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Multiple Signaling Pathways of Human Interleukin-8 Receptor A: Independent
Regulation by Phosphorylation

Abstract

Interleukin-8 (IL-8) receptor A (CXCR1) couples to a pertussis toxin- sensitive G protein to mediate
phospholipase CB (PLCB) activation and cellular responses. Responses to CXCR1 are attenuated by prior
exposure of neutrophils to either IL-8, a cleavage product of the fifth component of complement (C5a) or
n-formylated peptides (formylmethionylleucylphenylalanine, fMLP). To characterize the role of receptor
phosphorylation in the regulation of the CXCR1, a phosphorylation- deficient mutant, M2CXCR1, was
constructed. This receptor, stably expressed in RBL-2H3 cells, coupled more efficiently to G protein and
stimulated enhanced phosphoinositide hydrolysis, cCAMP production, exocytosis, and phospholipase D
activation, and was resistant to IL-8-induced receptor internalization. The rate and total amount of ligand
stimulated actin polymerization remained unchanged, but interestingly, chemotaxis was decreased by
~30% compared with the wild type receptor. To study the role of receptor phosphorylation in cross-
desensitization of chemoattractant receptors, M2CXCR1 was coexpressed with cDNAs encoding
receptors for either fMLP (FR), C5a (C5aR), or platelet-activating factor (PAFR). Both C5aR and PAFR were
cross-phosphorylated upon M2CXCR1 activation, resulting in attenuated guanosine 5-3'-O-
(thio)triphosphate (GTPyYS) binding in membranes. In contrast, FR and M2CXCR1 were resistant to cross-
phosphorylation and cross-inhibition of GTPyYS binding by other receptors. Despite the resistance of
M2CXCR?1 to cross-phosphorylation and receptor/G protein uncoupling, its susceptibility to cross-

desensitization of its Ca2* response by fMLP and C5a, was equivalent to CXCR1. Regardless of the
enhancement in certain receptor functions in M2CXCR1 compared with the wild type CXCR1, the mutated
receptors mediated equivalent PLCB3 phosphorylation and cross-desensitization of CaZ* mobilization by
FR, C5aR, and PAFR. The results herein indicate that phosphorylation of CXCR1 regulates some, but not
all of the receptors functions. While receptor phosphorylation inhibits G protein turnover, PLC activation,
Ca?* mobilization and secretion, it is required for normal chemotaxis and receptor internalization. Since
phosphorylation of CXCR1 had no effect on its ability to induce phosphorylation of PLCB3 or to mediate
class-desensitization, these activities may be mediated by independently regulated pathways.
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Interleukin-8 (IL-8) receptor A (CXCR1) couples to a
pertussis toxin-sensitive G protein to mediate phospho-
lipase CB (PLCPB) activation and cellular responses. Re-
sponses to CXCR1 are attenuated by prior exposure of
neutrophils to either IL-8, a cleavage product of the fifth
component of complement (C5a) or n-formylated pep-
tides (formylmethionylleucylphenylalanine, fMLP). To
characterize the role of receptor phosphorylation in the
regulation of the CXCR1, a phosphorylation-deficient
mutant, M2CXCRI1, was constructed. This receptor, sta-
bly expressed in RBL-2H3 cells, coupled more efficiently
to G protein and stimulated enhanced phosphoinositide
hydrolysis, cAMP production, exocytosis, and phospho-
lipase D activation, and was resistant to IL-8-induced
receptor internalization. The rate and total amount of
ligand stimulated actin polymerization remained un-
changed, but interestingly, chemotaxis was decreased
by ~30% compared with the wild type receptor. To study
the role of receptor phosphorylation in cross-desensiti-
zation of chemoattractant receptors, M2CXCR1 was
coexpressed with ¢cDNAs encoding receptors for
either fMLP (FR), C5a (C5aR), or platelet-activating
factor (PAFR). Both C5aR and PAFR were cross-phos-
phorylated upon M2CXCR1 activation, resulting
in attenuated guanosine 5'-3’-O-(thio)triphosphate
(GTPYyS) binding in membranes. In contrast, FR and
M2CXCR1 were resistant to cross-phosphorylation and
cross-inhibition of GTPyS binding by other receptors.
Despite the resistance of M2CXCR1 to cross-phosphoryl-
ation and receptor/G protein uncoupling, its susceptibil-
ity to cross-desensitization of its Ca%* response by fMLP
and C5a, was equivalent to CXCR1. Regardless of the
enhancement in certain receptor functions in M2CXCR1
compared with the wild type CXCR1, the mutated recep-
tors mediated equivalent PLCB; phosphorylation and
cross-desensitization of Ca?" mobilization by FR, C5aR,
and PAFR. The results herein indicate that phosphoryl-
ation of CXCRI1 regulates some, but not all of the recep-
tors functions. While receptor phosphorylation inhibits
G protein turnover, PLC activation, Ca®* mobilization
and secretion, it is required for normal chemotaxis and
receptor internalization. Since phosphorylation of
CXCR1 had no effect on its ability to induce phosphoryl-
ation of PLCp; or to mediate class-desensitization, these
activities may be mediated by independently regulated
pathways.
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AI-38910 (to R. M. R.), HL-54166 (to H. A.), and DE-03738 (to R. S.).
The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
“advertisement” in accordance with 18 U.S.C. Section 1734 solely to
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IL-8' is a member of the structurally related family of cyto-
kines, called chemokines, which mediate a number of biological
activities including chemotaxis of leukocytes (1, 2). Cellular
responses to IL-8 are initiated by specific cell surface receptors
that couple to pertussis toxin-sensitive heterotrimeric G pro-
teins (3). Two IL-8 receptor subtypes have been identified in
human neutrophils, IL-8 receptor A or CXCR1 and IL-8 recep-
tor B or CXCR2 (4, 5). CXCR1 is specific for IL-8, whereas
CXCR2 also binds other chemokines including MGSA, GRO,
and NAP2, to mediate cellular responses (3, 6). Both CXCR1
and CXCR2 undergo phosphorylation and desensitization upon
agonist stimulation (7-9).

Prior exposure of neutrophils to the chemoattractants fMLP,
C5a, or IL-8 resulted in attenuation of each others intracellular
Ca?* mobilization, a phenomenon called “class desensitization”
(10, 11). Activation of either FR or C5aR in co-transfected
RBL-2H3 cells, resulted in cross-phosphorylation and cross-
desensitization of CXCR1 (12). Likewise, C5aR underwent
cross-phosphorylation and cross-desensitization upon CXCR1
activation (12). FR was, however, resistant to cross-phospho-
rylation, although inositol 1,4,5-trisphosphate production and
Ca?* mobilization were attenuated by a first dose of either C5a
or IL-8 (12). Taken together, these observations suggested that
a shared component(s) distal to receptor/G protein is(are) in-
volved in chemoattractant receptor class desensitization. Che-
moattractant receptors have been shown to couple to both
PLCB, and PLCB; to stimulate leukocyte responses (13, 14).
Liu and Simon (15) have recently shown in Cos-7 cells that
protein kinase A (PKA)-mediated phosphorylation of PLC}S,
prevented its activation by Gg,. Recent studies from this labo-
ratory have demonstrated that receptors for the chemoattrac-
tants PAF, fMLP, and the CXC chemokine SDF1 induced phos-
phorylation of PLCB; via both protein kinase A- and
C-activating pathways (16-18). Thus, phosphorylation of
PLCB, subsequent to chemoattractant receptor activation, may
play a regulatory role in cross-desensitization.

To determine the role of receptor and PL.CB; phosphorylation
in CXCR1 regulation, a receptor mutant, M2CXCR1, resistant
to heterologous phosphorylation was transfected in RBL-2H3
cells. This mutant was more active than CXCR1 in stimulating
G protein activation and some but not all subsequent re-
sponses. In this study, we characterize M2CXCR1 regulation
and cross-regulation of other chemoattractant receptor and
assess the role of phosphorylation in receptor cross-desensiti-
zation. The data presented here suggest that class-desensitiza-
tion of CXCR1 is not regulated by receptor phosphorylation,

! The abbreviations used are: IL-8, interleukin-8; fMLP, formylme-
thionylleucylphenylalanine; FR, fMLP receptor; C5a, peptide from the
fifth component of complement; C5aR, C5a receptor; PMA, phorbol
12-myristate 13-acetate; GTPyS, guanosine 5'-3'-O-(thio)triphosphate;
G protein, GTP-regulatory protein, PAF, platelet-activating factor;
PAFR, PAF receptor; PLC, phopholipase C.
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suggesting a pathway distal to receptor/G protein activation for
PLC regulation. Moreover, this IL.-8-induced phosphorylation
of PLCB; may play an important role in class desensitization.

EXPERIMENTAL PROCEDURES

Materials—[**P]Ortophosphate (8500-9120 Ci/mmol), myo-[2-*H]
inositol (24.4 Ci/mmol), [**S]GTPyS (1300 Ci/mmol), and [y->?]GTP
(6000 Ci/mmol) were purchased from NEN Life Science Products. 1?°I-
labeled IL-8 was obtained from Amersham Corp. IL-8 (monocyte-de-
rived) was purchased from Genzyme. PAF was from Calbiochem. Ge-
niticin (G418) and all tissue culture reagent were purchased from Life
Technologies, Inc. Monoclonal 12CA5 antibody, protein G-agarose, and
protease inhibitors were purchased from Boehringer Manheim. Poly-
clonal antibody against PLCB; was obtained from Santa Cruz Biotech-
nology. fMLP, Indo-1 acetoxymethyl ester, and pluronic acid were pur-
chased from Molecular Probes. C5a and 8-(4-chlorophenylthio)-cAMP,
phorbol 12-myristate 13-acetate (PMA), GDP, GTP, GTPyS, and ATP
were purchased from Sigma. All other reagents are from commercial
sources.

Construction of Epitope-tagged CXCRI1, MICXCR1, and M2CXCR1—
Nucleotides encoding a nine-amino acid epitope sequence (YPYDVPDYA)
was inserted between the N-terminal initiator methionine and the second
amino acid of each ¢cDNA by polymerase chain reaction as described previ-
ously (7, 19, 20). Alanine substitution of serine and threonine residues of the
carboxyl terminus of CXCR1 to generate M2CXCR1 was carried out by
polymerase chain reaction.

Cell Culture and Transfection—RBL-2H3 cells were maintained as
monolayer cultures in Earle’s modified Eagle’s medium supplemented
with 15% fetal bovine serum, 2 mm glutamine, penicillin (100 units/ml),
and streptomycin (100 mg/ml) (19). RBL-2H3 cells (1 X 107 cells) were
transfected by electroporation with pcDNA3 containing the receptor
c¢DNAs (20 pg) and geneticin-resistant cells were cloned into single cell
by fluorescein-activated cell sorting analysis.

Radioligand Binding Assays—RBL-2H3 cells were subcultured over-
night in 24-well plates (0.5 X 10° cells/well) in growth medium. Cells
were then rinsed with Dulbecco’s modified Eagle’s medium supple-
mented with 20 mm Hepes, pH 7.4, and 10 mg/ml bovine serum albumin
and incubated on ice for 2—4 h in the same medium (250 ul) containing
1251.TL-8. Reactions were stopped with 1 ml of ice-cold phosphate-
buffered saline containing 10 mg/ml bovine serum albumin, and washed
four times with the same buffer. Then cells were lysed with 0.1 N NaOH
(250 pl), dried under vacuum, and bound radioactivity was evaluated by
counting in a gamma counter. Nonspecific radioactivity bound was
determined in the presence of 300 nM unlabeled IL-8. For internaliza-
tion experiments, cells were incubated with 100 nM IL-8 for 0—60 min
at 37 °C. After the incubation period, cells were washed three times
with ice-cold phosphate-buffered saline and '**I-IL-8 binding was car-
ried out as described above.

GTPase Activity and [*°S]GTP+yS binding—Cells were treated with
appropriate concentrations of stimulants and membranes were pre-
pared as already described (19). GTPase activity and [**S]GTPyS bind-
ing using 10-20 pg of membrane preparations were carried out as
described previously (7, 19-21).

Phosphoinositide Hydrolysis and Calcium Measurement—RBL-2H3
cells were subcultured overnight in 96-well culture plates (50,000 cells/
well) in inositol-free medium supplemented with 10% dialyzed fetal
bovine serum and 1 uCi/ml [*Hlinositol. The generation of inositol
phosphates was determined as reported previously (19). For calcium
mobilization, cells (3 X 10°) were loaded with 1 pum Indo 1-acetoxy-
methyl ester in the presence of 1 uM pluronic acid for 30 min at room
temperature. Then the cells were washed and resuspended in 1.5 ml of
buffer. Intracellular calcium increase in the presence and absence of
ligands was measured as described (7).

Phospholipase D Activation and cAMP Generation and Measure-
ment—For phospholipase D activation, phosphatidylethanol (PtdEtOH)
formation was measured as described previously (11, 21). cAMP gener-
ation and measurement was carried out as described previously (16, 22)
using the Amersham kit.

Actin Polymerization and Chemotaxis—Actin polymerization assays
were performed essentially as described previously (19). RBL-2H3 cells
(50,000) were incubated at 37 °C with different concentration of IL-8.
Chemotaxis was assessed in 48-well microchemotaxis chambers, using
polyvinylpyrrolidone-free 5-um pore size membranes. Migration was
allowed to continue for 5 h at 37 °C in 5% CO,. The membrane was
removed, the upper surface was washed with phosphate-buffered saline
and scraped, fixed, and stained. The results are represented as chemo-
taxis index (mean number of cells per high power field for chemokine
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dilution/mean number of cells per high power field for medium) (23).

Receptors and PLCB,; Phosphorylation and Immunoprecipitation—
Phosphorylation of receptors was performed as described previously
(16). RBL-2H3 cells (2.5 X 10°) were subcultured overnight in 60-mm
tissue culture dishes. The following day the cells were rinsed twice with
5 ml of phosphate-free Dulbecco’s modified Eagle’s medium and incu-
bated in the same medium supplemented with [*P]orthophosphate
(150 pCi/dish) for 90 min to metabolically label the intracellular ATP
pool. Then labeled cells were stimulated with the indicated stimulants
or vehicle for 5~7 min at 37 °C. The reactions were stopped by placing
the cells on ice. The cells were washed twice with ice-cold phosphate-
buffered saline and harvested with cold detergent-containing lysis
buffer (1 ml/dish) supplemented with appropriate protease and phos-
phatase inhibitors. The phosphorylated receptors were immunoprecipi-
tated with the 12CA5 antibody, analyzed by SDS-electrophoresis, and
visualized by autoradiography. PLCB,; phosphorylation upon agonist
stimulation was determined as described above, using a rabbit poly-
clonal PLCp; specific antibody instead of 12CA5 as described previously
(16-18).

RESULTS

Characterization of M2CXCR1 in RBL-2H3 Cells—
M2CXCR1 was previously expressed in RBL-2H3 cells and it
was demonstrated that the mutant bound IL-8 with a dissoci-
ation constant (K;) of 2.8 = 0.7 nm and a B, ,, of 7792 = 284
receptors/cell. This was similar to that of wild type CXCR1
expressed in RBL-2H3 cells (K, 2.3 = 0.3 nm; B, ., 8532 * 152
receptors/cell) or the native receptors in neutrophils (~1-2 nm)
(3, 7), indicating that mutation of the four amino acid residues
which comprise the M2 cluster (7) did not affect ligand binding.
However, M2CXCR1-mediated inositol phosphates formation
and secretion were ~5- and ~10-fold, respectively, higher than
the wild type receptor (7). IL-8-induced GTPase activity in
membranes, and cAMP production and phospholipase D activ-
ity in intact cells were also greater in cells expressing
M2CXCR1 than CXCR1 (data not shown). IL-8-induced actin
polymerization were similar for both M2CXCR1 and CXCR1-
expressing cells (Fig. 1A). However, cells expressing M2CXCR1
showed a ~30% decrease in maximal chemotaxis compared
with cells expressing CXCR1 (Fig. 1B). The EC;, (~0.1 nwm),
however, remained unchanged.

M2CXCR1 was more resistant to IL-8-induced internaliza-
tion than CXCR1 (~45 versus ~80% of 12°1-IL-8 binding after
60 min) (data not shown). These results are consistent with the
ones reported by Prado et al. (24) and indicated that the M2 site
play an important role in phosphorylation-mediated down-reg-
ulation of the CXCR1.

Co-expression and Cross-phosphorylation of M2CXCR1—The
ability of M2CXCRI1 to cross-phosphorylate and cross-desensi-
tize chemoattractant responses was determined. Cells express-
ing CXCR1 and cells coexpressing M2CXCR1 and receptors for
either fMLP (M2CXCR1-FR) or PAF (M2CXCR1-PAFR) were
stimulated with either IL-8 (100 nm), fMLP (1 um), PAF (100
nM), or PMA (100 nm). As shown in Fig. 2, CXCR1 (lane 2, ~70
kDa), FR (lane 6, ~65 kDa), and PAFR (lane 11, ~45 kDa) were
homologously phosphorylated by their ligands. CXCR1 and
PAFR were also phosphorylated by PMA (lanes 3 and 10, re-
spectively) but not FR (lane 7) and M2CXCR1 (lanes 7 and 10).
PAFR was cross-phosphorylated by M2CXCR1 activation (lane
9). Both M2CXCR1 (lanes 6 and 11) and FR (lane 5) were
resistant to cross-phosphorylation. Some homologous phospho-
rylation of M2CXCR1 was detected with longer exposure of the
autoradiogram (7) (data not shown).

Cross-desensitization of M2CXCR1—Ca?" mobilization was
measured to determine the relationship between cross-phos-
phorylation and cross-desensitization of receptor-mediated cel-
lular responses. Ca®* mobilization in response to an EC,, dose
of either fMLP (100 nM; M2CXCR1-FR cells), PAF (10 nwm;
M2CXCR1-PAFR cells) or IL-8 (10 nm; M2CXCR1-FR and
M2CXCR1-PAFR cells) was homologously desensitized by a
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Fic. 1. Characteristics of CXCR1 and M2CXCR1 induced actin
polymerization and chemotaxis in response to IL-8. A, for actin
polymerization, RBL cells (1 X 10° cells/tube) were treated with or
without IL-8 (100 nM) for 1 min. Cells were then permeabilized, fixed,
stained, and analyzed by fluorescein-activated cell sorting. The exper-
iment was repeated twice with similar results. B, chemotactic response
to IL-8 was measured as described under “Experimental Procedures.”
The results are representative of one of four experiments performed in
triplicate.

CXCR1 M2CXCRI-FR  M2CXCRI-PAFR
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FiG. 2. Cross-phosphorylation of chemoattractant receptors.
32P-Labeled RBL-2H3 cells (3 X 10%/60-mm plate) expressing the wild
type CXCR1 or the mutant M2CXCR1 with either FR (M2CXCR1-FR)
or PAFR (M2CXCR1-PAFR) were incubated for 5 min with or without
stimulants as shown. Cells were lysed, immunoprecipitated with
12CA5 antibody and analyzed by SDS-polyacrylamide gel electrophore-
sis and autoradiography. The results are from a representative exper-
iment that was repeated three times.

first dose of the same ligand (data not shown). As shown in Fig.
3, the dose-response of either fMLP (panel A) or PAF (panel C)
induced Ca%* mobilization in M2CXCR1-FR and M2CXCR1-
PAFR cells, respectively, was cross-desensitized by pretreat-
ment of the cells with a first dose of IL-8 (10 nm). IL-8-induced
Ca®" mobilization in cells expressing M2CXCR1 was also cross-
desensitized by pretreatment of the cells with a first dose of

CXCR1 Phosphorylation and Desensitization

either fMLP (panel B) or C5a (data not shown) but not PAF
(panel D). The extent of FR mediated cross-desensitization of
M2CXCR1 (~60%) was equivalent to that of CXCR1 (57%) (12).

CXCR1 couples to a pertussis toxin-sensitive G protein in
neutrophils and RBL-2H3 cells (3). The possibility that the
mutation of the carboxyl terminus of CXCR1 to generate
M2CXCR1 may cause a switch in the G protein utilized by the
mutant receptor was investigated. RBL-2H3 cells expressing
the receptors for fMLP and the mutant (M2CXCR1-FR) were
treated with pertussis toxin (100 ng/ml) overnight and assayed
for IL-8- and fMLP-induced Ca®* mobilization. Treatment with
pertussis toxin completely inhibited the ability of both IL-8 and
fMLP to stimulate Ca2" mobilization and, as a consequence,
cross-desensitization (data not shown).

Phosphorylation of PLCBs by CXCR1 and M2CXCR1—Pep-
tide chemoattractants have been shown to couple to PLCB to
mediate cellular signals (13, 14). Both Western blot analysis
and reverse transcriptase-polymerase chain reaction indicated
that of the four known PLCp isozymes only PLCp; is expressed
in RBL-2HS3 cells (16, 18). In addition, both PAF and fMLP
have recently been shown to mediate PLCB; phosphorylation
in RBL-2H3 cells (16, 17). The ability of CXCR1 and the
M2CXCR1 to mediate PLCB; phosphorylation was determined.
32P-Labeled cells expressing CXCR1 or M2CXCR1 were stim-
ulated with either IL-8 (100 nm), PMA (100 nm) and 8-(4-
chlorophenylthio)-cAMP (1 mm). As shown in Fig. 4, upon IL-8
stimulation, both the mutant (lane 6) and the wild type recep-
tor (lane 2) mediated phosphorylation of PLCB; to a similar
extent, 1.81- and 1.77-fold over basal, respectively (panel B).
IL-8-induced phosphorylation of PLCB; is similar to that of
8-(4-chlorophenylthio)-cAMP (panel A, lanes 4 and 8, and panel
B), but less than phosphorylation induced by PMA (panel A,
lanes 3 and 7, and panel B).

The dose response of IL-8- and fMLP-induced phosphoryla-
tion of PLCB; was evaluated in M2CXCR1-FR cells. fMLP (Fig.
5, panel A) and IL-8 (panel B) induced phosphorylation of
PLCB; in a dose-dependent manner. As determined by Ceren-
kov counting of the excised phosphorylated band, fMLP- and
IL-8-induced phosphorylation of PLCB; with an EC;, of ~20 nm
and ~2 nwm, respectively. Maximum phosphorylation was
achieved at ~100 nm fMLP (panel C) and ~10 nm IL-8 (panel D)
and was ~2.45- and ~1.75-fold over basal for fMLP and IL-8,
respectively. Pretreatment of the cells with the PKC inhibitor
staurosporine (100 nm) markedly inhibited phosphorylation of
PLCB; induced by both, fMLP and IL-8) (panels A, B, C, and D).

DISCUSSION

Phagocytic leukocytes respond to inflammatory mediators
such as IL-8, fMLP, and C5a by migrating to sites of inflam-
mation where they may exert their cytotoxic activities (25).
Despite the presence of two receptors for IL-8 in neutrophils
(CXCR1 and CXCR2), certain cellular responses to IL-8 are
lower in magnitude compared with fMLP and C5a. For exam-
ple, IL-8 is a weaker stimulator of exocytosis and respiratory
burst (26). IL-8 has also been shown to be less effective than
fMLP and Cba in stimulating phosphoinositide hydrolysis and
mitogen-activated protein kinase activation in neutrophils
(27). The results presented here indicate that responses to IL-8
are modulated by specific phosphorylation sites in the cytoplas-
mic tail of the receptor as well as a site downstream of G
protein activation. A phosphorylation deficient receptor mu-
tant (M2CXCR1) more effectively activated G protein and was
more resistant to agonist-mediated desensitization and inter-
nalization. Despite the ability of this mutant to up-regulate
phosphoinositide hydrolysis, cAMP production, and phospho-
lipase D activation and secretion, actin polymerization was not
affected, and chemotaxis in response to IL-8 was actually di-
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O migration occurs at doses of agonist lower than those required
g for Ca%* mobilization or cAMP production (25), it is possible
-3 that the pathway(s) regulating chemotaxis is/are sensitive to
° 1 second messenger levels and that the up-regulation of phospho-
E lipase C activation mediated by M2CXCR1 plays a negative
o regulatory role in sensing chemical gradients. Supporting this
Gl - E T contention is that truncation of the carboxyl tail of the mono-
g L] g % g L] E % cyte chemoattractant protein 1 (MCP1) receptor (CCR2B)

o

Fic. 4. CXCR1- and M2CXCR1-mediated PLCB,; phosphoryla-
tion. A, RBL-2H3 cells expressing CXCR1 or M2CXCR1 were *?P-
labeled and stimulated for 5 min with either IL-8 (100 nm), PMA (100
nM), or 8-(4-chlorophenylthio)-cAMP (1 mMm). Cells were lysed, immuno-
precipitated with anti-PLCB; antibody and analyzed by SDS-polyacryl-
amide gel electrophoresis and autoradiography. B, the amount of radio-
activity per lane was determined by counting excised phosphorylated
bands. The results are from a representative experiment that was
repeated three times.

minished compared with wild type CXCR1 (Fig. 1). These re-
sults may distinguish events which are important for leukocyte
recruitment from those for cytotoxic functions. Cytoskeletal
rearrangement and chemotaxis which are early events in in-
flammation occur via pathways which require lower doses of

which enhanced receptor mediated Ca2?" mobilization and
cAMP production, diminished chemotaxis in response to MCP1
(29). In addition, chemotaxis of leukocytes was enhanced in
PLCp, deficient mice in which phosphoinositide hydrolysis,
Ca2* mobilization and superoxide production was decreased
(30).

Understanding molecular events underlying cross-desensiti-
zation of receptors was facilitated by the availability of
M2CXCR1. Phosphorylation of unoccupied receptors by second
messenger-dependent kinases activated via different receptors
appear to account for cross-desensitization at the level of R/G
protein coupling (12). Our previous studies with FR have re-
vealed that receptor cross-desensitization can also occur inde-
pendently of receptor phosphorylation and G protein uncou-
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Fic. 5. Effect of staurosporine on M2CXCR1 and FR mediated
PLCB; phosphorylation. RBL-2H3 cells expressing M2CXCR1 and
FR (M2CXCR1-FR) were 2P-labeled and preincubated with or without
staurosporine (100 nM) for 3 min. Cells were stimulated with different
concentrations of either fMLP (A) or IL-8 (B) for 5 min. PLCB; phos-
phorylation was assessed as described in the legend of Fig. 4 (C and D).
The results are from a representative experiment that was repeated
twice.

pling. A question addressed in the present study is the role of
CXCR1 phosphorylation in the cross-desensitization of cellular
responses. M2CXCR1, like FR (12, 21), is resistant to cross-
phosphorylation and cross-desensitization of receptor mediated
[23S]GTP~S binding in membranes. Despite this, intracellular
Ca%* mobilization mediated by M2CXCR1 in response to IL-8
was cross-desensitized by pretreatment of the cells with either
fMLP or C5a (12). These results clearly indicate cross-desensi-
tization of M2CXCR1 at the level of a downstream effector
which is independent of receptor phosphorylation or R/G pro-
tein uncoupling. This contention is supported by the observa-
tion that both PMA and 8-(4-chlorophenylthio)-cAMP which,
like fMLP, IL-8, and C5a, caused phosphorylation of PLCp,
(Fig. 4), desensitized Ca2?" mobilization in response to FR,
CbhaR, CXCR1, and M2CXCR1 in both neutrophils and trans-
fected RBL-2H3 cells (16, 17). Prossnitz (31) using phosphoryl-
ation deficient mutants of FR have recently reported that ho-
mologous desensitization of fMLP-mediated Ca%* mobilization
is solely mediated by receptor phosphorylation. These results
are in contrast to the ones presented in this work and may well
reflect differences between homologous and cross-desensitiza-
tion. Homologous desensitization requires phosphorylation of
the agonist-occupied form of the receptor by a receptor specific
kinase and accessory proteins such as arrestin (32). Cross-
desensitization, in contrast, is agonist-independent. It occurs
via pathway(s) triggered by a different, but related, receptor
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and involve modification of downstream effector(s) and, per-
haps, different accessory proteins.

Another question addressed in this study is the role of second
messenger production in receptor cross-regulation. M2CXCR1
induced greater G protein turnover, phosphoinositide hydroly-
sis and cAMP production than CXCR1. However, M2CXCR1
activation by IL-8 did not result in greater cross-phosphoryla-
tion or cross-desensitization of Ca®" mobilization in response to
either FR, PAFR, or C5aR (22-30%) (Fig. 3, data not shown)
compared with CXCR1 (20-30%) (12, 21). These results sug-
gest that cross-desensitization of receptor-mediated Ca%* mo-
bilization occurs via pathways which are independent of recep-
tor phosphorylation or rate of second messenger production
measured in the present work. Supporting that contention is
that phosphorylation of PLCpB;, which is thought to be one of
the target effector for class-desensitization (16, 17), is mediated
by both CXCR1 and M2CXCR1 to the same extent (Fig. 4).

This work provides evidence for independent mechanisms for
CXCR1 receptor mediated chemotactic versus cytotoxic func-
tions of phagocytic leukocytes. Whereas secretion was en-
hanced by removal of specific phosphorylation sites in the cy-
toplasmic tail of the receptor, chemotaxis and receptor
internalization were inhibited by loss of receptor phosphoryla-
tion. In contrast, IL-8 mediated actin polymerization, PLCpB;
phosphorylation, receptor cross-phosphorylation and cross-de-
sensitization of Ca®" response were not affected. Moreover, the
lack of receptor phosphorylation did not affect cross-desensiti-
zation of or by M2CXR1 at the level of Ca®" mobilization. These
data further underscore the presence of downstream effector(s)
of receptor class-desensitization which appear to be regulated
independently of receptor phosphorylation and enhanced G
protein turnover.
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