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Abstract. We present a framework to analyze chest radiographs for cystic fibro-

sis using machine learning methods. We compare the representational power of 

deep learning features with traditional texture features. Specifically, we respec-

tively employ VGG-16 based deep learning features, Tamura and Gabor filter 

based textural features to represent the cystic fibrosis images. We demonstrate 

that VGG-16 features perform best, with a maximum agreement of 82%. In ad-

dition, due to limited dimensionality, Tamura features for unsegmented images 

achieve no more than 50% agreement; however, after segmentation, the accuracy 

of Tamura can reach 78%. In combination with using the deep learning features, 

we also compare back propagation neural network and sparse coding classifiers 

to the typical SVM classifier with polynomial kernel function. The result shows 

that neural network and sparse coding classifiers outperform SVM in most cases. 

Only with insufficient training samples does SVM demonstrate higher accuracy. 
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1 Introduction 

Cystic fibrosis (CF) is a widespread life-threatening genetic disease, which affects up 

to 1 in 3000 people born in the highest-risk regions [1]. For example, Cystic Fibrosis 

Community Care* shows that 1 in 25 people in Australia are carrying defective CF 

genes and nearly 90 babies each year are born with this disease.  The disease causes 

considerable morbidity and mortality, affecting multiple organs and ultimately with an 

average life expectancy at birth of close to 38 years despite ongoing medical care [2]. 

Cystic fibrosis causes major disease in the lungs.  People with cystic fibrosis gener-

ally suffer from difficulty breathing, and frequent episodes of pneumonia. Half of pa-

tients with CF will require lung transplants. Clinicians usually assess the severity de-

gree of cystic fibrosis by analyzing radiological images of the diseased lungs. For ex-

ample, plain chest radiographs (CXRs) are often used to assess cystic fibrosis in 
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children [3]. Shwachman-Kulczycki scoring is usually used in Australia to quantify the 

degree of abnormality in the lungs [4], with reference to the visible changes associated 

with the disease as seen on CXRs. In particular, clinicians look for signs of airflow 

obstruction (expanded shape of the chest cavity), bronchial and vascular thickening 

(linear markings), nodules and cysts, and gross regional abnormalities in lungs to give 

the assessment result. In this work, we mainly focus on the Shwachman-Kulczycki 

scoring system. 

Shwachman-Kulczycki scoring classifies CXRs into five categories, which are quan-

tified into a range from 5 to 25 with interval 5, in the order of decreasing severity.  Table 

I describes the CXR findings for each score, as initially proposed by Shwachman and 

Kulczycki.   Clinicians assign a Shwachman-Kulczycki score based on their own ob-

servations, which is a subjective determination and thus varies between different clini-

cians. Therefore, the development of an automatic scoring system providing clinicians 

with an objective measure of the CXR changes is still a challenging problem.  

CF is an interstitial lung disease. The visual appearances of CF are mainly in the 

regional textures in the lungs. A recent study used Tamura, Gabor filter and other tex-

tural features to build a fully automated scoring of chest radiographs in cystic fibrosis 
and obtained 75% and 51% agreement with clinicians [5]. To the best of our knowledge, 

this is the best computer-assisted score for CF chest radiographs. 

Table 1. Shwachman-Kulczycki X-Ray SCORING [4] 

Grading Points Findings 

Excellent 25 Clear lung fields. 

Good 20 
Minimal accentuation of bronchovascular markings; 

early emphysema. 

Mild 15 
Mild emphysema with patchy atelectasis; increased 

bronchovascular markings. 

Moderate 10 

Moderate emphysema; widespread areas of atelectasis 

with superimposed areas of infection; minimal bron-

chial ectasia. 

Severe 5 

Extensive changes in pulmonary obstructive 

phenomena and infection; lobar atelectasis and 

bronchiectasis. 

 

Recently, neural networks, represented by Convolutional Neural Network (CNN), 

have shown excellent learning and classifying abilities. Moreover, some studies applied 

CNN to medical image processing [6,7,8,9]. The deep structure of neural networks en-

ables the extraction of much more complicated features than the traditional textural 

features.  

The purpose of our study is to build a framework for automated scoring with various 

feature extraction techniques and find more appropriate feature extraction methods and 

suitable classifiers to improve the accuracy and stability of the system. In contrast to 

previous methods considering textural features with support vector machine (SVM), 

this study proposes to employ deep learning methods to build an experimental system 

with deep learning features and deep learning classifiers for CXRs. 
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2 Methods 

In order to ensure the correctness of the result, the proposed scoring framework consists 

of three steps, including the preprocessing, feature extraction and classification steps. 

In this paper, we use pre-existing fined-tune VGG-16 and seven-fold cross-validation 

to build up whole system (Fig 1). 

 

Fig. 1. The proposed scoring framework for cystic fibrosis in lungs 

2.1 A. Acquisition of CXR Data 

In this study, all experiment data come from the CXR data of 139 patients with cystic 

fibrosis, which are identified from an Australian pediatric cystic fibrosis registry and 

are aged between 2 to 16.  

To evaluate the performance of scoring framework quantitatively, we consider the 

clinicians’ reviewed results for all 139 images to be the standard score results. Out of 

all 139 images, clinical scoring assigned 36 images a score of 10, 56 images with a 

score of 15 and 47 images with a score of 20. 

2.2 Preprocessing 

CXR images were taken with different protocols and stored in several different formats. 

For each image, the preprocessing step includes edge clipping, resampling, and gray 

scale normalization. 

In order to eliminate regions of the image outside the body, and to simplify 

resampling, we used the difference between the lung field and the background to get 

the axis-x and axis-y projection and crop out the external regions (“edge clipping”), as 

shown in Fig 2. The green lines are the local maximum for left or right, and the red line 

is the midline. 
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Fig. 2. Edge clipping: Horizontal projection, Vertical projection, original image, result, 

Original CXR image dimensions ranged from 721 × 696 to 1131 × 951 pixels, with 

gray values between 0–30000. After edge clipping, images still contain the original 

depth for later experiments. To control the standard input dimension, we resample im-

ages to a size of 512×512 pixels, and gray levels scaled to 0–255. To retain discrimi-

nating information, we do not apply noise reduction or enhancement. We also perform 

automated segmentation [5], which we evaluated using overlap as our performance 

measure. The result was 0.939 in [5] and we achieve 0.899. The sample of segmentation 

results are listed in Fig 3. 

 

Fig. 3. Segmented results 

2.3 Feature Extraction 

In the feature extraction step, we investigate the comparison between deep learning 

features and textural features. Since in the previous study, Tamura achieved the best 

performance and Gabor achieved fair results [5], we decided to use Tamura and Gabor 

as the textural features for comparison. 
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The Tamura features are based on psychophysical studies of the characterizing ele-

ments that are perceived in textures by humans: Contrast, Directionality, Coarseness, 

Linelikeness, Regularity, and Roughness. Among these, the first three are of greater 

importance. Contrast measures the way in which gray levels vary in the image and to 

what extent their distribution is biased to black or white. Directionality considers the 

edge strength and the directional angle. They are computed using pixel-wise derivatives 

according to Prewitt's edge detector. Coarseness relates to the distances of important 

spatial variations of grey levels, that is, implicitly, to the size of the primitive elements 

forming the texture. [10,11,12] 

The Gabor filter is a linear filter that can be used for edge detection. It provides 

orientation selection and is biologically plausible [13]. The Gabor filter is generated by 

scaling and rotation from a parent wavelet so that it could extract the relevant features 

in different scales and directions in the frequency domain. We set 6 directions and 2 

scales over each image, for a total of 12 filters to be used for feature extraction.  

In contrast to the hand-crafted texture features mentioned above, deep learning fea-

tures can be task-driven and learned from extensive training examples. More im-

portantly, deep learning enables the learned feature to capture more flexible and com-

plicated structure in the data, and thus improves the task performance. Witnessing the 

success of deep learning feature in various computer vision tasks, we turn to leverage 

deep learning features to represent abnormalities in cystic fibrosis. 

Due to the limited data set, we adopt pre-trained deep learning features. Without 

generality, we choose the VGG-16 based deep learning features. The VGG-16 based 

deep learning feature set is pre-trained from the ImageNet database with 16 layers of 

deep convolutional neural network [14,15]. VGG-16 consists of 13 convolution layers 

and three fully connected layers. The VGG-16 based deep learning feature vector is the 

output of the last fully connected layer.   

The VGG-16 network is pre-trained using an extensive collection of nature images. 

However, the cystic fibrosis CXR image is distributed completely differently from the 

nature images, which makes it difficult to depict cystic fibrosis well with the pre-trained 

VGG-16 feature. To address this problem, we employ the labeled cystic fibrosis images 

to fine-tune the pre-trained VGG-16 feature. Specifically, we modify the last fully con-

nected layer to the size of the classification problem in cystic fibrosis. Then, we adjust 

the network parameters according to the classification error with backpropagation tech-

niques. By doing this, the VGG-16 network can be adapted to fit the distribution of the 

cystic fibrosis images. 

In this paper, we use the output of the 16th layer of the VGG-16 as a feature. This 

output contains 4096 nodes, so the feature has 4096 dimensions, and Gabor filter’s 

output has 360 dimensions. To improve the computational efficiency and reduce the 

overfitting problem, we use the classical PCA dimensionality reduction algorithm to 

reduce the dimensions: the features from VGG-16 are reduced to 140-dimensions, and 

features from Gabor Filter were reduced to 60-dimensions. 
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2.4 Classifiers 

We choose back propagation based neural network (BP) and Sparse Coding (SC) as 

classifiers and compare their performance with polynomial-kernel support vector ma-

chine (SVM). 

BP is a neural network that uses error back propagation for training [16]. BP model 

is built up by three main element layers: input layer, hidden layer, and output layer. In 

hidden layer, the tunable parameters are the learning rate, number of iterations, and 

number of nodes number. In our method, we design the parameters as follows:  learning 

rate: 0.0021; number of nodes in hidden layer: 850, 105 and 50; number of iterations: 

10 (due to the initial parameters of the back propagation neural network. 

SC [17] is an effective way of exploiting the data structure.  In particular, through 

representing the data onto a given dictionary, SC exploits the underlying correlation 

among different data samples by depicting the sparsity on the representation. We set 

the lambda=0.01 using the cross-validation test. 

SVM is a supervised learning method that has been widely used. It uses kernel func-

tions to avoid the increase in computational complexity caused by increased dimension 

[18]. Due to the limited number of samples, we choose the polynomial kernel function. 

The values of the training parameters C and gamma are 1.8, determined by grid search 

and cross-validation test. 

2.5 Cross-validation 

In this step, we adopt cross-validation for validating the proposed method. Since the 

samples number is 139, we randomly choose one sample to copy and then add it to the 

dataset. The total 140 samples in the dataset can be evenly divided into seven groups.  

We randomly choose some groups for training and the other group for testing. 

3 EXPERIMENT AND RESULTS 

We conducted two experiments to check the classification effect of the deep learning 

features and deep learning classifiers, deep learning features(VGG-16) compared with 

textural features (Tamura, Gabor); and deep learning classifiers (BP and SC) compared 

with machine learning algorithm(SVM), and the difference between using different 

numbers of training sets. 

3.1 Deep learning classification performance verification 

From randomly assigning 140 samples into seven groups of 20, we randomly selected 

two groups as a test set, and four groups from the remaining five groups as a training 

set for six different cycles. The results can be seen in Table 2. 
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Table 2. Comparison of classification performance 

Feature 
Classifier 

BP SC SVM 

VGG-16 0.820.06 0.800.05 0.790.08 

Gabor 0.760.04 0.770.03 0.770.05 

Tamura 0.480.02 0.410.04 0.420.05 

 

From the perspective of features, whether it was in the deep learning classifiers or 

the SVM classifier，VGG-16’s classification results were significantly better than the 

textural features. In back propagation neural network, VGG-16 achieved a result 6% 

higher than Gabor and 34% higher than Tamura. In sparse coding, VGG-16 was 3% 

better than Gabor and 39% better than Tamura. in SVM, VGG-16 was 2% better than 

Gabor and 37% better than Tamura. We also noticed that the variance of the VGG-16 

feature is greater than the textural features. It is possible that for deep convolution neu-

ral networks such as VGG-16, the number of training samples in this paper is too small 

and pre-training is limited by the effect of parameter debugging. 

From the perspective of classifiers, for both the deep learning features and traditional 

texture features that were used, the results of all three classifiers were similar. Overall, 

back propagation neural network classifier was slightly better than the other two clas-

sifiers. In VGG-16, BP classifier performed 2.5% better than both sparse coding and 

SVM; In Tamura, BP classifier was 7% better than sparse coding and 6% better than 

SVM; in Gabor, BP classifier was 1.3% below than other two classifiers. We also no-

ticed that the variance of the deep learning classifier was less than that of the SVM 

classifier. 

The results of this paper have a significant difference with [5]. First of all, the clas-

sification performance of Tamura features is obviously smaller than that of [5], which 

was 0.75. Second, even if the SVM classifier is used, the Gabor feature classification 

(0.77) is better than that of [5] (0.51). In this paper, the parameters of all three classifiers 

were optimized for the feature set after combining the three features, making the SVM 

core and parameter configuration was more reasonable.  We also added an experiment 

to test the segmented images, with results shown in Table 3. It is obvious that segmen-

tation is an important preprocessing step for Tamura. 

Table 3. Comparison for Tamura 

Feature 
Classifier 

BP SC SVM 

Segmented 0.78±0.03 0.79±0.04 0.75±0.02 

Unsegmented 0.480.02 0.410.04 0.420.05 

 

VGG-16 and neural network produce 17.1% more agreement than an independent 

clinician observer (0.70). Even when combining VGG-16 and SVM, the results remain 

12.9% better. Comparing with [5] (Tamura and SVM, 0.75), VGG-16 and neural 
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network produced 9.3% improvement; with VGG-16 and SVM, the results were 5.3% 

better.  

3.2 Training set size optimization 

From randomly assigning 140 samples into seven groups of 20, we randomly selected 

two groups as a test set, and between 1 and 5 groups from the remaining five groups as 

training sets to determine the effect of different training samples on the classifications. 

Table 4 shows the relationship between classification performance, and training set 

size for VGG-16 features with different classifiers. Table 5 shows the relationship be-

tween classification performance and training set size for Gabor feature with different 

classifiers. 

Table 4. Training sets size optimization for VGG-16 

Training sets 
Feature -Classifier 

VGG-BP VGG-SC VGG-SVM 

20 0.510.09 0.510.09 0.550.05 

40 0.630.10 0.630.07 0.640.07 

60 0.730.11 0.710.06 0.710.08 

80 0.820.06 0.800.05 0.790.08 

100 0.480.12 0.420 0.450 

Table 5. Training sets size optimization for Gabor 

Training sets 
Feature -Classifier 

Gabor -BP Gabor -SC Gabor -SVM 

20 0.510.09 0.560.12 0.560.08 

40 0.590.11 0.620.10 0.600.07 

60 0.680.07 0.690.08 0.710.03 

80 0.760.04 0.770.03 0.770.05 

100 0.420.04 0.260 0.350 

 

The result shows that, for both VGG-16 and Gabor features, the classification accu-

racy of the three classifiers increased with increasing training set size at first, reaching 

a maximum at a training set size of 80; but decreasing significantly when training set 

size increased to 100. One possible reason is that the number of experimental samples 

is small (140), and the characteristic dimension (140) and Gabor feature dimension (60) 

of VGG-16 are higher, resulting in overfitting. 

Table 6 shows the results for Segmented Tamura features. It appears that Tamura 

achieves a better result than Gabor but is still lower than VGG-16. 
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Table 6.  Training sets size optimization for Segmented Tamura 

Training sets 
Feature -Classifier 

Tamura-BP Tamura-SC Tamura-SVM 

20 0.510.09 0.490.10 0.500.08 

40 0.620.12 0.650.09 0.670.05 

60 0.770.07 0.710.03 0.710.02 

80 0.780.03 0.790.04 0.790.02 

100 0.500.12 0.470 0.400 

4 Conclusion 

In this study, we present an automated scoring system for chest radiographs (CXRs) in 

cystic fibrosis. In order to improve the performance of the computer-aided scoring sys-

tem, we compare the effectiveness of various features and classifiers. The VGG-16 

based neural network is fine-tuned to transfer the knowledge learned from extensive 

nature images classification to CF severity scoring, and ultimately results in an im-

proved VGG network (modified-VGG) suitable for CF chest radiography. A three-layer 

back propagation neural network and sparse coding were used for classification. 

Through 7-fold cross validation training and test sample ratio optimization, a satisfac-

tory score was obtained, and the best classification accuracy rate was up to 0.82. We 

have demonstrated that the CF chest radiograph scoring based on deep convolution 

neural network can obtain better accuracy than with normal textural features, with bet-

ter agreement than independent clinician observer in some cases. 

 In the future, further experiments can be conducted on the following three aspects. 

First, the number of samples used in this paper is limited. We can increase the number 

of experimental samples to carry out more detailed and in-depth study to improve the 

accuracy and stability of the score. Second, we could go deeper by using ResNet-152, 

or investigate with mixture deep learning classifiers, and transfer learning methods [19, 

20, 21]. Last, we can further investigate new finds in other medical applications [22, 

23, 24]. 
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