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Swarup A, Samuels IS, Bell BA, Han JY, Du J, Massenzio E,
Abel ED, Boesze-Battaglia K, Peachey NS, Philp NJ. Modulating
GLUT1 expression in retinal pigment epithelium decreases glucose
levels in the retina: impact on photoreceptors and Müller glial cells.
Am J Physiol Cell Physiol 316: C121–C133, 2019. First published
November 21, 2018; doi:10.1152/ajpcell.00410.2018.—The retina is
one of the most metabolically active tissues in the body and utilizes
glucose to produce energy and intermediates required for daily re-
newal of photoreceptor cell outer segments. Glucose transporter 1
(GLUT1) facilitates glucose transport across outer blood retinal bar-
rier (BRB) formed by the retinal pigment epithelium (RPE) and the
inner BRB formed by the endothelium. We used conditional knockout
mice to study the impact of reducing glucose transport across the RPE
on photoreceptor and Müller glial cells. Transgenic mice expressing
Cre recombinase under control of the Bestrophin1 (Best1) promoter
were bred with Glut1flox/flox mice to generate Tg-Best1-Cre:Glut1flox/flox

mice (RPE�Glut1). The RPE�Glut1 mice displayed a mosaic pattern of
Cre expression within the RPE that allowed us to analyze mice
with ~50% (RPE�Glut1m) recombination and mice with �70%
(RPE�Glut1h) recombination separately. Deletion of GLUT1 from the
RPE did not affect its carrier or barrier functions, indicating that the RPE
utilizes other substrates to support its metabolic needs thereby spar-
ing glucose for the outer retina. RPE�Glut1m mice had normal
retinal morphology, function, and no cell death; however, where
GLUT1 was absent from a span of RPE greater than 100 �m, there
was shortening of the photoreceptor cell outer segments.
RPE�Glut1h mice showed outer segment shortening, cell death of
photoreceptors, and activation of Müller glial cells. The severe
phenotype seen in RPE�Glut1h mice indicates that glucose trans-
port via the GLUT1 transporter in the RPE is required to meet the
anabolic and catabolic requirements of photoreceptors and main-
tain Müller glial cells in a quiescent state.

BEST1-cre; GLUT1; Müller glial cells; photoreceptor cells; retina

INTRODUCTION

The neural retina is one of the most metabolically active
tissues in the body. Otto Warburg determined over a hundred
years ago that the retina is highly glycolytic and converts
nearly 80% of glucose into lactate through aerobic glycolysis
(6, 53). The retina is supported by two blood supplies: the
choroidal blood supply and the inner retinal vasculature (8).
The choroidal vasculature is very dense and is composed of
fenestrated capillaries that underlie the retinal pigment epithe-
lium (RPE), which forms the outer blood retinal barrier (BRB).
Glucose transporter 1 (GLUT1) is expressed at high levels in
the apical and basolateral membranes of the RPE and in the
inner BRB where it is located in the luminal and abluminal
membranes of the endothelial cells (19, 47). Thus, GLUT1 is
well positioned to facilitate the transepithelial transport of
glucose into the outer and inner retina (20).

The choroidal circulation has been shown to deliver nutri-
ents and oxygen to the outer retina and remove metabolic waste
via the RPE (13, 27). Previous studies have examined the
effects of disrupting the choroidal vessels on photoreceptor
health highlighting the importance of the choroidal vessels in
supplying nutrients and oxygen to the outer retina. In these
mice, flow of both oxygen and nutrients was disrupted leading
to metabolic reprograming of the RPE and photoreceptor cell
death (21, 22).

In the current study, we knocked out a single metabolic
transporter from the RPE, GLUT1, to determine the impor-
tance of glucose transport across the outer BRB in supporting
outer retinal structure, function, and viability. We found that
genetic deletion of GLUT1 in the RPE did not affect its barrier
properties or state of differentiation, supporting studies that
show that the RPE is oxidative and utilizes lactate, amino
acids, and fatty acids as metabolic substrates (1, 2, 16). How-
ever, decreased transport of glucose into the outer retina of
RPE�Glut1 mice decreased retinal glucose levels, affected
outer segment renewal and photoreceptor cell survival, and
resulted in activation of Müller glial cells. There was a greater
impact on rod photoreceptor cells than on cone photoreceptor
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cells, suggesting that rods are more dependent on glycolytic
metabolism than cones.

MATERIALS AND METHODS

Animals. Mice carrying the homozygous floxed Slc2a1 allele (55)
were crossed to a transgenic line that expressed Cre recombinase
under control of the promoter for Bestrophin1 (BEST1; Jax stock no.
017557) (14). We used a two-generation cross to generate mice that
were Slc2a1loxP/loxP homozygous and Cre transgenic, as well as
control littermates. All animal procedures were conducted with the
approval of the Thomas Jefferson University or Louis Stokes Cleve-
land VA Medical Center Institutional Animal Care and Use Commit-
tees and conformed to the Association for Research in Vision and
Ophthalmology (ARVO) statement for use of animals in ophthalmic
and vision research.

Spectral domain-optical coherence tomography. Mice were anes-
thetized with a mixture of ketamine (100 mg/kg) and xylazine (10
mg/kg), after which the pupils were dilated with eye drops (1%
phenylephrine HCl ophthalmic solution, Akorn, Lake Forest, IL). A
Bioptigen (Durham, NC) SD-OCT system was used to image the eyes
at 840 nm. Retinas were imaged at 1.4 mm radial measurement of
1,000 A-scans by two B-scans per image and averaged over 15
images. Bioptigen InVivoVue software was used to average the
images.

Immunofluorescence. Mice were anesthetized with ketamine (100
mg/kg) and xylazine (10 mg/kg) and euthanized by cervical disloca-
tion following enucleation of the eyes. Eyes were fixed in cold
(�80°C) methanol:acetic acid (97:3) as previously described (45). For
immunofluorescence, the fixed eyes were processed for embedding in
optimal cutting temperature (OCT) compound and blocks were stored
at �80°C. Sections (10 �m) were cut and placed on positively
charged glass slides. Sections were blocked in 5% BSA in phosphate-
buffered saline (PBS) with 0.1% Tween (PBST) for 1 h then incubated
in primary antibody (Table 1) diluted in 1% BSA in PBST overnight
at 4°C. Sections were incubated at room temperature with secondary
antibodies (Table 1) and with DAPI, and then imaged on an LSM 780
NLO laser scanning microscope (Carl Zeiss, Oberkochen, Germany)
using ApoPlan �63/1.4 objective and EC NeoPlan �10/0.3 objective.
For hematoxylin and eosin (H&E)-stained sections, methanol:acetic
acid fixed eyes were embedded in paraffin and 10-�m sections were
cut as described previously (46). Paraffin sections were deparaffinized
using xylene and rehydrated in a graded series of ethanol then water
and used for immunofluorescence labeling as described above.

Western blotting. RPE was isolated from control and RPE�Glut1
as previously described (52) and homogenized in 50 �l radioimmu-
noprecipitation assay (RIPA, Thermo Scientific, Rockford, IL) with
protease inhibitors and extracted on ice for 30 min. Samples were
centrifuged for 30 min at 15,000 g and the supernatants were removed
for protein determination and Western blot analysis. Protein was
measured using BCA Protein Assay kit (catalog no. 23225, Thermo
Fisher Scientific, Rockford, IL). A total of 5 �g of RPE protein was
loaded on 4–12% NuPage Bis-Tris Protein gels (Invitrogen,
NP0321BOX) and electrophoretically transferred onto Immobilon-P
membrane (Millipore, Bedford, MA). Membranes were incubated for
1 h at room temperature in blocking buffer [5% powdered milk in
Tris-buffered saline with 0.1% Tween 20 (TBST)] then incubated
overnight with antibodies (Table 1). Membranes were washed three
times with TBST and incubated for 1 h with secondary antibody. Blots
were developed using chemiluminescence (Supersignal West Dura,
Thermo Fisher Scientific, Waltham, MA) on FluorChem M Protein-
Simple (San Jose, CA) detection system. Densitometry analysis was
performed using FluorChem M ProteinSimple software and normal-
ized to �-catenin.

Quantitative PCR. Isolated RPE and retina were homogenized in
1 ml TRIzol (catalog no. 15596026, Thermo Fisher Scientific).
RNA was extracted according to manufacturer specifications. RNA
(1 �g) was reverse transcribed to 20 �l cDNA using EcoDry
Premix [oligo(dT) catalog no. 639543 Takara Bio USA, Mountain
View, CA]. qPCR was performed using 0.5 �l of cDNA and
PowerUp SYBR Green Master Mix (Thermofisher, cat. no.
A25742) on a QuantStudio 5 Real-Time PCR System (Thermo-
fisher, cat. no. A28139). The PCR reaction was heated to 50°C for
2 min and held at 95°C for 10 min to activate the polymerase.
Amplification was performed for 40 cycles of 15 s, denaturing at
95°C, and 1 min of annealing at 60°C. Cycle threshold (Ct) values
were normalized to RPLP0 (Table 2).

Flatmounts of RPE. Mice were anesthetized with ketamine (100
mg/kg) and xylazine (10 mg/kg) and euthanized by cervical disloca-
tion following enucleation of the eyes. Eyes were fixed in 4%
paraformaldehyde (PFA) for 8–10 min, in a 96-well plate, after which
they were transferred to 1� Dulbecco’s PBS (DPBS) (Corning,
21-030-CV). Extraocular muscles and connective tissues attached to
the eye were cut away using fine forceps and scissors. The anterior
segment of the eye was removed using a razor blade and the retina
was removed using fine forceps. The posterior eyecup was fixed in 4%
PFA for an additional 8 min and subsequently washed with 1� DPBS.
The fixed eyecup was permeabilized in 0.3% Triton X-100 in 1�

Table 1. Antibodies for immunoblotting and immunofluorescence microscopy

Antibody Dilution Catalog no. Company

Cone arrestin 1:1,000 (IF) AB15282 Millipore
Red/green opsin 1:200 (IF) AB5405 Millipore
Blue opsin 1:200 (IF) AB5407 Millipore
GFAP 1:1,000 (IF) SAB4300647 Sigma
GLUT1 1:50 (IF) MA5-11315 ThermoFisher Scientific
GLUT1 1:250 (IF)1:1,000 (IB) GT11-A Alpha Diagnostics
MCT1 1:500 (IF)1:2,000 (IB) NA Philp Laboratory
MCT3 1:5,000 (IF,IB) NA Philp Laboratory
Rhodopsin 1:100 (IF) Ab5417 Abcam
P-Cadherin 1:500 (IB) AF761 R&D Systems
�-Catenin 1:5,000 (IB) C2206 Sigma Aldrich
Cre 1:100 (IF) MAB-3120 Millipore
Alexa Fluor 546 donkey anti-rabbit 1:500 (IF) A10040 ThermoFisher Scientific
Alexa Fluor 555 goat anti mouse 1:500 (IF) A21422 ThermoFisher Scientific
Alexa Fluor 488 donkey anti-rabbit 1:500 (IF) A21206 ThermoFisher Scientific
Alexa Fluor 555 donkey anti-mouse 1:500 (IF) A21202 ThermoFisher Scientific
Bovine anti-goat IgG-HRP 1:2,000 (IB) Sc-2350 Santa Cruz

HRP, horseradish peroxidase; IB, immunoblotting; IF, immunofluorescence.
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DPBS for 15 min and blocked with 5% BSA 0.1% Triton X-100 for
1 h. The eyecups were incubated in primary antibody overnight in 1%
BSA 0.1% Triton X-100 and washed in 1� DPBS (Table 1). Then
eyecups were incubated at room temperature with secondary antibody
and DAPI in 1% BSA 0.1% Triton X-100 for 1 h. After a final wash
in 1� DPBS, eyecups were placed on glass slides, flattened using 4–8
radial cuts, and coverslipped using Gelvatol as a mounting medium.
Flatmounts were imaged using a Nikon (Melville, NY) Eclipse E800
fluorescent microscope using the Plan Fluor �10/0.30 or �40/0.75
objectives.

TUNEL. Frozen sections prepared from methanol:acetic acid
fixed eyes were post-fixed with 4% PFA for 5 min then treated with
proteinase K for 15 min. Apoptotic cells were detected by TUNEL
assay kit (Millipore, S7110) as per manufacturer’s specifica-
tion.

Cone counts and measurement of outer segment length. Cones
were probed with cone arrestin antibody on methanol:acetic acid
fixed sections. Cones were counted in 1,500 �m length of retina
from both sides of the optic nerve on the horizontal meridian
in retinal areas expressing or devoid of GLUT1. Cone outer
segment length was determined by colabeling sections with a
mixture of red/green and blue opsin and GLUT1 antibodies. Outer
segment length was measured using the measurement tool in
Photoshop.

Electroretinograms. After overnight dark adaptation, mice were
anesthetized (65 mg/kg pentobarbital sodium), the cornea was anes-
thetized (1% proparacaine HCl), and the pupils were dilated (1%
tropicamide, 2.5% phenylephrine HCl, and 1% cyclopentolate). Mice
were placed on a temperature-regulated heating pad throughout the
recording session. Responses of the outer retina were recorded on an
Espion E3 ColorDome Full field Ganzfeld (Diagnosys, Lowell, MA)
with an Ag/AgCl electrode referenced to an Ag/AgCl pellet electrode
placed in the mouth of the mouse in response to strobe-flash stimuli
presented in the dark. Ten steps of increasing flash luminance [�3.6
to 2.1 log candela (cd)·s/m2] were presented in order of increasing
flash strength, and the number of successive trials averaged together
decreased from 20 for low-level flashes to 2 for the highest flash
stimuli. The duration of the interstimulus interval increased from 4 s
for low luminance flashes to 90 s for the highest stimuli. Immediately
following the dark-adapted strobe-flash stimuli, the c-wave was re-
corded in response to a 5 cd/m2 stimulus presented for 7 min.
Immediately after the dark-adapted recording, a steady 20 cd/m2

adapting field was presented in the ganzfeld bowl. After an additional
4 min of light adaptation, cone electroretinograms (ERGs) were
recorded to strobe flash stimuli (�1 to 2 log cd s/m2) superimposed on
the adapting field.

The amplitude of the a-wave was measured 8.32 ms after the flash
onset from the pre-stimulus baseline. The dark-adapted b-wave am-
plitude was measured from the a-wave amplitude at 8.32 ms to the
peak of the strobe flash response. The amplitude of the light-adapted

ERG was measured from the amplitude of the light-adapted waveform
at 8.32 ms to the peak of the response. The amplitude of the c-wave
was measured from the prestimulus baseline to the peak of the
response.

[13C]glucose labeling and liquid chromatography–mass spectrometry.
Mice were injected intraperitoneally with 500 mg/kg [13C]-D-glucose
(U-13C6, 99%) (CAS no. 110187-42-3; Cambridge Isotope, Andover,
MA). After 45 min, injected mice were anesthetized with ketamine
(100 mg/kg) and xylazine (10 mg/kg) and euthanized by cervical
dislocation and their retinas were isolated and flash frozen in liquid
nitrogen. Metabolites were extracted in 80% methanol and analyzed
with a Shimadzu LC Nexera X2 UHPLC coupled with a QTRAP
5500 MS (AB Sciex) as described previously (9, 58). An AC-
QUITY UPLC BEH Amide analytic column (2.1 � 50 mm, 1.7
�m, Waters) was used for chromatographic separation. The source
and collision gas was N2. The ion source conditions in positive and
negative mode were as follows: curtain gas (CUR) � 25 psi;
collision gas (CAD) � high; ion spray voltage (IS) � 3,800/
�3,800 V; temperature (TEM) � 500°C; ion source gas 1
(GS1) � 50 psi; and ion source gas 2 (GS2) � 40 psi. Each
metabolite was tuned with standards for optimal transitions. The
extracted multiple reaction monitoring (MRM) peaks were inte-
grated using MultiQuant software (version 3.0.2; AB Sciex).

Classification of mice into RPE�Glut1m and RPE�Glut1h. Prior to
euthanasia, mice were imaged using SD-OCT to predict the extent of
GLUT1 deletion based on outer nuclear layer (ONL) thickness and
ONL “waviness” and ERGs were conducted on some of these ani-
mals. After euthanasia, one eye from every animal was used for
flatmount preparation, probed with Cre and GLUT1 antibodies, and
stained with DAPI. The immunolabeled flatmounts were used to
determine the fraction of RPE cells in which GLUT1 was deleted. Cre
distribution was quantified by counting the number of Cre-positive
nuclei and normalizing with DAPI positive nuclei to determine the
total percentage of Cre-positive cells. This analysis was done on
three different locations per flatmount and averaged. Mice were
classified into two categories based on expression of Cre-
RPE�Glut1m when expression of Cre was medium, between 30%
and 50%, and RPE�Glut1h when expression of Cre was high, 70%
or more. The other eye from the same animal was either used for
protein, RNA, biochemical analysis or sectioned for immunolabel-
ing.

Statistics. Unpaired two-tailed Student’s t-tests were performed to
determine P values. Ordinary one-way ANOVA was performed when
comparing more than two variables, and P values were corrected
using Bonferroni’s correction. P � 0.05 was considered significant.
Data in the figures represent means 	 SE from animals with n � 3 (as
indicated in figure legends). All data analysis was done in GraphPad
Prism or Microsoft Excel.

Table 2. List of primers for quantitative PCR

Primer Forward Reverse

Glut1 5=-GGCCTGACTACTGGCTTTGT-3= 5-TGCATTGCCCATGATGGAGT-3=
Glut3 5=-GGTGGAGCGGTGAAGATCAG-3= 5=-GAGATGGGGTCACCTTCGTT-3=
Sglt1 5=-GGATCAGGTCATTGTGCAGC-3= 5=-TGGTGTGCCGCAGTATTTCT-3=
Sglt2 5=-CGGCACTCTTCTGTCGGGTA-3= 5=-GGCGATGGAGATGCTTCTGA-3=
Glut12 5=-GGAGCTAGCAAAGGCGAA-3= 5=-GACTGTCCCCTTCCACACAG-3=
GFAP 5=-GCGAAGAAAACCGCATCACC-3= 5=-TTCTTTGGTGCTTTTGCCCC-3=
Mct1 5=-TGTTAGTCGGAGCCTTCATT-3= 5= CACTGGTCGTTGCACTGAATA-3=
Mct3 5=-AAGGCTGTGAGCGTCTTCT-3= 5=-GAAGCCAGAATCATGCCTGCT-3=
PCad 5=-GCAGAAGTCAGCGAGAAAGGA-3= 5=-GGAGGATGAAACCACCCTTCCA-3=
Slc38a3 5=-CGTCTCAGCTTTCCGAGAGT-3= 5=-GTCTTCCCCTCGAAATCGGT-3=
Slc1a7 5=-CACAGACCATGGCTGCAAGG-3= 5=-TAACTAATCTCCTGTGGTGAGAGG-3=
Slc7a8 5=-AAACAACACCGCGAAGAACC-3= 5=-GAGCCAATGATGTTCCCTACAA-3=
RPLP0 5=-AGATTCGGGATATGCTGTTGGC-3= 5=-TCGGGTCCTAGACCAGTGTTC-3=

C123GLUCOSE TRANSPORT VIA GLUT1 IS ESSENTIAL FOR RETINAL HEALTH

AJP-Cell Physiol • doi:10.1152/ajpcell.00410.2018 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell at Univ of Pennsylvania Library (130.091.190.029) on October 14, 2022.



RESULTS

RPE�Glut1 mice have a mosaic pattern of cre expression. In
control mouse retinas, GLUT1 was detected in the basolateral
and apical membranes of the RPE (Fig. 1A) where it is poised
to facilitate transepithelial transport of glucose from the cho-
roidal vessels to the outer retina. To study the importance of
glucose in supporting the metabolism of the RPE and outer
retina, we crossed BEST1-cre mice with Slc2a1flox/flox mice.
The resulting transgenic mice (RPE�Glut1) had a specific
deletion of GLUT1 from the RPE (Fig. 1, B and C). This
deletion was, however, patchy with adjoining areas devoid of
or retaining GLUT1. This pattern of deletion reflects the well
documented patchy expression of Cre recombinase in BEST1-

cre mice (14). In addition to the patchy expression, the overall
level of Cre recombinase varied across mice, even within
litters. To account for this variability, each RPE�Glut1 mouse
was individually characterized for its transgene distribution
pattern by preparing RPE flatmounts from one eye and coim-
munolabeling with Cre antibody (Fig. 1, D–F) and GLUT1
antibody (Fig. 1, D=–F=). We found a mosaic pattern of Cre
expression in the RPE�Glut1 mice and classified them as de-
scribed in MATERIALS AND METHODS. We also noted that Cre
recombinase levels were similar between eyes of a given animal.

To determine whether we could use SD-OCT imaging of
RPE�Glut1 mice to predict the level of BEST1-Cre expression,
we imaged RPE�Glut1 mice between 1.5 and 2 mo of age and

Fig. 1. RPE�Glut1 mice show a variable pattern of Glut1 expression. A: methanol:acetic acid-fixed frozen sections from BEST1-Cre control mice at age 2 mo
show GLUT1 expression in the apical and basal membranes of the RPE. B: RPE�Glut1m mice exhibit intermittent labeling of GLUT1 in the RPE. C: RPE�Glut1h

mice have �70% GLUT1 deleted from the RPE. Shown here at age 10 mo. Scale bar, 100 �m. RPE flatmounts immunostained with Cre antibody show a patchy
distribution of Cre-positive cells. D–F: mice were classified into BEST1-Cre control (D), RPE�Glut1m (E), and RPE�Glut1h (F) based on percentage of Cre
expression. Coimmunolabeling of RPE flatmounts with GLUT1 and Cre antibodies showed a variable amount of GLUT1 deletion corresponding to the cre
expression patterns (D=, E=, F=). White asterisks indicate representative regions where Cre is not expressed and correspond to where GLUT1 is retained. Scale
bar, 100 �m. G–I: SD-OCT showing B-scans of retinas from 2-mo-old control (G, G=), RPE�Glut1m (H, H=), and RPE�Glut1h (I, I=) mice through the optic
nerve and periphery, respectively. INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium.
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then determined Cre recombinase levels. We found the ONL
thickness of RPE�Glut1m mice (n � 15) was indistinguishable
from control mice (Fig. 1, G and H), while SD-OCT B-scans of
RPE�Glut1h mice (n � 20) showed thinning of the ONL
(Fig. 1I). RPE�Glut1 mice displayed an undulating pattern or
“waviness” in the outer retina which was more pronounced in
the periphery of the retinal scans. Peripheral B-scans of
RPE�Glut1m showed intermittent waviness due to shortening
of outer segments (white arrowhead); however, there was no
change in ONL thickness in these mice (Fig. 1H). RPE�Glut1h

mice displayed waviness throughout the retina due to outer
segment shortening along with ONL thinning (Fig. 1I=). SD-
OCT thus provided a robust means to distinguish RPE�Glut1m

and RPE�Glut1h mice, based on the observation of waviness
and ONL thinning at 2 mo.

Deletion of GLUT1 does not affect differentiation, polarity
of monocarboxylate transporter 1/3, or function of RPE. The
RPE is highly polarized with differential expression of multiple
transporters and ion channels (3, 24). Differentially polarized
proteins include two lactate transporters, monocarboxylate
transporter 1 (MCT1) that is localized to the apical membrane
and monocarboxylate transporter 3 (MCT3) that is localized to
the basolateral membrane (30). To determine whether loss of
Glut1 expression led to changes in the properties or differen-
tiation of the RPE, we first compared mRNA expression levels
of Slc16a1 (encoding Mct1) and Slc16a8 (encoding Mct3) in
control and RPE�Glut1h mice (Fig. 2A). We also evaluated
mRNA levels of Cdh3 (encoding P-cadherin) a marker of RPE
differentiation (56). Despite reduced levels of Glut1, no sig-
nificant difference in expression levels of Slc16a1, Slc16a8, or
Cdh3 was observed in RPE�Glut1h mice (Fig. 2A). We then
compared protein levels of MCT1, MCT3, and P-cadherin
using Western blotting, with �-catenin as the loading control
(Fig. 2B). There was no difference in MCT3 and P-cadherin
levels between 3-mo-old control and RPE�Glut1h mice and the
decrease in MCT1 levels was not significant (Fig. 2B).

Since we did not observe a significant change in mRNA or
protein levels of MCT1 and MCT3 in the RPE, we wanted to
examine if GLUT1 deletion affected the polarized distribution
of these lactate transporters. For this analysis, the patchy
distribution of Cre recombinase provided an opportunity to
compare adjacent regions in the same retina in which GLUT1
was present or absent. In both RPE�Glut1m and RPE�Glut1h

mice, MCT1 remained correctly polarized to the RPE apical
membrane (see white arrows in Fig. 2, C, C= and D, D=) and
MCT3 remained correctly polarized to the basolateral mem-
brane (see white arrowheads in Fig. 2, E, E= and F, F=) in
neighboring areas of RPE that retained or were devoid of
GLUT1. We also probed RPE flat mounts with ZO-1 which is
localized in cell-cell junctions and can be used to assess
changes in size and shape of the cells (11). We noted that the
RPE cells of RPE�Glut1h mice retained the classic hexagonal
packing and were similar in shape and size to those of control
eyes (Fig. 2, G and H).

These immunohistochemical results indicate that the RPE
remains polarized and differentiated in RPE�Glut1m mice. To
evaluate the functional status of the RPE in these animals, we
examined the ERG c-wave, which reflects a large positive
potential generated by hyperpolarization of the apical RPE
membrane that is offset somewhat by a negative polarity signal
that is generated by the Müller cells (43). The c-wave is an

indicator of the integrity of the RPE and is reduced in mouse
models of RPE dysfunction (7, 39). In the current studies we
measured the c-wave of RPE�Glut1m mice at 4 to 6 mo of age
where the scotopic a- and b-waves were indistinguishable from
control even though approximately half of the RPE cells are
lacking GLUT1 (Fig. 2, I–K). Importantly, the amplitude of the
c-wave in RPE�Glut1m mice was equivalent to controls. This
demonstrates that loss of GLUT1 in the RPE does not affect its
barrier properties or polarity. The c-waves of the higher Cre-
expressing RPE�Glut1h mice were not measured as they
would be expected to be abnormal, based on the observed
thinning of the ONL, cell death and outer segment shortening.
These anatomical changes will directly impact the ERG a- and
b-waves, as well as the ERG c-wave since it is generated
secondary to photoreceptor activity (41).

GLUT1 is the primary glucose transporter in the RPE and
facilitates transport of glucose into the outer retina. We next
examined whether there was a compensatory increase in the
transcription of other glucose transporters in the RPE of
RPE�Glut1 mice. Analysis of the GEO data set GSE10246
(23) demonstrated that Slc2a1 was the most abundant glucose
transporter expressed in the RPE. Slc2a12, encoding GLUT12,
was also expressed in the control RPE, albeit at much lower
levels than Slc2a1. When we examined the levels of Slc2a12 in
RPE isolated from 3-mo-old control and RPE�Glut1h mice, we
noted no compensatory upregulation of Slc2a12 in the absence of
GLUT1 (Fig. 3A). Additionally, no increase in transcript levels of
other glucose transporters Slc2a3, Slc5a1, and Slc5a2 was de-
tected.

Since there was no compensation for loss of GLUT1 by
other glucose transporters, we would expect to find lower
levels of glucose in the retina. To test this hypothesis, we
performed mass spectrometry analysis on retinas from
Glut1flox/flox control, RPE�Glut1m and RPE�Glut1h mice. The
LC/MS analysis showed that the steady-state levels of glucose
in the retinas from RPE�Glut1h mice were 32.3 	 7.8% of
control (Fig. 3B) and lactate, the end-product of glycolysis,
was 46.5 	 10.6% of control (Fig. 3C). There was no signifi-
cant difference in the glucose or lactate levels between controls
and RPE�Glut1m mice. To determine whether differences in
steady-state levels of glucose resulted from decreased transport
of glucose into the retina, we injected [13C]glucose intraperi-
toneally and isolated the retinas after 45 min and measured
[13C]glucose and lactate using LC/MS. Transport of [13C]glu-
cose into retinas of RPE�Glut1h was 13.4 	 7.2% of controls
(Fig. 3D) and [13C]lactate was decreased to 26.9 	 20.5% of
control (Fig. 3E). ATP levels did not differ in RPE�Glut1m or
RPE�Glut1h mice compared with controls (data not shown).

Longitudinal changes in ONL thickness in RPE�Glut1h

mice. SD-OCT was used to monitor longitudinal changes in the
retinas of RPE�Glut1 mice. We imaged RPE�Glut1 mice and
noted a waviness in the outer retina at 2 mo, which appeared to
become more prominent with age. The waviness in the outer
retinal layers was caused by a shortening of the photoreceptor
cell outer segments and the thinning of the ONL (Fig. 4, B and
C). Between 4 and 6 mo of age, there appeared to be no further
reduction in outer segment length or ONL thickness (Fig. 4D).
The waviness observed by SD-OCT was also evident in H&E
stained paraffin sections of eyes from RPE�Glut1h mice (Fig.
4F) and corresponded with regions of the retina where the
ONL was thinner. No waviness was seen in the sections of
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eyes from control mice. Quantification of ONL thickness
from SD-OCT scans from control and RPE�Glut1h mice
showed there was a 30% reduction in ONL thickness at 2 mo
of age and by 50% reduction at 4 mo and 6 mo of age in
RPE�Glut1h mice (Fig. 4G). No significant changes in ONL
thickness were noted in RPE�Glut1m mice (Fig. 4G).

Glucose is essential for sustaining renewal of rod photore-
ceptor outer segments. Outer segment renewal is a daily
process and can be slowed by inhibiting glycolysis in photo-

receptor cells (5). To define the relationship between GLUT1
deletion from the RPE and outer segment shortening observed
on OCT imaging and in histological sections, we compared
outer segment length in retinal areas that lacked or retained
GLUT1. Sections from methanol:acetic acid-fixed eyes were
simultaneously probed with GLUT1 and rhodopsin antibodies.
There was little change in outer segment length in
RPE�Glut1m retinas compared with controls (Fig. 5A), when
GLUT1 was deleted from only a few contiguous cells (Fig.

Fig. 2. Deletion of Glut1 from the RPE does not alter its polarity, differentiation, and function. A: quantitative PCR of Slc2a1 (Glut1), Slc16a1 (Mct1), Slc16a8
(Mct3), and Cdh3 (P-cadherin) in control (n � 3) and RPE�Glut1h mice (n � 3) at 3 mo of age. B: Western blotting of GLUT1, MCT1, MCT3, and P-cadherin
at 3 mo of age. �-Catenin was used as a loading control (n � 3). Immunostaining with GLUT1 (green; C and D; E and F), colabeled with MCT1 (red; C= and
D=), and colabeled with MCT3 (red; E= and F=) showing that MCT1 is localized throughout the apical RPE (white arrow) and MCT3 is localized throughout
the basal RPE in areas where GLUT1 is present or is deleted (white arrowheads) in areas where GLUT1 is present or is deleted in RPE�Glut1m mice and
RPE�Glut1h mice. G and H: ZO-1 staining of RPE flatmounts shows there is no change in the hexagonal packing of RPE cells in 4-mo-old RPE�Glut1h mice
(n � 3). Scale bar, 50 �m. I: dark-adapted ERG averaged a- and b-wave amplitudes elicited by a 1.4 log cd·s/m2 flash stimulus from 4- to 6-mo-old mice. J:
light-adapted ERG average responses elicited by a 1.4 log cd·s/m2 flash stimulus from 4- to 6-mo-old mice. K: c-wave averaged amplitudes from 4- to 6-mo-old
mice [nontransgenic control (n � 13); Best1-cre
 (n � 9); Glut1flox/flox (n � 15); RPE�Glut1m mice (n � 4)]. *P � 0.05. CH, choroid; ERG, electroretinogram;
MCT, monocarboxylate transporter; RPE, retinal pigment epithelium; OS, outer segments; ZO, zonula occludens.
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5B). However, outer segments were ~30% shorter in
RPE�Glut1m mice in areas where GLUT1 was deleted in an
expanse of RPE �100 �m (Fig. 5C). In RPE�Glut1h mice,
outer segments were shorter throughout the retina compared
with controls (Fig. 5D). We next plotted outer segment length
as a function of the distance from RPE cells that retained
GLUT1. Representative regions measured are shown in Fig.
5Ea,b,c. As shown in Fig. 5E, outer segment shortening was
detected in photoreceptor cells that were over a 100 �m from
RPE expressing GLUT1. In photoreceptor cells found beyond
100 �m, there was a progressive reduction in outer segment
length (Fig. 5F). Outer segment length was measured in retinal
sections from RPE�Glut1h mice. Sections were colabeled with
GLUT1 and rhodopsin antibodies, and outer segments were
measured in the central region of the retina, 1,500 �m on
either side of the optic nerve under areas where GLUT1 was
deleted from the RPE. The outer segments in retinas from

RPE�Glut1h mice were 50% shorter than outer segments in
control eyes (Fig. 5G).

Cones are less affected by glucose deprivation than rods. To
examine the impact of reduced glucose on cones, we probed
retinas of 6-mo-old RPE�Glut1h and control mice with cone
arrestin and DAPI (Fig. 6, A and B). We counted the number of
cones in the central region of the retina, 1,500 �m on either
side of the optic nerve. To get an accurate measurement of
cone outer segment length, we also simultaneously probed the
retinas with a mixture of red/green opsin and blue opsin and
with GLUT1 antibodies in control (Fig. 6C) and 6-mo-old
RPE�Glut1h mice (Fig. 6D). The number of cone arrestin-
positive cells in RPE�Glut1h retinas was reduced by 17% as
compared with controls (Fig. 6E). In addition, cone outer
segment length was reduced by 10% in RPE�Glut1h retinas
(Fig. 6F). Bearing in mind the 50% thinning of the ONL and
50% shortening of rod outer segments observed in the

Fig. 3. RPE�Glut1h mice exhibit lower retinal glucose and lactate levels. A: quantitative PCR of glucose transporters in the RPE of 3-mo-old control (n � 3)
and RPE�Glut1h mice (n � 3). B: mass spectrometry data showing that glucose is not significantly different in the retinas of RPE�Glut1m mice compared with
controls at 4 mo (n � 6 from 3 mice); however, there is a 68% reduction in glucose levels in the retinas of RPE�Glut1h mice (n � 6 from 3 mice). C: mass
spectrometry demonstrates that there is not a significant reduction in lactate levels of RPE�Glut1m mice while there is a 53% reduction in lactate levels in retinas
of RPE�Glut1h mice. D and E: mass spectrometry data showing decrease in uptake of [13C]glucose (D) and decrease in production of [13C]lactate (E) in
RPE�Glut1h mice compared with control and RPE�Glut1m mice. ANOVA was performed and *P � 0.05, **P � 0.005, ***P � 0.0005. RPE, retinal pigment
epithelium.
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RPE�Glut1h mice at 4 mo, cones appear to be less sensitive to
glucose deprivation than rods.

Glucose deprivation causes cell death in the retina and leads
to upregulation of gliosis. Since we observed thinning of the
ONL in RPE�Glut1h mice by SD-OCT, we wanted to deter-
mine whether the thinning was due to cell death occurring in
the RPE�Glut1h mice. We performed TUNEL assay and found
minimal cell death in any retinal layer of RPE�Glut1m mice
(Fig. 7B). However, cell death was evident in RPE�Glut1h

mice where it was restricted to the ONL (Fig. 7C). Quantifi-
cation of the TUNEL assay is shown in Fig. 7D.

Since cell death can cause gliosis (44, 54), we wanted to
determine whether glucose deprivation caused an increase in
the expression of GFAP, a marker for Müller glial cell stress.
In RPE�Glut1m mice, GFAP was not elevated when GLUT1
deletion was localized to a small patch of RPE; however, when
the expanse of RPE lacking GLUT1 exceeded 35 �m, GFAP
elevation was seen in the underlying retina (Fig. 7, F, F=, and
F==). The finding showed that glucose deprivation in the outer
retina can cause Müller cell stress even in the absence of
photoreceptor cell death. GFAP elevation occurred throughout
the retina in RPE�Glut1h mice (Fig. 7, G, G=, G==).

Amino acids support the retina under glucose deprivation
conditions. The RPE�Glut1h retina retains ~50% of its ONL, a
level which remains stable between 4 to 6 mo (Fig. 4G). To
determine how the retina survives under conditions of glucose
deprivation, we examined levels of metabolites in 3-mo-old
control and RPE�Glut1h retinas using mass spectrometry.
Significant changes are summarized in Fig. 8A. Levels of
glutamine, glutamic acid, aspartic acid, and �-ketoglutarate
were increased in RPE�Glut1h retina as compared with con-

trol. In contrast there was a significant decrease in intermedi-
ates of glucose metabolism through glycolysis and the pentose
phosphate shunt including ribulose-5-phosphate, cGMP, and
hypoxanthine (Fig. 8A). Next we determined whether there was
an increase in expression in glutamine and glutamate transport-
ers in the retina to compensate for the glucose deficiency in
RPE�Glut1h retinas. There was a significant increase in levels
of the amino acid transporters Slc38a3, Slc1a7, and Slc7a8
(Fig. 8B). Comparing single cell microarray data of adult
photoreceptor and Müller cells, we found that Slc1a7, which
transports glutamate, was expressed at low levels by both cells
types and that Slc7a8, which transports large neutral amino
acids like glutamine and alanine, was expressed at higher
levels in Müller cells compared with photoreceptors (37).
Slc38a3, a transporter of glutamine, was expressed in both
photoreceptors and Müller cells at similar levels. These find-
ings suggest that photoreceptors survive by oxidizing other
metabolic substrates such as amino acids.

DISCUSSION

Glucose is the primary metabolic substrate for neural
tissue including the retina and glucose deprivation has been
reported to contribute to photoreceptor loss in a number of
blinding diseases (26, 50). Previous studies have demon-
strated the importance of glycolysis in supporting the struc-
ture, function, and viability of photoreceptor cells by genet-
ically deleting key glycolytic enzymes from photoreceptor
cells (5, 29, 33, 34). In the current study, we disrupted
glucose transport into the outer retina by genetically delet-
ing GLUT1 from the RPE. The heterogeneity of Best1-Cre

Fig. 4. Outer nuclear layer of RPE�Glut1h shows thinning and waviness with age. A–D: representative SD-OCT images of control (A) at 3 mo and RPE�Glut1h

mouse imaged at 2 mo (B), and 4 mo (C) showing decrease in the ONL thickness and increase in waviness and at (D) 6 mo showing the stabilization of ONL
thickness in RPE�Glut1h mice. E and F: H&E stained histological sections of 4-mo-old Best1-Cre control mouse (E) and RPE�Glut1h (F) showing waviness
(represented by red arrows) in the ONL of the same animal as imaged by OCT in A and B. Scale bar, 25 �m. G: %ONL thickness in RPE�Glut1m (n � 3) and
RPE�Glut1h (n � 3) at 2 mo, 4 mo, and 6 mo of age compared with controls. *P � 0.05, **P � 0.005. IS/OS, inner/outer segments; ONL, outer nuclear layer;
RPE, retinal pigment epithelium.
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expression allowed us to analyze mice in which up to 50%
or �70% of the GLUT1 was deleted from the RPE. In this
model the flow of oxygen and other metabolites was not
disrupted, providing us with a unique opportunity to better
understand the importance of glucose in maintaining meta-
bolic homeostasis in the outer retina.

An important feature of the RPE�Glut1 mice was that the
structural and functional properties of the RPE were not al-

tered, so the direct effects of glucose deficiency on the outer
retina could be studied. Reducing the oxidative capacity of the
RPE by genetically deleting Tfam from the RPE resulted in
dedifferentiation of the RPE and secondary changes in photo-
receptor cells (57). Collectively, these findings are consistent
with findings from our lab and others showing that the RPE
depends on oxidation of fatty acids, amino acids, and lactate,
thereby sparing glucose for the outer retina (1, 9, 16, 35).

Fig. 5. Rod outer segments are shorter when GLUT1 in the RPE is deleted. A and B: methanol:acetic acid fixed sections from control (A) and RPE�Glut1m (B)
mice were labeled with rhodopsin (green) and GLUT1 (red) showing no difference in outer segment length when the distance of GLUT1 deletion is �100 �m.
C: in RPE�Glut1m mice with GLUT1 missing in the RPE for a distance of �100 �m there is a shortening in outer segment length (n � 8). D: RPE�Glut1h

mice labeled with rhodopsin and GLUT1 showing that when �70% of GLUT1 is deleted from the RPE, there is ~50% shortening of the outer segment length.
Scale bar, 10 �m. E and F: �10 image of RPE�Glut1h showing the distribution of GLUT1. Representative distances were measured (Ea, Eb, Ec) and plotted
(F) to show no change in OS length for regions within 100 �m of RPE cells that retain GLUT1, beyond which their outer segments become progressively shorter
(n � 4). G: OS length in control vs. RPE�Glut1h mice measured under where GLUT1 was deleted from the RPE (n � 3). All animals are 2 mo old. Scale bar,
100 �m. ***P � 0.0005. RPE, retinal pigment epithelium; OS, outer segments.

Fig. 6. Cones are less impacted than rods in RPE�Glut1h mice. A–D: retinal sections probed with cone arrestin antibody (A and B) and red/green opsin, blue
opsin antibodies and co-labeled with GLUT1 antibody (C and D) in control vs RPE�Glut1h mice. E: quantification of cone arrestin stained cones showed 17%
fewer cones in the RPE�Glut1h mice compared with control in 6-mo-old mice (n � 3). F: cone outer segment length measured using red/green/blue opsin staining
showing 10% reduction in cone outer segment length in RPE�Glut1h mice compared with control at 6 mo (n � 3). **P � 0.005. ONL, outer nuclear layer; OS,
outer segments; RPE, retinal pigment epithelium.
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LC/MS analysis of neural retina metabolites showed that,
under steady-state conditions, glucose levels in retinas from
RPE�Glut1h mice were 68% lower than in control retinas. In
mice given a single injection of [13C]glucose and retinas

isolated 45 min later, LC/MS analysis showed that glucose was
87% lower in RPE�Glut1h than control retinas. [13C]lactate
was 73% lower in RPE�Glut1h than control retinas. The
decreased level of glucose in the retina is consistent with

Fig. 7. Cell death and gliosis occur when GLUT1 is deleted from the RPE. The decrease in ONL thickness corresponds with cell death in the ONL as observed
by TUNEL staining. A–C: cell death (green) was detected in RPE�Glut1h at 2 mo of age in control (A), RPE�Glut1m (B), and RPE�Glut1h mice (C). D:
quantification of TUNEL positive cells in control (n � 3), RPE�Glut1m (n � 3), and RPE�Glut1h (n � 3). Scale bar, 50 �m. E–G: immunolabeling of control
(E, E=, and E==), RPE�Glut1m mice (F, F=, and F==), and RPE�Glut1h mice (G, G=, and G==) with GFAP (red) and GLUT1 (green) antibodies showed upregulation
of GFAP when the distance of GLUT1 deleted was �35 �m in RPE�Glut1m and RPE�Glut1h mice at 4 mo of age (n � 6). Asterisk indicates the region where
GFAP was not upregulated in RPE�Glut1m mice. Scale bar, 50 �m. ONL, outer nuclear layer; IS/OS, inner/outer segments; RPE, retinal pigment epithelium.

Fig. 8. Amino acid transporters are upregulated under glucose deprivation conditions. A: summary of amino acids and other metabolites that were upregulated
(green) or downregulated (red) when glucose is reduced in the retina in 4-mo-old mice. B: quantitative PCR showing upregulation in different amino acid
transporters (n � 3) in 3-mo-old mice. *P � 0.05.

C130 GLUCOSE TRANSPORT VIA GLUT1 IS ESSENTIAL FOR RETINAL HEALTH

AJP-Cell Physiol • doi:10.1152/ajpcell.00410.2018 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell at Univ of Pennsylvania Library (130.091.190.029) on October 14, 2022.



previous studies that showed more than 60% of the blood flow
to the retina is from the choroidal vessels (57). The decrease in
lactate is also consistent with literature which showed 80–90%
of the glucose transported into the outer retina is metabolized
through aerobic glycolysis to produce lactate (51, 53). Our
results clearly demonstrate that GLUT1 regulates the transep-
ithelial flux of glucose across the RPE into the outer retina.

In RPE�Glut1m mice, glucose levels were similar to con-
trols, indicating that even with only half of the cells expressing
GLUT1, the transport of glucose into the outer retina could be
maintained. ERGs recorded from RPE�Glut1m mice were
comparable to those of control animals. Under dark-adapted
conditions, there was a normal ERG a-wave, reflecting primar-
ily the response of rod photoreceptors (36). Similarly, normal
ERG b-waves were observed under both dark- and light-
adapted conditions and reflecting primarily the activity of rod
or cone depolarizing bipolar cells, respectively (18, 42). Ad-
ditionally, Glut1
/� heterozygote mice have ERGs that are
comparable to those of wild-type littermates (40). These results
mirror patients with GLUT1 deficiency who present with
neurological but no visual deficits (55).

Previous studies suggested that glycolytic metabolism of
glucose is required for outer segment renewal (5). Photorecep-
tors are distinguished from other neurons because during post-
natal development there is an increase in expression of glyco-
lytic genes including HK1, HK2, and PFKFB2 [RetSeq data-
base (17)], while possessing large numbers of mitochondria
and consuming large amounts of oxygen, both in the light and
in the dark (12). It has been proposed that, like cancer cells, the
photoreceptors utilize glycolysis to generate metabolic inter-
mediates required for protein and phospholipid synthesis (5,
53). In the case of the photoreceptors, these intermediates are
required for outer segment renewal. It was recently shown that
transient knockdown of LDHA or PKM2, two enzymes in the
glycolytic pathway, from rod photoreceptors using shRNA
resulted in about a 50% shortening of outer segments (5).
However, when PKM2 was genetically deleted from rod pho-
toreceptors, there was only about a 15% reduction in outer
segment length, suggesting that there was metabolic adaptation
and that rods could utilize alternate pathways to generate
intermediates required for disk morphogenesis (33). Similarly,
we found in RPE�Glut1h mice, glucose deprivation resulted in
shortening of outer segments throughout the retina. In
RPE�Glut1m mice, decrease in outer segment length was only
observed in photoreceptors in regions of the RPE larger than
100 �m that were not expressing GLUT1. These finding
suggest that if glucose falls below a certain threshold then outer
segment renewal is impaired. Although Rajala et al. (33)
observed a decrease in outer segment length 5 mo after PKM2
deletion from rods, they did not observe a significant decrease in
ONL thickness. In the current study, we found that, in the
RPE�Glut1h mice, where glucose levels in the retina were re-
duced to 32% of control animals, the phenotype was more severe
than when PKM2 or LDHA were knocked out of photoreceptor
cells (5). In RPE�Glut1h mice, there was not only a 50% reduc-
tion in outer segment length but also a 50% thinning of the ONL,
reflecting photoreceptor cell death.

In RPE�Glut1h mice, there was an increase in photoreceptor
cell death that stabilized after about a ~50% loss of photore-
ceptor cells. There was a greater loss of rod versus cone
photoreceptor cells, supporting previous studies showing that

rods are more dependent on glycolytic metabolism than cones
(28). Cone survival in the context of nutrient deprivation has
been reported by Petit et al. (29), who deleted Hk2 from cones
and found that cones were less dependent than rods on aerobic
glycolysis under basal conditions. Although Petit et al. (29)
found that photoreceptors were not dependent on Hk2 for
survival, aerobic glycolysis was required for rod function and
for cone survival under stress. Here too, we found a milder
impact of glucose deprivation on cones compared with rods,
with respect to both cell loss and outer segment shortening.
These findings suggest that cones are not solely dependent on
glycolysis since we found only a 10% reduction in cone outer
segment length and 17% reduction in cone cell number in
RPE�Glut1h mice. In comparison, when oxygen and nutrients
were decreased from the outer retina by deleting Vegfa from
the RPE, cone photoreceptors were affected within 7 days (22).
Combined with our results, it appears that cones are more
susceptible to cell death due to oxygen than glucose depriva-
tion. These findings suggest that glucose may not be the
primary metabolic substrate of cone photoreceptor cells.

We observed an increase in expression of GFAP in Müller
glial cells in RPE�Glut1 mice. Interestingly, in RPE�Glut1m,
where no photoreceptor cell death was observed, GFAP was
expressed in discrete patches of Müller cells in regions of
retina even where only two to three contiguous RPE cells
lacked GLUT1. Since reduced glucose levels causes metabolic
stress in Müller cells, it would suggest that glycolysis is
important for supporting their metabolic needs as suggested by
Poitry-Yamate et al. (31) and Winkler et al. (54). Additionally,
there was no cell death observed in the inner nuclear layer of
RPE�Glut1h mice, suggesting that Müller cells might be able
to adapt to glucose deprivation as was also observed by
Winkler et al. (54).

How is it possible for 50% of the photoreceptors to survive
in RPE�Glut1h mice? To address this question, we used
LC/MS to compare metabolite levels in control and
RPE�Glut1 retinas and found that the loss of GLUT1 resulted
in increased levels of glutamate, glutamine, and aspartate,
suggesting an increase in the oxidation of amino acids in the
absence of glucose. We also saw a concomitant increase in the
amino acid transporters in the RPE�Glut1h retina. Glutamate is
oxidatively deaminated to generate either NADH or NADPH,
critical electron carriers for anabolic reactions including the
synthesis of fatty acids used in daily disk morphogenesis. The
utilization of glutamate to generate �-ketoglutarate provides
tricarboxylic acid (TCA) cycle intermediates and reduces the
burden of pyruvate oxidation. Aspartate also feeds into oxida-
tive metabolism via the TCA cycle to generate oxaloacetate
and possibly to serve as substrate for gluconeogenesis in an
effort to maintain glucose homeostasis. Müller glial cells have
been previously shown to convert excess glutamate into glu-
tamine via glutamine synthetase which is then transported into
photoreceptors via Slc38a3 (32, 38, 49). Slc38a3 has been
shown to be localized in astrocytes in the blood-brain barrier
and transports glutamine for use by neurons (4, 48). We found
an upregulation in Slc38a3 in the retinas isolated from
RPE�Glut1h. A search of publicly available databases [RetSeq
(17) and single cell microarray data from Roesch et al. (37)]
showed that Slc38a3 is expressed in both Müller cells and
photoreceptors, implying that upregulation of glutamine-gluta-
mate metabolism could be supporting photoreceptor survival.
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This increase in glutamine-glutamate metabolism highlights
the flexibility of the photoreceptor cells to utilize other sub-
strates in response to glucose deprivation. It is possible that this
is a general response, as it is observed in other systems. For
example, Fidler et al. (10) observed a similar metabolic flexi-
bility when they deleted GLUT1 from platelets, which subse-
quently increased their use of amino acids. In addition, we
observed a similar compensation by amino acids when we
deleted GLUT1 from mouse lens epithelium and found a
decrease in amino acids in the aqueous humor of transgenic
mice, indicating an increase in amino acid oxidation by the
mouse lens under glucose deprivation (46). Alternatively, glu-
cose derived from the inner retinal vasculature, perhaps along
with amino acid oxidation, could be sufficient to maintain the
observed degree of photoreceptor viability.

SD-OCT provides an important tool for monitoring longitudi-
nal changes in retinal morphology (25). We used SD-OCT as a
diagnostic tool to observe the retinal morphology in the
RPE�Glut1 mice. We found slight waviness in the ONL of
RPE�Glut1m mice; however, their ONL thickness was not af-
fected. The waviness was more pronounced, coupled with a
decrease in ONL thickness, in RPE�Glut1h mice and correlated
well with the percentage of RPE cells not expressing GLUT1. We
further confirmed that the waviness seen in OCT images corre-
sponds to that seen in retinal histology, thereby validating SD-
OCT as a tool to predict retinal loci lacking GLUT1 in
RPE�Glut1h mice. We surmise that the waviness results from the
intermittent shortening of either the outer segments or the ONL,
making it an early indicator of nutrient deprivation. Researchers
have made similar observations in studies examining the effects of
drusen on retinal structure and morphology in AMD patients (15).
As drusen increased, they observed localized thinning of the
ONL, shortening of outer segments and gliosis, which they inter-
preted to reflect locally diminished metabolic substrates reaching
the retina due to the physical barrier formed by the drusen.

In conclusion, these results demonstrate that GLUT1 expres-
sion in the RPE regulates transepithelial transport of glucose
into the outer retina. Glucose from the choroidal blood supply
and not the inner blood vessels was required to maintain
photoreceptor cell outer segment renewal and to prevent acti-
vation of Müller glial cells. We also found glucose deprivation
had a greater impact on the viability of rod photoreceptors than
cone photoreceptors. Together, our findings have important
implications for the development of nutrient based therapies
for retinal pathologies.
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