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ABSTRACT

The morphology of cancer cells is widely used by patholo-
gists to grade stages of cancers. Accurate cancer cell segmen-
tation is significant to obtain quantitative diagnosis. We pro-
posed a dual contour-enhanced adversarial network to solve
this challenge. The dual contour-enhanced masks and adver-
sarial network are incorporated to improve individual cell seg-
mentation capability. By evaluating quantitative individual
cell segmentation results on 2017 MICCAI Digital Pathology
Challenge, our method achieved best balance between preci-
sion and recall rate of individual cell segmentation compared
to state-of-the-art cell segmentation methods.

Index Terms— Pathology Image Analysis, Generative
Adversarial Network, Nuclei Segmentation

1. INTRODUCTION

Grading the stage of cancer is of significance to provide ef-
ficient treatments to patients. The tumor diagnosis is tradi-
tionally obtained by manually labelling the nuclei segmen-
tation. Nowadays, the microscopy is capable to produce the
whole-slide image. The manual morphology annotation of the
cancer cells is labour-intensive and not scalable to the whole
slide image because of the size. Therefore, developing an ac-
curate and reliable cancer cell segmentation method is highly
demanded. However, this task is still challenging due to the
following reasons: (1) cancer cell borders are close to each
other with tiny gaps; (2) there is uneven distribution of stain-
ing process using Haematoxylin and Eosin.

Cell segmentation from pathology images usually ap-
plies morphology based [1, 2] or patch-based pixel level
classification [3] methods. With patch-level processing, the
pre-trained convolutional neural network (CNN) is fine-tuned
or other hand-crafted features are used to determine the class
of each pixel. More recently, U-shaped neural network (U-
Net) [4] is proposed, and it often outperforms the previous
sliding-window based CNN models. Compared with patch-
based segmentation techniques, U-Net is capable of learning
from less data and is particularly useful for the challeng-
ing bio-medical segmentation tasks that usually do not have

sufficient high-quality data. In addition, another new at-
tempt of cell segmentation is to combine CNN with graph-
based method [5]. Besides, deep contour-aware network [6]
and gland instance deep multichannel networks [7] combine
boundary and texture information into the designed network
architecture.

Besides the network architectures [4, 6, 3] used for pathol-
ogy images, many new neural network architectures for the
semantic segmentation [8, 9, 10, 11] have also been pro-
posed. Fully Convolutional Networks (FCNs) [8] introduce
upsampling of feature maps using deconvolution and achieve
breakthrough compared to previous semantic segmentation
approaches using the hand-crafted features such as scale-
invariant feature transform (SIFT). After the pioneering work
of FCNs, many image-to-image network architecture for the
semantic segmentation such as SegNet [9], Linknet [10] and
pyramid scene parsing network (PSPNet) [11] were pro-
posed. PSPNet introduces dilated convolutions, auxiliary loss
and Spatial Pyramid Pooling to the ResNet [12]. The major
contribution of LinkNet is to use convolution kernel with the
size 1×1 and channel reduction scheme in the decoder block,
which makes it highly efficient.

Generative adversarial networks (GANs) [13] are tradi-
tionally used to estimate the generative models by the ad-
versarial networks which are the generator and discrimina-
tor. By introducing image-to-image translation, Pix2Pix [14]
showed that the GAN loss can improve the blurred quality
of image-to-image translation generated by U-Net [4]. In-
spired by these existing studies, in this work, we incorporate
the GAN loss to enhance the cell segmentation performance.
We also propose to generate contour-enhanced ground truth
to limit individual cell segmentation interference from cell
boundary touching each other. Based on this, a dual contour-
enhanced networks (DCANet) are designed to fully utilize
two types of ground truth provided by the 2017 MICCAI Dig-
ital Pathology Challenge dataset and speedup the optimiza-
tion process by sharing weights of Convolution layers. Our
overall cell segmentation framework consists of data augmen-
tation, adversarial network training and post-processing. Our
evaluation results show that our method outperformed state-



Fig. 1. An example of the overall framework from prediction results generated by the dual contour-enhanced adversarial
network to the individual cells.

Fig. 2. Training of the dual contour-enhanced adversarial net-
work.

of-the-art network architectures on the Challenge dataset.

2. METHODS

2.1. Overall Framework

In our framework, the generator of adversarial networks
maps the test image to learned outputs including cell im-
age masked with yellow boundary (Prediction Part A) and
boundary distance-transformed image (Prediction Part B)
shown in Fig. 1. Then cell boundary image is obtained by the
combination of boundary information from two dual contour-
enhanced outputs. Also, by setting an area threshold, small
individual cell objects are extracted from Prediction Part B.
Similarly, another image storing connected objects is gener-
ated by removing small individual cell objects from binary
segmentation of Prediction Part B. Next, watershed image
[15] finds watershed basins using the boundary removed im-
age as the basin masked image and Prediction Part B as its
input image. The final individual cells image is obtained by

fusing boundary removed image and watershed image.

2.2. Dual Contour-Enhanced Mask Generation

The dual contour information is designed to improve the ca-
pability of separating clustered cell objects and fully utilize
two types of ground truths. The distance-transformed map
is better than the binary map by forcing networks to learn
more morphology information of cancer cells. The distance-
transformed map is robust to small noises. There are two
types of ground truths originally provided by the Digital
Pathology dataset: (1) cell image with boundary masked as
yellow; (2) a masked image tile whose array element stores
a value between 0 and N representing the individual nu-
clei object. The proposed boundary distance transform and
boundary highlighting are applied to Type II ground truth
inspired by boundary-aware instance segmentation [16]. Un-
like boundary-aware instance segmentation, the pixels on cell
boundary are also highlighted to further separate close cells.
The proposed distance transform of every pixel p is defined
as:

D(p) =


mindd(p, q)e for p ∈ pixels inside Q
255 for p ∈ pixels on Q
0 for p ∈ pixels outside Q

(1)

where Q denotes the pixel set on the individual cell object
boundary, d(p, q) represents the Euclidean distance between
p and q and d.e is nearest integer operation. The dual-contour
enhanced masks are defined as contour 1 provided by Type



Fig. 3. The network architecture of generator with blue blocks representing convolution layers and red and yellow blocks
denoting deconvolution layers.

I ground truth and contour 2 generated by the proposed dis-
tance transform method.

2.3. Network Training and Architectures

The proposed dual U-shaped adversarial network as shown
in Fig. 2 is designed to map the input image to the learned
dual contour-enhanced outputs. Two deconvolution block
series correspond to different functions. To be more specific,
boundary distance transformed predictions provide the base
image for watershed algorithm and boundary highlighted cell
images enhance boundary information for separating cells
close to each other. The accelerated optimization process is
achieved by sharing the weights of Convolution layers. The
generator and discriminator are trained iteratively to optimize
the objective of adversarial network [14] by combining the
GAN loss and L1 loss in the following equation:

G∗ = arg min
G

max
D
LcGAN + λLL1(G) (2)

where cGAN , L1, G and D represent conditional GAN, L1
loss, generator and discriminator.

The generator architecture of DCANet is shown in Fig. 3
with 8 encoder and 16 decoder layers respectively. C2 . . . C7
represent an encoder layer including convolution (Conv) and
instance batch normalisation (InstBatchNorm) layers with
LeakyReLU . C1 and C8 are Conv without InstBatchNorm.
D2 . . . D7 represent deconvolution (Deconv), InstBatchNorm
and dropout layers with ReLU . C1 and C8 denote Deconv
with Tanh. D1 and D8 represent Deconv and BatchNorm
with ReLU . The discriminator architecture of first 6 layers
is the same as the encoder of G and final layer maps output
to one dimensional value. In addition, the cell images and
dual contour-enhanced masks are defined as positive exam-
ples. Similarly, the negative examples are defined as the cell
images and prediction results generated by the generator.

3. EXPERIMENTAL RESULTS

3.1. Dataset

2017 MICCAI Digital Pathology Challenge dataset includes
four types of cancer cells from non small cell lung cancer
(NSCLC), head and neck squamous cell carcinoma (HN-
SCC), glioblastoma multiforme (GBM), and lower grade
glioma (LGG) tumors. The image tiles are extracted from the
whole slide image. The size of image tile is either 500× 500
or 600 × 600. Nuceli of the cancer cell of image tile is man-
ually labelled. The whole challenge dataset consists of 32
images with ground truth provided and 8 image tiles with
no ground truth provided. 16 and 16 image tiles are chosen
as training and testing dataset respectively. It is a known
problem that biomedical related image processing tasks do
not have enough labelled ground truth compared to semantic
segmentation. Cropped images with 256 × 256 pixels were
randomly sampled from original and transformed training
images. Transformation operation includes rotation through
+45° to −45°, mirroring, dropout and Gaussian filtering.
After the data augmentation, the number of cropped training
images are 2464. For the testing purpose, the test image is
rescaled into a fine size which can be processed by the Conv
layers of network successfully such as 512× 512.

3.2. Analysis of Cell Segmentation

The proposed method was quantitatively compared with state-
of-the-art Pix2Pix [14], fast neural style (FnsNet) using resid-
ual block between Conv and Deconv layers [17], Linknet [10]
and SegNet [9] methods using the precision, recall and F1-
score metrics. For a fair comparison, the same data augmenta-
tion techniques were applied to all comparing methods. True
Positive, False Positive, False Negative are defined as the total
cell detection number with more than 50% of the overlapping
area with ground truth objects, the total object number not
in the ground truth but in the prediction results, the number
of cell objects not being detected from ground truth respec-



tively. As shown in Table 1, our method ranked first in terms
of average precision with 0.7022 and F1-score with 0.6969
among all compared methods. The average recall value of the
proposed framework is still competitive ranked second with
0.7021 compared with 0.7245 achieved by the FnsNet.

Table 1. The quantitative individual cell detection results.
Network Precision Recall F1
SegNet [9] 0.3251 0.6173 0.4064
LinkNet [10] 0.3431 0.5951 0.4161
Pix2Pix [14] 0.4681 0.6615 0.5467
FnsNet [17] 0.5855 0.7245 0.6240
Proposed 0.7022 0.7021 0.6969

GBM HNSCC LGG NSCLC

Fig. 4. Examples of pathology images and corresponding in-
stance cell segmentation results by the proposed method.

Testing examples of four types of cancer cells are illus-
trated in Fig. 4. Observing from pathology image example,
the individual cell segmentation is challenging because of the
large amount of touching cells, morphology variations and in-
complete cell on the boundary of image. Even when the shape
of cancer cells are irregular, the majority of them are posi-
tively recognized. On the other hand, the proposed framework
is more likely to make false detection when several challeng-
ing conditions presented at the same time. For example, some
cells can be connected and the texture and boundary informa-
tion are blurred at the same time.

4. CONCLUSION

In this paper, we presented a new dual contour-enhanced
adversarial network framework to generate individual cell
segmentation. By combining distance transformed boundary
information with adversarial network, the proposed network
outperformed state-of-the-art individual cell segmentation
method in terms of F-scroes evaluated on the 2017 MICCAI
Digital Pathology Challenge dataset.
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