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Abstract Abstract 
Peripherin-2 (also known as peripherin/rds), a photoreceptor specific tetraspanin protein, is required to 
maintain normal cell structure through its role in renewal processes requiring membrane fusion. It is the 
first tetraspanin fusogen and has been shown to directly mediate fusion between disk membranes and 
opposing membranes to maintain the highly ordered structure of rod outer segments. Localized to the C 
terminus of human, bovine, and murine peripherin-2 is an amphiphilic fusion peptide domain (residues 
312-326) and a highly conserved region upstream of this domain that we hypothesize is essential for 
fusogenic function. Our previous studies indicated that substitution of a threonine for a proline at position 
296 within this highly conserved region enhanced fusion activity. In this study we wanted to determine 
whether this proline is essential with the introduction of three additional substitutions of proline with 
alanine, leucine, and glutamic acid. Wild type, P296T, P296A, P296L, and P296E mutants of peripherin-2 
were expressed as His 6-tagged full-length proteins in Madin-Darby canine kidney (MDCK) cells. All of the 
proteins were localized to intracellular membranes and detected as 42-kDa monomers by Western blot 
analysis. The wild type, P296A, and P296L assembled into core tetramers; in contrast the P296T and 
P296E formed higher order oligomers. Fusogenic activity of full-length protein expressed in MDCK 
membranes and purified protein reconstituted in model membrane liposomes was determined using 
fluorescence quenching techniques. Fusion activity was decreased in the P296L, P296A, and P296E 
mutants both in endogenous MDCK membranes and in model liposomes. Collectively, these results 
suggest that the proline at position 296 is necessary for optimal function. © 2005 by The American 
Society for Biochemistry and Molecular Biology, Inc. 
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Peripherin-2 (also known as peripherin/rds), a photo-
receptor specific tetraspanin protein, is required to
maintain normal cell structure through its role in re-
newal processes requiring membrane fusion. It is the
first tetraspanin fusogen and has been shown to directly
mediate fusion between disk membranes and opposing
membranes to maintain the highly ordered structure of
rod outer segments. Localized to the C terminus of hu-
man, bovine, and murine peripherin-2 is an amphiphilic
fusion peptide domain (residues 312–326) and a highly
conserved region upstream of this domain that we hy-
pothesize is essential for fusogenic function. Our previ-
ous studies indicated that substitution of a threonine for
a proline at position 296 within this highly conserved
region enhanced fusion activity. In this study we
wanted to determine whether this proline is essential
with the introduction of three additional substitutions
of proline with alanine, leucine, and glutamic acid. Wild
type, P296T, P296A, P296L, and P296E mutants of pe-
ripherin-2 were expressed as His6-tagged full-length
proteins in Madin-Darby canine kidney (MDCK) cells.
All of the proteins were localized to intracellular mem-
branes and detected as 42-kDa monomers by Western
blot analysis. The wild type, P296A, and P296L assem-
bled into core tetramers; in contrast the P296T and
P296E formed higher order oligomers. Fusogenic activ-
ity of full-length protein expressed in MDCK membranes
and purified protein reconstituted in model membrane
liposomes was determined using fluorescence quench-
ing techniques. Fusion activity was decreased in the
P296L, P296A, and P296E mutants both in endogenous
MDCK membranes and in model liposomes. Collectively,
these results suggest that the proline at position 296 is
necessary for optimal function.

Tetraspanins belong to a growing family of transmembrane
proteins, with over 40 family members identified in mammals,
Drosophila, and Caenorhabditis elegans (1). Similar to other
transmembrane 4 superfamily proteins, tetraspanins contain
four transmembrane domains. Mutations of tetraspanin genes
are associated with various degenerative diseases. For exam-
ple, the human tetraspanin, TMS4SF/A15, is associated with

mental retardation (2); furthermore over 60 mutations of the
photoreceptor-specific tetraspanin, peripherin-2, result in a va-
riety of retinal degenerative disorders (3). The unique struc-
tural and functional domains of this protein family includes
four to six highly conserved cysteine residues linked into two to
three disulfide bonds in a highly conserved EC-2 domain. Mu-
tations within this domain result in retinal degeneration and
mental retardation. Tetraspanins also contain polar residues in
the first, third, and fourth transmembrane domains postulated
to be involved in protein-protein interactions necessary to form
signaling complexes (4–8). Thus tetraspanins form homo- and
hetero-oligomers resulting in large multiple protein complexes
or tetraspanin webs that are involved in the regulation of cell
motility, fertilization, cell signaling, and fusion processes.

Work in our laboratory has focused on elucidating the role of
photoreceptor peripherin-2 as a membrane fusion protein. Al-
though peripherin-2 is first the tetraspanin protein that is
directly involved in promoting fusion, several other tetraspan-
ins have important, although poorly defined, functional roles in
membrane fusion. CD-9-deficient mice showed impaired egg-
sperm fusion (9, 10). Interestingly, injection of CD81 mRNA
into CD9 null mouse oocytes rescued membrane fusion, sug-
gesting that in some instances tetraspanins may functionally
substitute for each other. CD81 has also been implicated in
human leukemia virus 1 fusion but not HIV1 fusion.

More recently, both CD9 and CD81 have been shown to
promote muscle cell fusion (11). The mechanism by which these
proteins participate in fusion is not clear; however, the notion
that these tetraspanins may have intrinsic fusogenic function
has not been ruled out.

Photoreceptor cells contain a unique set of tetraspanin pro-
teins known as peripherin-2 and its nonglycosylated homo-
logue rom-1 (12–16). Purified peripherin-2 promotes mem-
brane fusion with ROS plasma membrane in a cell-free assay
system (17, 18). This system serves as a model for two key
fusion-dependent events in rod cell renewal: disk morphogen-
esis and disk shedding (19). Fusion is mediated through a
fusion peptide domain within the C-terminal domain of periph-
erin-2 corresponding to residues 312–326. The amphiphilic,
�-helical structure of the fusion peptide is necessary for the
formation of a fusogenic oligomer of the peptide to promote the
requisite steps in membrane fusion (20, 21). Homology among
human, murine, bovine, Xenopus, and avian forms of the pro-
tein in a region upstream of the fusion peptide, residues 294–
314, suggests functional importance within this region of the C
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terminus. A P296T substitution in this region was previously
shown to enhance fusion, although the contribution of subunit
assembly to the fusogenicity of that mutant was not addressed
(22).

The role of peripherin-2 as a membrane fusion protein is
evident in the phenotypes observed in a series of animal models
of retinal degeneration. Initially, the rds (retinal degeneration
slow) mouse model confirmed that disruption of the RDS tet-
raspanin gene caused retinal degeneration. rds homozygotes
fail to develop photoreceptor outer segments and have limited
phototransduction capability, and consequently, the photore-
ceptors undergo a slow, progressive apoptosis (23, 24). Mice
heterozygous for the rds defect develop shortened outer seg-
ments, which are abnormally phagocytosed. In vivo evidence in
support of a peripherin-2 C-terminally mediated function
comes from three mouse models of RDS action. Data from a
chimeric mouse line expressing the D-2 loop of peripherin-2 in
the context of rom-1 suggests that functional efficacy is not
restricted to the D-2 loop (26). The dominant negative pheno-
type of the codon 307-del mouse model of RP, in which the
C-terminal domain is altered, shows a more rapid retinopathy
than the rds �/�, suggesting that the C terminus of periph-
erin-2 contains a unique functional domain that contributes to
the degenerative process (25). Lastly, the haplo-insufficiency
mouse model argues that two functional alleles are necessary
to assemble the ROS. Collectively, although the phenotypes are
complex, these in vivo studies coupled with in vitro work (18–
21) provide support for the classification of peripherin-2 as the
first tetraspanin fusion protein. In this study we have ad-
vanced our hypothesis that the C-terminal domain of periph-
eirn-2 is a unique functional domain of this protein and possi-
bly other tetraspanins. In this regard we have shown that a
single amino acid substitution at position 296 from a proline to
an alanine, leucine, or glutamic acid inhibits membrane fusion,
whereas substitution to threonine enhances fusion but abro-
gates normal subunit assembly. Collectively, these studies sug-
gest that this highly conserved region of peripherin-2 may play
a role in regulating fusion activity.

MATERIALS AND METHODS

Preparation of Human Peripherin-2 cDNA Mutants and Expression
Constructs—Human peripherin-2 cDNA flanked by NotI restriction
sites was subcloned into the multiple cloning site of pGEMEX-2 bacte-
rial expression vector (Promega). Single amino acid substitutions were
made using the GeneEditor in vitro site-directed mutagenesis system
(Promega). wt template DNA was prepared through transformation of
JM109 competent Escherichia coli cells (Promega) with 10 ng of the
peripherin-2 pGemex-2 construct and subsequent plasmid DNA purifi-
cation using a Qiaprep spin miniprep kit (Qiagen). Custom primers
were obtained from Integrated DNA Technologies, Inc. as 100-nmol
oligonucleotides using standard desalting. Mutagenic oligonucleotides
were designed corresponding to the coding strand of peripherin-2 to
contain �50% GC content and a Tm of �75 °C. The mutagenic primers
used to change the proline at position 296 to alanine and leucine are
indicated by the sequences 5�-GTGTCCAACGCCGAGGAATC-3� and
5�-GTCCAACCTCGAGGAATC-3�. Generation of the P296E mutant re-
quired a 27-base primer: 5�GGTGTGTCCAACGAGGAGGAATCTGAG-
3�. The mutagenic primers were 5�-phosphorylated and used in combi-
nation with the bottom strand selection oligonucleotide provided in the
GeneEditor kit. The mutations were verified by sequence analysis
(Davis Sequencing). The 1.1-kb wt and mutant peripherin-2 cDNA NotI
fragments were subcloned into the NotI site of the multiple cloning site
of the pcDNA 3.1 His B mammalian expression vector (Invitrogen). The
correct orientation of the peripherin-2 NotI fragments in the vector was
confirmed through restriction enzyme analysis by digestion with SstI
(New England Biolabs).

Cell Culture and DNA Transfections—MDCK strain II cells (ATCC)
were maintained in Eagle’s minimum essential media containing Ea-
gle’s salts and L-glutamine, supplemented with 10% fetal bovine serum,
100 units/ml penicillin, 100 �g/ml streptomycin, 1 mM sodium pyruvate,
and 1% nonessential amino acids at 37 °C in 5% CO2 (all reagents from

Sigma). The cells were seeded 2 days before transient transfections in
150-cm2 tissue culture flasks, allowing the cells to reach 70–80% con-
fluency at the time of transfection. Transfections were performed using
Optimem I media with no serum or antibiotics. Peripherin-2 used for
fusion analyses was obtained from cells transfected with Lipofectamine
(Invitrogen). For each transfection, 10 �g of DNA and 23 �l of Lipo-
fectamine 2000 (Invitrogen) was used. The cells were incubated for 3 h
at 37 °C with the transfection complexes, and the medium was replaced
with the complete culture medium. Proteins for sedimentation velocity
assay were isolated from cells transfected with FuGENE (Roche Ap-
plied Science). 12 �g of DNA and 108 �l of FuGENE were added
followed by incubation for 5 h. Then the Optimem I medium with
transfection complexes was replaced with the complete culture me-
dium. In both cases, the cells were harvested by scraping in PBS 48 h
post-transfection.

Purification of Peripherin-2—Five confluent 150-cm2 flasks of MDCK
cells expressing either wt or the proline 296 mutants of peripherin-2
were harvested in PBS, pelleted, and resuspended in native binding
buffer consisting of 20 mM sodium phosphate, 500 mM NaCl, and 30 mM

octylglucoside, pH 7.4. The cell lysates were sonicated three times for
10 s each time, and His-tagged peripherin-2 His6-peripherin/rds was
purified using the Xpress purification system under native conditions
(protocol as provided by Invitrogen). Protein was eluted from the col-
umn with increasing concentrations of imidazole (50, 200, 350, and 500
mM). The eluted fractions were concentrated using Centricon 30 con-
centrators to 1 ml. Typically the yield of Xpress peripherin-2 from five
confluent 150-cm2 flasks cells was between 0.4 and 1.0 mg. The purity
of the protein was confirmed by SDS-PAGE and Western blot analysis
using anti-Xpress antibody.

Velocity Sedimentation Assay—Sedimentation coefficient (S20,w) es-
timates were made in a Beckman Optima LE-80K ultracentrifuge using
a SW 50.1 rotor essentially as described by Goldberg and Molday (26),
with the following modifications. The purified Xpress tagged wild type
peripherin-2 and P296T, P296A, P296L, and P296E mutant samples
were loaded onto a 5–20% (w/w) sucrose gradient and centrifuged for
20 h at 40,000 rpm. Sucrose gradient fractions (�250 �l) were collected
from the bottom of the gradient by peristaltic elution through the
capillary micropipette. Sedimentation profiles of fractionated sucrose
gradients were determined by chemiluminescent Western blotting us-
ing anti-X-press antibody (Invitrogen). Digital analysis of Western blots
was performed using Kodak Image Station 440CF.

The following equations (27) were used to calculate the sedimenta-
tion coefficient,

STm � �dr/dt�/�2r (Eq. 1)

in which STm is the sedimentation coefficient S at a given temperature
T in a solvent, dr/dt is the distance traveled by the sample over time in
mm/s, � is the angular velocity of the rotor in radians/s, and r is the
distance from the axis of rotation in mm.

S20,w � STm

�Tm�1/� � �20,w�

�20,w�1/� � �Tm�
(Eq. 2)

where S20,w is the sedimentation coefficient STm
corrected to the “stand-

ard state” of water at 20 °C, �Tm
and �Tm

are the viscosity and density,
respectively, of the medium m at the temperature T of the experiment,
and �20,w and �20,w are the viscosity and density of water at 20 °C.
Partial specific volume (�) of the analyzed proteins were assumed to be
0.83 ml/g (28).

Preparation of F18-labeled Recombinant Liposomes—Vesicles con-
sisting of phosphatidylcholine:phosphatidylethanolamine:phosphati-
dylserine:cholesterol in a 4:4:1:1 mole ratio and 1 mol % F18 were
prepared as described (29–31). The lipids were cosolubilized in chloro-
form, dried under N2, lyophilized, and resuspended in 10 mM Hepes, pH
7.4. The lipid suspension was sonicated three times for 3 min each using
a probe sonicator to form small unilamellar vesicles. A final volume of
1 ml of vesicles was added to purified Xpress peripherin-2, which was
detergent solubilized in 20 mM octylglucoside while vortexing (32). A
1:100 nmol ratio of purified protein:vesicle phospholipid was used for all
recombinants. The recombined membranes were dialyzed for 72 h
against 10 mM Hepes, 100 mM NaCl and for 10 h in the presence of
Bio-Beads (Sigma) to remove all traces of detergent. The recombined
membranes were separated from unincorporated proteins and pure
lipid vesicles on a 5–40% (w/w) sucrose density gradient spun at 25,000
rpm overnight at 4 °C. The Xpress peripherin-2-LUV recombinants
were isolated from the sucrose gradients. These recombinants were
spun down at 60,000 K for 20 min and resuspended in 10 mM Hepes, pH
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7.4, prior to fusion assays. All of the recombinants were assayed for
total phosphate (33) and protein (Bio-Rad).

Preparation of F18-labeled Total Cell Membranes from Peripherin-2-
transfected MDCK Cells—Five confluent 150-cm2 flasks of MDCK cells
were transfected with wt and mutant peripherin-2 as described above.
The cells were harvested by scraping in homogenizing buffer (100 mM

monobasic sodium phosphate, 1 mM dithiothreitol, 1 �g/ml of leupeptin,
and 2 �g/ml of aprotinin, pH 7.4), pelleted (1,000 rpm for 5 min), and
resuspended in 4 ml of homogenizing buffer. The cells were then lysed
by passage through a 26-gauge needle twice and sonicated three times
for 10 s. Homogenized cell lysates were layered onto a single layer 30%
sucrose gradient (30% sucrose (w/w) in homogenizing buffer) and spun
at 25,000 rpm for 20 min at 4 °C in a SW28 Beckman ultracentrifuge
rotor. The plasma membrane fraction was collected from the first in-
terface and pelleted by centrifugation (50,000 rpm for 30 min at 4 °C),
and the membranes were resuspended in 1 ml of 10 mM Hepes, pH 7.4.
The membranes were labeled with 1 mol % F18 (1 mg/ml in ethanol)
while vortexing and incubated at 37 °C for 30 min in subdued light.
Unincorporated label was removed with the addition of 500 �l of 2%
bovine serum albumin incubating for 10 min at 37 °C and recovering
labeled membranes by spinning at 50,000 rpm for 30 min at 4 °C. The
pellets were resuspended in 500 �l of 10 mM Hepes, pH 7.4.

Preparation R18-labeled of Rod Outer Segment Plasma Membranes
(ROS-PMs)—Bovine ROS plasma membrane vesicles were isolated in
the dark from frozen bovine retinas (Lawson, Lincoln, NE) as described
previously (34). Purified plasma membrane was resuspended in 2 ml of
10 mM Hepes, 0.5 M NaCl and labeled with 50 �l of R18 (2 mg/ml solution
in ethanol) while vortexing and then incubated at 37 °C for 1 h to
incorporate the fluorescent label. Unincorporated R18 label was sepa-
rated from labeled PM on a Sephadex G-50 size exclusion column as
described (31).

Resonance Energy Transfer Fusion Assay—Fusion between R18-la-
beled plasma membrane and F18-labeled cell membranes or F18-labeled
recombinant vesicles was measured using a fluorescence resonance
energy transfer assay (35) at room temperature on a PerkinElmer Life
Sciences 50B spectrofluorometer (Gaithersburg, MD). Fusion was ini-
tiated with the addition of R18-labeled plasma membranes to F18-la-
beled membranes already present in the well. Fluorescence intensity
was measured at 	ex � 460 nm (F18 excitation) and at 	em � 524 nm (F18

emission) and 	em � 592 nm (R18 emission) over a 2-min period. The
extent of fusion was calculated as the change in R18 intensity over time
as described (36). The change in R18 intensity (�R) at a given time was
computed as follows.

�R � �I592/I524 
 I592�T � �I592/I524 
 I592�I (Eq. 3)

I524 and I592 are the fluorescence intensities at 524 and 592 nm, respec-
tively. The subscripts T and I represent a given time point and the
initial time point of each sample, respectively. The percentage of change
in R18, indicated in the graphs as the percentage of fusion, was deter-
mined by multiplying each �R value by 100. The fusion values were
normalized for peripherin-2 content. Total cell membrane fusion values
represent total fusion/mg of peripherin-2 as determined by densitome-
try of anti-Xpress Western blots of isolated MDCK cell membranes. In
the figures, the percentage of fusion values are normalized to the total
percentage of fusion seen with wild type, which is set at 100% of wild
type fusion.

Western Blot Analysis—MDCK cell lysates, purified peripherin-2,
and total cell membranes isolated from MDCK cells were mixed in a 1:1
ratio with 2	 SDS sample buffer and separated on 10–15% SDS-PAGE
and transferred to nitrocellulose for Western blot analysis. For trypsin
treatment of total cell membrane fractions, total protein content of the
membranes was determined, and a 3	 excess �g amount of trypsin was
added, followed by incubation at 37 °C for 30 min. Western blots were
probed with a 1:2500 dilution of anti-Xpress primary antibody and a
1:1000 dilution of goat anti-mouse IgG horseradish peroxidase-conju-
gated secondary antibody (Amersham Biosciences). Western blots were
visualized by enhanced chemiluminescence (Supersignal ECL; Pierce).

Immunohistochemistry of Peripherin-2-transfected MDCK Cells—For
immunohistochemistry, MDCK cells were seeded on sterilized glass
coverslips in 6-well plates and grown for 24 h. The cells were transiently
transfected with wt or mutant peripherin-2 using Lipofectamine 2000
as described above. Twenty-four hours post-transfection, the cells were
washed in PBS containing 2 mM MgCl2 and 0.2 mM CaCl2 (PBS-C/M).
For surface staining, the intact cells were incubated with a 1:500
dilution of anti-Xpress antibody for 1 h. The cells were then fixed in 2%
paraformaldehyde for 30 min at 4 °C, rinsed in PBS-C/M, quenched
with 50 mM glycine for 10 min at 4 °C, and rinsed in PBS-C/M. The cells

were subsequently incubated for 1 h with goat anti-mouse IgG Alexa
Fluor 488 secondary antibody at a concentration of 10 �g/ml (Molecular
Probes). For permeabilized cell staining, the cells were fixed in a 1:1
methanol/acetone solution for 2 min prior to the 1-h incubation with
anti-Xpress primary antibody. The cells were rinsed with PBS-C/M and
then incubated with secondary antibody as described above. The sam-
ples were analyzed on a Zeiss AXIOSKOP fluorescent microscope, cap-
turing images at the magnifications indicated in the figures.

Statistical Analysis—Analysis of variance was first performed to test
whether there is any difference among groups. When a significant
difference was found from analysis of variance, pairwise, post-hoc t
testing (Dunnett’s t test) of each mutant with wild type peripherin-2
was performed while controlling for the overall type I error. All of these
statistical analyses were perform using SAS 9.1 (SAS Institute, Cary,
NC).

RESULTS

Peripherin-2 and Pro296 Mutants Are Heterologously Ex-
pressed in and Localized to Intracellular Membranes of MDCK
Cells—To determine whether regions upstream of the fusion
peptide are necessary for fusogenic function, we generated four
human peripherin-2 mutants bearing single amino acid substi-
tutions of proline at position 296. These substitutions include
P296T, P296A, P296L, and P296E and were chosen to alter the
polarity, size, and charge of this region. The mutants contained
an N-terminal Xpress epitope tag and a poly-His6 tag at the N
terminus to allow for detection and purification of the proteins.
Each of the four Pro296 mutant expression plasmids was tran-
siently transfected individually into MDCK cells. The His6-
tagged proteins were purified by nickel column chromatogra-
phy, and protein expression was assessed by Western blot
analysis using anti-Xpress antibody. As shown in Fig. 1, wt
peripherin-2 migrated as an 84–86-kDa dimer under nonre-
ducing conditions, with the majority reduced to a 41–43-kDa
monomer in the presence of �-mercaptoethanol. Similarly, the
four mutants typically migrated as 84–86-kDa dimers under
nonreducing denaturing conditions. A fraction of the dimers
was reduced to 41–43-kDa monomers in all cases, with all of
the expressed P296E protein reduced to the monomeric form.
Two mutants, the P296T and the P296L proteins, showed
slower migrating proteins consistent with higher order aggre-
gates in the range of 120–220 kDa. Similar pattern of higher
order complex formation is not unexpected and was observed in
case of insertional mutants: IM5, IM7, and IM11 expressed in
COS-1 cells (37). Thus peripherin-2 was successfully expressed
in MDCK cells, and peripherin-2 mutants form disulfide-linked
dimers. These observations are consistent with data from other

FIG. 1. Expression and dimerization of wt and mutant periph-
erin-2. Purified wt and mutated peripherin-2 (�5 �g of protein/lane)
were subjected to either nonreducing �-mercaptoethanol (BME �) or
reducing �-mercaptoethanol (BME 
) electrophoresis, immunoblotted
and probed with anti-Xpress antibody. Under nonreducing conditions
the proteins were detected as 84-kDa dimers; P296T (T) and P296L (L)
mutants also formed substantial amount of higher order aggregates. In
the presence of BME, 42-kDa monomers were observed.
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investigations of the protein in vivo and in other cell expression
systems (38, 39).

We next focused our attention on the localization pattern of
wt and Pro296 mutants in MDCK cells. As shown in Fig. 2,
MDCK cells transfected with wt and Xpress peripherin-2
Pro296 mutants all show a distinct subcellular localization pat-
tern. Peripherin-2, the P296A, P296L, and P296E mutants all
exhibited a stereotypical Golgi localization pattern, forming a
small cap over the nuclei of expressing MDCK cells. In contrast
the P296T mutant showed a more diffuse pattern consistent
with protein aggregation. We previously noted that the distri-
bution of the P296T mutant was perinuclear in subconfluent
cells but appeared to be plasma membrane-associated upon
confluence (22). Similar results were noted in these studies
(data not shown).

Analysis of Pro296 Mutant Subunit Assembly by Velocity Sed-
imentation—wt peripherin-2 assembles into a tetramer in both
retinal photoreceptor and in COS cell expression systems. The
formation of core tetramers appear to be essential for function
because the disruption of subunit assembly results in periph-
erin-2 mislocalization and is linked to dysmorphic outer seg-
ment in mice and to some forms of human retinal degenerative
diseases (40–42). To determine whether single point mutations
at position 296 in the highly conserved region of the C termini
affect subunit assembly, the purified poly-His6-tagged periph-
erin-2 mutants were analyzed using sedimentation velocity
assays. wt and Pro296 mutants were centrifuged through con-
tinuous sucrose density gradients, and gradient fractions were

analyzed for peripherin-2 by Western blotting (as shown in Fig.
3). Estimated sedimentation coefficients for the analyzed pro-
teins are given in Table I, and sedimentation profiles are shown
in Fig. 3. The sedimentation velocity profiles for the wt periph-
erin-2 as well as P296A and P296L mutants indicate that they
form homotetrameric complexes (27, 43). Additionally, the
P296L mutant formed larger complexes with sedimentation
coefficients of 7.1 S. In contrast, the increased mobility of
P296T and P296E mutants suggests that these proteins do not
assemble into normal homotetramers; the sedimentation coef-
ficient (7.1S) is consistent with the formation of octamers (40)
or unstable protein. These observations suggest that the re-
placement of the conserved proline with alanine or leucine has
no effect on subunit assembly, whereas substitution of proline
with threonine or glutamate affects subunit assembly and pos-
sibly protein folding.

Analysis of Fusion between MDCK Cell Membranes and
ROS-PM—The fusogenic function of wt and mutant periph-
erin-2 was assessed in both MDCK cell membrane preparations
and model membranes containing pure protein. Intracellular
MDCK cell membranes, shown to contain significant amounts
of peripherin-2 (Fig. 2) were isolated from transfected MDCK
cells as described in our previous studies (44). The fusion ac-
tivity of wild type and peripherin-2 mutants were compared
using a fluorescence resonance energy transfer assay. This
assay relies on fluorescence resonance energy transfer between
two lipophilic probes R18 and F18 (45), which readily incorpo-
rate into the membrane bilayer of ROS-PM and the target
membranes; (intracellular MDCK cells membranes or model
membrane liposomes), respectively. Fusion is detected when
the F18 molecule excited at 460 nm transfers energy to an R18

molecule that is in close proximity. The close contact between
the two probes and the resulting transfer of energy occurs
through lateral diffusion of the fluorescent lipids in the mem-
brane of a newly formed fused species of the F18-labeled mem-
branes and the R18 ROS-PM. Fusion between ROS-PM vesicles
and MDCK cell intracellular membrane fractions was meas-
ured at 37 °C. When R18 ROS-PM was added to F18 MDCK cell
membranes, an increase in R18 fluorescence was observed, with
a concomitant decrease in F18 intensity. This increase in fluo-
rescence was followed over time, and the extent of fusion after
15 min (time point at which no additional change in fluores-
cence was detectable) was calculated and compared with the
percentage of fusion observed with wild type. Because the
transfection efficiency, although similar, was not identical with
all of the mutants, the fusion assays were normalized to the
amount of peripherin-2 expressed. As shown in Fig. 4, substi-
tution of the proline with a leucine, glutamic acid, or alanine
decreased fusion by 67, 72, and 41%, respectively, when com-
pared with wt peripherin-2, indicating an inhibition of fuso-
genic activity. In fact these mutations abolished fusion activity
almost completely when compared with control (nonperipherin/
rds-expressing) MDCK cells. In contrast, the P296T mutant
showed a 2-fold increase in fusion when compared with wt
peripherin-2. Collectively, these results suggest that the pro-
line at position 296 lies in a critical position for the fusogenic
properties of the recombinant peripherin-2. Further, the spe-
cific biochemical or structural characteristics of the amino acid
residues at position 296 likely dictate the fusion capacity of the
fusion peptide.

To confirm that the changes in fusogenic function observed
were due specially to peripherin-2 and not endogenous MDCK
cell fusion effectors, individual lipid recombinants containing
each of the purified proteins were prepared and assayed for
fusion activity with ROS-PM as described for purified bovine
ROS peripherin-2 (46). This method enables us to study the

FIG. 2. Wild type and mutant Xpress peripherin-2 is localized
to intracellular MDCK cell membranes. MDCK cells grown on glass
coverslips were transiently transfected with the indicated plasmids.
The cells were fixed in methanol/acetone and incubated with mono-
clonal anti-Xpress antibody and subsequently anti-mouse IgG Alexa
Fluor 488 (fluorescein-conjugated) secondary antibody. The immunoflu-
orescence is compared with the labeling of mock transfected (control)
MDCK cells labeled with anti-Xpress antibody. The cells were analyzed
on a Zeiss AXIOSKOP fluorescent microscope with images captured at
40	 magnification.
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fusogenic activity of peripherin-2 and its mutants while elimi-
nating other proteins present in the MDCK cell membranes.
Briefly, detergent-solubilized Xpress peripherin-2 wt and mu-
tants were recombined into F18-labeled lipid vesicles as the
target membrane. These recombinant model membranes had
phospholipid to protein (mol:mol) ratios of 88–101, 92–108,
90–101, 81–99, and 85–102 for the P296T, P296A, P296L, and
P296E mutants, respectively. Because the C terminus of pe-
ripherin-2 contains the fusion peptide domain, to assay func-
tionality in the membrane preparations we needed to confirm
that this domain was exposed to the opposing membrane to
mediate fusion. To determine the orientation of peripherin-2,
the isolated membranes were treated with trypsin as described
for ROS disk membranes and pure peripherin-2 LUVs (17, 46).
Trypsin specifically cleaves the N and C termini of peripherin-2
(20); these regions would only be accessible to cleavage if ori-
ented on the outside of membrane vesicles. As shown in Fig. 4
(inset), the intact protein containing the N-terminal Xpress tag
is present in untreated cell membrane samples; in contrast the
Xpress tag is cleaved in the presence of trypsin under nonsolu-
bilizing conditions. In addition, when the nitrocellulose mem-
brane were stained with colloidal gold two major bands are
detected, with molecular masses equivalent to 12.5 and �20
kDa, corresponding to the cleaved C terminus and to the major
membrane-associated domain, respectively. These results sug-
gest that the majority of the peripherin-2 is oriented with the
N- and C-terminal regions exposed and support the rationale
for using these membrane vesicles to study the fusion proper-
ties of these mutants.

When R18-labeled ROS-PM was mixed with F18-labeled re-
combinant vesicles containing each of the peripherin-2 pro-
teins, an increase in R18 fluorescence was observed (data not
shown). All of the fusion assays were normalized to periph-
erin-2 incorporated into the recombinant liposomes based on
protein analysis. As shown in Fig. 4, fusion activity of the
peripherin-2 recombinants was similar to the fusion activity
observed when intracellular MDCK cell membranes were uti-
lized, and the overall range of percentage of fusion (wt and
Pro296 mutants) was also comparable, with an observed range
of 4.2–13.9% fusion in the recombinant samples (in a typical
experiment) and a range of 1.8–10.6% fusion when the MDCK
cell membranes were used. The P2965A, P296L, and P296E
mutants were less fusogenic than the wt peripherin-2 with

through a continuous 5–20% (w/w) sucrose gradient. Fractionated gra-
dients were assayed for peripherin-2 and Pro296 mutant expression by
Western blot analysis with anti-Xpress antibody. Representative
chemiluminescent blots and corresponding plots generated by image
analysis are shown for wt peripherin-2 and the Pro296 mutants as
indicated. Immunoreactivity in the individual gradient fractions was
calculated as a percentage of the total. wt peripherin-2 and the P296A
(C) mutant sediment as a single major pick characteristic of tetrameric
complex. D, P296L mutant forms not only tetramers but assemble also
into complexes of higher sedimentation velocity. In contrast, P296T (B)
and P296E (E) mutant were recovered in higher density fractions.

FIG. 3. Subunit assembly of peripherin-2 Pro296 mutants by
velocity sedimentation. A, MDCK cells were transfected with wt or
mutant peripherin-2 Pro296 mutant plasmids as indicated. The ex-
pressed poly-His6-tagged peripherin-2 mutants were purified on a
nickel column, and peripherin-2-containing complexes were sedimented

TABLE I
Sedimentation coefficients (S20,w) of wild type

and mutated peripherin-2

Variant S20,w
a

wt 4.6 (5.1)b

P296T 7.1
P296A 4.6
P296L 5.1/7.1c

P296E 7.5
a Each value is an average of two independent sedimentation trials.
b Sedimentation coefficient of individually expressed peripherin/rds

in COS-1 cells provided by Goldberg et al. (35).
c Two peaks of intensity were observed.
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activity corresponding to 85, 56, and 73% of wild type, respec-
tively. Finally, the P296T mutant displayed a fusion capacity
that was roughly double that of the wild type protein as re-
ported previously (21).

DISCUSSION

Peripherin-2 shares structural and functional similarities
with a well defined group of membrane fusion proteins (37). It
is unique, however, in that it is the only tetraspanin protein
shown to mediate fusion in the absence of additional cofactors.
Other tetraspanins involved but not directly mediating fusion
include CD9 and CD81. In contrast to the well characterized
EC-2 domains of peripherin-2 and the other tetraspanins, it is
the C terminus of peripherin-2 that mediates fusion required
during photoreceptor renewal. As shown in Fig. 5, peripherin-2
contains an amphiphilic �-helix that promotes membrane fu-
sion as a functional tetramer in vitro (17, 18). To understand

the contribution of other C-terminal regions to protein biosyn-
thesis and fusogenic function, we have chosen to focus on a
highly conserved region upstream of the fusion domain, corre-
sponding to residues 294–315. A series of four mutants was
generated in which proline at position 296 was replaced with
threonine, alanine, leucine, and glutamic acid to alter the size,
charge, and polarity of this residue.

The biochemical properties of the wt and Pro296 mutant
proteins are consistent with the native peripherin-2 in photo-
receptor rod outer segments. When expressed in MDCK cells
they form 84-kDa dimers that are reduced to 42-kDa monomers
in the presence of reducing agents as observed in vivo and in
other heterologous expression systems (16, 21, 38, 39). Two of
the mutants, P296T and P296E, also form larger complexes in
a molecular mass range of 120–220 kDa. The localization pat-
tern of the wt peripherin-2 to intracellular membranes was
similar to that of the Pro296 mutants. The P296T and P296E
mutants exhibited a more diffuse staining pattern, but local-
ization did not appear to be clustered around the nucleus as
described for unstable protein (34). The localization pattern
and migration pattern in reducing denaturing gels of the
P296T and P296E mutants suggest that these mutants form
homo-oligomers. In vivo, wt peripherin-2 forms disulfide linked
homo-dimers that associate noncovalently with rom-1 disul-
fide-linked homo-dimers to form a hetero-tetramer. Periph-
erin-2 self-associates into functional tetramers forming the
requisite complex for delivery to the outer segment (35, 36). In
these studies we demonstrated that alteration of a proline in a

FIG. 4. Peripherin-2 containing MDCK cell intracellular mem-
branes fuse with ROS plasma membrane vesicles. Intracellular
MDCK cell membranes from cells transfected with wt or mutant pe-
ripherin-2 Pro296 mutant plasmids were isolated by sucrose gradient
centrifugation as indicated. Fusion between F18-labeled intracellular
MDCK membranes and R18-labeled ROS plasma membrane vesicles
(solid bars) was measured using fluorescence resonance energy transfer
at 37 °C as described under “Materials and Methods. ” The average
total fusion values from resonance energy transfer fusion assays are
presented. Three separate preparations of membranes isolated from
MDCK cells transfected with no DNA (control), wild type, or proline 296
mutants of peripherin-2 were used for the fusion assays. Total fusion
was calculated based on fluorescence emission and normalized to pe-
ripherin-2 concentrations as described under “Materials and Methods.”
All of the values are expressed as percentages of fusion observed with
wild type peripherin. The data are presented as percentages of this
value. The shaded bars represent fusion between peripherin-2 recom-
binant vesicles and ROS plasma membrane vesicles. Purified poly-His6-
tagged wild type or Pro296 mutant periphern-2 was reconstituted into
model membranes as described under “Materials and Methods.” Fusion
between F18-labeled model membranes containing purified peripherin-2
(wt and mutants) and R18-labeled ROS plasma membrane vesicles was
measured using fluorescence resonance energy transfer at 37 °C as
described under “Materials and Methods.” The total extent of fusion
was calculated based on fluorescence values and normalized to periph-
erin-2 concentrations as described under “Materials and Methods.” All
of the values are normalized to the extent of fusion observed with wild
type. The data are presented as percentages of this value. *, p � 0.05
from Dunnett’s t tests, which controls type 1 error for the pairwise
comparisons of each mutant groups against wt p/rds was observed for
all of the mutants. Inset, expression and proteolysis of wt and Pro296

peripherin-2 mutants reconstituted into liposomes. The peripherin-2
containing model membranes were untreated (�) or treated with tryp-
sin (
). The samples were then separated on a 10% SDS gel under
denaturing and reducing conditions. Western blots were probed with
monoclonal anti-Xpress antibody. Monomer (42 kDa) and dimer (84
kDa) bands are present in untreated (Trypsin �) liposomes. There are
no detectable anti-Xpress bands in the trypsin-treated liposomes.

FIG. 5. Schematic representation of peripherin-2. Peripherin-2
has four predicted membrane spanning regions, shown as M1–M4.
There are two intradiskal loops, indicated as D1 and D2. The N and C
termini are oriented extradiskally, in the space between the disk mem-
brane and the rod outer segment plasma membrane. The fusion peptide
region from residues 312–326 is indicated in yellow. Proline 296, indi-
cated in pink, lies just upstream of the fusion peptide region within the
C terminus. Figured modified from Ref. 19.
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highly conserved region of the C terminus results in altered
subunit assembly. When alanine or leucine were substituted
for proline, subunit assembly was normal. In contrast, the
P296T and P296E mutants sedimented more rapidly and were
recovered in fractions corresponding to sedimentation coeffi-
cients on the order of 7 S (Fig. 3), presumably because of higher
order aggregation or misfolding of the proteins. These results
are in contrast to other studies in which insertional mutations
in the C terminus and mis-sense mutations in the C-terminal
helical domains did not alter peripherin-2 biosynthesis, includ-
ing homotetramer formation (26, 28, 29). It should be noted
that in those studies, a number of mutants showed heteroge-
neous subunit assembly with some large oligomeric complexes.
We anticipate that the difference in subunit assembly in our
studies is due to expression in a polarized MDCK cell system
(versus COS cells in work by Goldberg et al. (35) and Ritter et
al. (39)) and to the fact that the mutated amino acid was a
proline, a residue known to alter loop-turn structures.

A common paradigm in membrane fusion protein function is
the formation of a metastable fusion inactive form of the pro-
tein that requires an activating event. Activation may result
from a conformational change that exposes the fusion peptide
to the target membrane to mediate fusion (37). Regions in close
proximity to the fusion peptide of these proteins are involved in
promoting a fusion competent form of the protein (40). For
example, some fusion proteins contain a “fusion trigger” region
(41–43) and/or a hairpin-like domain (44). In synaptic vesicle
fusion, the fusion protein functions in active complexes with
other soluble or integral membrane proteins (45). The HIV
fusion protein contains distinct regions upstream and/or down-
stream of the fusion peptide domain that stabilize a fusion-
active conformation (also known as fusion competent form) (46,
47). Some fusion processes, for example SNARE fusion, contain
elements of both (48–50). Structural changes within fusion
proteins involving these domains are required to allow a pro-
tein to go from a prefusion to a fusion competent conformation
(51–54). Moreover, proline residues in or near the fusion pep-
tide domain are essential for the formation of the metastable
active structure as well as for membrane interactions leading
to fusion (55–57).

We predicted that the highly conserved region upstream of
the fusion peptide from residues 294–315 also plays an impor-
tant role in the fusion properties of peripherin-2 and that
proline at position 296 is involved in this function. Two sepa-
rate fusion assays were used to confirm the ability of the
expressed proteins to promote fusion. First, intracellular mem-
branes containing peripherin-2 isolated from transiently trans-
fected MDCK cells were shown to promote fusion activity with
plasma membrane vesicles isolated from rod outer segments.
This membrane fraction was previously shown to be enriched
in peripherin-2 and to mediate fusion (21). This system does
not allow us to exclude the possibility that endogenous MDCK
cell proteins, including those involved in intracellular trans-
port are not contributing to the fusion signal. Thus we also
employed liposomes containing purified recombinant periph-
erin-2. These studies demonstrated that wt peripherin-2 pro-
motes fusion with the same rod outer segment plasma mem-
brane vesicles. In both sets of fusion assays, the wild type
protein promoted equivalent fusion levels (5–7% total fusion,
calculated as the total amount of fusion/mg of peripherin-2).
The P296T mutant showed an extent of fusion that was about
twice as much as the wt protein, indicating a significant en-
hancement of the fusogenic capacity consistent with previously
published results (21). The substitution of the proline at posi-
tion 296 with threonine, a more polar amino acid with a hy-
droxyl side group, increased the hydrophilicity of this region of

the protein, possibly contributing to the formation of a fusion-
active coiled-coil domain (52). In contrast, substitution with
alanine, leucine, or glutamate decreased fusion activity of pe-
ripherin-2. Because the compact structure of the amino acid
proline indicates a branch point in the secondary structure of a
polypeptide sequence, we speculate that the threonine substi-
tution leads to structural change in the protein to a more
fusion-active form. This metastable form could place the fusion
peptide region in a position where it is able to interact more
freely with the opposing membrane. Other well characterized
fusion proteins, such as the HIV gp41 protein, are known to
undergo activating conformational changes from a native state
to a prefusion state and finally to a fusion-active structure (57).
If peripherin-2 undergoes a similar activating conformational
change to a fusion-active state, the structure of the P296T
mutant may mimic the activated conformation of peripherin-2.

The fundamental observation in this work is that normally
assembled peripherin/rds mutated at position Pro296 shows a
decrease in fusogenic function. In summary, these studies show
that peripherin-2,k a tetraspanin fusogen, requires not only a
fusion peptide domain but also a proline upstream of this
domain for normal fusion activity. These results lend further
support to the growing hypothesis that the C-terminal domain
of peripherin-2 plays a critical role in fusogenic function and
not simply as a structural determinant. Furthermore, these
studies provide a biochemical basis for the differences observed
in peripherin-2 retinal degenerative diseases. Moreover, they
provide a paradigm to address the role of other tetraspanins in
fusion and how alterations in this function may lead to degen-
erative disease phenotypes.
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