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3. Status and 
challenges of 
black soils 
3.1  A global overview of 
black soils 
Although black soils account for only 8.2 percent of the 
Global Land Area (FAO, 2022a), they are of paramount 
importance for food security, as highlighted by the UN 
Sustainable Development Goal 2 (i.e to end hunger, 
achieve food security and improve nutrition, and 
promote sustainable agriculture by 2030). The general 
category of black soils includes three main soil groups 
Chernozem, Kastanozem and Phaeozem, according 
to the World Reference Base for Soil Resources 
(WRB). Black soils are characterized by their thick, 
dark-coloured, and humus-rich topsoil. In general 
terms, black soils have granular and subangular blocky 
structure, optimal bulk density, and high amounts of 
plant nutrients. However all these favorable properties 
are only present in soils within virgin or quasi-pristine 
ecosystems, which are now rare (Montanarella et al., 
2021). There are other soil types also considered as 
black soils, as for example, swelling soils (Vertisols), 
volcanic soils (Andisols), anthropogenic soils, among 
others. Not all of them strictly comply with some of 
the conditions indicated for the Category 1 of black 
soil definition (such as having been formed under 
grassland vegetation) (FAO, 2019), but they all have 
some characteristics in their profiles that allow them to 
be classified as black soils, such as having a thick, dark-
coloured, and humus-rich topsoil.
Apart from being highly productive lands, black soils 
are responsible for multiple ecosystem services such 
as water retention, maintenance of soil biodiversity 
from microorganism to megafauna, and soil fertility, 
and prevention of soil compaction and waterlogging. 
One of the most valuable services is accumulation of 

great amounts of SOC in a relatively stable form. Black 
soils are one of the most important pools of carbon 
accounting for 8.27 percent (56 PgC) of the total 
global SOC stock in the top 30 centimetres of the soil 
(FAO, 2022d). 
These carbon stores are, however, endangered by the 
processes of organic carbon loss due to the accelerated 
humus oxidation under cultivation. In many places 
the loss of humus and nutrient mining are the most 
important threats to black soils because these soils 
are considered as highly fertile “by nature” and thus 
have not needed application of organic and mineral 
fertilizers. Black soils are under further threat from 
various physical, chemical, and biological degradation 
processes (FAO and ITPS, 2015). 
Some of these processes are easily reversible through 
sustainable soil management practices, such as nutrient 
imbalance, compaction, and structural degradation. 
However, other processes are difficult to reverse. First, 
soil loss due to erosion (wind, water and meltwater), 
is the most widespread threat in all world’s soils. 
Wind erosion is a problem that tremendously affected 
the Midwestern of the United States of America (the 
infamous Dust Bowl in the 1930s) and west Siberia and 
north Kazakhstan in the ex-Union of Soviet Socialist 
Republics (USSR) during the development of virgin 
lands in 1950s. Currently, soil salinization is becoming 
a growing problem, especially in irrigated areas in the 
most arid parts of the distribution of black soils. Second, 
land use change for food production exacerbates 
unsustainable management practices such as aggressive 
tillage and overgrazing furthering losses due to erosion. 
Diffuse pollution processes affect black soils devoted 
to fibre agriculture. This happens for various reasons, 
including the use of inappropriate fertilization 
technologies with high doses of nitrogen and 
phosphorus fertilizers and manures, or the excessive 
or inadequate use of herbicides and pesticides whose 
decomposition products are potential contaminants 
in soils, streams and groundwater. Finally, many black 
soils are threatened by soil sealing, due to the advance 
of urban areas and infrastructure in overpopulated 
regions or countries. This advance makes thousands 
of hectares of previously black soils destined for food 
production disappear.
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Photo 3.1 Black soil in Nenjiang county of Heilongjiang province, China
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3.2 Multiple benefits of 
black soils 

3.2.1 Ecosystem services (ES)
Soils are involved in most of the ecosystem services 
(ES) that enable life on Earth, such as the provision 
of food, fibre, bioenergy, and water; the regulation of 
climate, gas, floods, droughts, land degradation, water 
quality, and pests and diseases; the support of nutrient 
cycles, and habitat for organisms; and the cultural non-
material benefits such as recreational, spiritual, and 
religious values (See Figure 3.2.1a). Black soils have 
distinctive soil properties that are key for providing 
essential ES, for example, high soil organic matter 
contents and cation exchange capacities, better soil 
physical properties (soil structure, porosity, hydraulic 
conductivity, and infiltration) and  habitats for soil 

organisms,  which ensure the provision of food, fuel and 
fibre and freshwater, the regulation of climate, erosion 
control and water purification, and the support of 
nutrient cycling (Adhikari and Hartemink, 2016). 
Although all soils are responsible for and intervene in 
the provision of ES, black soils have a preponderant 
role in the provision of healthy food, nutrient and 
water reserves, habitat for organisms, among other 
functions. That is why the loss of organic matter due to 
unsustainable management practices is likely causes a 
greater impact than in other less fertile soils.
The linkages between soil and ecosystem services were 
represented by Adhikari and Hartemink (2016) through 
a diagram (See Figure 3.2.1a) that conceptualizes soils 
as a complex system which provides multiple benefits 
for the environment and society, and the need to study 
it in a holistic approach to understand the multiple 
interactions between soil functions, ecosystem services 
and human well-being. 
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Figure 3.2.1a A conceptual diagram linking key soil properties to ecosystem services through soil functions for 
the well being of humans
Source: Adhikari, K. & Hartemink, A.E. 2016. Linking soils to ecosystem services—A global review. Geoderma, 262: 101–111. https://doi.org/10.1016/j.
geoderma.2015.08.009
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Anthropic soil erosion driven by conversion of natural 
ecosystems to agroecosystems and mechanical tillage, 
has numerous adverse impacts on ecosystem services. 
There are: 1) on-site impacts like the degradation of 
soil quality, reduction of agronomic productivity, and 

the decrease in use-efficiency of inputs; and 2) off-site 
impacts like accelerated soil erosion that promotes 
eutrophication and contamination, and sedimentation 
of reservoirs and waterways, and emissions of CO2, 
CH4, and N2O (Lal, 2014) (Figure 3.2.1b).

Soil erosion

Ecosystem 
functions

and services

off-siteon-site

Soil quality

Transforming
landscape 

Environmental
degradation

SOC, clay, silt
Top soil depth

Soil fertility 
Water availability 

Burial of topsoil 
Runoff of water
and pollutants

Water eutrophication
GHG emissions

Soil, water  and 
air  quality

Decline

Figure 3.2.1b Adverse effects of accelerated erosion on ecosystem functions and services
Source: Lal, R. 2014. Soil conservation and ecosystem services. International Soil and Water Conservation
Research, 2(3): 36–47. https://doi.org/10.1016/S2095– 6339(15)30021–6
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3.2.2 Climate change mitigation and 
adaptation 

Black soils can contribute to both the mitigation of and 
adaptation to climate change. On the one hand, black 
soils have a high potential to mitigate climate change 
due to their high SOC sequestration potential (See 
Figure 3.2.2). According to FAO’s Global Soil Organic 
Carbon map (GSOCmap), in the top 30 centimetres 
SOC stock of black soils is on average 56 PgC (or 
77.24 tonnes C/ha), which is higher than the average 
of SOC stock in all mineral soils (FAO, 2022b). On 
the other hand, black soils have been cultivated since 
many centuries in Europe and Asia, and in the last 150 
to 200 years in America and Oceania. After extensive 
and intensive cultivation (for cereals, pastures, ranges, 
and forage systems), black soils have significant losses 
of SOC (See Figure 3.2.2). According to various 
estimates, SOC loss of up to 50 percent of initial SOC 
occurred after conversion from a natural system to 
intensive farming, as happened in intensively cropped 
soils of the United States of America (Gollany et al., 
2011).  This SOC loss results from of inappropriate 
land use and unsustainable management practices, 
leading to declining soil quality. The decline in soil 
quality is generally characterized by poor topsoil 
structure, increased soil erosion, resulting in emissions 
of carbon into the atmosphere exacerbating climate 
change (Lal, 2019). 
Much of the carbon loss was caused using aggressive 
tillage systems, but also by the replacement of perennial 
vegetation (grasslands, forests) by annual crops, which 
in general generate lower carbon returns to the soil 
and hydrological imbalances (Fan et al., 2017). When 
grasslands are converted to croplands, they lose on 
average 36 percent of their SOC stocks after 20 years 
(Poeplau et al., 2011). 
Soil organic carbon sequestration represents 25 percent 
of the total potential of climate change mitigation 

solutions (23.8 Gt of CO2e per year) (Bossio et al., 
2020). Forty percent of potential solutions for climate 
change mitigation through soil carbon is to maintain the 
existing SOC stocks, and the remaining 60 percent is 
rebuilding the depleted SOC stocks. The historical loss 
of substantial amounts of SOC confers black soils a low 
enough baseline to achieve significant SOC gains on 
the path to recovery. Nature-based solutions based on 
SOC-centered sustainable management practices have 
multiples benefits, and no tradeoffs have been identified 
(Smith et al., 2020). The major potential for SOC 
sequestration is in black soils devoted to annual crops. 
This potential is mainly due to the large yield gaps and/
or large historic SOC losses (Amelung et al., 2020). 
After an appropriate land use and soil management, 
these black soils can increase their SOC and improve 
their quality. As a result, the rise of atmospheric CO2 
can be mitigated in black soil regions (Liu et al., 2012). 
In conclusion, sustainable use and management of 
black soils toward maintaining or increasing their SOC 
stocks could be key for climate change mitigation and 
adaptation. 
Black soils will contribute to mitigation through 
increases in carbon by sequestration in their profiles 
resulting from the adoption of nature-based practices 
such as those reviewed by Smith et al., (2020). Many of 
these practices, such as improved cropland management, 
improved forest management, and increased SOC 
content, are based on more intensification and do not 
create demand for more land conversion. This land 
productivity increase for food production can avoid 
emissions that would occur through expansion of the 
agricultural land area (Mueller et al., 2012), or by 
reducing the greenhouse gas intensity of products 
(Bennetzen, Smith and Porter, 2016). Improved 
cropland, grazing, and livestock management have 
moderate carbon mitigation potential, although their 
impact can be high because of the high number of 
hectares that they occupy.

http://54.229.242.119/GSOCmap/
http://54.229.242.119/GSOCmap/


77

• Improved cropland, 
grazing, and livestock 

management
• Silvopastoral systems

• Avoid deforestation and 
grassland losses

• Manuring 
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• Biomass management 

• Unsustainable
management practices
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• Excessive use of 

agrochemicals
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appearance of bare ground 
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mineralization
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Figure 3.2.2 Duality of black soils as carbon sinks or emitters as a function of management practices
Source: Author’s elaboration
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3.2.3 Human well-being  
Black soils contribute to human well-being by providing 
food security, filtering water, protection against 
chemicals and pathogens, and cultural ecosystem 
services (Brevik and Sauer, 2015) (See Figure 3.2.3). 
After hundreds of years of farming, black soils continue 
to be a symbol of healthy and nutritional food in many 
local cultures (Liu et al., 2012). Black soils contain 
sufficient nutrients and provide nutritious food to 
people living there and in other regions, thus avoiding 
negative effects on human health (Steffan et al., 2018).

There is evidence of the contribution of black soils 
made by ancient civilizations, as found in the Amazon 
region where pre-Columbian indigenous communities 
cultivated lowlands hundred years ago, left a legacy of 
charcoal, fish bones, and organic matter. The highly 
fertile soils, now called Amazonian Dark Earths evolved 
through these materials (Kern et al., 2019; Anne, 
2015; Schmidt et al., 2014). Cultural values associated 
with black soils are observed in northeast China, 
where people associate them with healthy and positive 
characters to enhance the value of their personality, 
products, and culture (Cui et al., 2017). 
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• Providing nutritious food 
• Enriching folks culture 
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Figure 3.2.3 Multiple benefits of black soils
Source: Author’s elaboration



80

3.2.4 Food production and food 
security 

Global analysis shows that out of the total land 
dedicated to growing crops, 17 percent of the farmland 
is currently occupied by black soils (Chernozems, 
Kastanozems and Phaeozems) (IUSS Working Group 
WRB, 2006), and out of the total area covered by black 
soils, one third of the black soil area is used as croplands 
(FAO, 2022a), due, in part, to its inherent fertility. 
This high fertility often leads to underestimation of the 
risks of degradation, although these soils are strongly 
affected by irreversible degradation processes such as 
erosion, nutrient imbalance, compaction and structural 
degradation (FAO and ITPS, 2015).
In cold regions of east Europe and Eurasia, there are 
black soils with high inherent fertility (Chernozems). 
If the annual weather such as precipitation and 
temperature is supportive, these soils can ensure food 
security for the countries (Avetov et al., 2011; Kogan, 
Adamenko and Kulbida, 2011; Kobza and Pálka, 
2017). Food security is a national priority in China, 
a country where black soils are considered the food 
basket since the 1950s. They have been responsible for 
the production of 15.9 percent of rice, 33.6 percent of 

maize, and 33.9 percent of soybeans in 2014 (Bureau 
of Statistics of China, 2015). In the United States of 
America, black soils cover 31.2 million hectares, and 
42 percent of them are used for crop production (Soil 
Survey Staff, 2014; FAO, 2022a). In the southern cone 
of South America, most of the black soils sustain the 
production of grain and oilseed crops, orchards, forage, 
and crops for fibre production. They are also used for 
cattle raising and dairy farming, feeding the cattle with 
grains, forage crops or natural pastures (Durán, 2010; 
Durán et al., 2011; Rubio, Pereyra and Taboada, 
2019). 
A set of international initiatives, such as the 
International Network on black soils, the 4 x 1 000 
Initiative (Soussana et al., 2019), and the framework 
of the Global Soil Partnership (Rojas et al., 2016) 
have highlighted the need to maintain healthy soils and 
address threats to more fertile soils in order to cope with 
a 60 percent increase in food demand by 2050. Black 
soils are very fertile, and they are considered “the world 
crop basket” or “giant pandas in cultivated farmland” 
(Zhang and Liu, 2020) (See Figure 3.2.4). They are 
expected to receive increased use pressure in future 
decades that require better management practices and 
governance. 
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• Constitute an important 
source of food for the world, 

and are key for the global 
economy   

• Recognized as inherently 
productive and fertile soils

• Represent 17 percent of the 
worldwide croplands

Black soils for  food security

Orchards

Potatoes

Soybeans

Wheat

Grain and 
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and fiber 

production

Cattle
raising Rice and

corn

Figure 3.2.4 Black soils as a key player for global food security
Source: Author’s elaboration
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3.3 Main threats to black 
soils
The Status of the World’s Soil Resources report (FAO 
and ITPS, 2015) highlighted the most significant 
threats to soil functions at the global scale, specifically 
soil erosion, loss of SOC and nutrient imbalance, and 
the current outlook is that this situation will worsen 
unless concerted actions are taken by all, the private 
sector, governments, international organizations and 
academia.

Black soils are not the exception and are affected by 
all global threats. As already mentioned, most of the 
cultivated black soils have already lost at least half of 
their carbon stocks and suffer from moderate to severe 
erosion processes, among other degradation processes. 
Other ongoing soil threats are soil nutrient unbalances, 
soil sealing and soil biodiversity loss (See Figure 3.3a). 

World’s soils are under threat

1st

main
threat

2nd

main
threat

3rd

main
threat

Salinization and sodification

Soil sealing and land take

Loss of soil biodiversity

Contamination

Nutrient imbalance

Acidification

Organic carbon change

Erosion

4th

main
threat

Figure 3.3a Global assessment of the four main threats to soil by FAO regions
Source: Montanarella, L., Pennock, D.J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Aulakh, m.s., Yagi, K., Hong, Suk 
Young., Vijarnsorn, P., Zhang, G., Arrouays, D., Black, H., Krasilnikov, P., JSobocká, A., Alegre, J., Henriquez, C.R., Mendonça-Santos, M.L., Taboada, M., 
Espinosa- Victoria, D., AlShankiti, A., AlaviPanah, S.K., Elsheikh, E.A.E.M., Hempel, J., Arbestain, M.C., Nachtergaele, F. & Ronald V. 2016. World’s soils are 
under threat. SOIL, 2(1): 79–82. https://doi. org/10.5194/soil-2–79-2016
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3.3.1 Soil organic carbon loss 
Land use changes and unsustainable management 
practices lead to generalized significant soil organic 
carbon (SOC) losses in black soils. SOC changes 
appear as the second main threat in South America due 
to deforestation, intensive cultivation of grasslands 
and monocultures, in northeast China due to land use 
change and degradation of grassland, and in Europe 
due to the replacement of the natural vegetation; all of 
these are regions where black soils are predominant or 
at least conspicuous (See Figure 3.3a).
The black soils of Ukraine provide a well-documented 
example of SOC loss.  Since 1970 there have been 
significant changes in the reserves of organic matter in 
Ukraine. Average losses of SOC due to irrational land 
use over 140 years since the time of V. V. Dokuchae 
have reached 22 percent about 19 percent in the 
Steppe, and more than 20 percent in Polissya (Baliuk 
and Kucher, 2019).
According to Yatsuk (2015, 2018), the largest losses 
of humus occurred from the 1960s to 1980s, due to the 
intensification of agricultural production by increasing 
the area of ​​  row crops, especially sugar beets and 
corn. During this period, the annual losses of humus 
reached 0.55 to 0.60 tonnes/ha. These processes of 
soil dehumidification on agricultural lands continue. 
According to the results of agrochemical certification 
of agricultural lands during the last five rounds (1986 
to 2010) the humus content in the soils of Ukraine 
decreased by 0.22 percent in absolute terms and is 
3.14. In terms of soil and climatic zones, the largest 
decrease in humus content occurred in the soils of the 
steppe zone, dropping from 3.72 to 3.40 percent, 
(by 0.32 percent in absolute terms). In the Forest-
Steppe these changes are slightly smaller but given the 
loss of humus are significant 0.19 percent. However, 
the dynamics of losses in the period up to 2015 is 
somewhat slowing down due to the introduction of new 
management practices (Yatsuk, 2018). 
Studies from Canada also document the complex 
balance between organic matter additions and losses 
in black soils. In studies by Landi et al., (2003 a, b, 
2004), the net primary production of vegetation (NPP) 
of seeded forage grasses (based on dry matter) for the 
black Chernozems annual averaged about 490 g/m2 for 
above ground and 206 g/m2 below ground. The amount 
of organic C to a 1.2 m depth is nearly 150 MgC/ha. 
Annual average rates in the three soils studied 1.18 
gC/M2. Many researchers have suggested that prairie 
soils have lost about 30 percent of their organic matter 
under cultivation. The loss is estimated to be about 1.5 
to 2 kg/m2 by Mann (1986). Considering these losses 

over 80 years of agriculture practices, the annual rate 
of loss is about 19 to 25 gC/m2. This is ten to thirty 
times greater than the accumulation rate in the Black 
Chernozems. This rate is likely to be higher at the early 
stage of C losses and before levelling off and reaching. 
Therefore, it may take only a few hundred years to lose 
the majority of the SOC. Organic C in subsoils is older 
than the SOC in A horizon and, therefore, can represent 
a vegetation composition different than that of today 
(Mermut and Acton, 1984). 
Losses of SOC can also occur due to grazing.  In soils 
of the Anaime moorland (Tolima, Colombia) (between 
0 and 30 cm deep) pastures in use stored SOC of 
34.4 tonnes/ha, while pastures without use for 20 
years stored 22 tonnes/ha. One explanation is the 
possible increase of biomass in the fine roots that when 
decomposed provide greater carbon content to the 
soil (Maia et al., 2010), while lack of pasture renewal 
probably decreases the contribution of senescent roots 
(Andrade, Espinosa and Moreno, 2014). However, 
this aspect requires further study (Castañeda-Martín 
and Montes-Pulido, 2017). Avellaneda-Torres, Leon-
Sícard and Torres-Rojas, (2018) and Otero et al., 
(2011) found the behaviour of organic C showed 
a trend of moorlands > potato farms > cattle farms. 
Similar results were found in Chingaza natural national 
park (NNP) and Nevados NNP, where the C was lower 
in the soil profiles of conserved highland ecosystems 
than in non-conserved ecosystems. The decrease in 
easily oxidised organic C in soils under potato and 
cattle farming might have been caused by the loss of 
native vegetation cover due to cattle farming relative to 
the Paramo, which exposed the soil to environmental 
factors such as water, air, and solar radiation and likely 
increased erosion (Otero et al., 2011). 
Restoring SOC stocks in black soils via reasonable 
management such as conservation tillage, manure 
and compost fertilization, and biomass management 
is crucial to sustainable development and is important 
for environmental stability (Xu et al., 2020). Among 
the causes of the decline in SOC are land use change, 
aggressive tillage, inadequate cropping system 
management (such as monocultures), and limited 
replacement of nutrients (FAO and ITPS, 2015) (See 
Figure 3.3b). Studies in the Russian Federation and 
Ukraine show that the loss of soil vegetation cover 
favours erosion processes, and soil  organic matter 
content (SOM) can decline  by 15, 25, and 40 percent 
in weak, medium, and severely eroded black soils 
(Iutynskaya and Patyka, 2010).
Using a quantitative global SOM-crop yield potential 
model, Oldfield, Bradford and Wood (2019) found 
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that wheat and maize yields are greater with higher 
concentrations of SOC and level off at approximately 
2 percent SOC. Potential yield increases through 
higher SOC concentrations amount to 32 percent of 
the projected yield gap for maize and 60 percent of that 
for wheat.

The Status of the World’s Soil Resources report (FAO 
and ITPS, 2015) concluded that a priority action 
should be to stabilize or increase the global SOM stocks 
(SOC and soil organisms). Locally appropriate SOC-
improving management practices should be identified 
by each country and facilitate their implementation 
towards a national-level goal of achieving a stable 
or positive net SOC balance. Black soils should be 
prioritized to maintain and increase SOC stocks.

Main reasons for SOC loss

Soil and water 
erosion Deforestation 

and land use 
change

Aggressive 
tillage Overgrazing

Monocultures

CO2

CO2

CO2

Decreased 
SOM and 
fertility

Appearance of 
bare ground 

surfaces 

Soil aggregates 
breakdownLoss via dissolved 

organic carbon 
(DOC) Increased SOM 

mineralization 
rates

Figure 3.3b Mayor drivers of SOC loss
Source: Author’s elaboration
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15 | Recarbonization of global soils (RECSOIL)
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RECSOIL is a FAO innovative initiative with the aim to boost soil health through the maintenance and 
enhancement of SOC stocks (FAO and ITPS, 2021). It unlocks the potential of SOC to provide multiple 
benefits through key ecosystem services. Healthy soils directly contribute to enhance food security and 
farm income, reducing poverty and malnutrition, providing essential ecosystem services, contribute to the 
achievement of the SDGs, fight climate change, and build soils’ resilience to extreme climatic events and 
to pandemics. Black soils are the most productive carbon-rich soils and contain 8.2 percent of the world’s 
SOC stocks. Their SOC sequestration potential is 10 percent of the global annual potential (FAO, 2022). 
However, this is not evenly distributed throughout the world. For example, in Europe and Eurasia, black 
soils account for 66 percent of the potential SOC sequestration, while only reaching 10 percent in Latin 
America and the Caribbean. Therefore, it is critical to prioritize those areas to restore and maintain SOC 
stock and avoid loses. That can be done through the implementation of initiatives such as RECSOIL at 
country level to unlock the potential of these precious soils for climate changes adaptation and mitigation, 
and halt greenhouse gases emissions.

Source: FAO & ITPS. 2021. Recarbonizing global soils –A technical manual of recommended management practices. Rome, FAO. https://doi.
org/10.4060/cb6386en
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3.3.2 Soil erosion 
Globally soil erosion was identified as the most severe 
threat, leading to poorer water quality in developed 
regions and to lower crop yields in many developing 
regions (Montanarella et al., 2016).  Figure 3.3a shows 
that soil erosion is the first main threat in regions 
where black soils are predominant or co-dominant, for 
example, South and North America, eastern Europe 
and northeast China. 
Erosion induced by rainfall and wind degrades the 
quality of all soils, including black soils (See Figure 

3.3.2). Due to the degree of severity that has occurred 
(such as deep gullies, total soil loss), many studies have 
been carried out during the last decade in the black soil 
region. The dominant soil erosion processes are due to 
water, wind, and snow meltwater, with water erosion 
on hillside farmland being the major contributor to 
soil erosion (Xu et al., 2010). Ouyang et al., (2018) 
observed that from 1979 to 2014, cropping system 
conversion from forestry to dry lands increased erosion 
losses from 204 to 421 tonnes per km2 per year 
(Ouyang et al., 2018).  These losses can be controlled 
by basin, contour, rat tunnel, and conservation tillage, 
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in combination with terraces and strip cultivation. Crop 
productivity can be increased by fertilizer or manure 
application (Liu et al., 2011).
In Japan, Taniyama (1990) reported that there was about 
40 to 50 cm of topsoil loss by water erosion during the 
16 years after land use change from forest to vegetable 
plantation in the Andosols of the northern Kanto region, 
Japan. Counter measures for soil erosion adopted 
in Japan include contour farming, cover cropping to 
prevent bare land, greenbelt farming, terracing. The 
Ministry of Agriculture, Forestry and Fishery (MAFF) 
in Japan has announced basic principles of soil water 
erosion and sediment control, namely enhancement 
of rain water percolation to reduce surface flow water, 
minimization of surface flow velocity, construction of 
channel networks to drain rain water rain water safely 
and decreasing soil erodibility. 
More than 90 percent of the agricultural area of the 
Pampas region in Argentina is currently cultivated under 
no-till, more recently combined with the cultivation of 
“cover crops” during the fallow period. This tends to 
reduce the loss of organic carbon and soil erosion due 
to the generalization of no-till practices.
Wind erosion is a phenomenon that mainly affects soils 
in semi-arid and arid areas, which often have low levels 

of plant cover and organic matter (Skidmore, 2017). 
In any case, climatic cycles with drought can generate 
predisposing causes of wind erosion, even in black 
soils, as happened with the dust bowl during the 1930s 
in the United States of America (Lee and Gill, 2015).
The combined effect of water and wind in Ukraine has 
been severe. The average annual soil loss from water 
and wind erosion is 15 tonnes/ha. This means that the 
country’s soil cover loses about 740 million tonnes of 
the top, fertile soil layer every year (Baliuk et al., 2010). 
The amount of land in Ukraine damaged by water 
erosion is up to 32 percent of the total area (13.3 million 
hectares). Of these hectares, 4.5 million hectares with 
medium and heavily washed soils, as well as 68 000 
hectares that have completely lost the humus horizon. 
More than 6 million hectares are systematically affected 
by wind erosion, and up to 20 million hectares in years 
with dust storms. A particularly potentially dangerous 
zone in Ukraine is the southern Steppe (the main zone 
with Kastanozems and Calcic Glossic Chernozems). 
Thus, the number of days per year with dust storms in 
the southern steppe zone is 159, northern and central 
is 88, Forest-Steppe is about 33 days (Baliuk et al., 
2010).

Land use change

Water erosion

Meltwater erosion

Wind erosion

Land conversion Hill and slope 
farmlands

Water quality 
deterioration 

Decreased
crop yields

Figure 3.3.2 Main soil erosion processes of black soils
Source: Author’s elaboration
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Photo 3.3.2a Wind erosion in Liaoning province, China

Photo 3.3.2b Water erosion in Laetoli Gorge, the United Republic of Tanzania
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Photo 3.3.2c Wind erosion in Jiusan farm, China caused by land conversion and aggressive tillage

Photo 3.3.2d Water erosion in the Russian Federation
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16 | The infamous Dust Bowl!

Dust storm approaching Stratford, Texas. Dust Bowl surveying in Texas.

The Dust Bowl was one of the largest sandstorms in the history of the United States of America that happened 
in the 1930s (History, 2020). This phenomenon began in the southern Great Plains and was caused by 
intensive farming, poor agricultural practices, and was associated with a period of severe droughts (History, 
2020). Soil erosion and desertification on these lands caused massive dust storms affecting the states of 
Oklahoma, Kansas, Texas, New Mexico, and Colorado (Texas and Kansas have black soils) and reaching 
cities such as Washington, DC, and New York (Findmypast, 2015; SSSA, 2015). About 1.2 billion tonnes 
of soil were lost between 1934 and 1935 in the southern Great Plains (Britannica, 2022). These dust 
storms caused several adverse effects such as respiratory diseases causing the death of people and animals, 
with farmlands becoming unusable, and hunger and poverty spreading across several states (SSSA, 2015). 
Many people migrated to other places like California to escape the drought and the dust, and to find work 
(Findmypast, 2015). Following this huge catastrophe, the Soil Conservation Service (later the USDA 
Natural Resources Conservation Service) was founded to encourage farmers to adopt erosion mitigation 
strategies implementing sustainable management practices (reduced tillage, leaving crop residues in fields, 
strip cropping and crop rotation) to conserve soil and minimize erosion (SSSA, 2015). Desertification 
increasingly threatens significant land areas worldwide, affecting more than 100 countries, including the 
United States of America (SSSA, 2015).

Source: History. 2020. Dust Bowl. In: HISTORY. Cited 6 June 2022. https://www.history.com/topics/great-depression/ dust-bowl
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3.3.3 Soil nutrient imbalance 
Nutrient imbalances include both deficits and 
excesses of soil nutrients. Imbalances were judged by 
Montanarella et al., (2016) as the second main threat 
in North America, and the third greatest threat in most 
of Africa, in regions where black soils are conspicuous 
(See Figure 3.3.3). 
Nitrogen (N) and phosphorus (P) fertilizer use need 
to be increased in infertile tropical and semi-tropical 
soils where the most food insecurity is found. Soil 
nutrient levels have decreased in the Argentine Pampas, 
because of the lack of resupply of nutrients, causing 
soil fertility to be exhausted in many places. Due to 
economic reasons, fertilizer use and soil testing was 
not historically widespread in Argentina and the level 
of nutrients such as N, P, calcium (Ca), magnesium 
(Mg) and zinc (Zn) has decreased (Rubio et al., 2019; 
Lavado and Taboada, 2009). Nutrient stocks have 
also noticeably decreased in black soils of the Russian 
Federation (Grekov et al., 2011; Medvedev, 2012), 
Ukraine (Balyuk and Medvedev, 2012), and Brazil 
(Rezapour and Alipour, 2017).
On the other hand, in other parts of the world with 
black soils, excessive N fertilization and decreasing N 
recovery rates by crops have caused dramatic increases 
in non-point source pollution from agriculture (Ju et 
al., 2004). Nutrient excesses often originate in the 
use of high doses of synthetic fertilizers and organic 

manures containing N and P, with the consequent 
risks of pollution and therefore the eutrophication of 
groundwater and surface water (See Figure 3.3.3). 
Soil phosphorus is strongly affected by interaction with 
soil minerals and organic matter. Due to this, P added 
as fertilizer (14.2 Tg P/year) and manure (9.6 Tg P/
year) collectively exceeded P removal by harvested 
crops (12.3 Tg of P/year) at the global scale (Zang et 
al., 2017). However, almost 30 percent of the global 
cropland area, particularly in Europe and South 
America, is deficient in soil P, either total or extractable 
by crops. Soil P deficits are common in areas producing 
forage crops used as livestock feed (MacDonald et al., 
2011). On the other hand, high P fertilizer application 
relative to crop P use resulted in a greater proportion of 
intense P surpluses (>13 kg of P/ha/year) in many areas 
with black soils. Together with N excesses, P surpluses 
represent a risk of eutrophication of freshwater and 
marine ecosystems (Dodds and Smith, 2016; Ngatia et 
al., 2019). In Japan the overuse of chemical fertilizer 
causes nutrient imbalance in Andosols. Potassium 
is excessively accumulated in upland soils, and the 
ratio of magnesium to potassium is low (Japanese 
Soil Conservation Research Project Nationwide 
Council, 2021). The level of available phosphate in 
upland soils tends to be higher than the governmental 
recommendation (Japanese Soil Conservation Research 
Project Nationwide Council, 2021).
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Increased
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levels
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Inadequate fertility 
management causes 
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macro and micronutrients 
in crops and animals, and  

low crop yields
Soil and ground water  
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raising
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Figure 3.3.3 Effects of intensive use as a trigger on nutrient imbalance
Source: Author’s elaboration
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3.3.4 Soil compaction 
Excessive soil compaction is a direct consequence of 
intense agricultural traffic of heavy machinery in the 
fields (See Figure 3.3.4), and a higher soil susceptibility 
because of organic matter content decreases and 
lower aggregate stability (Gupta and Allmaras, 1987; 
Montanarella et al., 2016). Soil compaction is indicated 
by increases in soil bulk density and soil penetrometer 
resistance and decreases in soil macroporosity and 
water infiltration rates, among changes in other soil 
properties (Gupta and Allmaras, 1987; Liu et al., 
2010), with important consequences on crop yields 
(Liu et al., 2010; Peralta, Alvarez and Taboada, 2021). 
Evidence of soil compaction and physical deterioration 
of black soils is widely available. After 75 years of 
cultivation, water-stable aggregation declined by 27 
percent and clay content by 27 percent in black soils 
of the Russian Federation (Balashov and Buchkina, 
2011). This soil physical decline reached 40 percent 
in Ukraine, where many soils have a compacted layer 
(Balyuk and Medvedev, 2012). Likewise, intensive 
cultivation and summer fallowing have degraded 
the Canadian prairie soils, resulting in poor surface 
structure (Agriculture and Agri-Food Canada, 2003). 
Without significant variation, 14 to 20 percent higher 
bulk density and 10 to 22 percent lower porosity values 
were observed in cultivated black soils compared to 
forestlands in Brazil (Rezapour and Alipour, 2017).
Soil physical degradation has covered almost the entire 
area of ​​distribution of black soils in Ukraine. This is due 
to a number of factors, including excessive ploughing 
of agricultural land (78 percent) (Medvedev, 2012; 
Yatsuk, 2015; Yatsuk, 2018; National report on the 
state of the environment in Ukraine in 2018, 2020), 
due to their suboptimal structure, intensive mechanical 
tillage led to widespread physical degradation. Physical 
degradation is manifested in the destructing of the 
upper layer, blocky (cloddy) after ploughing, swimming 

and crusting, the presence of a plough pan, and subsoil 
compaction. Physically degraded soils are prone to 
erosion, poor water retention properties, thus limiting 
the development of plant root systems (Baliuk et al., 
2010; Medvedev, 2012). In addition, with the current 
trends of climate change (aridization and warming) 
in Ukraine, there is already a de facto shift of natural-
climatic zones from 100 to 150 km to the north, which 
brings new threats to desertification (Zatula and Zatula, 
2020). These processes were already clearly traced 20 
years ago (Pylypenko et al., 2002).
 Soil compaction is not only a consequence of tillage, 
as even under continuous conservation tillage farming it 
was repeatedly observed (Peralta, Alvarez and Taboada, 
2021). In this case, the process affects the first layer 
of the soil, promotes planar aggregates and associated 
voids in crop rotations with long fallow periods (Alvarez 
et al., 2014; Peralta, Alvarez and Taboada, 2021).
Additionally, burning, intensive grazing, tilling, and 
replacement of the natural grassland with more nutritive 
grass species in Colombia significantly affected water 
balance of the Colombian moorlands areas (Sarmiento 
and Frolich, 2002). Phenomena typically accompanying 
pasture farming and tillage, such as soil compaction and 
soil crusting, additionally alter the infiltration rates, 
water storage, and regulation capacity of moorlands. 
The soils of the Pampas region in Argentine provide 
an example of the consequences of physical soil 
degradation. Continuous cultivation has generated 
soil physical degradation as sealing and compaction, 
increasing the processes of water erosion. Since the soils 
of the Pampas region, particularly in the Undulating 
Pampa, have been put into cultivation, they have lost an 
average of 50 percent of their original organic matter, 
while the total phosphorus of the surface horizon would 
have decreased by 80 percent (Sainz-Rozas, Echeverria 
and Angelini, 2011; Lavado, 2016). 
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Figure 3.3.4 Effects of soil compaction
Source: Author’s elaboration
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Photo 3.3.4a Soil compaction caused by heavy machinery in Jilin province, China

Photo 3.3.4b Soil compaction caused by heavy machinery in Jilin province, China
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3.3.5 Salinization 
Salinization is a related processes that result from both 
natural (primary) and human-induced (secondary) 
processes (See Figure 3.3.5). In black soils the 
cases are due to: a) hydrological imbalances caused 
by changes in land use (such as the replacement of 
perennial vegetation such as forests, grasslands and 
pastures by annual crops), or associated with climate 
change, which causes the rise of saline groundwater 
to the surface (Taboada et al., 2021); or b) the use of 
irrigation water with moderate to high salt content 
(Choudhary and Kharche, 2018; Bilanchyn et al., 

2021). In both cases, the increases in pH, electrical 
conductivity, and percentage of exchangeable sodium, 
decrease the quality of black soils. However, human-
induced salinization owing to inappropriate soil 
and fertilizer management are the main challenges 
in regions of black soils. Secondary salinization of 
irrigated soils, accompanied by a reduction of the 
humus-rich layer depth was reported in the Russian 
Federation (Grekov et al., 2011; Medvedev, 2012). 
In other cases, soil salinity in black soils is associated 
with swelling-shrinking processes and is not shown by 
saltpans on surface (Choudhary and Kharche, 2018). 

Soils affected by  human-induced salinity 
Causes Effects

Land use 
change 

Irrigation 
water 

Rapid decline of health, losing their 
capacity for biomass production, natural 

filtration, carbon sequestration and 
other key ecosystem services

Figure 3.3.5 Soils affected by human-induced salinity
Source: Author’s elaboration
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3.3.6 Acidification 

The acidification of black soils is most commonly due 
to an excessive extraction of exchangeable bases (Ca, 
Mg, K) by crops without adequate replenishment or 
a consequence of N fertilization (See Figure 3.3.6). 
Acidification only appears as the first main threat in 
Oceania (See Figure 3.3a). In the regions of Cherkassy 
and Sumy (Ukraine), soil pH dropped 0.3 to 0.5 units 
after 40 to 50 years cultivation (Grekov et al., 2011; 
Medvedev, 2012). In black soils of northeast China, 
from 2005 to 2014, a trend of acidification due to 
overuse of N fertilizers was detected in intensive 
cropping systems (Tong, 2018). It is interesting 
to note that in Chinese croplands, N-induced 
acidification was also associated with an accrual of soil 
organic matter (Zhang and Liu, 2020), and a great 
decrease in soil inorganic carbon (Raza et al., 2020). 
Andosols in Japan can experience nutrient issues 
associated with acidification. In general, allophanic 

Silandic Andosols are originally weakly acidic, and 
aluminum toxicity does not occur frequently in plants 
on these soils. However, Silandic Andosols can become 
strongly acidic following the heavy application of 
chemical fertilizer (Fujii, Mori and Matsumoto, 2021). 
Strongly acidic Andosols with an accumulation of acidic 
materials dissolves a part of the active Al fraction in the 
soils, which causes Al toxicity and thereby leads to the 
shallow rooting of Al-susceptible crops (Fujii, Mori and 
Matsumoto, 2021). Additionally, the soil productivity of 
strongly acidic Andosols is lower than that of the original 
weakly acidic soil; for example, the number of bacteria 
decreases (e.g, from 160 x 106 cfu /g for weakly acidic 
soil to 10 x 106 cfu /g for strongly acidic soil) as do the 
levels of readily mineralizable soil nitrogen (Matsuyama 
et al., 2005). To improve these nutritional imbalances, 
the appropriate use of soil amendments based on 
soil diagnosis is desired (Japanese Soil Conservation 
Research Project Nationwide Council, 2021).
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Figure 3.3.6 Causes and effects of soil acidification
Source: Author’s elaboration
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3.3.7 Soil biodiversity loss 
Unlike other aspects of soil science, soil biodiversity 
remains poorly understood, in terms of anthropogenic 
impacts on the diversity of microbes and soil fauna 
that live unseen in soils. Only a small fraction of the 
immense morphological diversity of soil organisms is 

known, and this is especially true for microorganisms. 
Examples of this biological richness include bacteria 
(a), microscopic (b) and fruiting bodies of fungi (c), 
viruses (d), algae (e), protists (f), nematodes (g), mites 
(h), springtails (i), enchytraeids (j), earthworms (k), 
mealybugs (l), termites (m), ants (n), and mammals (o), 
among many others (Figure 3. 3.7a).

a

d

g

m n o

j

h

lk

e f

i

b c

Figure 3.3.7a Overview of the most common soil biodiversity groups
Examples  shown are bacteria (A), microscopic (B) and fruiting bodies of fungi (C), viruses (D), algae (E), protists (F), nematodes (G), mites (H), 
springtails (I), enchytraeids (J), earthworms (k), mealybugs (L), termites (M), ants (N), and mammals (O), among many others
Source: Author’s elaboration
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Most of black soils evolved supporting grassland 
vegetation with an active rhizosphere around the 
fibrous root system of the dominant grasses (Tisdall and 
Oades, 1982; Oades, 1993). These grasslands were 
characterized by floristic richness in plant communities, 
and an enormous soil biodiversity (from microbes to 
megafauna) which plays a key role in the provision of 
essential ecosystem services as carbon sequestration, 
nutrient cycling (carbon, nitrogen, phosphorus, and 
sulphur), water retention, provision of nutritious food, 
among others.
One of the consequences of the transition to crops from 
grasslands on black soils is the loss of much of the original 
biodiversity, at levels that are not well known because 
these changes occurred a long time ago. It is difficult to 
think that these soils will recover their pristine or near 
pristine state, so one of the future challenges is how to 
recover at least part of this enormous lost biodiversity.

The effects of reducing soil biodiversity on soil 
functioning was studied in an experiment by Wagg 
et al., (2014). A broad soil biodiversity gradient 
was reproduced in grassland microcosms (Figure  
3.3.7b). Some groups of soil organisms (nematodes 
and mycorrhizal fungi) were eliminated within the 
gradient, while fungal and bacterial communities 
reduced in abundance and richness. Plant species 
diversity decreased strongly with the reduction of soil 
biodiversity and the simplification of soil communities. 
This supports previous findings that plant community 
composition is driven by the diversity and species 
composition of various groups of soil organisms. As 
is expected (and repeatedly seen in real examples), 
carbon sequestration also decreased along the gradient. 
Changes in soil biodiversity and soil community 
composition also influenced processes related to 
nutrient cycling.
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Figure 3.3.7b Change in soil community characteristics (abundance and richness) of various guilds of soil 
organisms in grassland communities
Means ± SEM are expressed as a ratio of the most complete soil treatment (dashed line), such that 0 represents no detection. The coloured lines 
highlight the general trend of changes in soil community characteristics along the gradient.
Source: Wagg, C., Bender, S.F., Widmer, F. & Van Der Heijden, M.G. 2014. Soil biodiversity and soil community composition determine ecosystem 
multifunctionality. Proceedings of the National Academy of Sciences, 111(14): 5266–5270.https://doi.org/10.1073/pnas.1320054111

This simplification of soil communities due to cultivation 
has also been observed in the field. A valuable example 
of changes in arthropod communities (spiders, ants 
and carabids, among others) is provided by a study on 
black soils in northern China (Gao et al., 2021). Due 
to intensive agricultural practices, a more simplified 
species richness and biodiversity was achieved at the 
local scale. 
A well-documented effect of soil organisms is on the 
aggregation of the soil. The structure of the topsoil 
of black soils presents a hierarchical organization 
of aggregate sizes that depends on this enormous 

biodiversity. In fact, soil macroaggregates and soil 
clumps (units > 250 microns) depend for their 
stability on the binding and bonding mechanisms from 
cementing agents excreted in the soil rhizosphere and 
entanglement by fine roots and mycorrhizal hyphae. 
Soil mesopores (0.2 to 30 microns in diameter) and 
macropores (larger than 30 microns) are the habitat 
of many of the microorganisms and microfauna that 
make up soil biodiversity (Degens, 1997; Kay, 1990; 
Chantigny et al., 1997). The protection of SOC within 
aggregates is a key element of increasing SOC levels to 
achieve carbon sequestration. 
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17 | What is the relationship between wars and soil pollution?
The use of artillery possesses a severe risk to soil degradation and pollution especially with the use of 
mechanization and modern weapon technologies. The most common sources of pollution affected by 
armed conflicts are the following contaminants:

Sources of pollution Soil contaminants
Conventional explosives TNT, RDX, HMX

Fragmentation shells, bullets, cartridge cases
and shotgun pellets

Copper, iron, lead and zinc

Armour-piercing projectiles Depleted uranium

Incendiary weapons White phosphorus and Napalm

Soil pollution can come from the use of nitro aromatic explosive compounds (FAO and UNEP, 2021). 
These compounds have a high persistence and once entered the soil, they tend to remain, harming the local 
biota and reducing the soil health and fertility. The negative effects from the use of incendiary weapons 
containing white phosphorus comes from their co-contaminants and residues of combustion. Such weapons 
may result in soil polluted with trace elements, hydrocarbons, organic solvents, surfactants, synthetic 
phenols, cyanide, dioxins, and radionuclides reducing soil fertility, crop yield and possessing risk to human 
health and the environment. The use of depleted uranium, one of the least studied forms of uranium, can 
penetrate the soil as deep as 50 cm. The dust that is emitted from the depleted uranium disperses and 
contaminates and polluting the soil over large area. Claims have been made that the depleted uranium dust 
can travel up to 40 km. After an attack with depleted uranium ammunition, this dust will be deposited on 
the ground and other surfaces as partially oxidized depleted uranium fragments of different sizes, and as 
uranium oxide dust. 
The sources of soil pollution are very varied and range from the primary sector to the final stages of the 
life cycle of everyday products. For this reason, in order to prevent and reduce soil pollution by the armed 
conflicts, greater efforts must be made to reduce the use and production of toxic chemicals in the ammunition, 
to regulate and control industries and verify that their emissions do not introduce contaminants into the 
environment and that production and consumption systems move towards more sustainable schemes in 
which waste production is reduced.

Source: FAO & UNEP. 2021. Global assessment of soil pollution – Summary for policy makers. Rome, FAO. https://doi.org/10.4060/cb4827en
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3.4 Challenges 

The challenges faced by black soils arise from their 
preponderant role in food and fibre production under 
agricultural and livestock use. As mentioned before, 
the main threats that operate on them are erosion 
by water, tillage and wind, loss of SOC and organic 
matter, and nutrient imbalance. In addition, physical-
structural deterioration should not be ruled out, and 
in some regions soil salinization, pollution with excess 
fertilizers and agrochemicals, and soil sealing due 
to urban advancement also occurs (FAO and ITPS 

2015; Montanarella et al., 2016). Main drivers of soil 
degradation are land use changes and unsuitable land 
management, unsustainable management practices and 
the lack of policies. 
According to the FAO and ITPS, (2015) report, 
soil degradation should be minimized and degraded 
soils restored in those regions where people are most 
vulnerable, or where food production is critical, Global 
SOC and SOM stocks should be stabilized or increased, 
and that we should act to stabilize or reduce global N 
and P fertilizer use while simultaneously increasing 
fertilizer use in regions of nutrient deficiency.  

Photo 3.3.7 Black soils in Zhaoguang farm of Heilongjiang province, China
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3.4.1 Land use change and land 
management 

Due to projected increases in food demand crop 
production will need to increase by 70 to 110 percent 
by 2050 (Royal Society of London, 2009; Tilman et al., 
2011). As very fertile soils, black soils will be among 
the main actors in these increases in production and 
closing of gaps. To meet this objective, sustainable 
intensification of the current productive systems rather 
than agricultural expansion into forests and pastures 
is critical (Fischer and Connor, 2018; Guilpart et al., 
2017). Many black soils are also considered soils of 
high environmental value, where the protection of large 
carbon stocks and the restoration of these stocks should 
be included in overall soil resilience programmes to 
monitor, restore and maintain soil fertility and soil 
functions, and to enhance the key ecosystem services 
provided by these soils (Smith et al., 2016).
As a successful example, in recent years, the Ministries 
of Agriculture, Science and Technology, Land and 
Resources, and the four provinces of black soil areas 
in northeast China have actively implemented a wide 
range of measures to protect and enhance black soils.  
These include high standard farmland construction, 
soil and water conservation, soil testing and formulated 
fertilization, soil organic matter increases, conservation 
tillage (reduced tillage and no-till), subsoiling for soil 
compaction alleviation and soil preparation, straw 
returning, and increasing the use of organic fertilizers 
(Li et al., 2021). The comprehensive goal of black soil 
protection and utilization is to control the loss and 
degradation of black soils and keep water and fertility 
(Han et al., 2018).
The adoption of restorative land use and recommended 
management practices are key to strengthen numerous 
ecosystem services provided by black soils, such as 
improving water quality and renewability, increasing 
below and above-ground biodiversity, enhancing soil 
resilience to climate change and extreme events, and 
mitigating climate change by sequestering carbon in 
soil and reducing CO2, CH4 and N2O emissions (Lal, 
2014).

3.4.2 Unsustainable management 
practices 

The most cited unsustainable management practices 
for black soils are those that cause the main threats, that 
is, erosion, loss of SOC and SOM, nutrient imbalance, 
and salinization and sodification. Under agricultural 
management, these practices are usually aggressive 

tillage methods based on plowphshares and disc plows, 
harrows, and so on, monocultures, non-replenishment 
of nutrients with fertilizers, and the disappearance of 
pastures. Overgrazing and non-use of rational grazing 
systems is the most frequent cause on land destined for 
grazing. Soil pollution by pesticide residues is a major 
cause of degradation (Smith et al., 2016).

3.4.3 Climate change and black soils  
Climate change is very much related to the condition of 
black soils. From one side, climate change negatively 
impacts black soils. For instance, interactions between 
the increasing temperature and decreasing precipitation 
in black soil region led to reduced accumulation of soil 
organic matter, which results in poor soil fertility (Gong 
et al., 2013). On the other side, the unsustainable 
management of black soils causes the loss of soil 
organic carbon and emits greenhouse gases to the 
atmosphere, exacerbating climate change. Evidence in 
black soils showed that organic matter amendments and 
tillage management can mitigate negative and exploit 
positive effects of climate change on crop production 
by enhancing soil quality (Song et al., 2015; Menšík et 
al., 2019; Farkas, et al., 2018). Unfortunately, those 
practices are not often adopted by local governments 
and farmers due to multiple management and economic 
obstacles. The restoration of degraded black soils 
should be highlighted and inputted in the global climate 
change agenda in offsetting anthropogenic emissions 
and SOC sequestration (Lal, 2021).

3.4.4 Lack of policies 
Many of the black soils appear in countries with low 
levels of soil governance, or where different laws and 
regulations relating to soil and water may exist, but with 
poor enforcement. Undoubtedly, the lack of effective 
policies in these sites is a major challenge to preserve 
the quality and health of black soils for agricultural use, 
and thus food security. 
The implementation of practices for recovery or 
restoration of black soils mostly depends on good 
governance (in North America) and the availability of 
financial resources. This factor limits implementation 
of sustainable practices in all the affected countries, but 
mostly in developed countries. The problem lies in the 
fact that most of the food insecurity problems are not in 
the more developed countries but in the less developed 
parts of the world. This is the main challenge for 
sustainable management, not only for black soils, but 
also for all the productive soils in the world. Sustainable 
soil management should increase the supply of healthy 
food.
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