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Background

Glass bubbles

https://www.3m.com/3M/

en_US/p/d/b40064606/

The measured results are from stacks of 3M™ Glass Bubbles K20, which has 
particle radius of 30 𝜇m (stack bulk density 125.4 kg/m3, porosity 0.373).

 Under low input level, the bubble stacks show modal response

 The change of behavior happens at approximately 100 dB input

 Under higher input level, the response is more fluid-like
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Finite Difference Approach

Following the theory proposed by Biot (Biot, 1956):
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 The solid phase stresses are not only depending

on solid phase strains but also fluid dilatation

 The fluid phase load, 𝑠 = −𝜙𝑝 , depends not

only on the fluid dilatation but also solid phase

expansion

Equations of motion ∇ ⋅ മ𝛔 = 𝜌11 ሷ𝐮 + 𝜌12 ሷ𝐔

∇ ⋅ 𝑠 = 𝜌12 ሷ𝐮 + 𝜌22 ሷ𝐔

Linear system, 

harmonic excitation,

Viscous dissipation

∇ ⋅ മ𝛔 = −𝜔2 𝜌11𝐮 + 𝜌12𝐔

∇ ⋅ 𝑠 = −𝜔2 𝜌12𝐮 + 𝜌22𝐔

Not convenient to consider fluid 

phase displacement on different 

directions separately
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Finite Difference Approach

∇ ⋅ മ𝛔 = −𝜔2 𝜌11𝐮 + 𝜌12𝐔

∇ ⋅ 𝑠 = −𝜔2 𝜌12𝐮 + 𝜌22𝐔

U-P formulation

Atalla et al., 1998

∇ ⋅ മෝ𝛔𝑠 + 𝜔2 𝜌𝐮 + 𝛾∇𝑝 = 0

∇2𝑝 + 𝜔2
𝜌22
𝑅

𝑝 − 𝜔2
𝜌22
𝜙2 𝛾 ∇ ⋅ 𝐮 = 0

The in vacuo stress tensor is defined as:

മෝ𝛔𝑠 = 𝐾𝑏 −
2

3
𝑁 ∇ ⋅ 𝐮 ⋅ ӊ𝐈 + 2𝑁ഭ𝛆𝑠

Its relationship with the original solid stress tensor is:

മෝ𝛔𝑠 = മ𝛔 + 𝜙
𝑄

𝑅
𝑝 ⋅ ӊ𝐈 = മ𝛔 −

𝑄

𝑅
𝑠 ⋅ ӊ𝐈

Air PEM

On interface:
മෝ𝛔𝑠 = മ𝟎
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Finite Difference Approach

Jassen’s model – Force deflection in cylindrical 

container and friction on container wall (Duran, 

2000, Springer)

𝑑ℎ

𝑝𝑣

𝑝𝑣 + Δ𝑝𝑣

𝑝0
′

𝜌𝑔𝐴𝑑ℎ

𝐽𝜇𝑊𝐶𝐿𝑝𝑣𝑑ℎ

𝐴Δ𝑝𝑣 + 𝐽𝜇𝑊𝐶𝐿𝑝𝑣𝑑ℎ = 𝜌𝑔𝐴𝑑ℎ

𝑝𝑣 =
𝜌𝑔

𝛽
1 − 𝑒−𝛽𝑥 + 𝑝0

′ 𝑒−𝛽𝑥

𝛽 is the Jassen factor:

𝛽 = 4𝐽𝜇𝑊/𝑑

For equilibrium status we
use 𝑝0

′ = 𝜌𝑏𝑔 ⋅ 2𝑟𝑝 to avoid

zero stiffness at surface

Hertzian contact – effective stiffness increases with 

the contact surface area (Fischer-Cripps, 1999)

𝐸 = 𝐸0𝜎
1/3

With Jassen’s model and Hertzian contact theory,

the stiffness of particle stack can be expressed as

a function of depth, which has been applied in

previous studies, e.g., Matchett and Yanagida,

2003; Tsuruha et al., 2020

𝐸 = 𝐸0
𝜌𝑔

𝛽
1 − 𝑒−𝛽𝑥 + 𝑝0

′ 𝑒−𝛽𝑥
1/3

𝜕𝐸

𝜕𝑥
=
1

3
𝐸0

𝜌𝑔

𝛽
1 − 𝑒−𝛽𝑥 + 𝑝0

′ 𝑒−𝛽𝑥
−2/3

𝜌𝑔 − 𝛽𝑝0
′ 𝑒−𝛽𝑥
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Finite Difference Approach

The fluid model is selected considering the spherical geometry of the particles. The viscous and 
thermal permeability, 𝑘𝑝 and 𝑘𝑝

′ can be obtained according to (Boutin and Geindreau, 2008; 

Boutin and Geindreau, 2010; Venegas and Umnova, 2016):

𝑘𝑝 = −𝑗𝛿𝜈
2 1 − 3𝐶/𝑥2

−1

𝑘𝑝
′ = −𝑗𝛿𝑡

2 1 − 𝜁3 +
3𝜁

𝑥𝑡
2 𝜁𝑥𝑡

1 + 𝑥𝑡 + tanh 𝑥𝑡 𝜁 − 1

𝑥𝑡 + tanh 𝑥𝑡 𝜁 − 1
− 1

where 𝜁 = 1 − 𝜙 1/3, and all other parameters follow the definitions in the references.

Hence, the fluid phase bulk modulus and wavenumber can be calculated:

𝐾𝑒𝑞 =
𝛾𝑃0
𝜙

𝛾 − 𝑗𝜔𝜌0Pr 𝛾 − 1
𝑘𝑝
′

𝜙𝜂

−1

𝑘𝑒𝑞 = 𝜔 𝜂/𝑗𝜔𝑘𝑝𝐾𝑒𝑞
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Finite Difference Approach

𝑚 = 𝑀, 𝑛 = 𝑁 + 1Tu
b

e
A

xis

𝑟 Tube Radius

𝑥

0

Particles

Air Layer

𝑚 = 2, 𝑛 = 2

𝑚 = 𝑀 + 1, 𝑛 = 𝑁 + 1

For inner nodes there are,

ቤ
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𝑚,𝑛
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Axisymmetric
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Finite Difference Approach

𝑟

𝑥

Uniform sound pressure

Symmetry

Pressure continuity

Displacement continuity

Zero structural load

Symmetry

Zero solid displacement

Zero normal fluid displacement

Solid displacement (fixed/slip)

Zero normal fluid displacement

Zero normal particle velocity
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Finite Difference Approach

Slip boundary condition:

ቤ
𝜕𝑢𝑥

𝜕𝑟
𝑟=𝑅

= 0, ቚ𝑢𝑟
𝑟=𝑅

= 0

Fixed solid displacement:

ቚ𝑢𝑥
𝑟=𝑅

= 0, ቚ𝑢𝑟
𝑟=𝑅

= 0

If the slip boundary condition is

applied all along the wall, the

response will be purely 1D, which is

equivalent to an infinite layer.

If the fixed boundary condition is

applied, the response will be 2D.

20-mm-thick glass bubble simulation

Varying stiffness achieved with 20

layers in analytical model (Dazel et

al., 2013)

2D response with totally fixed

solid phase on the wall at

1077 Hz.
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Testing Results

Mixed boundary condition:

ቤ
𝜕𝑢𝑥

𝜕𝑟
𝑟=𝑅

= 0 𝑚 < 𝑚𝑑

ቚ𝑢𝑥
𝑟=𝑅

= 0 (𝑚 ≥ 𝑚𝑑)

𝑚𝑑 is the row number before which slip

boundary condition is applied, and after

which fixed boundary condition is applied.

Slip

Fixed

𝑚𝑑 = 5,𝑀 = 6

For simulations of 20-mm-thick glass bubble 

stacks, 𝑀 = 40. 
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Testing Results – Low Input Level

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜂 = 0.018
𝛽 = 18 m−1,𝒎𝒅 = 𝟐𝟎

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜂 = 0.018
𝛽 = 18 m−1,𝒎𝒅 = 𝟐𝟏

Noise

Slip

Fixed

Slip

Fixed
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Testing Results – Transition

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜼 = 𝟎. 𝟎𝟏𝟖
𝛽 = 18 m−1,𝒎𝒅 = 𝟐𝟏

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜼 = 𝟎. 𝟎𝟑
𝛽 = 18 m−1,𝒎𝒅 = 𝟐𝟓

Slip

Fixed

Slip

Fixed
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Testing Results – Transition

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜼 = 𝟎. 𝟎𝟑
𝛽 = 18 m−1,𝒎𝒅 = 𝟐𝟓

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜼 = 𝟎. 𝟏
𝛽 = 18 m−1,𝒎𝒅 = 𝟒𝟐

Slip

Fixed

Slip

Fixed
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Testing Results – High Input Level

𝑬𝟎 = 𝟏. 𝟒𝟓 × 𝟏𝟎𝟓 𝐏𝐚, 𝜈 = 0.29, 𝜼 = 𝟎. 𝟏
𝛽 = 18 m−1, 𝑚𝑑 = 42

𝑬𝟎 = 𝟑 × 𝟏𝟎𝟒 𝐏𝐚, 𝜈 = 0.29, 𝜼 = 𝟎. 𝟑𝟐
𝛽 = 18 m−1, 𝑚𝑑 = 42

Slip

Fixed

Slip

Fixed
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Conclusions

 A finite difference approach is developed

 This approach is based on Biot theory, and incorporated Jassen’s model and Hertzian contact theory to
account for the stiffness variation in particle stacks

 This approach is developed in cylindrical coordinates, align with realistic testing conditions. It also
provides flexibility to apply different boundary conditions

 Close match between FD simulation and acoustic measurement of glass bubbles can be achieved by
adjusting model parameters, providing potential explanation of the behavior change of glass bubble
stacks under different input levels.

 Future works

 Incorporate more complete constitutive relations into the FD approach, so we can better predict the glass
bubble behavior

 Extend the approach to simulate measurement under different settings and of different particles
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