volumes be defined as S(A) and S(B). The
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shortest distance between S(A) and an arbitrary voxel v can be determined as:

d(v, S(A)) = min
sA∈S(A)

||v − sA||, (4.2)

where ||.|| denotes the Euclidean distance between two voxels. Similarly for S(B):

d(v, S(B)) = min
sB∈S(B)

||v − sB||. (4.3)

Therefore, the ASSD can be computed by:

ASSD =
1

|S(A)|+ |S(B)|

 ∑
sA∈S(A)

d(sA, S(B)) +
∑

sB∈S(B)

d(sB, S(A))

 . (4.4)

In conclusion, ASSD measures segmentation performance by computing the error margin

between the prediction and label masks. Therefore, a smaller value is desired down to 0,

while the worst case is the maximum distance of the image.



CHAPTER 5

Results

We assessed our SynthMix method on two segmentation benchmarks, followed by the compar-

ison of segmentation results with SOTA approaches. The experiment settings are reported in

Chpt. 4, and the results are described in Sec. 5.1 and Sec. 5.2 respectively. Then, we designed

a novel evaluation means for cross-modality medical image synthesis with quantitative and

qualitative results as in Sec. 5.3. Lastly, we include the ablation studies of our method in

Sec. 5.4.

We compared our method with several existing SOTA approaches on UDA, including Cycl-

eGAN [42], SynSeg-Net [97], CyCADA [23], SIFA [28], Mixup [79], and CutMix [83].

We performed MRI-to-CT transformation for the unlabeled cardiac MRI segmentation and

repeated the experiments in the CT-to-MRI direction for CT segmentation to demonstrate

the pipeline’s ability to perform domain adaptation in both directions. We also evaluated the

method on the AOS dataset in the CT-to-MRI direction for abdominal organ segmentation to

assess the method’s robustness to subject changes.

We conducted comparative experiments with existing SOTA adversarial UDA methods.

CycleGAN [23] is one of the foundation studies achieving adversarial domain adaptation via

image translation. We adopted CycleGAN to perform a bidirectional translation to achieve

image alignment. The source to target images xS→T images and their ground truth label will

be used to train a target domain segmentor with the same architecture as Seg of our proposed

method (Sec. 3.2). The trained segmentor produced the target predictions applied directly to

target images.

42
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Proposed to adopt image-level domain adaptation into medical segmentation, SynSeg-Net [97]

designed and fine-tuned an end-to-end network for medical segmentation with domain adapt-

ation between MRI and CT (2.4). The network directly took the input of source and target

images and produced target segmentation after training was completed, and the results would

be used to calculate accuracies against target labels.

CyCADA [23] based their research on CycleGAN, introducing a feature-level alignment

to derive more accurate segmentation results. A feature discriminator was implemented to

assess the output segmentation masks and the ground truth label for target domain semantic

alignment. Another feature extractor was employed to force consistency to extracted source

features and features of source images stylised as the target. This source content feature

extractor was first trained and then frozen to optimise for similarity of extracted source

semantic content as both images originated from the same source image. CyCADA also

directly produced segmentation prediction at inference, which was used for segmentation

accuracy assessment.

SIFA [28] synergises GT→S and Seg by sharing encoders, along with an alternative feature

alignment (2.4). The network also takes in input source and target images with the supervision

of source labels for training. At testing time, the network took the target images and inferred

a target segmentation prediction. We evaluated the SIFA method in its original TensorFlow

framework for the selected metrics. It is also worth noting that we implemented the SIFA

network in PyTorch as a baseline for all the experimental studies.

To compare SynthMix with existing mix-up methods, we used Mixup [79] and CutMix [83] as

the mix-up protocols and their default ResNet classifiers as the auxiliary domain Inspector to

perform similar data augmentation for the baseline (SIFA PyTorch) framework. The baseline

carried out the same phases of generative image translation, semantic segmentation, and

feature alignment, with the mix-up inserted after the generators collect their outcomes to be

mixed with input images. The ResNet architecture was adopted to return a classification score

for the entire image per the mix ratio of the mix-up scheme. The Mixup and CutMix modules

served the same purpose as SynthMix under this experimental setting as they were also used
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to mix content-aligned samples (e.g. source images xS and source to target images xS→T ) to

promote image-level cross-domain synthesis.

5.1 Whole Heart Image Segmentation

We validated our method on the whole heart image segmentation benchmark with data

acquired from the MMWHS dataset [98]. The dataset contains MRI and CT images and

ground truth segmentation labels for both modalities. For this dataset, we first chose the MRI

modality as the source domain and CT as the target domain to perform MRI-to-CT domain

adaptation. Then the experiment was repeated in the reverse direction, where MRI modality

stood for the unlabeled target domain.

5.1.1 Quantitative Results

We present our quantitative results on whole heart image segmentation in Tab. 5.1 and Tab. 5.2,

where the former shows domain adaptation from the MRI source domain to the CT target

domain, and the latter demonstrates the reverse direction. The first two rows denote the

lower bounds and upper bounds, respectively. More concretely, given an identical segmentor

network Seg, the lower bounds, with no adaptations involved, were obtained when Seg was

intuitively trained and evaluated on the source and target domains, respectively. Next, the

directly supervised upper bounds were obtained when both training and evaluation of Seg

were conducted on the same domain. The rest are existing SOTA adversarial UDA methods.

All these methods were trained on images from both domains (with source labels only), and

their target segmentors were evaluated by testing images from the target domain.

From Tab. 5.1 and Tab. 5.2, it can be observed that without any domain adaptation, a segmentor

trained on a different modality performs poorly on the target domain, going as low as 17.2%

in Dice for unlabeled CT segmentation and 15.7% for unlabeled MRI segmentation. The high

number of ASSD results (37.9 and 14.0, respectively) reflects the same. It is also evident that

SOTA domain adaptation techniques greatly enhanced the segmentation accuracies, boosting



5.1
W

H
O

L
E

H
E

A
R

T
IM

A
G

E
S

E
G

M
E

N
TA

T
IO

N
45

TABLE 5.1: Comparison of domain adaptation performance on MMWHS dataset.

Cardiac MRI → Cardiac CT

Method Dice (%) ↑ ASSD ↓
AA LAC LVC MYO Avg AA LAC LVC MYO Avg

Lower 28.4 27.7 4.0 8.7 17.2 20.6 16.2 66.4 48.4 37.9
Upper 92.7 91.1 91.9 87.7 90.9 1.5 3.5 1.7 2.1 2.2

CycleGAN [42] 73.8 75.7 52.3 28.7 57.6 11.5 13.6 9.2 8.8 10.8
SynSeg-Net [97] 71.6 69.0 51.6 40.8 58.2 11.7 7.8 7.0 9.2 8.9
CyCADA [23] 72.9 77.0 62.4 45.3 64.4 9.6 8.0 9.6 10.5 9.4

SIFA [28] 81.3 79.5 73.8 61.6 74.1 7.9 6.2 5.5 8.5 7.0
SIFA+Mixup [79] 86.1 82.5 79.8 71.5 80.0 5.5 3.8 3.8 4.6 4.4
SIFA+CutMix [83] 83.3 85.4 86.4 67.6 80.7 9.2 4.0 3.0 4.2 5.1

Ours 87.2 88.5 82.4 71.8 82.5 5.4 3.2 3.3 3.5 3.8

TABLE 5.2: Comparison of domain adaptation performance on MMWHS dataset.

Cardiac CT → Cardiac MRI

Method Dice (%) ↑ ASSD ↓
AA LAC LVC MYO Avg AA LAC LVC MYO Avg

Lower 5.4 30.2 24.6 2.7 15.7 15.4 16.8 13.0 10.8 14.0
Upper 82.8 80.5 92.4 78.8 83.6 3.6 3.9 2.1 1.9 2.9

CycleGAN [42] 64.3 30.7 65.0 43.0 50.7 5.8 9.8 6.0 5.0 6.6
SynSeg-Net [97] 41.3 57.5 63.6 36.5 49.7 8.6 10.7 5.4 5.9 7.6
CyCADA [23] 60.5 44.0 77.6 47.9 57.5 7.7 13.9 4.8 5.2 7.9

SIFA [28] 65.3 62.3 78.9 47.3 63.4 7.3 7.4 3.8 4.4 5.7
SIFA+Mixup [28], [79] 67.0 65.9 77.6 41.2 62.9 5.2 6.9 3.9 4.5 5.1
SIFA+CutMix [28], [83] 63.0 66.0 81.0 47.6 64.4 6.3 4.9 3.2 4.0 4.6

Ours 70.0 68.7 83.0 48.3 67.5 5.9 5.1 3.3 4.1 4.6
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Dice to between 57.6% and 74.1% for MRI-to-CT and between 49.7% and 63.4% for CT-

to-MRI. Among the four existing frameworks, CycleGAN, CyCADA, and SIFA all showed

steady improvement, gaining advances to architecture before them in both directions. SynSeg-

Net also improved over the lower bound but was inferior to CycleGAN in CT-to-MRI, which

could be caused by the relatively low robustness facing the dataset change. As for the mix-up

method, the comparison showed that both mix-up augmentation schemes raised accuracies

compared to SIFA, with higher results for Dice and lower results in ASSD, except for a mere

0.5% drop for the Dice of SIFA+Mixup in the CT-to-MRI direction. Finally, it showed that our

SynthMix outperformed all others on the cardiac segmentation, where it ranked 1st in most

categories with clear margins in both cross-modality transforming directions. The averages of

Dice and ASSD have an 8.4%↑ and 3.2↓ (MRI-to-CT) and a 4.1%↑ and 1.1↓ (CT-to-MRI)

performance gain over SIFA. It is also worth noting that our SynthMix mix-up scheme had a

clear advantage over its counterparts Mixup and CutMix by an average of 2.45% higher for

Dice in both directions and a minimum of 1.2 lower for ASSD in the MRI-to-CT direction,

while the ASSD for CT-to-MRI direction remained the same as CutMix.

5.1.2 Qualitative Results

We present in Fig. 5.1, Fig. 5.2, and Fig. 5.3 the visualised comparison between SynthMix

and SIFA segmentation of AA, LAC, LVC, and MYO for the unlabeled CT segmentation

task. The legends identified the individual columns as test cardiac MRI image, ground truth

annotation, SIFA segmentation, and SynthMix segmentation.

Admittedly, the two networks both achieved impressive segmentation results where semantic

classes that covered a large area in the image were mostly captured and segmented in the final

results, such as the LVC structure, indicated in yellow. In the acquired results, we clustered

the results into three groups.

In Fig. 5.1, we show satisfactory segmentation results where most of the structure was

successfully identified by both methods. However, it can be clearly observed in these results

that SynthMix segmentation has a more similar shape to the ground truth than the SIFA result
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Cardiac MRI Ground Truth SIFA SynthMix (Ours)

AA LAC LVC MYO

FIGURE 5.1: Qualitative comparison results with SIFA for medical image
segmentation of the CT-to-MRI domain adaptation demonstrate the excellent
segmentation results by both methods, where SynthMix still obtained a more
accurate shape than SIFA. Zoom in for more details.

does. It can also be seen that in rows one and three, the MYO and AA segmentation showed

irregular boundaries, despite the fact that the original MRI image had very clear borders

for each class. In contrast, SynthMix’s prediction better matches the profiles of the original

cardiac substructures.
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Cardiac MRI Ground Truth SIFA SynthMix (Ours)

AA LAC LVC MYO

FIGURE 5.2: Qualitative comparison results with SIFA for medical image
segmentation of the CT-to-MRI domain adaptation are shown where SIFA
predicted classes that were not present in the image. Zoom in for more details.

In Fig. 5.2, we gather the predictions where our SynthMix correctly predicts the classes

present in the image while SIFA mistakenly identified some areas as the target classes. In the

first and last row, SIFA showed minor errors in identifying the AA class when it was not there,

whose sizes would have a relatively lower impact on Dice and ASSD metrics. Alarmingly,

the second row displayed a big part of the background (not one of the four target classes)

mistaken as an AA substructure by SIFA. As can be seen in the original image, some shadows

in the bright area were recognised as features of the AA class, while SynthMix overcame this

noise and produced the correct outcome.
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AA LAC LVC MYO

Cardiac MRI Ground Truth SIFA SynthMix (Ours) Cardiac MRI Ground Truth SIFA SynthMix (Ours)

FIGURE 5.3: Qualitative comparison results with SIFA for medical image segmentation of the CT-to-MRI domain
adaptation presents the results where SIFA missed one or more classes. Zoom in for more details.
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In Fig. 5.3, we present more images where SIFA failed to capture one or more classes and

drew an incorrect boundary, gravely degrading outcome accuracy. We observed the SIFA

segmentation missing the LVC class completely in rows two, three, and five, as well as

missing LAC completely in row six, while SynthMix successfully detected all of these classes,

drawing relatively accurate locations and shapes. We also acknowledge some classes were

missed by both networks, usually with smaller-sized substructures presented in the current

frame.

Cardiac CT Ground Truth SIFA SynthMix (Ours)

AA LAC LVC MYO

FIGURE 5.4: Qualitative comparison results with SIFA for medical image
segmentation of the MRI-to-CT domain adaptation contain some excellent
segmentation results where SynthMix still obtained a more accurate size and
shape than SIFA. Zoom in for more details.

We exhibit the segmentation visualisation of AA, LAC, LVC, and MYO of the domain

adaptation in the MRI-to-CT direction. Fig. 5.4, Fig. 5.5, and Fig. 5.6 compared network
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Cardiac CT Ground Truth SIFA SynthMix (Ours)

AA LAC LVC MYO

FIGURE 5.5: Qualitative comparison results with SIFA for medical image
segmentation of the MRI-to-CT domain adaptation show some of the areas
falsely identified as another class (top row) and region of the desired class
marked as background (second and third rows). Zoom in for more details.

outcomes between the CT ground truth labels, SIFA predictions, and SynthMix prediction

with each column individually described by the notations at the bottom.

The images were grouped into three representative cases. Like the unlabeled MRI results

analysed above, the CT segmentation also achieved adequate results in many frames, as shown

in Fig. 5.4. Nevertheless, the comparison between SIFA segmentation and SynthMix clearly

showed that our method arrived at better sizes and boundaries than ground truth references.
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AA LAC LVC MYO

Cardiac CT Ground Truth SIFA SynthMix (Ours)

FIGURE 5.6: Qualitative comparison results with SIFA for medical image
segmentation of the MRI-to-CT domain adaptation display severely distorted
segmentation of a challenging frame where SynthMix still managed to produce
prediction with better location and outline. Zoom in for more details.
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In Fig. 5.5, we present some incorrect class assignments by SIFA. We display the results

where the AA class was falsely classified but was not present in the image in the first row. It

can be clearly seen that despite SynthMix and SIFA both wrongly identifying AA, the SIFA

results mistook a significantly greater region for the class, while SynthMix’s incorrect AA

segmentation was very tiny. We also show some cases where SIFA missed the LAC class

entirely in the second and third rows.

Additionally, in Fig. 5.6, we show segmentation results where both networks gave results with

irregular boundaries and some distorted classification placement. However, SynthMix results

still maintained a closer shape and class composition to the ground truth than SIFA did.

5.2 Abdominal Organ Segmentation

We performed medical segmentation on the AOS dataset following [28]. The dataset con-

tains different anatomical objects from the previous dataset (MMWHS), which are human

organs from the abdomen area. The framework was validated in the CT-to-MRI direction to

demonstrate robustness towards different medical image datasets. The training was completed

with input of CT and MRI images as the source and target, respectively, as well as provided

ground truth segmentation labels of the CT domain. At test time, the test MRI images were

fed to the segmentor module and the output was taken to compute segmentation accuracies.

5.2.1 Quantitative Results

Tab. 5.3 reports the quantitative segmentation results for Dice and ASSD on the AOS dataset.

In the first and second rows, we present a lower bound Dice of 57.7% and upper bound Dice

of 89.2%. It is evident that compared to heart image segmentation (details in Sec. 5.1), the

abdominal organ segmentation has a much higher lower bound (57.7% as to 15.7%). This

difference could be caused by the relatively clearer borders of human abdominal organs

in the spatial scope because the organs are further apart from each other. A considerably

higher lower bound also resulted in a small margin of 4.4% among all Dice results. For the

Dice metric, SIFA achieved the highest accuracy at 85.4%, yet it was only 1.3% higher than
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CyCADA and 2.3% higher than the worst-performing SOTA method, CycleGAN. That being

said, our SynthMix still landed on the higher end in Dice with mere 0.2% different from

the first-ranking SIFA framework while showing noticeable gains in three classes: the right

kidney, left kidney, and spleen.

As for ASSD, the last row showed that SynthMix achieved significant and consistent im-

provements in ASSD over all classes. However, the conventional Mixup and CutMix failed to

improve the SIFA baseline on the AOS dataset. As mentioned in previous chapters, Mixup

and CutMix are trained with a classifier whose final output is a scalar value that is used to

determine the resemblance of the input image to the desired domain. We suspect that their

reliance on the single scalar domain score caused an unstable impact on the cross-modality

image translation, overall degrading the segmentation performance.

5.2.2 Qualitative Results

We report in Fig. 5.7, Fig. 5.8, and Fig. 5.9 the visual comparison of AOS segmentation

performance between SIFA and our method. The trained network was deployed onto the

unlabeled abdominal MRI images to segment the following classes: the left kidney, right

kidney, spleen, and liver, where they are indicated in green, blue, yellow, and red, respectively.

From reviewing the segmentation results, we selected the representative cases that could

TABLE 5.3: Comparison of CT-to-MRI domain adaptation performance on
AOS dataset.

Method Dice (%) ↑ ASSD ↓
Liver R Kidney L Kidney Spleen Avg Liver R Kidney L Kidney Spleen Avg

Lower 48.9 50.9 65.3 65.7 57.7 4.5 12.3 6.8 4.5 7.0
Upper 92.4 90.5 86.9 87.1 89.2 0.2 0.2 0.3 0.3 0.3

CycleGAN [42] 88.8 87.3 76.8 79.4 83.1 2.0 3.2 1.9 2.6 2.4
SynSeg-Net [97] 87.2 90.2 76.6 79.6 83.4 2.8 0.7 4.8 2.5 2.7
CyCADA [23] 88.7 89.3 78.1 80.2 84.1 1.5 1.7 1.3 1.6 1.5

SIFA [28] 90.0 89.1 80.2 82.3 85.4 1.5 0.6 1.5 2.4 1.5
SIFA+Mixup [79] 86.2 84.5 82.1 76.0 82.2 0.7 1.7 0.5 1.2 1.0
SIFA+CutMix [83] 83.7 86.7 77.6 76.0 81.0 0.5 0.5 0.6 1.2 0.7

Ours 86.6 88.8 82.7 82.9 85.2 0.4 0.2 0.5 1.1 0.6
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demonstrate typical scenarios for the whole set and placed them into three groups, shown in

three figures.

Abdominal MRI Ground Truth SIFA SynthMix (Ours)

L Kidney Spleen R Kidney Liver

FIGURE 5.7: Qualitative comparison results with SIFA of the unlabeled
abdominal MRI which illustrated the segmentation results where SIFA falsely
predicted classes that were not present in the image. Zoom in for more details.
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L Kidney Spleen R Kidney Liver

Abdominal MRI Ground Truth SIFA SynthMix (Ours)

FIGURE 5.8: Qualitative comparison results with SIFA of the unlabeled
abdominal MRI, which denoted some of the great segmentation results where
SynthMix still obtained a more accurate shape than SIFA. Zoom in for details.
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Abdominal MRI Ground Truth SIFA SynthMix (Ours)

L Kidney Spleen R Kidney Liver

FIGURE 5.9: Qualitative comparison results with SIFA of the unlabeled
abdominal MRI denoting the results where SIFA missed one or more classes.
Zoom in for more details.

Fig. 5.7 showed the results where SIFA misidentified some of the regions as one of the target

classes. Most of these false segmentation areas were standalone regions not connecting with

other segmented classes, such as shown in row one and row three. However, some cases

showed SIFA wrongly classified one of the desired target classes with another, which we

showed in rows two, four, and five.

The second typical group is when SIFA and SynthMix both achieved remarkable results,

identifying all the present classes and segmentation predictions close to the ground truth

annotation, shown in Fig. 5.8. However, some of the results (row one, row three, and row

five) showed that SynthMix sometimes has better knowledge of segmentation boundaries,

enhancing the precision of the results.

Finally, in Fig. 5.9, we show results of predictions where SIFA failed to capture the target

classes in the image, but SynthMix was able to segment them, with the missed structures

being the right kidney and spleen in the top and bottom rows, respectively.
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5.3 Medical Image Synthesis

To verify the superior capability of our SynthMix on medical cross-modality synthesis, we

design a unique measuring procedure to examine its synthesis quality in both quantitative and

qualitative manners: (1) We trained a patch-based domain classifier CLF on the training set

(18k cardiac images) of MMWHS to learn to distinguish MRI and CT domains. (2) For each

cardiac image within the test set (approx. 1.5k images) of MMWHS (denoted as SETtest),

we adopted our generators GMRI→CT and GCT→MRI to synthesise its corresponding cross-

modality image, whose pre-trained weights were borrowed from trials reported in Tab. 5.1.

(3) We collected all these cross-modality images to form a fully-synthesised set (dubbed as

SETSynthMix). (4) We repeated steps two and three for SIFA to derive another fully-synthesised

set (named by SETSIFA). (5) We ran CLF on both SETSynthMix and SETSIFA and reported the

classification accuracies as the probability of CLF being fooled. In other words, a higher
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Accuracy

95.3
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CT-to-MRI 1 CT-to-MRI 2

FIGURE 5.10: Medical cross-modality synthesis. The rows denote the nat-
ural samples from SETtest of MMWHS, and their corresponding synthesised
samples forming SETSIFA and SETSynthMix. The MRI and CT modalities are
marked in green and purple, respectively.
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accuracy could be achieved when more synthesised cardiac images are recognised by CLF

as real ones by mistake (i.e., more realistic target domain-specific images are generated).

Therefore, these accuracies could be employed as a quality measurement for medical cross-

modality synthesis, and it is noteworthy that these measurements are comparable as the same

CLF was employed for examinations.

As reported on the right side of Fig. 5.10, we achieved a higher CLF accuracy than SIFA,

validating that SynthMix is capable of producing synthetic images that capture more target

domain-specific appearance characteristics to deceive the CLF. We also demonstrated several

cross-modality synthesis samples, which verifies that our proposed SynthMix also manages

to retain more source domain-specific fine-grained anatomical traits and alleviates the blurs

introduced during the unpaired cross-modality transformation. Red arrows marked several

defects in the SIFA-generated image, which were recovered in SynthMix synthesis, including

blur and loss of clear structure margins, alien patterns that were not present in original images,

and inadequate handling of contrast, causing the loss of delicate structures.

5.4 Ablation Studies

We conducted an ablation study of the essential components in the SynthMix framework, as

shown in Tab. 5.4. Following the official TensorFlow SIFA repository 1, we implemented

a baseline in Pytorch (row one). The second row showed an ablative setting when both

adversarial discriminators DS and DT in SIFA were replaced with a single SynthMix Inspector.

Based on the inferior results, we noticed that the original discriminators should be kept

working together with the Inspector for SynthMix to maintain the stability of the GAN

networks.

Next, we investigated the most effective input combination for Inspector optimisation. The

five input samples that could contribute to optimising the Mixup Inspector are the source,

target, aligned Smix, aligned Tmix, and unaligned mix of source and target images, with the

results of different loss settings listed in rows three-five. As shown in the table, we first

1https://github.com/cchen-cc/SIFA
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TABLE 5.4: Ablation studies on MRI-to-CT setting on MMWHS dataset.

Ablative Setting Dice ASSD
Baseline ISynthMix 78.1 6.0
Model 0: replace PatchGAN with Inspector 77.4 5.7
Model 1: Train Inspector with S, T, Smix, Tmix, unaligned mix 78.6 7.0
Model 2: Train Inspector with Smix, Tmix, unaligned mix 79.8 4.9
Model 3: Train Inspector with S, T, Smix, Tmix 80.2 4.6
Model 4: SynthMix resolution k= 4 79.9 5.6
Model 5: SynthMix resolution k= 32 80.9 4.5
Ours: Train Inspector with S,T,unalignedmix; 82.5 3.8SynthMix resolution k = 8

initiated the Inspector optimisation with authentic source, target images and all the mixed

samples. It immediately resulted in a performance drop. Following that, we removed the pair

of source and target images in the training of Inspector, which improved the Dice but still

showed unimpressive results. Similar results were received when we replaced the unaligned

mix image with coherent mixed samples Smix, Tmix. Comparing model 3 and the final model,

we deduced that training the Inspector with S, T over Smix, Tmix helped with the stability and

reliability of SynthMix, and unaligned mix served as a better reference for Inspector than

Smix, Tmix.

Furthermore, we also noticed the introduction of an unaligned mix resulted in inferior Dice in

model 1 and model 2 but improved Dice accuracies in the final model. Regarding this, we

argue that the unaligned mix was not the sole reason for performance degradation in model 1

and model 2; In fact, the unaligned mix combined with Smix, Smix might provide confusing

guidance for the Inspector. Finally, the mixed image label training was led by the unaligned

mix due to the advanced accuracy of unaligned mix over Smix, Tmix.

Next, rows six and seven present two alternative SynthMix designs for mix-up resolution.

We modified the initial binary mask size k and the decoder layers of the Mixup Inspector to

produce matching k × k output. Some illustrations in Fig. 5.11 showed that SynthMix k=8

showed the best Inspector prediction, and k=4 learned patterns with a more significant error

margin, while k=32 showed pattern learning with relatively low accuracy. In segmenting the

cardiac substructure on the MMWHS, we determined that the SynthMix resolution of k=8
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k=4

k=32

MRI Synthetic CT MRI SynthMix GT Mask 𝐼!"#$%&'( Pred

k=8

FIGURE 5.11: Visualisation of SynthMix procedure and output of the trained
ISynthMix on the MMWHS dataset. The first and second rows denote the
experimental settings of SynthMix resolution k = 4, and the third and fourth
rows show that of SynthMix resolution k = 32.

is the most suitable. However, it might be due to the desired heart substructures covering

a medium-sized part of the image, and therefore excluding the need for the finer mix-up

but requiring more complex processing than a lower resolution mix. Nonetheless, we still

included the setting to select a resolution for the SynthMix procedure in our network and

encouraged further experiments with more resolution settings.
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In the final row, we present SynthMix. The input for the Inspector is selected as the real

source, target, and unaligned mix, while the SynthMix resolution is set at 8, which gives the

best performance.

5.5 Extended Experimental Results: Vision Transformer

During the methodology development phase, we experimented with employing a ViT as our

Mixup Inspector for SynthMix as we believe that ViT has superior capability in handling patch

analysis. The implementation and training of ViT followed [87] with the following settings:

32 for patch size, 512 for embedding size, and 3 for depth. The hyper-parameter choices were

because of the constrained computational power on the current graphic unit. Specifically, the

network employs SIFA [28] as the baseline for image transformation and performs SynthMix

as the add-on data augmentation where the associated Inspector is substituted with the ViT

for patch domain examination. We trained ViT from scratch with a consistent batch size of 8

and a learning rate of 0.0002 for the entire network.

We experimented in the CT-to-MRI direction on the heart image segmentation benchmark for

unlabeled MRI images (shown in Tab. 5.5). It is apparent that under this experimental setting,

the performance of the ViT version framework (row two) saw an improvement over baseline

SIFA (row one) in both Dice and ASSD by 2.6% and 0.9, respectively. A consistent accuracy

boost was seen in most segmentation classes as well, except for LVC, which remained the

same. Compared to baseline SIFA, this framework incorporated SynthMix for the content

coherent patch mix-up and a ViT inspector for motivating the cross-modality synthesis. The

results clearly show that adding a SynthMix module (mix-up and an inspector) steadily

enhances the segmentation accuracy by a considerable margin. It also shows that the ViT

can work adequately with SynthMix to learn the local domain belonging and stimulate the

generator processing. We also attribute this performance gain to the superior ability of ViT to

process images as serialised patches for multi-head attention over the convolutional network.

Compared with the final proposed SynthMix (shown in row three), the ViT version obtained

better results in LAC Dice (1.7% higher) and ASSD for AA class (0.9% lower), while small
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performance gaps were observed in other categories. The difference between the final reported

model with the ViT version is that the Mixup Inspector is chosen to be an encoder-decoder

convolutional network. We observed the performance gap between the ViT and a much simpler

neural network. We deduced that the reason might be two-fold: (1) The ViT architecture is

more data-hungry than a convolutional neural network, and therefore, for a relatively small

dataset such as the adopted medical databases, the performance is worse than the CNNs; (2)

The original ViT from [87] has a much deeper architecture, which requires a computational

expense that we cannot afford in this project. More detailed discussions continue in Chapter 6.

As the ViT presented inferior results to the convolutional Mixup Inspector, we ceased further

experiments on ViT solutions.

TABLE 5.5: Comparison of CT-to-MRI domain adaptation performance on
MMWHS dataset between convolutional networks and vision transformers
regarding the Mixup Inspector.

Cardiac CT → Cardiac MRI

Method Dice (%) ↑ ASSD ↓
AA LAC LVC MYO Avg AA LAC LVC MYO Avg

SIFA [28] 65.3 62.3 78.9 47.3 63.4 7.3 7.4 3.8 4.4 5.7
SIFA+SynthMix+ViT [28], [79], [87] 67.3 70.4 78.9 47.5 66.0 5.0 5.5 4.1 3.9 4.6

Ours 70.0 68.7 83.0 48.3 67.5 5.9 5.1 3.3 4.1 4.6



CHAPTER 6

Discussion

In this chapter, we will review the research project and analyse its outcome in the following

aspects: (1) medical image segmentation with a domain adaptation approach (Section 6.1), (2)

the image synthesis from the cross-modality GAN translation (Section 6.2), (3) the limitations

of our method (Section 6.3), and (4) extended experimental endeavour of transformers and

attention module (Section 6.4).

6.1 Unsupervised Domain Adaptation for Medical Semantic

Segmentation

The thriving of medical imaging in clinical diagnosis has generated an enormous demand

for analysis means. Due to the expensive and exhausting process of human expert viewings,

computer vision solutions are intensely relied on for the task. However, training a task-specific

network usually requires a large quantity of data and its ground truth label, which is hard to

acquire in the clinical field. Therefore, to leverage the common anatomy of human bodies,

the study of domain adaptation emerged to provide the knowledge bridging medical images

between different modalities. Our network achieved semantic segmentation of a target dataset

without target training labels with the help of domain adaptation using a source dataset

containing images and labels. With the transferring of semantic understandings from the

source modality to the target modality, we were able to train the segmentor of the target

domain without supervision, hence the unsupervised domain adaptation.
64
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It is obvious that our method achieved significant improvement over the lower-bound scenario

where the trained source domain model was directly applied as a noisy segmentor for the

target domain. It proved that deep learning networks still respond poorly to the change in

dataset distribution despite having structural resemblances due to similar anatomy. It could

be the consequence of drastic changes in appearance, such as brightness, contrast, and noise

amount. Evidently, the segmentation accuracy saw a massive spike in both benchmark results

when the cross-modality translation was performed to address the distribution gap. Among all

SOTA methods, we based our method on SIFA [28] for the following reasons: (1) it performed

both image-level and feature-level alignment, (2) the proposed shared encoder addressed

the conformity between the CycleGAN domain adaptation and the segmentation feature

processing, and (3) it achieved the highest quantitative accuracies on the two benchmarks.

It is clear that our SynthMix achieved a significant and consistent performance gain over

SIFA, with approximately a 5% Dice advantage and 1.5 ASSD advantage in the MMWHS

dataset, while comparable performances were achieved in the AOS segmentation. We also

observed improvements in most semantic classes; nine out of ten heart segmentation classes

showed a quantitative gain in both Dice and ASSD metrics, while AOS segmentation saw an

improvement in two classes, and the other two also achieved close accuracy results, showing

the efficacy of our proposed module.

With validation in both directions across MRI and CT modality for heart images and a CT-

to-MRI test in the abdominal organs, it is clear that compared to the SOTA methods, our

approach consistently boosts performance in medical image segmentation. We believe the

reasons are two-fold: firstly, the additional Mixup Inspector gave extra supervision to the GAN

objective, encouraging liberal modifications in the image synthesis; secondly, the examination

of domain characteristics at the patch-level lessened the occurrence where the discriminator

focused on the limited discriminative features and overlooked other features, which ultimately

gave rise to the generation of details. This change resulted in the production of better synthetic

images, which would be the foundation of the generative domain adaptation methods. It

is also noteworthy that our SynthMix is an add-on module that can be easily modified for

similar generative networks, achieving data augmentation without any additional samples. It

better leveraged the existing real data, exploiting the potential beyond just being a domain
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appearance representation. By mixing images coming from the same semantic contents, the

Inspector reflects the distinctive domain traits that stand out in the feature extraction process

and motivates the generators to produce more. As a consequence of the combined reasons,

SynthMix enhanced performances in image-level alignment, ultimately causing more accurate

segmentation prediction.

6.2 Cross-Modality Image Synthesis

Despite recent success in medical image analysis with domain adaptation, we noted that most

solutions focused on either modifying the network architecture by extending the network

with functional layers such as ResNet block or Dilated convolutional layer [28], [42], [97]

or performing feature alignments to accommodate the semantic segmentation [23], [28]. In

light of that, we decided to focus on introducing additional motivation to achieve better

cross-modality image synthesis.

As the SOTA methods all rely on the generative network to perform image translation to

kick-start the domain adaptation process, the quality of synthetic images is vitally important

to the accuracy of segmentation training. However, the cross-modality image transformation

was mainly used to achieve the learning of segmentation [23], [28], [97], with the synthetic

photos only acting as an intermediate product of the process. The methods lacked procedures

to assess the synthetic quality and reflect quality changes into the learning process, except for

the fundamental CycleGAN discriminators adopted entirely for balancing GAN objectives.

We investigated this angle and proposed SynthMix, which further motivated generators for

more domain-distinctive synthesis and simultaneously challenged the process with mix-up

promoting the competition between the generators and Mixup Inspector. To study the impact

of our design on the image synthesis, we reported experimental results in 5.3. We compared

with SIFA the intermediate product—the source to target images xS→T as these would be the

input for segmentor training. Our SynthMix synthesis clearly showed superior image quality

in the qualitative visualisation than SIFA.
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Our fake CT images recovered the precise boundaries and sufficient structural details in the

MRI-to-CT domain adaptation. In contrast, SIFA produced the synthesis with visible artifacts

such as blurriness of boundaries, low contrast on different structures, and checkerboard effects

in certain areas. Similar comparisons can be found in the CT-to-MRI direction.

For the quantitative experiment, we argue that the golden standard for synthetic image quality

in this specific domain adaptation task is that it should possess as many target domain

characteristics as possible. In other words, we believe the fake target images should be

indistinguishable from the real target images. Therefore, we trained the CLF to be a simple

classifier for MRI and CT images with all the training images, followed by an evaluation with

test set data confirming the efficacy of the classifier. When tested on the SIFA-generated CT

and MRI fakes (transformed from the test dataset), besides our SynthMix synthetic images,

the classifier rated our photos as the ones that are easier to classify with higher classification

accuracy. Equivalently, it proved that our medical image synthesis achieved more realistic

results than SIFA, which also further enhanced the segmentation results.

6.3 Limitations

Despite the achievements of promoting both segmentation accuracies and medical image

synthesis, we realise the limitations of our approach in several areas too.

We raised several questions regarding our method’s handling of medical segmentation. For

starters, since SynthMix and other SOTA methods could only process 2D data, the original

3D volumes are being sliced for image analysis, which could possibly cause the missing of

learnable patterns that could be traced in the 3D space. At test time, the output segmentation

prediction was concatenated into 3D volume for evaluation, where the deviation of the 2D

prediction might result in inferior results. However, these deviations could be diminished by

regularising the segmentation shape in 3D space leveraging spatial continuity [101]. Next,

we noticed the impact on segmentation accuracies when the mixup coefficient changed. For

example, in this study’s early stages, we tried a λI (see details in Sec. 3.4) of 1 and observed a

massive drop in Dice for MRI-to-CT in the MMWHS segmentation to lower than the baseline
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model. After tuning the λI to 0.1, we saw improvement but also noted that the model’s

sensitivity might cause unstable results in the segmentation performance.

For SynthMix itself, we also noticed some challenges in application and verification. Firstly,

the current version of SynthMix needs to be paired with a CycleGAN network for bidirectional

image synthesis or at least a couple of generative networks where the source image xS , the

target image xt, the source to target image xS→T , and the target to source image xT→S can be

acquired. This pre-requisite reduces the opportunity to partner SynthMix with some of the

outstanding networks that are known for their lightweight single-direction transformation,

such as CUT [102]. CUT is a solution based on CycleGAN’s generator architecture to

perform a single-sided domain adaptation with the help of contrastive learning of the original

and generated images. Despite the network outperforming CycleGAN by a clear margin,

it could not be adopted with SynthMix at the moment, which showed the restrictions on

SynthMix’s compatibility with more new, developing methods. Secondly, it remains an

unresolved challenge to definitively determine the synthesis quality without a paired ground

truth image [103]–[105]. While other metrics, such as noise detection, are adopted to

evaluate the image quality of a synthetic product, yet quantifying how well a synthetic image

imitates the target distribution is still left undecided. In similar studies dedicated to achieving

unpaired cross-domain image translation [42], [102], the Fréchet inception distance (FID) was

adopted for determining the distance of the target distribution and synthetic image distribution.

However, these metrics rely on the pre-trained Inception V2 model, which was trained on a

broad, general, and, needless to say, enormous natural dataset that does not include medical

images. Therefore, we deemed it inappropriate to serve as an evaluation metric in investigating

the efficacy of medical image synthesis.

6.4 Transformer and Attention

In light of the recent success of vision transformers in the image analysis field for classi-

fication [87] and segmentation [106], we experimented with a ViT architecture for Mixup

Inspector. As ViT processes the input images as serialised patches, naturally, we believe it
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should excel in handling spatially split images and should be able to exploit more information

from the whole image simultaneously. Therefore, we saw fit to employ ViT for Mixup

Inspector as ViT should be able to discretely analyse domain labels at the patch level utilising

its attention mechanism and extract features from a complete image to learn the coherent

source and target image contents. We reported in Sec. 5.5 a performance gain indicating the

powerful performance promotion of our designed SynthMix framework and the potential

suitability of the ViT structure for Mixup Inspector.

Despite the improvement against SIFA, it is still clear that the ViT-version did not exceed

its convolutional counterpart as a small yet consistent discrepancy existed between three out

of four classes in both Dice and ASSD, resulting in an inferior overall performance. We

deduced that the reason could be two-fold. For one thing, the proposed ViT structure was

pre-trained on a large dataset before being transferred to a medium-size dataset, while several

studies pointed out ViT’s success over CNNs is dependant on significantly more training

data [107], [108]. However, a dataset with that magnitude is hard to find in the medical field,

and general images naturally differ from medical image distribution; therefore, pre-training

remains an obstacle for ViT implementation. For another, the reported ViT in [87] had a

way deeper structure and a larger size of trainable parameters by default which could not be

reproduced in this experiment due to limitations of computation expenses. We had no choice

but to eliminate the ViT design at this stage to maintain the consistent experimental settings

as other experiments in batch size.
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Conclusion and Future Outlook

In this thesis, we investigated the challenge of medical image segmentation by means of

unsupervised domain adaptation (UDA). It provided a solution to the difficulty of acquiring or

accessing a large quantity of data and their annotations in developing segmentation methods

in the medical image field by leveraging the common knowledge between datasets of different

modalities.

The state-of-the-art methods such as SIFA [28] first perform the source-to-target image trans-

lation to make for segmentation training in the target domain, then completes the semantics

learning with references of source ground truth labels. However, we realised that despite

alternative alignment means being included, these proposed networks all relied on the cross-

domain image translation to achieve domain adaptation, and yet the image synthesised was

not subject to further analysis. Therefore, we proposed a novel framework termed SynthMix

for UDA segmentation based on aligned real and synthetic image mix-ups for medical data.

We designed a spatial mix-up data augmentation technique and investigated its operations,

followed by the construction of a novel network to accommodate our mix-up scheme. The

experimental results on various cross-modality medical segmentation tasks with the MM-

WHS dataset [98] and AOS dataset [99], [100] demonstrate the superiority of SynthMix over

existing SOTA approaches. We evaluated the method’s segmentation efficacy with segment-

ation accuracy metrics Dice and ASSD and assessed its image synthesis performance with

both qualitative visualisation and quantitative classification results. In addition, we provided

exhaustive ablation studies in multiple experimental configurations to further validate and

analyse our networks. In general, the results showed satisfactory experiment outcomes for

our method.

70
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We believe our method opens a new angle in the generative UDA research, which is to

motivate the competition between the generative adversaries—the generators and discriminat-

ors. By introducing SynthMix interference to the generator optimisation, the generator can

perform cross-domain synthesis more liberally and is motivated to produce more distinctive

domain traits. Moreover, the aligned patch mix-up of content-consistent images helped the

generators to produce small-ranged and locally detailed transformations, which could benefit

the precision of semantic segmentation. It is also noteworthy that our method did not require

additional data or modifications of the original model structure, and it could be easily adjusted

to adapt to many GAN approaches, demonstrating versatility and practicality.

In the context of medical segmentation, our SynthMix can be further used to support many

medical applications to tackle practical clinical challenges. First, it can be used as a suggestive

segmentation reference for medical experts under diagnostic or medical device development

circumstances. With cross-modality segmentation and processing, the patient could poten-

tially avoid excessive radiology exposure. Secondly, it could become a pre-trained backbone

for cross-modality segmentation networks for transfer learning or fine-tuning, as well as be

adopted into semi-supervised settings for better accuracy. As our network accomplished

excellent results under unsupervised learning circumstances, additional supervision should

inherently benefit accuracy. It could further help with the development of medical segmenta-

tion applications in a weakly supervised or fully supervised fashion. Needless to say, with

our extra focus on medical synthesis, the model by-products—the generated synthetic images

are of exceptionally high quality in both domain context and anatomy contents. They can

be used for limitless potential purposes. Just like the Cityscapes dataset [109], we believe

SynthMix can be used to create large synthetic databases for cross-modality studies for

various downstream tasks such as anomaly detection and data classifications. Furthermore,

the generated paired databases can also be used to study modality profiling, which would

bring valuable information for how humans or machines interpret radiology outcomes.

In the future, we look forward to seeing our studies’ current limitations overcome and more

innovations included in further studies. The attention model remains a highly relevant and

appropriate concept in the research of domain adaptation, as the automatic focus on essential
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attributes would be valuable in performing a successful image synthesis. We encourage further

study to explore the impact of ViT’s serial processing and multi-head attention on content-

heavy domain adaptation and location-dependent data augmentation techniques. Meanwhile,

precision control is also of grave importance in medical data analysis because of the small

margin of error allowed in medical diagnostics and the potential risks and complications

accompanied by medical procedures. We urge more efforts to be dedicated to addressing the

precision discrepancy between 2D and 3D predictions, meaning more 3D applicable models

are needed. As the current study favours the 2D convolutional kernels even when dealing

with 3D volumes, we call for more studies to be conducted in a 3D convolutional fashion

or 3D native processing fashion. Beyond that, we suggest taking further advantage of the

multi-modality resources to analyse better the medical data, such as combining the real and

synthetic data for a double-confirming prediction based on several modalities.
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