
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2022

Multi-Fidelity Predictions for Control Allocation on the NASA Multi-Fidelity Predictions for Control Allocation on the NASA

Ikhana Research Aircraft to Minimize Drag Ikhana Research Aircraft to Minimize Drag

Justice T. Schoenfeld
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Schoenfeld, Justice T., "Multi-Fidelity Predictions for Control Allocation on the NASA Ikhana Research
Aircraft to Minimize Drag" (2022). All Graduate Theses and Dissertations. 8662.
https://digitalcommons.usu.edu/etd/8662

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F8662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8662?utm_source=digitalcommons.usu.edu%2Fetd%2F8662&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

MULTI-FIDELITY PREDICTIONS FOR CONTROL ALLOCATION ON THE NASA

IKHANA RESEARCH AIRCRAFT TO MINIMIZE DRAG

by

Justice T. Schoenfeld

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

Douglas F. Hunsaker, Ph.D. Stephen A. Whitmore, Ph.D.
Major Professor Committee Member

Tianyi He, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2022

ii

Copyright © Justice T. Schoenfeld 2022

All Rights Reserved

iii

ABSTRACT

Multi-Fidelity Predictions for Control Allocation on the NASA Ikhana Research Aircraft

to Minimize Drag

by

Justice T. Schoenfeld, Master of Science

Utah State University, 2022

Major Professor: Douglas F. Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

Camber scheduling can be used by aircraft to minimize drag at various operating condi-

tions during flight. In this work, camber schedules for minimum drag on the NASA Ikhana

are obtained over a range of lift coefficients. A modern numerical lifting-line algorithm is

used to predict the lift and drag of the aircraft as a function of operating condition and

camber. The SLSQP optimization algorithm is used to solve for the camber schedule that

minimizes drag for a given operating condition. The process is repeated, varying the number

of control sections to evaluate the benefit of additional control sections in minimizing drag

on the aircraft. Results show that there are diminishing returns with increased numbers of

control sections. For the NASA Ikhana, the limit on the number of control sections added

before diminishing results were obtained was found to be 2 control sections. With 2 control

sections the NASA Ikhana achieved between a 4.5% and 26.3% reduction in drag for lift

coefficients between 0.1 − 0.9 when compared to the baseline Ikhana with no control sec-

tions. Adding an additional 2 control sections reduced the drag by less than 0.75%. Results

from the optimization can be used in flight algorithms to schedule camber during flight such

that drag and fuel burn are minimized. Results can also be used to inform the design of

future aircraft with distributed control surfaces, especially in the growing small unmanned

iv

aerial vehicle (UAV) market where many designs are aerodynamically less efficient than

commercial and research aircraft, such as the NASA Ikhana.

(103 pages)

v

PUBLIC ABSTRACT

Multi-Fidelity Predictions for Control Allocation on the NASA Ikhana Research Aircraft

to Minimize Drag

Justice T. Schoenfeld

Optimal control settings (camber scheduling) can be used by aircraft to minimize drag

at various operating conditions during flight. In this work, camber schedules for minimum

drag on the NASA Ikhana are obtained over a range of lift coefficients. A modern numerical

lifting-line algorithm is used to predict the lift and drag of the aircraft as a function of

operating condition and wing section shape (airfoil camber). The SLSQP optimization

algorithm is used to solve for the camber schedule that minimizes drag for a given operating

condition. The process is repeated, varying the number of control sections to evaluate the

benefit of additional control sections in minimizing drag on the aircraft. Results show that

there are diminishing returns with increased numbers of control sections. For the NASA

Ikhana, the limit on the number of control sections added before diminishing results were

obtained was found to be 2 control sections. With 2 control sections the NASA Ikhana

achieved between a 4.5% and 26.3% reduction in drag for lift coefficients between 0.1− 0.9

when compared to the baseline Ikhana with no control sections. Adding an additional

2 control sections reduced the drag by less than 0.75%. Results from the optimization

can be used in flight algorithms to schedule camber during flight such that drag and fuel

burn are minimized. Results can also be used to inform the design of future aircraft with

distributed control surfaces, especially in the growing small unmanned aerial vehicle (UAV)

market where many designs are aerodynamically less efficient than commercial and research

aircraft, such as the NASA Ikhana.

vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Dr. Douglas F Hunsaker for the

support and guidance he provided throughout this work. I would also like to thank Dr. Jeff

Taylor for his guidance throughout my thesis and help with the optimization process, Dr.

Zachary Montgomery for his help with the optimization methods used, and Cory Goates

for all of his help with and knowledge of MachUpX.

I would also like to give special thanks to my wife for her support not only as I worked

on my thesis but in all that I do, and to my family for their support throughout schooling

and over the years. I am extremely blessed to have my wife and family in my life and cannot

express my gratitude to them enough.

Justice Schoenfeld

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

NOMENCLATURE . xii

1 INTRODUCTION AND LITERATURE REVIEW . 1

2 COMPUTATIONAL METHODS AND TOOLS . 5
2.1 Aerodynamic Modeling . 5
2.2 Optimization Method . 8
2.3 Software Versions Used . 8
2.4 Optimization Approach . 9
2.5 Example Ikhana Calculation . 14

2.5.1 User Input . 14
2.5.2 General Initialization and Creating MachUpX Scene Class 15
2.5.3 Optimization Set Up and Call . 17
2.5.4 Cost Function . 18
2.5.5 Final Forces and Moments Solution 20
2.5.6 Single CL Case . 20
2.5.7 Looping Through a Range of CL Values 21

3 RESULTS . 23
3.1 NASA Ikhana . 25
3.2 NASA Ikhana with Rectangular Wing . 34
3.3 NASA Ikhana vs. Rectangular Ikhana Comparison 40
3.4 Common Research Model . 44

4 SUMMARY AND CONCLUSIONS . 47

REFERENCES . 50

APPENDICES . 52
A IKHANA JSON INPUT FILES . 53

A.1 Ikhana Aircraft JSON . 53
A.2 Ikhana Scene JSON . 55
A.3 Rectangular Ikhana Aircraft JSON 56

viii

A.4 Rectangular Ikhana Scene JSON . 58
A.5 Supporting Text File: uCRM 9 wr0 xfoil.txt 59

B PYTHON CODE . 64
B.1 Run Commands: Baseline - 0 Control Sections 64
B.2 Run Commands: With Control Sections, Looping Through CL =

0.1− 0.9 . 66
B.3 Run Commands: Single Lift Coefficient 71
B.4 Optimization Code . 72
B.5 Supporting Code: Ikhana join.py . 81
B.6 Supporting Code: airfoil functional creation.py 85
B.7 Supporting Code: Ikhana main wing functions.py 86
B.8 Supporting Code: Ikhana cosine clustering.py 90
B.9 Supporting Code: timing.py . 91

ix

LIST OF TABLES

Table Page

2.1 Software versions used in this work. 9

2.2 Physical properties of the NASA Ikhana. 10

2.3 Operating conditions of the NASA Ikhana. 10

2.4 Coefficient fits for the NASA Ikhana as a function of camber from data
generated by Hunsaker [1]. 10

3.1 NASA Ikhana CD associated with 0, 2, and 4 control sections and the asso-
ciated percent reduction of CD as the number of control sections increase. . 27

3.2 Solution space search for NASA Ikhana with 4 control sections at CL = 0.6. 32

3.3 Physical Properties of the Rectangular Ikhana. 34

3.4 Rectangular Ikhana CD associated with 0, 2, and 4 control sections along
with the associated percent reduction of CD as the number of control sections
increase. 35

3.5 Comparison of the percent drag reduction, between the regular (tapered)
NASA Ikhana and the rectangular Ikhana. 41

x

LIST OF FIGURES

Figure Page

1.1 Articulated vs Parabolic flaps. 1

1.2 The NASA Ikhana aircraft [2]. 4

2.1 Grid resolution study for the NASA Ikhana at α = 2.5◦. 7

2.2 DPW4 CFD results vs MachUpX results for the NASA Common Research
Model. 8

2.3 Simplified flow chart of optimization process. 13

2.4 Linearly interpolated (a) vs Discrete (b) control sections. 19

3.1 Drag polar comparison for the NASA Ikhana with 0, 2, and 4 control sections. 27

3.2 Camber schedule for the NASA Ikhana with 2 control sections. 28

3.3 Camber schedule for the NASA Ikhana with 4 control sections. 28

3.4 Camber as a function of lift coefficient for the NASA Ikhana with 2 control
sections. 29

3.5 Camber as a function of lift coefficient for the NASA Ikhana with 4 control
sections. 29

3.6 Resultant airfoils from optimization of the NASA Ikhana at CL = 0.9 with
2 control sections. 30

3.7 Resultant airfoils from optimization of the NASA Ikhana at CL = 0.9 with
4 control sections. 30

3.8 Oswald efficiency of the NASA Ikhana with 0, 2, and 4 control sections. . . 33

3.9 Lift distributions for the NASA Ikhana with 0, 2, and 4 control sections vs
the elliptic lift distribution. 33

3.10 Drag polar comparison for the rectangular Ikhana with 0, 2, and 4 control
sections. 36

3.11 Camber schedule for the rectangular Ikhana with 2 control sections. 36

xi

3.12 Camber schedule for the rectangular Ikhana with 4 control sections. 37

3.13 Camber as a function of lift coefficient for the rectangular Ikhana with 2
control sections. 37

3.14 Camber as a function of lift coefficient for the rectangular Ikhana with 4
control sections. 38

3.15 Resultant airfoils from optimization of the rectangular Ikhana at CL = 0.9
with 2 control sections. 38

3.16 Resultant airfoils from optimization of the rectangular Ikhana at CL = 0.9
with 4 control sections. 39

3.17 Oswald efficiency of the rectangular Ikhana with 0, 2, and 4 control sections. 39

3.18 Lift distributions for the rectangular Ikhana with 0, 2, and 4 control sections
vs the elliptic lift distribution. 40

3.19 Oswald efficiency of NASA Ikhana vs rectangular Ikhana with 0, 2, and 4
control sections. 42

3.20 Lift distribution comparison of the baseline NASA Ikhana and rectangular
Ikhana. 42

3.21 Lift distribution comparison of the 2 control section NASA Ikhana and rect-
angular Ikhana. 43

3.22 Lift distribution comparison of the 4 control section NASA Ikhana and rect-
angular Ikhana. 43

3.23 Baseline CRM vs Optimized CRM Drag Polar. 45

3.24 Camber schedule for optimized CRM with 2 inboard & 4 outboard control
sections at multiple CL values. 45

3.25 Camber as a function of lift coefficient for the CRM with 2 inboard & 4
outboard control sections. 46

xii

NOMENCLATURE

α angle of attack
αL0 zero-lift angle of attack
β sideslip angle
b span
c chord
c mean geometric chord
cref reference chord length
croot/tip chord at wing root/tip

CD drag coefficient
CD0 drag coefficient at zero lift
CD1 coefficient on the linear term in the parabolic approximation

of the drag coefficient as a function of the lift coefficient
CD2 coefficient on the quadratic term in the parabolic approximation

of the drag coefficient as a function of the lift coefficient
CL lift coefficient

C̃L section lift coefficient
CL,α lift slope
CL,Desired lift coefficient specified by user for optimization
Cm pitching moment coefficient
Cm,α pitching moment slope
Cm,L0 pitching moment coefficient at zero lift
CGx,y,z center of gravity x, y, and z components
CS control section(s)
δh horizontal stabilizer deflection (mounting angle adjustment)
δi camber at control section i
e oswald efficiency factor
h altitude
lref reference longitudinal length
L total wing lift

L̃ local wing section lift
ν kinematic viscosity
ρ density
RA aspect ratio
Sw planform reference area
V velocity
W weight
χx→y ratio of percent change in CD between condition x and condition y
ζx→y percent change in CD from condition x to condition y
z spanwise location along the wing (0 ≤ |z| ≤ b/2)

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Morphing wing designs offer potential improvements and reduced drag compared to

non-morphing designs. Minimizing drag is desirable due to drag’s large contribution to fuel

burn and detrimental effect on efficiency. In general, morphing refers to the ability to change

an aircraft’s shape in flight. Articulated flaps are one method of morphing that is commonly

seen on both commercial and private aircraft. Conformal flaps are another morphing method

which utilize continuous camber, such as with parabolic flaps. The difference between

articulating and parabolic flaps can be seen in Fig. 1.1. Continuous camber flaps, such as

parabolic flaps, produce smoother airfoil sections than articulated flaps when deflected and

are often used in morphing designs. For the purposes of this work, morphing refers to the

ability to change camber during flight to minimize drag at any given lift coefficient.

Articulated Parabolic

Fig. 1.1: Articulated vs Parabolic flaps.

2

To examine the effects of morphing designs on reducing drag it is necessary to calculate

the forces and moments acting on an aircraft. There are many tools capable of doing

this, one such tool is lifting-line theory. Prandtl developed classical lifting-line theory in

his 1918 paper [3]. Classical lifting-line as introduced by Prandtl was developed under

assumptions of unswept wings with an aspect ratio greater than about 4, with a straight

quarter chord, operating in incompressible flow [4]. From lifting-line theory, Prandtl found

that an untwisted elliptic lift distribution minimized drag; however, elliptic wings are more

costly and time consuming to manufacture than rectangular or tapered wings. By adding

linear taper to a rectangular wing Glauert found that at certain taper ratios drag could be

reduced to nearly match the elliptic distribution, thus presenting a reasonable alternative

to the costly elliptic wing design [5].

Using aerodynamic or geometric twist, the elliptic lift distribution and minimum drag

can be achieved with a non-elliptic wing. Geometric twist is defined as spanwise variation

in the geometric angle of attack, whereas aerodynamic twist is defined as spanwise variation

in the zero-lift angle of attack [4]. Phillips presented an analytical solution for the optimum

washout distribution that can be used for wings of any planform and produces the same

minimum induced drag as an elliptic wing with the same aspect ratio and no washout [6].

Phillips, Fugal, and Spall verified this solution with Computational Fluid Dynamics (CFD)

and showed that through controlling the twist distribution, washout can be optimized to

yield a wing of arbitrary planform with the same minimum induced drag as an elliptic wing

with the same aspect ratio [7].

Research focusing on the design of the physical methods of morphing technology is

ongoing; however, there are currently several successful designs including but not limited to

the following: the NASA-Ames/Boeing VCCTEF, the AFRL VCCW, the FlexSys FlexFoil,

and the Moulton ARCS and KINCS designs [8–15]. Current morphing wing designs typically

utilize aerodynamic twist to adjust the camber of a wing versus changing the geometric twist

of the wing. This work will not focus on the physical method of morphing. Instead, this

work will focus on using distributed control surfaces with varying camber to present results

3

that highlight the benefits of morphing wings that could be obtained with any of the above

morphing technologies.

Regardless of the method used to deflect the wing, there are some physical constraints

on the number of locations where a wing can be deflected. Each control section increases the

cost and complexity of the design. Every additional control section requires more control

mechanisms and parts which will contribute to a weight penalty. More control sections also

contribute to more complex control algorithms. All of these considerations contribute to a

physical, set limit on the number of control sections that can be used on a morphing design.

At the beginning of this work it was hypothesized that there is also a theoretical limit to

the number of control sections that can be added to an aircraft before diminishing returns

are seen in the drag reduction.

This work examines the effects of wing camber morphing on minimizing drag on the

NASA Ikhana aircraft, a variant of the Predator B unmanned aerial vehicle (UAV) shown in

Fig. 1.2, through the optimization of aerodynamic twist in a trimmed flight configuration.

The objectives of this work include the following:

• Understanding how performance can be improved on the NASA Ikhana air frame by

using camber scheduling.

• Understanding how optimal camber scheduling changes with flight condition.

• Understanding how increasing the number of control sections affects the performance

of the NASA Ikhana aircraft.

To achieve these objectives, optimization was performed using low fidelity tools which

allow for rapid exploration of complex design spaces. This work presents the use of a low

fidelity numerical lifting-line tool, MachUpX, combined with a Sequential Least-Squares

Quadratic Programming (SLSQP) method to optimize the NASA Ikhana at multiple design

conditions with the resultant drag polars and camber schedules. In order to use these

lower fidelity tools, code was developed that links the SLSQP optimization method with

MachUpX such that the camber of a wing can be varied at multiple control sections in order

4

to minimize drag at a given fixed lift coefficient. This code was then run over a range of lift

coefficients in order to produce drag polars and optimal camber schedules.

Fig. 1.2: The NASA Ikhana aircraft [2].

5

CHAPTER 2

COMPUTATIONAL METHODS AND TOOLS

This work required the use of an aerodynamic modeling tool and an optimization tool.

This section discusses these tools.

2.1 Aerodynamic Modeling

The aerodynamic modeling in this work utilized a software called MachUpX. MachUpX

is an implementation of the Goates-Hunsaker numerical lifting-line method [16]. This

method is based on Phillips and Snyder’s numerical lifting-line algorithm [17] with correc-

tions to handle singularities introduced in the governing equations when sweep or sideslip are

modeled. The numerical lifting-line algorithm used in MachUpX is capable of producing

very accurate results, within the limitations of lifting-line theory, without the computa-

tional overhead of higher-order methods such as CFD [18]. Phillips and Snyder suggest

that lifting-line compares well with experimental data for lifting surfaces with aspect ratios

greater than about four [17]. For more on the improvements to handle singularities from

sweep and sideslip, see Reid and Hunsaker [19] and Goates and Hunsaker [16].

To aid in further sections, a brief overview of MachUpX is needed. MachUpX relies

on two inputs. These inputs are usually JSON files, but can also be represented as python

dictionaries, which are direct analogies of a JSON file [18]. The first input is the scene

JSON file, which contains information about how many aircraft are in the scene and what

the operating conditions and state of each aircraft are. The second file (or files for multiple

aircraft) is the aircraft JSON file, which contains all information about the geometry and

controls of a single aircraft. The scene JSON file needs to reference each aircraft JSON

file associated with the scene. The scene JSON file is what is passed to MachUpX to

create the scene class where all of the functionality of MachUpX is located. All analysis

is called through the scene class. Other functions such as adding aircraft to the scene,

6

changing aircraft control states, and various other functions as described in the MachUpX

documentation [18] are also called through the scene class. Any changes for which there is

not an associated function for in the scene class requires the scene class to be reinitialized

with a new scene or aircraft JSON file or dictionary. An example of such a change would

be to change the twist distribution associated with a given lifting surface.

MachUpX also uses the AirfoilDatabase package to calculate section properties of all

airfoils. MachUpX does not have the capability to generate these databases and can only

read in from previously generated databases [18]. At a minimum the database must contain

information about the values of αL0, CL,α, Cm,L0, Cm,α, CD0 , CD1 , and CD2 for each airfoil

used. These values are then used by MachUpX to calculate the lift, drag, and pitching

moment coefficients. The lift coefficient can be found using

CL = CL,α(α− αL0) (2.1)

the drag coefficient is calculated using

CD = CD2 ∗ CL
2 + CD1 ∗ CL + CD0 (2.2)

and the pitching moment coefficient using

Cm = Cm,L0 + Cm,α(α− αL0) (2.3)

MachUpX uses the lift, drag, and moment coefficients of each airfoil to calculate the

total forces and moments acting on the aircraft being modeled. This is done by modeling

the wing segment with a number of horseshoe vortices. The number of vortices defaults

to 40 per semi-span unless otherwise defined. However, increasing the number of vortices

can produce better results. In order to determine the number of vortices to use, a grid

resolution study was performed. The study was performed with the NASA Ikhana at an

angle of attack of 2.5◦. The horizontal stabilizer had approximately half the grid density

of the main wing for any given grid size. It can be seen in Fig. 2.1 that for grid densities

7

at or above ≈ 100, both the lift coefficient and drag coefficient are well resolved. For this

work, a grid density of 100 was used for the main wing and a grid density of 50 was used

for the horizontal stabilizer.

0.009324

0.009326

0.009328

0.00933

0.009332

0.009334

0.009336

0.009338

0.2852

0.2854

0.2856

0.2858

0.286

0.2862

0.2864

0.2866

0.2868

0.287

0.2872

C
D

C
L

Grid Density

CL
CD

Fig. 2.1: Grid resolution study for the NASA Ikhana at α = 2.5◦.

The numerical lifting-line algorithm used in MachUpX has been evaluated in various

publications [16, 17, 19]. To further evaluate the accuracy of MachUpX when compared to

higher fidelity tools such as CFD, the optimization code for this work was used to generate

a baseline drag polar (a drag polar with zero control sections where the optimization is only

pitch trimming the aircraft) for the NASA Common Research Model (CRM), a transonic

passenger jet designed for research purposes [20]. There are multiple CFD results available

for the CRM, including those from the 4th Drag Prediction Workshop (DPW4). CFD results

from DPW4 are compared against results obtained using MachUpX in Fig. 2.2. As can be

seen, the results obtained with MachUpX compare well with those from DPW4 obtained

with CFD, indicating that the results obtained with MachUpX are reasonable and reliable.

8

0.017

0.019

0.021

0.023

0.025

0.027

0.029

0.031

0.20 0.25 0.30 0.35 0.40 0.45 0.50

C
D

CL

- - - - - DPW4

MachUpX

Fig. 2.2: DPW4 CFD results vs MachUpX results for the NASA Common Research Model.

2.2 Optimization Method

The optimization algorithm used in this work was the gradient based SLSQP method

implemented in the SciPy software package [21]. SLSQP was chosen due to its ability to

handle both bounds and constraints for the optimization of twist to minimize drag. Bounds

were used to ensure that any horizontal stabilizer deflections as well as the angle of attack

needed to achieve trimmed flight stayed within reasonable and physically achievable values

during the optimization process. However, none of the final optimal solutions were con-

strained by the bounds. Constraints were used to ensure the aircraft was pitch trimmed. It

was necessary to move the pitch trim functionality into the optimization due to a limitation

encountered with the built in MachUpX pitch trim command. The gradients for the SLSQP

were calculated numerically with finite differencing. Meaning, the cost function was called

at a given value and then perturbed away from that value to calculate the gradient. The

numerical gradient was then used to move in the direction that minimized the cost function.

2.3 Software Versions Used

Table 2.1 shows the software versions for MachUpX, Python, and all tools used for the

optimization code in this work.

9

Table 2.1: Software versions used in this work.

Software Versions used for MachUpX/SLSQP Optimization

Airfoil db v1.4.3
MachUpX v2.7.1
NumPy v1.20.3
Python v3.8.8
SciPy v1.7.3
Spyder v5.0.5
XFOIL v6.99

2.4 Optimization Approach

For this work, the NASA Ikhana was modeled in MachUpX by assuming symmetric

deflections. Therefore, only a single semi-span of the wing-tail combination needed to be

defined in the aircraft JSON file. MachUpX then used symmetry to model the entire aircraft.

The CG, weight, reference area, twist, and operating conditions were all specified in the

MachUpX input files with the values in Tables 2.2 - 2.3. The input files required an angle

of attack to be specified; however, this value was varied within the optimization routine to

trim the aircraft and therefore is not included in Table 2.3. Because the Ikhana has straight

tapered wings with no sweep, the number of control sections was evenly divided over the

span of the main wing with the first control section defined as that nearest the root of the

wing and the last control section defined as the control section nearest the wingtip. All

control sections were discrete and all deflections are accomplished with airfoils of varying

camber. The baseline airfoil used for the NASA Ikhana was the NACA 0010 airfoil. A

database of airfoils with various camber was generated using data from Hunsaker [1] who

used the NACA X410 series of airfoils, where X represents varying values of maximum

camber. A combination of average values, linear, and parabolic fits were applied to the

data from Hunsaker to get values for αL0, CL,α, Cm,L0, Cm,α, CD0 , CD1 , and CD2 as a

function of camber. The fits are summarized in Table 2.4.

While MachUpX has an integrated command to pitch trim the aircraft, the pitch

trim logic was included in the cost function as a constraint due to limitations with how

MachUpX’s pitch trim algorithm works. MachUpX’s built in pitch trim function uses flap

10

Table 2.2: Physical properties of the NASA Ikhana.

NASA Ikhana Physical Properties

Aspect Ratio, RA 16
CGx,y,z (m) 0.0

Mean chord, c (m) 1.2192
Reference Area, Sw (m2) 23.7832

Reference Longitudinal Length, lref (m) 1.2192
Span, b (m) 19.5072

Semi-span, b/2 (m) 9.7536
Root Chord, croot (m) 1.70688
Tip Chord, ctip (m) 0.73152
Weight, W (N) 31,593

Table 2.3: Operating conditions of the NASA Ikhana.

NASA Ikhana Operating Conditions

Altitude, h (m) 6,096.0
Density @ SL, ρ (kg/m3) 1.2250

Kinematic Viscosity @ SL, ν (m2/s) 1.5e−5

Sideslip Angle, β (◦) 0.0
Speed, V (m/s) 102.889

Speed of Sound @ SL, C (m/s) 340

Table 2.4: Coefficient fits for the NASA Ikhana as a function of camber from data generated
by Hunsaker [1].

NASA Ikhana Airfoil Database Coefficients

Coefficient Fit Type Fit

αL0 Linear −0.0183 ∗ δi − 0.0003
CL,α Average 6.257605
Cm,L0 Linear −0.0253 ∗ δi − 0.0004
Cm,α Average 0.016353333
CD0 Parabolic 0.0002 ∗ δi2 − 0.00004 ∗ δi + 0.0049
CD1 Linear −0.003 ∗ δi + 0.0002
CD2 Parabolic 0.0001 ∗ δi2 − 0.0004 ∗ δi + 0.0095

11

deflections rotated about a given chordwise pivot point on the horizontal stabilizer to trim

the aircraft. For this work, an all-flying tail configuration was used. There is currently no

option for an all-flying tail configuration in MachUpX, and the only way to approximate

an all-flying tail is to define the flap on the horizontal stabilizer as the entire horizontal

stabilizer. However, defining the entire horizontal stabilizer as a flap results in the horizontal

stabilizer being rotated about its leading edge instead of the quarter chord. To address this

challenge, the mounting angle of the horizontal tail, δh, was included as a design variable for

the optimization. Including the mounting angle as a design variable allowed for dynamically

changing the mounting angle of the horizontal tail by adding or subtracting the value δh

to the original twist distribution for the horizontal tail, effectively rotating the stabilizer

about the quarter chord. The angle of attack α was also included as a design variable so

that it could be adjusted and used to update the state of the aircraft within MachUpX to

a trimmed state. By using both δh and α as design variables and then placing a constraint

on the pitching moment of the aircraft, a trimmed flight condition was achieved for the

optimization.

A bound of |δh| ≤ 25◦ was chosen to ensure the horizontal stabilizer mounting angle

stayed within typically reasonable deflection angles for a control surface. A bound of |α| ≤

25◦ was also implemented to ensure that the aircraft would not try to trim at an angle of

attack that would cause the wings to stall. While 25◦ is a relatively large angle of attack,

it was found that the final angle of attack used to trim the aircraft stayed well below this

bound.

Constraints were used to trim the Ikhana in the optimization as well as to specify a

desired lift coefficient. Both of the constraints were implemented as equality constraints

based off of the logic contained in the optimization statement below. The lift coefficient

and pitching moment values used to satisfy the constraints were generated using a built in

MachUpX command, which also calculated the drag coefficient to be minimized.

12

Optimization Statement

minimize: CD ∗ 100

with respect to: α, δh, δi

subject to: CL − CL,Desired = 0

Cm = 0

|δh|, |α| ≤ 25◦

To ensure the drag coefficient was minimized appropriately, it was helpful to ensure that

the largest constraint and the value to be minimized were on the same order of magnitude.

The pitching moment was constrained to be zero, so it was assumed that it would generally

be smaller than the drag coefficient value being minimized. However, the lift coefficients

used were in the range of CL = 0.1− 0.9 while the drag coefficients obtained for the NASA

Ikhana were in the range of 0.006− 0.03 which is 10 to 100 times smaller than CL. Due to

CD being one to two orders of magnitude smaller than CL, it was helpful to scale the drag

coefficient to be on the same order of magnitude as the largest constraint. This was done

by multiplying the CD value returned from MachUpX in the cost function by 100.0.

To start the optimization, MachUpX was passed the aircraft specific input files, from

which a scene class was generated. It is important to note that any changes to the aircraft

or scene objects after a scene class has been created, require the scene class to be reinitial-

ized. The scene class contained information about the aircraft state, including the angle

of attack which was changed to achieve a trimmed flight condition. The aircraft object

contained information about the twist distribution and was updated at each iteration of

the optimization. Since both the aircraft and scene objects were updated at each iteration

of the optimization it was necessary to reinitialize the scene class at the beginning of each

iteration as well.

Once the initial scene class was generated, it was passed to scipy.optimize.minimize.

The x array for the scipy optimization contained all design variables, including the values

for the camber of each control section, the mounting angle adjustment for the horizontal

stabilizer, and the angle of attack (δi, δh, α). Thus the size of the x array was equal to the

total number of control sections + 2. Inside of the optimization, the values of the x array

13

associated with the camber of each control section were used to adjust the camber on the

main wing of the Ikhana. Then the function to solve for forces and moments in MachUpX

was called to generate CD, CL, and Cm so that the aircraft could be trimmed and the drag

minimized. Trimming was achieved by enforcing the two equality constraints for CL and

Cm and allowing the optimization to adjust the last two elements of the x array (δh and α)

along with the camber. The state object for the aircraft was then updated and the scene

class was reinitialized since there were changes to the aircraft object. After re-initialization

of the scene class, the solve forces function was again called to obtain the value of CD, which

was the return value of the cost function in the optimization. This process was repeated

until the total drag had been minimized in a trimmed state. Upon completion, the camber,

mounting angle adjustment for the horizontal stabilizer, angle of attack, lift coefficient, and

moment coefficient (δi, δh, α, CL, Cm) were returned along with the value of the minimum

drag, CD. A simplified flow chart of the process is depicted in Fig. 2.3.

,DesiredLC

M
ac

h
U

p
X

S
ce

n
e

C
la

ss

MachUpX in

Python Script

, , , , ,L m D i hC C C

SLSQP Optimization

,Desired 0

0

L L

m

C C

C

− =

=

1) MachUpX files

• Aircraft JSON

• Scene JSON

2) # control sections

3) Bounds

4)

Input

Output

Constraints

Adjust _________ to minimize

___ within bounds

, ,i h

DC

MachUpX

Scene Class
, ,i h

MachUpX

Cost Function

Fig. 2.3: Simplified flow chart of optimization process.

14

2.5 Example Ikhana Calculation

As an example, this section will go through the optimization method in greater detail

with references to the optimization code for the NASA Ikhana used in this work. While

this section details the specific code used in this work, care was taken to highlight the most

important concepts necessary for any code/method in order to achieve similar results when

combining MachUpX with an SLSQP optimization method.

2.5.1 User Input

To set up and initialize the optimization code, several pieces of information were re-

quired. An aircraft JSON file and scene JSON file were defined for use in MachUpX. These

files were set up as outlined in the MachUpX documentation [18]. The NASA Ikhana air-

craft and scene JSON files used in this work are shown in Appendices A.1 and A.2. The

number of control sections and the desired lift coefficient were also specified. Lastly, the

upper and lower bounds for the range of angles of attack and horizontal stabilizer mounting

angles were specified to ensure the solution stayed within the operational envelope of the

aircraft to be optimized. For this work, all necessary information was input into a set up/run

commands python file and then all proceeding information was passed between functions

automatically. An example of this file type is shown in Appendix B.3. The aircraft and

scene JSON files, as well as the aircraft name, are given in lines 18-20 of B.3. The lift

coefficient to optimize at is given on line 15, the number of control points on line 23, and

the upper and lower flap bounds are specified on lines 26 and 27 of B.3. Also, as seen on

line 30 of B.3, an initial guess can be specified for the camber, mounting angle adjustment,

and angle of attack (δi, δh, α) to be used. An initial guess was not necessary but the ability

to define one proved useful, especially when searching different areas of the solution space

or when initializing the optimization using a solution from a previous lift coefficient when

looping through a range of lift coefficients. Lastly, the end of the user input/run commands

file shown in B.3 includes the call to the optimization with all required values passed in as

parameters to the optimization call.

15

2.5.2 General Initialization and Creating MachUpX Scene Class

Once the aircraft JSON file, scene JSON file, number of control sections, upper and

lower bounds, and the desired lift coefficient were given to the optimization code, the

MachUpX scene class was created. Creating the initial MachUpX scene class was straight

forward. However, the method of changing the camber, horizontal tail mounting angle,

and angle of attack in order to minimize drag required additional steps. Changing the

camber meant changing the airfoil being used and MachUpX needs information about the

coefficients for any airfoil used. Changing the horizontal tail mounting angle in a way that

rotates the tail about the quarter chord and changing the angle of attack of the aircraft

both required the MachUpX scene class to be reinitialized each time a change was made.

These extra steps required the use of functional type airfoils, as described in [22], and using

dictionaries to represent the information in the aircraft and scene JSON files.

To minimize drag by optimizing the camber schedule, it was necessary to use a wide

range of camber values for the airfoils that make up the wing. In MachUpX, each airfoil used

must be defined. The definition of an airfoil includes information about the coefficients and

geometry of the airfoil. Lift, drag, and pitching moment coefficients, or a way to derive them,

must be specified in order to carry out the calculations internal to MachUpX. By allowing

the optimization method to change the camber to minimize drag, it was not possible to

define every possible airfoil and its associated coefficients. The solution to this problem lay

in the ability of MachUpX to use functions to find the lift, drag, and moment coefficients.

In order to generate these functions the data from Hunsaker [1] was used to generate a

combination of average values, linear fits, and parabolic fits that allowed for the calculation

of CL, CD, and Cm as a function of the camber. Once the functions for CL, CD, and Cm

were generated, they were linked to the aircraft information used by MachUpX.

When using functional airfoils, placing the function names in the aircraft JSON file

before it is read into MachUpX will not work as the names are no longer interpreted as

functions once read in from the JSON file. This challenge was solved by using dictionaries.

The aircraft and scene JSON files were read into the code as dictionaries and then the dic-

16

tionary stored in the aircraft’s airfoils key was replaced with a new dictionary that contained

the function calls for CL, CD, and Cm. For an example of how this was implemented in the

present work, see Appendix B.6 for the creation of the new dictionary with the functions,

and line 131 in Appendix B.4 for replacement of the airfoils key in the aircraft dictionary.

Lastly, using dictionaries addressed the problem of having to reinitialize the MachUpX

scene class whenever δh or α were changed. Instead of attempting to overwrite or rewrite

the given JSON files with updated values for α and δh and then reading the new adjusted

JSON file back in, a dictionary allowed for easier access to and changing of the information

within the code itself. Using dictionaries also allowed for the use of multiple copies of the

aircraft and scene dictionaries in order to maintain the original information as well as a

version with any changes needed for the next iteration of the optimization. Maintaining a

running copy of the scene and aircraft dictionaries helped address the need to reinitialize

the MachUpX scene class whenever a change to δh or α were made by splitting out the

two processes. Changes to α were made in the scene dictionary, from which a scene class

was initialized, while changes to δh were made in the aircraft dictionary, which had no

effect on the initialization of a scene class. However, the aircraft associated with the scene

class needed to be updated once changes were made. To help facilitate this process it

was found to be beneficial to remove the aircraft key, and associated information, from

the scene dictionary and create the MachUpX scene class with a blank scene dictionary.

Initializing with a blank scene dictionary, a scene that contained no aircraft, resulted in

a scene where only the operating conditions were specified. Then, once the scene class

was created, a MachUpX command that adds an aircraft to the scene class was used. By

keeping a running tab of the two dictionaries, a new scene class was created using the scene

dictionary whenever there was a change to α. Then the aircraft dictionary was added to the

scene class with any changes to δh needed to pitch trim the aircraft. See Appendix B.4 lines

125-142, 155-157, 289-302, 380-396 for examples of how the scene and aircraft dictionaries

were used to create the scene class, set α, and change δh.

17

2.5.3 Optimization Set Up and Call

In order to set up and carry out the optimization, an initial guess, bounds, and con-

straints were all required. As mentioned earlier, the initial guess was set up as an array with

length equal to the number of control sections + 2. For example, if two control sections

were desired, the initial guess array would be 4 elements long: two elements for the control

section camber values, 1 element for the horizontal stabilizer mounting angle adjustment,

and 1 element for the angle of attack. The initial guess array could be given in two forms.

The first assumed 0 for all values of δi, δh, and α. The second used the initial values given

by the user in the user input section for the values of δi, δh, and α.

The user-specified values for upper and lower bounds for the angle of attack and hori-

zontal stabilizer mounting angle were used to create bounds using the scipy.optimize.Bounds

class. These bounds applied only to the last two elements of the initial guess array, x. This

was done so that the values in the initial guess array corresponding to camber had no bounds

applied, only the angle of attack and horizontal stabilizer mounting angle had bounds ap-

plied. Bounding the angle of attack allowed the user to keep the aircraft within a region that

avoided stall and bounds on the horizontal stabilizer kept deflections within the physical

limits of the aircraft’s control surfaces.

Equality constraints were set up for both the lift coefficient, CL, and the pitching

moment coefficient, Cm. These constraints were evaluated using the same cost function

that was used for minimizing drag. For this purpose, a flag was added to the cost function

so that the cost function could determine whether to return one of the constraint values,

CL or Cm, or to return the value to be minimized, CD.

Once the initial guess, bounds, and constraints were set up, the optimization was called.

The optimization was called by passing the cost function, the initial guess, the desired lift

coefficient, the bounds, and the constraints into scipy.optimize.minimize. See Appendix B.4

lines 212-247 for how this was implemented in this work.

18

2.5.4 Cost Function

The optimization was dependant on the cost function. Within the cost function, the

horizontal stabilizer mounting angle and angle of attack were set according to the values in

the x array. Changes were made to the angle of attack and horizontal stabilizer mounting

angle in the scene and aircraft dictionaries and then a new scene class was initialized. The

values of the x array associated with the camber for each control section were used to set

the control state of the aircraft within the scene class. MachUpX was then used to solve

for the forces and moments on the aircraft associated with the given operating conditions.

Depending on whether the cost function was being called for a constraint or for the value

to be minimized, the appropriate value was returned, either CL, Cm, or CD.

In order to change the mounting angle of the horizontal stabilizer, the element of the

x array corresponding to δh was added to each element of the twist array for the horizontal

stabilizer. The horizontal stabilizer twist array was a n x 2 array where n represented the

number of spanwise locations for which the twist was defined. The first column of the

array was the spanwise location and the second column was the twist value associated with

that spanwise location along the horizontal stabilizer. By adding δh to the twist value

of each spanwise location the entire horizontal stabilizer was effectively rotated about its

quarter chord. The angle of attack was also updated by using the element of the x array

corresponding to α; however, this update was as simple as replacing the value associated

with the alpha key in the scene dictionary with the value of α from the x array. Once these

steps were accomplished, the MachUpX scene class was reinitialized and the aircraft added

to the scene.

MachUpX can accept an array that defines the control state for an aircraft. The first

column of this array should contain the spanwise location associated with the edges of the

control section, and the second column should specify the deflection, in this case camber,

associated with each control surface. In between these specified locations, MachUpX will

linearly interpolate the settings. This means that if two control sections are desired, but

only values of [0, 0.5, 1] are given in the spanwise location column, the resulting control

19

sections will look like part (a) of Fig. 2.4 as viewed from the trailing edge. It was desired

to have each control section represented with a single airfoil of a specific camber. To

achieve this result, the array given to MachUpX needed to be ’doubled’. This was done by

representing the spanwise location column as [0, 0.5, 0.5, 1.0] where the spanwise location

between control surfaces were doubled. Doubling the array resulted in control sections that

looked like part (b) of Fig. 2.4 as viewed from the trailing edge. Using this method, the

array representing the camber associated with each control section was generated and the

control state of the aircraft was set. Finally, the forces and moments were calculated using

MachUpX and the appropriate value, CL, Cm, or CD was returned. See Appendix B.4 lines

342-424 for the cost function used in this work. It is important to note that modeling the

control sections as represented in part (b) of Fig. 2.4 causes a discontinuity between control

sections which can cause interference drag. MachUpX neglects the interference drag caused

by this discontinuity between control sections when calculating the drag.

(a) (b)

Fig. 2.4: Linearly interpolated (a) vs Discrete (b) control sections.

20

2.5.5 Final Forces and Moments Solution

Once the optimization section was done, only the final x array was returned to the main

body of code. While the final value of minimum drag was contained in the solution object

returned from the call to scipy.optimize.minimize, this value was ignored as other features

of MachUpX were still needed. Instead, the final x array from the solution contained all

information about the angle of attack, horizontal stabilizer mounting angle adjustment,

and control section camber values that would give the minimum drag. These values were

used to adjust the aircraft and scene dictionaries, reinitialize the MachUpX scene class, and

calculate the final forces and moments.

The drag coefficient, angle of attack, horizontal stabilizer mounting angle adjustment,

and camber settings were then returned to the user. It was also useful to record all forces and

moments as well as the distributions file generated by MachUpX. The distributions file was

used to get the section lift coefficient, which was used to generate the lift distribution as a

function of spanwise location along the wing for comparison with the elliptic lift distribution.

In some instances it was useful to take the final solution from the optimization and plug

it back into the optimization as the initial guess before calculating the final forces and

moments. By plugging the ’final’ solution back into the optimization, comparing the new

final solution to the prior final solution, and iteratively doing so until the difference between

the two solutions was below a given error threshold, the accuracy with which the true local

minimum could be found was increased.

2.5.6 Single CL Case

For running the optimization at a single lift coefficient, only the above sections were

required for the optimization. As mentioned in the preceding section, it was desirable to

write the results of the optimization out to files for reference. It was found to be useful

to save the final forces and moments, the MachUpX distributions file, and the solution

returned from the optimization along with information about the initial conditions. Storing

the initial conditions served as a reference for the conditions used to obtain a given result

and allowed for that result to be duplicated. Example code can be seen in Appendix B.3

21

2.5.7 Looping Through a Range of CL Values

For looping through a range of lift coefficients, CL = 0.1 − 0.9, the process described

above was placed in a loop where at each iteration a different lift coefficient was used in

the initial parameters. This method also allowed for automatic creation of a drag polar,

comparison of camber schedules, and using the solution from a previous lift coefficient as

the initial guess for the next lift coefficient. Using the result of the previous lift coefficient

as the initial guess for the next lift coefficient was found to shorten run-time and yield

better results when compared to using an initial guess of zero camber, zero mounting angle

adjustment, and zero angle of attack for the entire range of lift coefficients.

The code for this work also used a method where multiple previous solutions were used

as initial guesses for a single lift coefficient and then the result with lowest drag was kept.

This was done by using an up then down method by starting at a lift coefficient of 0.1 with

an initial guess of all zeros. Once the solution for CL = 0.1 was achieved, that solution

was used as the initial guess for CL = 0.2, then the solution for the CL = 0.2 optimization

was used to find the results for CL = 0.3. This process was repeated all the way up to

CL = 0.9. The process was then conducted backwards, where the solution from CL = 0.9

was used as the initial guess for CL = 0.8. The solution obtained from that optimization

was then compared with the previous CL = 0.8 solution and the better solution (lowest CD)

was kept. The best solution for CL = 0.8 was then used as the initial guess for CL = 0.7

and again the new solution was compared with the previous solution and the better of the

two was kept. This process was repeated all the way down to CL = 0.1. This method was

used because it was found that prior to its implementation, the drag polar obtained from

looping through CL = 0.1− 0.9 seemed to represent two different solutions. Meaning that

the CD values associated with CL = 0.1 − 0.X would lie on one curve and then there was

a distinctly different curve that the CD values for CL = 0.X − 0.9 would lie on. By going

up then down, all of the drag coefficients obtained were on the same curve and lower drag

values were obtained than without the up/down method. Often this shift appeared around

CL = 0.6, or other intermediate CL values.

22

It should be noted that it is not the belief of the author that this up/down method is the

only way to ensure better results from the optimization. This method stemmed from looking

at the case of optimizing for two control sections, where the second optimization with an

initial guess increased the chances of starting the optimization at a different location in the

solution space and thus increased the likelihood of finding a more global minima. When the

number of control sections was increased to more than two control sections, this method was

kept as it still gave clean and consistent results even though only looking at two different

initial guesses does not search a larger design space as thoroughly as it does a design space

with only two control sections. While in this work it is not assumed that the up/down

method is the only way to search the solution space, it was found in this work that some

method of searching the solution space more thoroughly than with just one initial guess

helped improve the quality of results obtained. The exception to this finding was the case of

running a baseline for the aircraft with no control sections. In this case, the optimization was

essentially only pitch trimming the aircraft and no deflections were set. Therefore, while

using the previous solution (only a horizontal stabilizer mounting angle adjustment and

angle of attack) could help the solution trim the aircraft more quickly, it was not necessary

to arrive at a good solution. The optimization converged quickly and accurately on an

angle of attack and horizontal stabilizer mounting angle that pitch trimmed the aircraft.

In the case of finding the baseline drag polar, it was only necessary to loop through all lift

coefficients once and run the optimization as described in the sections above. An example of

code for obtaining the baseline drag polar for the NASA Ikhana can be found in Appendix

B.1, and an example of looping through multiple lift coefficients and using the up/down

method for the NASA Ikhana can be found in Appendix B.2.

23

CHAPTER 3

RESULTS

The methods in preceding sections were used to obtain results for the NASA Ikhana

over a range of lift coefficients with varying numbers of control sections. The results will

be presented and compared in this section. In order to compare the results of different

configurations of the NASA Ikhana, it is useful to define a few parameters.

The Oswald Efficiency Factor e is often used to show deviation from the elliptic lift

distribution, which makes e a useful parameter to measure when trying to minimize drag as

the elliptic distribution has minimum induced drag. As such, the Oswald efficiency factor

will be used to help compare the drag reduction seen by optimizing the NASA Ikhana

with multiple camber schedules. The Oswald efficiency factor depends on the aspect ratio

RA and the quadratic part of the drag coefficient as a function of the lift coefficient CD2

according to

e =
1

π ∗RA ∗ CD2

(3.1)

For this work, the percent change in drag between any two solutions was defined as

ζx→y =
CDy − CDx

CDx

∗ 100 (3.2)

where −ζ indicates a reduction in drag and +ζ indicates an increase in drag. The subscript

x → y represents the change in drag when moving from condition x to condition y. For

example, ζ0→2 = −14% represents a 14% drag reduction when moving from 0 control

sections to 2 control sections.

Comparing the lift distribution of the NASA Ikhana to the elliptic lift distribution

is also useful, as the elliptic lift distribution produces minimum induced drag. Prandtl

introduced the elliptic lift distribution as

24

bL̃(z)

L
=

4

π

{
sin

[
cos−1

(
−2z

b

)]}
(3.3)

where b is the span, z is the spanwise location along the wing, L̃(z) is the section lift

as a function of spanwise location, and L is the total lift [23]. When comparing the lift

distributions of the NASA Ikhana with the elliptic distribution, only a single semi-span will

be represented due to the symmetry of the NASA Ikhana.

In order to compare results from MachUpX with the elliptic lift distribution, the lift

distribution for the Ikhana needed to be generated with data from MachUpX. The dis-

tributions file from MachUpX contained information about the section lift coefficient at

various spanwise locations, which was used to calculate the lift distribution. The section

lift coefficient as a function of spanwise location z is defined as

C̃L (z) =
L̃ (z)

1
2ρV∞

2c
(3.4)

where ρ is the freestream density, c is the chord length, V∞ is the freestream velocity, and

L̃ (z) is the section lift as a function of spanwise location z. Solving Eq. 3.4 for the section

lift as a function of spanwise location z gives

L̃ (z) = C̃L (z)
1

2
ρV∞

2c (3.5)

The total lift coefficient is defined as

CL =
L

1
2ρV∞

2Sw
(3.6)

where L is the total lift and Sw is the planform area of the wing. Solving Eq. 3.6 for the

total lift gives

L = CL
1

2
ρV∞

2Sw (3.7)

25

Combining Eq. 3.5 and 3.7 to match the left hand side of Eq. 3.3 allows for calculation of

the Ikhana lift distribution using

bL̃ (z)

L
=

b
[
C̃L (z) ∗ c

]
CLSw

(3.8)

where the section lift coefficient comes from MachUpX data and the total lift coefficient is

the desired lift coefficient used for the optimization. Equations 3.3 and 3.8 both calculate

the normalized section lift and are directly comparable. All lift distributions presented in

this section were generated using Eq. 3.3, Eq. 3.8, and MachUpX data obtained from the

optimizations.

3.1 NASA Ikhana

Optimization of the NASA Ikhana showed that as more control sections were added to

the wing, the drag was reduced and there was a point of diminishing returns, beyond which

adding control sections resulted in negligible drag reduction. For the NASA Ikhana, this

point of diminishing returns proved to be very low. Figure 3.1 shows the drag polars for

the NASA Ikhana with 0 control sections (the baseline case), 2 control sections, 4 control

sections, and at the theoretical limit (TL) of an Oswald efficiency e = 1. The black dashed

line in Fig. 3.1 represents the theoretical minimum drag polar that could be obtained if it

were possible to achieve an Oswald efficiency of e = 1. It is important to note that achieving

an Oswald efficiency of e = 1 is not physically possible, even for the elliptic distribution

which has minimum induced drag. However, it can be useful to compare results against a

theoretical efficiency of e = 1 to show how much room remains for improvement in reducing

drag. Solving Eq. 3.1 for CD2 when e = 1 for the NASA Ikhana yielded CD2 = 1/16π,

which was used in Eq. 2.2 with CD1 = 0.0, and CD0 = 6.563E−03 to generate the TL drag

polar. The value for CD0 came from curve fitting a second-order polynomial to the drag

polars for the NASA Ikhana with 0, 2, or 4 control sections and finding they all shared the

same zero lift drag coefficient.

26

It can be seen from Fig. 3.1 that moving from 2 control sections to 4 control sections

yielded negligible changes in drag reduction. Table 3.1 shows the values of CD for the

baseline Ikhana, the Ikhana with 2 control sections, and the Ikhana with 4 control sections

as well as ζ0→2, ζ2→4, and ζ4→TL. Examining Fig. 3.1 and Table 3.1 shows that moving

from the baseline to 2 control sections resulted in significant drag reductions, with ≈ 26%

drag reduction at CL = 0.9. However, increasing the number of control sections from 2 to 4

yielded only a 0.7449% drag reduction, and even moving to the TL would only reduce drag

another 1.2808% from the 4 control section solution.

At first, this small change in drag reduction when increasing the number of control

sections was puzzling. The camber schedules shown in Fig. 3.2 and 3.3 looked reasonable.

There were no indications of multiple solutions being present, which often represented itself

with a split point in the camber schedules. A split point was represented by the camber

schedules for lower lift coefficients following one pattern and the camber schedules for higher

lift coefficients taking on a dramatically different form. Camber schedules with such be-

havior often indicated a solution that didn’t represent the minimum drag. The camber is

represented as a function of lift coefficient for each control section in Fig. 3.4 and 3.5, where

smooth changes in camber are seen with increasing lift coefficient for both 2 and 4 control

sections. If there were a split point in the camber schedules, then the values of camber as

a function of lift coefficient represented in Fig. 3.4 and 3.5 would no longer be smooth, but

would have jumps representing a change in camber schedule pattern.

Figures 3.6 and 3.7 show the airfoils resulting from optimization of the NASA Ikhana at

CL = 0.9 with 2 and 4 control sections compared with the NACA 0010 airfoil. Optimization

of the NASA Ikhana with 2 control sections at CL = 0.9 resulted in a camber of 0.1384%

for control section 1 and a camber of −0.0521% for control section 2. It can be seen in

Fig. 3.6 that for the 2 control section Ikhana at CL = 0.9 the first control section has

small positive camber compared to the NACA 0010, whereas the second control section has

a small negative camber compared to the NACA 0010. For the 4 control section Ikhana

optimized at CL = 0.9, control section 1 has a camber of −0.1171%, control section 2 a

27

camber of 0.3379%, control section 3 a camber of 0.5734%, and control section 4 has a

negative camber of −0.9252% as shown in Fig. 3.7. Combining Fig. 3.6 and 3.7 with Fig.

3.2 - 3.5 aids in visualizing the control sections of the optimized NASA Ikhana.

Table 3.1: NASA Ikhana CD associated with 0, 2, and 4 control sections and the associated
percent reduction of CD as the number of control sections increase.

NASA Ikhana Drag Reduction

CL 0 CS CD 2 CS CD 4 CS CD ζ0→2 ζ2→4 ζ4→TL

0.1 7.1006E-03 6.7706E-03 6.7685E-03 -4.6481% -0.0301% -0.0971%
0.2 8.0127E-03 7.3871E-03 7.3784E-03 -7.8077% -0.1173% -0.2663%
0.3 9.5320E-03 8.4118E-03 8.3928E-03 -11.7515% -0.2261% -0.4685%
0.4 1.1659E-02 9.8461E-03 9.8118E-03 -15.5458% -0.3487% -0.6697%
0.5 1.4393E-02 1.1690E-02 1.1636E-02 -18.7809% -0.4668% -0.8513%
0.6 1.7735E-02 1.3937E-02 1.3861E-02 -21.4180% -0.5410% -0.9841%
0.7 2.1684E-02 1.6598E-02 1.6495E-02 -23.4535% -0.6191% -1.1167%
0.8 2.6240E-02 1.9668E-02 1.9530E-02 -25.0461% -0.6992% -1.2031%
0.9 3.1404E-02 2.3144E-02 2.2972E-02 -26.3024% -0.7449% -1.2808%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
D

CL

Baseline
2 Control Sections
4 Control Sections
Theoretical Limit, e=1

Fig. 3.1: Drag polar comparison for the NASA Ikhana with 0, 2, and 4 control sections.

28

-0.1

-0.05

0

0.05

0.1

0.15

-1.5 -1 -0.5 0 0.5 1 1.5

C
a
m

b
er

Span Fraction

CL 0.1

CL 0.2

CL 0.3

CL 0.4

CL 0.5

CL 0.6

CL 0.7

CL 0.8

CL 0.9

Fig. 3.2: Camber schedule for the NASA Ikhana with 2 control sections.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.5 -1 -0.5 0 0.5 1 1.5

C
a
m

b
er

Span Fraction

CL 0.1

CL 0.2

CL 0.3

CL 0.4

CL 0.5

CL 0.6

CL 0.7

CL 0.8

CL 0.9

Fig. 3.3: Camber schedule for the NASA Ikhana with 4 control sections.

29

-0.1

-0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
a
m

b
er

CL

Control Section 1

Control Section 2

Fig. 3.4: Camber as a function of lift coefficient for the NASA Ikhana with 2 control sections.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
a
m

b
er

CL

Control Section 1

Control Section 2

Control Section 3

Control Section 4

Fig. 3.5: Camber as a function of lift coefficient for the NASA Ikhana with 4 control sections.

30

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 1

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 2

Fig. 3.6: Resultant airfoils from optimization of the NASA Ikhana at CL = 0.9 with 2
control sections.

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 1

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 2

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 3

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 4

Fig. 3.7: Resultant airfoils from optimization of the NASA Ikhana at CL = 0.9 with 4
control sections.

31

To help determine if the results obtained for the 4 control section NASA Ikhana were

accurate, an attempt to force a solution in different parts of the solution space was made. In

order to search more of the solution space, a lift coefficient of CL = 0.6 was used with various

initial guesses. A value of CL = 0.6 was chosen because larger lift coefficients generally show

more reduction in drag, yet CL = 0.6 stays low enough that if a better solution was found,

improvements would be more likely to be measurable both above and below the value used

in the search. To force the search into different parts of the solution space, 16 possible

high/low initial conditions for the camber of control sections were used as initial guesses,

where high means positive camber and low means negative camber. Using 4 control sections

there are 16 possible high/low combinations for the initial guess used in the optimization,

which is why 16 combinations were used. All initial guesses had a slightly negative δh and

positive α. This was done to avoid increasing the number of combinations from 16 to 64 and

because a positive α and slightly negative δh were expected, given the characteristics and

operating conditions of the NASA Ikhana. Table 3.2 shows the search of the solution space

with the 16 initial guesses including the values of each initial guess and their associated

percent change in drag when compared to the original CL = 0.6 optimization solution, as

shown in Fig. 3.1. For Table 3.2, positive camber values are shown in gray and negative

camber values are shown in white to highlight the various patterns used as initial guesses.

The camber of each control section in Table 3.2 is distinguished with δ1, δ2, δ3, or δ4 where

δ1 is the camber of the control section closest to the wing root and δ4 is the camber of the

control section closest to the wing tip.

The ζ value in the last column of Table 3.2 uses Eq. 3.2. Except, instead of comparing

differing numbers of control sections, the original drag value from the optimization and the

solution space search drag values were compared. As can be seen in Table 3.2, regardless of

the initial guess, none of the runs resulted in lower drag than the original optimization at

CL = 0.6. Examination of the ζ values for the solution space search shows that half of the

attempts to force a better solution resulted in increased drag, and half resulted in the same

drag as was originally found from the optimization in Fig. 3.1, out to four decimal places.

32

Table 3.2: Solution space search for NASA Ikhana with 4 control sections at CL = 0.6.

Initial x Array
ζoriginal→searchδ1 δ2 δ3 δ4 δh α

2.0000 2.0000 2.0000 2.0000 -3.3513 5.3620 0.0005%
2.0000 2.0000 2.0000 -2.0000 -3.3513 5.3620 0.0000%
2.0000 1.0000 -3.0000 4.0000 -4.0000 3.5000 0.0000%
2.0000 2.0000 -2.0000 -2.0000 -3.3513 5.3620 0.0000%
2.0000 -2.0000 2.0000 2.0000 -3.3513 5.3620 0.0007%
2.0000 -2.0000 2.0000 -2.0000 -3.3513 5.3620 0.0000%
2.0000 -1.0000 -2.0000 2.0000 -4.0000 3.5000 0.0000%
2.0000 -1.0000 -2.0000 -2.0000 -4.0000 3.5000 0.1546%
-2.0000 2.0000 2.0000 2.0000 -3.3513 5.3620 0.0000%
-2.0000 2.0000 2.0000 -2.0000 -3.3513 5.3620 0.0069%
-2.0000 2.0000 -2.0000 2.0000 -3.3513 5.3620 0.0025%
-2.0000 2.0000 -2.0000 -2.0000 -3.3513 5.3620 0.0000%
-2.0000 -2.0000 2.0000 2.0000 -3.3513 5.3620 0.0104%
-2.0000 -2.0000 2.0000 -2.0000 -3.3513 5.3620 0.0008%
-2.0000 -1.0000 -2.0000 2.0000 -4.0000 3.5000 0.0000%
-2.0000 -2.0000 -2.0000 -2.0000 -3.3513 5.3620 0.0005%

The results of the solution space search combined with examination of the Oswald

efficiency factor for the NASA Ikhana with 0, 2, and 4 control sections, calculated with

Eq. 3.1 and shown in Fig. 3.8, led to the conclusion that the high aspect ratio tapered

wing of the Ikhana is too near the elliptic distribution to significantly benefit from large

numbers of control sections. The Oswald efficiency factor of the baseline Ikhana was found

to be e = 0.6551. With 2 control sections, the efficiency improved to e = 0.9763, and

moving to 4 control sections increased the efficiency slightly to e = 0.9839. For both the

2 and 4 control section results, the Ikhana approached the theoretical limit on Oswald

efficiency, represented by the black dashed line in Fig. 3.8. Using Eq. 3.3, the elliptic

lift distribution was compared with the lift distributions for the NASA Ikhana generated

using Eq. 3.8. Figure 3.9 compares the elliptic lift distribution with the baseline, 2, and

4 control section NASA Ikhana lift distributions at a total lift coefficient of 0.8. As the

number of control sections increased for the NASA Ikhana the lift distribution more closely

approached the elliptic lift distribution. However, even as the number of control sections

increase, no dramatic changes are seen in the lift distributions of Fig. 3.9, implying that

33

the limit of diminishing returns for the NASA Ikhana occurs with as few as 2 to 4 control

sections. For comparison, and to verify these conclusions, a version of the NASA Ikhana

with a rectangular wing of the same aspect ratio was run through the optimization.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

O
sw

a
ld

 E
ff

ic
ie

n
cy

,
e

Num Control Sections

Oswald Efficiency

Theoretical Limit

Fig. 3.8: Oswald efficiency of the NASA Ikhana with 0, 2, and 4 control sections.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

b
L

/L

2z/b

Elliptic Distribution

Baseline

2 Control Sections

4 Control Sections

2 /z b

Fig. 3.9: Lift distributions for the NASA Ikhana with 0, 2, and 4 control sections vs the
elliptic lift distribution.

34

3.2 NASA Ikhana with Rectangular Wing

The tapered wing of the NASA Ikhana was replaced with a rectangular wing by us-

ing the physical properties shown in Table 3.3. Comparing the physical properties of the

rectangular Ikhana with those for the regular (tapered) Ikhana in Table 2.2, it is seen that

only the chord changed. The same reference area, aspect ratio, weight, and other properties

were maintained.

Table 3.3: Physical Properties of the Rectangular Ikhana.

Rectangular Ikhana Physical Properties

Aspect Ratio, RA 16
CGx,y,z (m) 0.0

Mean chord, c (m) 1.2192
Reference Area, Sw (m2) 23.7832

Reference Longitudinal Length, lref (m) 1.2192
Span, b (m) 19.5072

Semi-span, b/2 (m) 9.7536
Chord, c (m) 1.2192
Weight, W (N) 31,593

Results for the rectangular Ikhana are summarized in Table 3.4, and the drag polar

is shown in Fig. 3.10. The black dashed line in Fig. 3.10 represents the drag polar at

the theoretical limit (TL) of an Oswald efficiency e = 1. Since the rectangular Ikhana and

the tapered Ikhana have the same aspect ratio, solving Eq. 2.2 for CD2 with e = 1 gave

CD2 = 1/16π. CD1 = 0.0 was also used again. However, fitting a second-order polynomial

to any of the drag polars for 0, 2, or 4 control sections on the rectangular Ikhana gave

CD0 = 6.6562E − 03. The drag polars in Fig. 3.10 show that results for the rectangular

Ikhana with 2 and 4 control sections are still very similar, but there is more separation

between the two solutions at larger lift coefficients than was seen in Fig. 3.1 for the tapered

Ikhana. Also, as shown in Fig. 3.10 and Table 3.4, there is more room to reduce drag when

moving from 4 control sections towards the theoretical limit. Table 3.4 shows the same trend

of ≈ 27% drag reduction when moving from the baseline to 2 control sections; however, there

was ≈ 2% drag reduction when going from 2 to 4 control sections at CL = 0.9, more than

35

double what was seen for the tapered Ikhana, and moving from 4 control sections towards

the theoretical limit would give an ≈ 3.5% further reduction in drag.

Figures 3.11 - 3.16 respectively show the camber schedules with 2 and 4 control sections,

camber as a function of lift coefficient for 2 and 4 control sections, and the airfoils resulting

from optimization of the rectangular Ikhana at CL = 0.9 with 2 and 4 control sections.

As was noted with the tapered Ikhana, the camber schedules and camber as a function

of lift coefficient plots are consistent and do not have any jumps which would indicate

multiple solutions. Figures 3.15 and 3.16 show the airfoils resulting from optimization

of the rectangular Ikhana at CL = 0.9. Figure 3.15 shows a larger positive camber for

control section 1 and larger negative camber for control section 2, when compared to Fig.

3.6 for the tapered Ikhana. The rectangular Ikhana with 2 control sections had camber

values of 1.0116% and −1.2857% for control sections 1 and 2 compared with 0.1384% and

−0.0521% for the tapered Ikhana. Examination of Fig. 3.16 shows different behavior for

the rectangular Ikhana with 4 control sections than was seen with the 4 control section

tapered Ikhana in Fig. 3.7. For the rectangular Ikhana, control section 1 had a positive

camber of 1.3204%, control section 2 a camber of 0.8367%, control section 3 a camber of

−0.1322%, and control section 4 a camber of −2.3828%. Whereas with the tapered Ikhana,

the camber increased from −0.1171% at control section 1 to 0.5734% at control section 3

and then control section 4 had a camber of −0.9252%.

Table 3.4: Rectangular Ikhana CD associated with 0, 2, and 4 control sections along with
the associated percent reduction of CD as the number of control sections increase.

Rectangular NASA Ikhana Drag Reduction

CL 0 CS CD 2 CS CD 4 CS CD ζ0→2 ζ2→4 ζ4→TL

0.1 7.1218E-03 6.7815E-03 6.7756E-03 -4.7784% -0.0861% -0.2169%
0.2 8.0988E-03 7.4287E-03 7.4058E-03 -8.2735% -0.3084% -0.6490%
0.3 9.7268E-03 8.5051E-03 8.4536E-03 -12.5604% -0.6055% -1.1962%
0.4 1.2006E-02 1.0010E-02 9.9192E-03 -16.6205% -0.9119% -1.7551%
0.5 1.4936E-02 1.1945E-02 1.1802E-02 -20.0277% -1.1911% -2.2607%
0.6 1.8517E-02 1.4308E-02 1.4103E-02 -22.7331% -1.4285% -2.6890%
0.7 2.2749E-02 1.7099E-02 1.6821E-02 -24.8385% -1.6232% -3.0368%
0.8 2.7632E-02 2.0318E-02 1.9956E-02 -26.4709% -1.7795% -3.3160%
0.9 3.3166E-02 2.3965E-02 2.3508E-02 -27.7428% -1.9047% -3.5392%

36

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
D

CL

Baseline
2 Control Sections
4 Control Sections
Theoretical Limit, e=1

Fig. 3.10: Drag polar comparison for the rectangular Ikhana with 0, 2, and 4 control sections.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

C
a
m

b
er

Span Fraction

CL 0.1

CL 0.2

CL 0.3

CL 0.4

CL 0.5

CL 0.6

CL 0.7

CL 0.8

CL 0.9

Fig. 3.11: Camber schedule for the rectangular Ikhana with 2 control sections.

37

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

C
a
m

b
er

Span Fraction

CL 0.1

CL 0.2

CL 0.3

CL 0.4

CL 0.5

CL 0.6

CL 0.7

CL 0.8

CL 0.9

Fig. 3.12: Camber schedule for the rectangular Ikhana with 4 control sections.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
a
m

b
er

CL

Control Section 1

Control Section 2

Fig. 3.13: Camber as a function of lift coefficient for the rectangular Ikhana with 2 control
sections.

38

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
a
m

b
er

CL

Control Section 1

Control Section 2

Control Section 3

Control Section 4

Fig. 3.14: Camber as a function of lift coefficient for the rectangular Ikhana with 4 control
sections.

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 1

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 2

Fig. 3.15: Resultant airfoils from optimization of the rectangular Ikhana at CL = 0.9 with
2 control sections.

39

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 1

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 2

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 3

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

T
h

ic
k

n
es

s

Chord, c

NACA 0010
CS 4

Fig. 3.16: Resultant airfoils from optimization of the rectangular Ikhana at CL = 0.9 with
4 control sections.

Figure 3.17 shows that even with a rectangular wing, e increases with more control

sections and approaches the theoretical limit of e = 1 for Oswald efficiency, as represented

by the dashed black line. Figure 3.18 shows the lift distributions for the rectangular Ikhana

compared with the elliptic lift distribution. As the number of control sections increased the

lift distribution for the rectangular Ikhana more closely approached the elliptic distribution.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

O
sw

a
ld

 E
ff

ic
ie

n
cy

,
e

Num Control Sections

Oswald Efficiency

Theoretical Limit

Fig. 3.17: Oswald efficiency of the rectangular Ikhana with 0, 2, and 4 control sections.

40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

b
L

/L

2z/b

Elliptic Distribution

Baseline

2 Control Sections

4 Control Sections

2 /z b

Fig. 3.18: Lift distributions for the rectangular Ikhana with 0, 2, and 4 control sections vs
the elliptic lift distribution.

3.3 NASA Ikhana vs. Rectangular Ikhana Comparison

Results for the rectangular Ikhana are different enough from results for the tapered

Ikhana to support the conclusion that the NASA Ikhana, with its high aspect ratio tapered

wing, has a lift distribution that is very near the elliptic distribution and will not significantly

benefit from large numbers of control sections. Table 3.5 compares the magnitude of ζ0→2

and ζ2→4 for the tapered Ikhana and the rectangular Ikhana. The ζ values are compared

using the ratio

χx→y =
ζx→y,Rectangular

ζx→y,Tapered
(3.9)

which compares the drag reduction seen for the rectangular Ikhana with the equivalent drag

reduction seen with the tapered Ikhana. A value of χ = 1 would indicate the drag reduction

was exactly equivalent between the rectangular Ikhana and the tapered Ikhana. A χ greater

than 1 would represent that the rectangular Ikhana saw a greater drag reduction, ζ, than

the tapered Ikhana and a value less than 1 would represent the tapered Ikhana saw a greater

drag reduction than the rectangular Ikhana. Data from Tables 3.4 and 3.1 were used to

calculate the values for χ in Table 3.5.

41

Results in Table 3.5 show that both the tapered and rectangular Ikhana demonstrated

roughly the same percent drag reduction when going from the baseline to 2 control sections.

However, when going from 2 to 4 control sections or 4 control sections towards the theoreti-

cal limit where e = 1, the percent drag reduction for the rectangular Ikhana was more than

double what it was for the tapered Ikhana. This indicates the rectangular Ikhana is not as

optimized as the tapered Ikhana and suggests that the more a wing’s lift distribution varies

from the elliptic distribution, the more control sections can be added before diminishing

returns are seen in drag reduction. This is supported by Fig. 3.19, which compares the

Oswald efficiencies for the tapered Ikhana and the rectangular Ikhana. While e for both

versions approach unity (the theoretical limit) with increased control sections, the rectan-

gular Ikhana has a lower e with 0, 2, and 4 control sections; thus, leaving more room to

reduce drag with additional control sections before reaching the efficiency of the tapered

Ikhana.

Table 3.5: Comparison of the percent drag reduction, between the regular (tapered) NASA
Ikhana and the rectangular Ikhana.

NASA Ikhana χ ratio

CL χ0→2 χ2→4 χ4→TL

0.1 1.0280 2.8602 2.2348
0.2 1.0596 2.6294 2.4370
0.3 1.0688 2.6782 2.5534
0.4 1.0691 2.6148 2.6206
0.5 1.0664 2.5514 2.6554
0.6 1.0614 2.6407 2.7323
0.7 1.0591 2.6221 2.7195
0.8 1.0569 2.5449 2.7561
0.9 1.0548 2.5570 2.7633

Comparison of the lift distributions for the tapered Ikhana with the rectangular Ikhana

also supported these results. Figure 3.20 compares the baseline tapered Ikhana and rect-

angular Ikhana lift distributions. It can be seen in Fig. 3.20 that the baseline tapered

Ikhana has a lift distribution much closer to the elliptic distribution than the baseline rect-

angular Ikhana’s lift distribution. Figures 3.21 and 3.22 compare the lift distributions of

42

the tapered Ikhana and the rectangular Ikhana with 2 and 4 control sections respectively.

In both Fig. 3.21 and Fig. 3.22 it can be seen that the lift distribution for the tapered

Ikhana experienced little change with increased numbers of control sections. However, the

rectangular Ikhana experienced far greater changes and additional control sections refined

the lift distribution to more closely approximate the elliptic lift distribution.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

O
sw

a
ld

 E
ff

ic
ie

n
cy

,
e

Num Control Sections

Regular (Tapered) Ikhana

Rectangular Ikhana

Theoretical Limit

Fig. 3.19: Oswald efficiency of NASA Ikhana vs rectangular Ikhana with 0, 2, and 4 control
sections.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

b
L

/L

2z/b

Elliptic Distribution

Regular (Tapered) Ikhana

Rectangular Ikhana

2 /z b2 /z b

Fig. 3.20: Lift distribution comparison of the baseline NASA Ikhana and rectangular Ikhana.

43

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

b
L

/L

2z/b

Elliptic Distribution

Regular (Tapered) Ikhana

Rectangular Ikhana

2 /z b

Fig. 3.21: Lift distribution comparison of the 2 control section NASA Ikhana and rectangular
Ikhana.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

b
L

/L

2z/b

Elliptic Distribution

Regular (Tapered) Ikhana

Rectangular Ikhana

2 /z b

Fig. 3.22: Lift distribution comparison of the 4 control section NASA Ikhana and rectangular
Ikhana.

44

3.4 Common Research Model

To present an example of a more complex wing geometry, the NASA Common Research

Model (CRM) was optimized using the same method as the Ikhana. The airfoil database

used for the CRM was obtained from Taylor [24]. For more information about the CRM

airfoils see [25]. The CRM has a double tapered wing with the double taper taking place

at the 30% span fraction point. The CRM was optimized with 2 control sections inboard of

the double taper and 4 control sections outboard of the double taper with the resulting drag

polar shown in Fig. 3.23. Camber scheduling for the optimized CRM with two inboard and

four outboard control sections is shown in Fig. 3.24 for multiple lift coefficients. Camber

as a function of lift coefficient for each control section of the optimized CRM is shown in

Fig. 3.25, where control sections 1 and 2 are inboard of the double taper, and control

sections 3-6 are outboard of the double taper. Results for the CRM are only presented for

the baseline case (no control sections) and the case with 6 total control sections (2 inboard

and 4 outboard). This is due to the more complicated nature of the CRM and its operating

conditions. The CRM operates in the transonic regime, which means that it is possible to

get regions of supersonic flow over the upper surface of the wing, which MachUpX is not

equipped to handle. Also, the fits for the airfoil data are far more complex for the CRM

than for the Ikhana, and obtaining well-behaved results for even this one case was time

consuming and challenging to get consistent results over a wide range of lift coefficients.

Using the aerodynamic tools discussed in the above sections and Eq. 3.1, the Oswald

efficiency of the baseline CRM is estimated to be e = 0.2405, while the Oswald efficiency of

the optimized CRM is estimated to be e = 0.6847, a significant improvement. The baseline

Oswald efficiency is extremely low for an airliner, and the improvement is dramatic, which

raises questions about the accuracy of this model for the CRM. The poor accuracy is most

likely due to the transonic operating conditions of the CRM, for which MachUpX is not

well suited. It is also important to note that MachUpX neglects wave drag, which would

significantly increase with regions of supersonic flow over the wing creating a mach bubble.

The increased wave drag could even be significant enough to offset any benefits seen from

45

optimal camber scheduling. While the numerical values of the CRM optimization need to be

used with extreme caution, this example does highlight the ability of the method presented

in this work to optimize more complex wing geometries. Should this method be used with

a more complex geometry in subsonic operating conditions, it is believed that more reliable

results would be obtained.

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

CL

Baseline CRM

Optimized CRM

Fig. 3.23: Baseline CRM vs Optimized CRM Drag Polar.

-2

-1

0

1

2

3

4

5

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

C
a
m

b
er

Span Fraction

CL = 0.1

CL = 0.2

CL = 0.3

CL = 0.4

CL = 0.5

Fig. 3.24: Camber schedule for optimized CRM with 2 inboard & 4 outboard control sections
at multiple CL values.

46

-2

-1

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6

C
a
m

b
er

CL

Control Section 1

Control Section 2

Control Section 3

Control Section 4

Control Section 5

Control Section 6

Fig. 3.25: Camber as a function of lift coefficient for the CRM with 2 inboard & 4 outboard
control sections.

47

CHAPTER 4

SUMMARY AND CONCLUSIONS

In this work the effect of morphing (the ability to change camber during flight) on

minimizing the drag of the NASA Ikhana was examined. Minimizing drag is desirable due

to drag’s large contribution to increased fuel burn and detrimental effect on efficiency. In

order to minimize drag, a low fidelity numerical lifting-line tool, MachUpX, was combined

with an SLSQP method to create code to optimize the NASA Ikhana at multiple design

conditions and produce the resultant drag polars and camber schedules. This method was

introduced and an example of running an optimization case given. The objectives of this

work included the following:

• Understanding how performance can be improved on the NASA Ikhana air frame by

using camber scheduling.

• Understanding how optimal camber scheduling changes with flight condition.

• Understanding how increasing the number of control sections affects the performance

of the NASA Ikhana aircraft.

This work showed that it is possible to improve the performance of the NASA Ikhana

with camber scheduling. With camber scheduling for 2 control sections, the NASA Ikhana

achieved an ≈ 26% reduction in drag when compared to its baseline non-optimized configu-

ration. Changes in flight condition were represented by increasing the desired lift coefficient,

and it was shown that as the lift coefficient increased, larger values of camber were needed

in the camber schedule to minimize drag. It was hypothesized that there is a theoretical

limit to the number of control sections that can be added to an aircraft before diminishing

returns are seen in drag reduction. For the NASA Ikhana, diminishing returns were seen

after the addition of only 2 control sections. After 2 control sections, any additional con-

trol sections showed only marginal gains in drag reduction. This behavior was supported

48

with comparison of the lift distributions for 0, 2, and 4 control sections with the elliptic

lift distribution. The baseline lift distribution (0 control sections) for the NASA Ikhana

with no optimization compared well with the elliptic distribution. For the NASA Ikhana,

the benefit achieved with increased numbers of control sections was smoothing of the lift

distribution. As the number of control sections were increased, the lift distribution was

refined to more closely resemble the shape of the elliptic lift distribution. This behavior led

to the conclusion that for the tapered high aspect ratio wing of the NASA Ikhana, there is

not much room to optimize by adding large numbers of control sections before diminishing

returns are seen.

For comparison, the NASA Ikhana was modeled with a rectangular wing of the same

aspect ratio as the regular (tapered) Ikhana. Examination of the NASA Ikhana with a

rectangular wing showed a larger change in the drag reduction with increased numbers of

control sections when compared to the actual tapered geometry of the Ikhana. Similar to the

tapered Ikhana, the rectangular Ikhana demonstrated an ≈ 27% reduction in drag with the

addition of 2 control sections. However, when the number of control sections was increased

from 2 to 4, the rectangular Ikhana experienced a drag reduction between 2.5 and 2.8 times

that of the tapered Ikhana. Comparison of the lift distributions for the rectangular Ikhana

with 0, 2, and 4 control sections with the elliptic distribution supported this behavior. The

baseline lift distribution for the rectangular Ikhana left far more room to optimize with the

addition of control sections than did the baseline lift distribution of the tapered Ikhana.

With the addition of both 2 and 4 control sections, the lift distribution of the rectangular

Ikhana got closer and closer to the elliptic lift distribution.

The NASA Common Research Model (CRM) was also examined using the method

presented in this work. The CRM is a transonic passenger jet used for research purposes

and has a much more complex wing geometry than either the tapered or rectangular Ikhana.

Drag reduction was seen when moving from the baseline to the optimized CRM; however,

results for the CRM were found to be unreliable and challenging to work with due to the

transonic operating conditions of the CRM, which MachUpX is not suited to handle.

49

Results from the NASA Ikhana, rectangular Ikhana, and CRM demonstrate that the

method presented in this work is best suited to wings in subsonic operating conditions.

Wings that have baseline lift distributions not already close to the elliptic lift distribution

will yield better results with larger numbers of control sections. However, as the number

of control sections is increased, it becomes increasingly difficult to ensure that the solution

is a global minima. Further work could include examination of alternate subsonic wing

geometries or validation with high fidelity tools.

While results for the NASA Ikhana do not show dramatic changes to performance, the

optimization technique presented in this work could be used in flight algorithms to schedule

camber during flight in order to minimize drag and fuel burn, or to inform the design of

future aircraft. One area that could particularly benefit from this work is the growing

small unmanned aerial vehicle (UAV) market. Small UAV’s are good candidates for the

methods presented in this work as they operate in subsonic conditions and many small

UAV’s have less efficient airframes than the NASA Ikhana. These less efficient airframes

have lift distributions not near the elliptic distribution and could therefore see significant

benefit from camber schedule optimization to minimize induced drag. The optimal camber

schedule could then be paired with a morphing wing design, and significant performance

improvements could be gained with minimal design changes.

50

REFERENCES

[1] Hunsaker, D. F., Phillips, W. F., and Joo, J. J., “Aerodynamic Shape Optimization of
Morphing Wings at Multiple Flight Conditions,” AIAA SciTech 2017 Forum, 2017.

[2] Merlin, P. W., “Ikhana: Unmanned Aircraft System Western States Fire Missions.
Monographs in Aerospace History, Number 44,” Tech. rep., 2009.

[3] Prandtl, L., “Tragflügeltheorie,” Nachricten von der Gesellschaft der Wissenschaften
zu Göttingen, Geschäeftliche Mitteilungen, Klasse, 1918, pp. 451–477.

[4] Phillips, W. F., “Incompressible Flow over Finite Wings,” Mechanics of Flight , chap. 1,
John Wiley Sons, Inc., 2nd ed., 2010, pp. 46–94.

[5] Glauert, H., The calculation of the characteristics of tapered wings, HM Stationery
Office, 1922.

[6] Phillips, W., “Lifting-line analysis for twisted wings and washout-optimized wings,”
Journal of aircraft , Vol. 41, No. 1, 2004, pp. 128–136.

[7] Phillips, F. W., Fugal, S. R., and Spall, R. E., “Minimizing Induced Drag with Wing
Twist, Computational-Fluid-Dynamics Validation,” Journal of Aircraft , Vol. 43, No. 2,
2006, pp. 437–444.

[8] Nguyen, N., “Elastically Shaped Future Air Vehicle Concept,” NASA Innovation Fund
Award , October 2010.

[9] Joo, J. J., Marks, C. R., Zientarski, L., and Culler, A. J., “Variable Camber Compliant
Wing - Design,” 23rd AIAA/AHS Adaptive Structures Conference, January 2015.

[10] Hetrick, J., Osborn, R., Kota, S., Flick, P., and Paul, D., “Flight Testing of Mission
Adaptive Compliant Wing,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, Honolulu, HI, April 2007.

[11] Moulton, B. and Hunsaker, D. F., “3D-Printed Wings with Morphing Trailing-Edge
Technology,” AIAA Scitech Forum Virtual Event , American Institute of Aeronautics
and Astronautics, January 2021.

[12] Woods, B. K. S. and Friswell, M. I., “Preliminary investigation of a fishbone active
camber concept,” Smart Materials, Adaptive Structures and Intelligent Systems, Vol.
45103, American Society of Mechanical Engineers, 2012, pp. 555–563.

[13] Phillips, W. F., “New twist on an old wing theory,” Aerospace America, Vol. 43, No. 1,
2005, pp. 27–30.

[14] Vos, R., Gürdal, Z., and Abdalla, M., “Mechanism for warp-controlled twist of a mor-
phing wing,” Journal of Aircraft , Vol. 47, No. 2, 2010, pp. 450–457.

51

[15] Dale, A., Cooper, J. E., and Mosquera, A., “Adaptive Camber-Morphing Wing using
0-ν Honeycomb,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference, 2013, p. 1510.

[16] Goates, C. D. and Hunsaker, D. F., “Modern Implementation and Evaluation of Lifting-
Line Theory for Complex Geometries,” Journal of Aircraft , 2022, pp. 1–19.

[17] Phillips, W. F. and Snyder, D., “Modern Adaptation of Prandtl’s Classic Lifting-Line
Theory,” Journal of Aircraft , Vol. 37, No. 4, 2000, pp. 662–670.

[18] Goates, C. and Hunsaker, D., “MachUpX Documentation,” https://machupx.

readthedocs.io/en/latest/index.html, 2020.

[19] Reid, J. T. and Hunsaker, D. F., “A General Approach to Lifting-Line Theory, Applied
to Wings with Sweep,” AIAA Scitech 2020 Forum, American Institute of Aeronautics
and Astronautics, Jan 2020.

[20] Rivers, M., “CRM Family of Models,” https://commonresearchmodel.larc.nasa.

gov/, 2012.

[21] Community, T. S., “SciPy Optimize Minimize Documentation,” https://docs.

scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html,
2008-2020.

[22] Goates, C. and Hunsaker, D., “Airfoil Database Documentation,” https://

airfoildatabase.readthedocs.io/en/latest/airfoil_class.html, 2019.

[23] Prandtl, L., “Applications of Modern Hydrodynamics to Aeronautics,” NACA Tech-
nical Report 116 , Vol. 121, 1921.

[24] Taylor, J. D. and Hunsaker, D. F., “Characterization of the Common Research Model
Wing for Low-Fidelity Aerostructural Analysis,” AIAA Scitech 2021 Forum, 2021, p.
1591.

[25] Schoenfeld, J., “NASA CRM Github repository,” https://github.com/

Justice-Schoenfeld/CRM_Airfoil_database, 2022.

https://machupx.readthedocs.io/en/latest/index.html
https://machupx.readthedocs.io/en/latest/index.html
https://commonresearchmodel.larc.nasa.gov/
https://commonresearchmodel.larc.nasa.gov/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://airfoildatabase.readthedocs.io/en/latest/airfoil_class.html
https://airfoildatabase.readthedocs.io/en/latest/airfoil_class.html
https://github.com/Justice-Schoenfeld/CRM_Airfoil_database
https://github.com/Justice-Schoenfeld/CRM_Airfoil_database

52

APPENDICES

53

APPENDIX A

IKHANA JSON INPUT FILES

A.1 Ikhana Aircraft JSON

{

"CG" : [0.0, 0.0, 0.0],

"weight" : 31593.16386,

"reference" : {

"longitudinal_length": 1.2192,

"area" : 23.7832

},

"controls" : {

"flaps1" : {"is_symmetric" : true},

"elevator" : {"is_symmetric" : true}

},

"airfoils" : {

"Ikhana_NACA_0010_main": {

"type": "linear",

"aL0": 0.0,

"CLa": 6.43365,

"CmLo": 0.0,

"Cma": 0.0,

"CD0": 0.00513,

"CD1": 0.0,

"CD2": 0.00984,

"geometry" : {

"outline_points" : "AirfoilDatabase/airfoils/uCRM -9_wr0_xfoil.txt"

}

},

"Ikhana_NACA_0010" : {

"type": "linear",

"aL0": 0.0,

"CLa": 6.43365,

"CmLo": 0.0,

"Cma": 0.0,

"CD0": 0.00513,

"CD1": 0.0,

"CD2": 0.00984

}

},

"wings" : {

"main_wing" : {

"ID" : 1,

"side" : "both",

"is_main" : true,

"semispan" : 9.7536,

"sweep" : 0.0,

54

"dihedral" : 0.0,

"chord" : [[0.0, 1.70688],

[1.0, 0.73152]],

"airfoil" : "Ikhana_NACA_0010_main",

"control_surface" : {

"chord_fraction" : 0.6,

"control_mixing" : {"flaps1" : 1.0}

},

"grid" : {

"N" : 100,

"flap_edge_cluster" : true,

"reid_corrections" : true

}

},

"horizontal_tail" : {

"ID" : 2,

"side" : "both",

"is_main" : false,

"connect_to" : {

"dx" : -3.068,

"dz" : 0.0

},

"semispan" : 3.68808,

"sweep" : 0.0,

"dihedral" : 29.0,

"chord" : [[0.0, 1.335024],

[1.0, 0.758952]],

"twist" : [[0.0, 0.0],

[1.0, 0.0]],

"airfoil" : "Ikhana_NACA_0010",

"control_surface" : {

"chord_fraction" : 0.27,

"control_mixing" : {"elevator" : 1.0}

},

"grid" : {

"N" : 50,

"flap_edge_cluster" : true,

"reid_corrections" : true,

"blending_distance" : 0.25

}

}

}

}

55

A.2 Ikhana Scene JSON

{

"tag" : "Ikhana",

"solver" : {

"type" : "nonlinear",

"convergence" : 1e-6,

"relaxation" : 0.9,

"max_iterations" : 1000

},

"units" : "SI",

"scene" : {

"atmosphere" : {

"altitude_m" : 6096,

"rho" : "standard"

},

"aircraft" : {

"Ikhana" : {

"file" : "Ikhana.json",

"state" : {

"position": [0.0, 0.0, -6069.0],

"velocity" : 102.889,

"alpha" : 0.0,

"beta" : 0.0

}

}

}

}

}

56

A.3 Rectangular Ikhana Aircraft JSON

{

"CG" : [0.0, 0.0, 0.0],

"weight" : 31593.16386,

"reference" : {

"longitudinal_length": 1.2192,

"area" : 23.7832

},

"controls" : {

"flaps1" : {"is_symmetric" : true},

"elevator" : {"is_symmetric" : true}

},

"airfoils" : {

"Ikhana_NACA_0010_main": {

"type": "linear",

"aL0": 0.0,

"CLa": 6.43365,

"CmLo": 0.0,

"Cma": 0.0,

"CD0": 0.00513,

"CD1": 0.0,

"CD2": 0.00984,

"geometry" : {

"outline_points" : "AirfoilDatabase/airfoils/uCRM -9_wr0_xfoil.txt"

}

},

"Ikhana_NACA_0010" : {

"type": "linear",

"aL0": 0.0,

"CLa": 6.43365,

"CmLo": 0.0,

"Cma": 0.0,

"CD0": 0.00513,

"CD1": 0.0,

"CD2": 0.00984

}

},

"wings" : {

"main_wing" : {

"ID" : 1,

"side" : "both",

"is_main" : true,

"semispan" : 9.7536,

"sweep" : 0.0,

"dihedral" : 0.0,

"chord" : [[0.0, 1.2192],

[1.0, 1.2192]],

"airfoil" : "Ikhana_NACA_0010_main",

"control_surface" : {

"chord_fraction" : 0.6,

"control_mixing" : {"flaps1" : 1.0}

},

"grid" : {

"N" : 100,

57

"flap_edge_cluster" : true,

"reid_corrections" : true

}

},

"horizontal_tail" : {

"ID" : 2,

"side" : "both",

"is_main" : false,

"connect_to" : {

"dx" : -3.068,

"dz" : 0.0

},

"semispan" : 3.68808,

"sweep" : 0.0,

"dihedral" : 29.0,

"chord" : [[0.0, 1.335024],

[1.0, 0.758952]],

"twist" : [[0.0, 0.0],

[1.0, 0.0]],

"airfoil" : "Ikhana_NACA_0010",

"control_surface" : {

"chord_fraction" : 0.27,

"control_mixing" : {"elevator" : 1.0}

},

"grid" : {

"N" : 50,

"flap_edge_cluster" : true,

"reid_corrections" : true,

"blending_distance" : 0.25

}

}

}

}

58

A.4 Rectangular Ikhana Scene JSON

{

"tag" : "Ikhana",

"solver" : {

"type" : "nonlinear",

"convergence" : 1e-6,

"relaxation" : 0.9,

"max_iterations" : 1000

},

"units" : "SI",

"scene" : {

"atmosphere" : {

"altitude_m" : 6096,

"rho" : "standard"

},

"aircraft" : {

"Ikhana" : {

"file" : "Ikhana_rectangular.json",

"state" : {

"position": [0.0, 0.0, -6069.0],

"velocity" : 102.889,

"alpha" : 0.0,

"beta" : 0.0

}

}

}

}

}

59

A.5 Supporting Text File: uCRM 9 wr0 xfoil.txt

1.000000 0.000000

0.9983652 0.4292748E-03

0.9963459 0.9374885E-03

0.9941594 0.1460555E-02

0.9917761 0.1998688E-02

0.9891601 0.2551332E-02

0.9862693 0.3120117E-02

0.9830548 0.3712954E-02

0.9794583 0.4343483E-02

0.9754101 0.5027672E-02

0.9708252 0.5772999E-02

0.9656038 0.6585673E-02

0.9596369 0.7475185E-02

0.9528266 0.8450682E-02

0.9451096 0.9513505E-02

0.9364803 0.1065765E-01

0.9270097 0.1186688E-01

0.9168229 0.1311923E-01

0.9060671 0.1439988E-01

0.8949012 0.1570161E-01

0.8834768 0.1700788E-01

0.8718885 0.1830496E-01

0.8602071 0.1958630E-01

0.8484756 0.2084176E-01

0.8367045 0.2206736E-01

0.8249003 0.2326601E-01

0.8130720 0.2443907E-01

0.8012260 0.2558717E-01

0.7893667 0.2671042E-01

0.7774990 0.2780967E-01

0.7656258 0.2888402E-01

0.7537491 0.2993353E-01

0.7418698 0.3095785E-01

0.7299887 0.3195685E-01

0.7181065 0.3293053E-01

0.7062235 0.3387830E-01

0.6943389 0.3479996E-01

0.6824516 0.3569560E-01

0.6705607 0.3656540E-01

0.6586652 0.3740944E-01

0.6467628 0.3822809E-01

0.6348513 0.3902215E-01

0.6229291 0.3979277E-01

0.6109948 0.4054113E-01

0.5990473 0.4126850E-01

0.5870859 0.4197638E-01

0.5751106 0.4266634E-01

0.5631221 0.4333974E-01

0.5511213 0.4399785E-01

0.5391096 0.4464181E-01

0.5270886 0.4527254E-01

0.5150598 0.4589077E-01

0.5030249 0.4649710E-01

60

0.4909854 0.4709180E-01

0.4789424 0.4767507E-01

0.4668967 0.4824708E-01

0.4548490 0.4880801E-01

0.4428002 0.4935780E-01

0.4307503 0.4989658E-01

0.4187007 0.5042454E-01

0.4066529 0.5094163E-01

0.3946092 0.5144763E-01

0.3825728 0.5194202E-01

0.3705474 0.5242387E-01

0.3585373 0.5289187E-01

0.3465477 0.5334418E-01

0.3345843 0.5377826E-01

0.3226529 0.5419105E-01

0.3107602 0.5457933E-01

0.2989154 0.5493878E-01

0.2871261 0.5526328E-01

0.2753975 0.5554673E-01

0.2637355 0.5578340E-01

0.2521479 0.5596680E-01

0.2406412 0.5608853E-01

0.2292176 0.5614157E-01

0.2178854 0.5611978E-01

0.2066525 0.5601409E-01

0.1955239 0.5581777E-01

0.1845128 0.5552405E-01

0.1736316 0.5512283E-01

0.1628862 0.5460556E-01

0.1522937 0.5396834E-01

0.1418762 0.5320237E-01

0.1316519 0.5229995E-01

0.1216448 0.5125835E-01

0.1118925 0.5007745E-01

0.1024379 0.4875698E-01

0.9332614E-01 0.4730263E-01

0.8461460E-01 0.4572875E-01

0.7636443E-01 0.4405217E-01

0.6862875E-01 0.4229429E-01

0.6144958E-01 0.4048167E-01

0.5485337E-01 0.3864089E-01

0.4884311E-01 0.3679455E-01

0.4339983E-01 0.3496117E-01

0.3848936E-01 0.3315410E-01

0.3407040E-01 0.3138202E-01

0.3009707E-01 0.2965020E-01

0.2652129E-01 0.2795982E-01

0.2329631E-01 0.2630962E-01

0.2038565E-01 0.2469588E-01

0.1775882E-01 0.2311748E-01

0.1538797E-01 0.2157408E-01

0.1324753E-01 0.2006188E-01

0.1131084E-01 0.1857469E-01

0.9552923E-02 0.1710594E-01

0.7954835E-02 0.1564832E-01

61

0.6512450E-02 0.1419354E-01

0.5226178E-02 0.1273885E-01

0.4095202E-02 0.1128603E-01

0.3115977E-02 0.9839335E-02

0.2282564E-02 0.8405119E-02

0.1589976E-02 0.6995834E-02

0.1030945E-02 0.5618390E-02

0.5974091E-03 0.4272545E-02

0.2830374E-03 0.2954199E-02

0.8439934E-04 0.1657033E-02

0.1719366E-05 0.3730672E-03

0.3875689E-04 -0.9074793E-03

0.1942123E-03 -0.2195625E-02

0.4658762E-03 -0.3501221E-02

0.8556591E-03 -0.4832680E-02

0.1368932E-02 -0.6196941E-02

0.2013734E-02 -0.7598584E-02

0.2799113E-02 -0.9037504E-02

0.3731685E-02 -0.1050510E-01

0.4817613E-02 -0.1199281E-01

0.6063151E-02 -0.1349804E-01

0.7470988E-02 -0.1502065E-01

0.9040832E-02 -0.1656526E-01

0.1077252E-01 -0.1814454E-01

0.1268000E-01 -0.1977372E-01

0.1479185E-01 -0.2146495E-01

0.1714116E-01 -0.2323119E-01

0.1976169E-01 -0.2508428E-01

0.2268748E-01 -0.2703261E-01

0.2595527E-01 -0.2908518E-01

0.2960721E-01 -0.3125464E-01

0.3369674E-01 -0.3355126E-01

0.3827954E-01 -0.3598108E-01

0.4340612E-01 -0.3854570E-01

0.4911356E-01 -0.4124013E-01

0.5542311E-01 -0.4404605E-01

0.6233735E-01 -0.4693709E-01

0.6982993E-01 -0.4988145E-01

0.7785528E-01 -0.5283856E-01

0.8636618E-01 -0.5577589E-01

0.9530988E-01 -0.5866791E-01

0.1046417 -0.6149853E-01

0.1143203 -0.6426486E-01

0.1242885 -0.6696472E-01

0.1344926 -0.6959100E-01

0.1448846 -0.7213935E-01

0.1554185 -0.7460505E-01

0.1660539 -0.7698262E-01

0.1767553 -0.7926591E-01

0.1874943 -0.8144763E-01

0.1982513 -0.8352168E-01

0.2090106 -0.8548248E-01

0.2197610 -0.8732430E-01

0.2304977 -0.8904094E-01

0.2412219 -0.9062916E-01

62

0.2519348 -0.9208688E-01

0.2626359 -0.9341154E-01

0.2733312 -0.9459893E-01

0.2840313 -0.9564913E-01

0.2947434 -0.9656410E-01

0.3054695 -0.9734699E-01

0.3162025 -0.9799649E-01

0.3269527 -0.9850872E-01

0.3377299 -0.9888687E-01

0.3485398 -0.9913974E-01

0.3593590 -0.9926528E-01

0.3702090 -0.9925898E-01

0.3810897 -0.9913264E-01

0.3919835 -0.9888644E-01

0.4028961 -0.9851387E-01

0.4138454 -0.9801911E-01

0.4248266 -0.9741199E-01

0.4358312 -0.9669162E-01

0.4468643 -0.9585851E-01

0.4579335 -0.9491414E-01

0.4690455 -0.9386431E-01

0.4801988 -0.9271487E-01

0.4913915 -0.9146928E-01

0.5026259 -0.9013067E-01

0.5139049 -0.8870341E-01

0.5252300 -0.8719389E-01

0.5365962 -0.8560810E-01

0.5480004 -0.8395013E-01

0.5594417 -0.8222389E-01

0.5709194 -0.8043403E-01

0.5824310 -0.7858582E-01

0.5939719 -0.7668379E-01

0.6055392 -0.7473136E-01

0.6171303 -0.7273196E-01

0.6287430 -0.7068918E-01

0.6403735 -0.6860645E-01

0.6520184 -0.6648644E-01

0.6636744 -0.6433151E-01

0.6753386 -0.6214387E-01

0.6870074 -0.5992544E-01

0.6986773 -0.5767742E-01

0.7103458 -0.5540056E-01

0.7220116 -0.5309511E-01

0.7336738 -0.5076124E-01

0.7453326 -0.4839862E-01

0.7569899 -0.4600665E-01

0.7686492 -0.4358478E-01

0.7803151 -0.4113296E-01

0.7919923 -0.3865197E-01

0.8036845 -0.3614316E-01

0.8153954 -0.3360939E-01

0.8271209 -0.3105826E-01

0.8388394 -0.2850251E-01

0.8505084 -0.2596046E-01

0.8620854 -0.2345345E-01

63

0.8735402 -0.2099805E-01

0.8848253 -0.1860937E-01

0.8958723 -0.1631328E-01

0.9066052 -0.1413474E-01

0.9169144 -0.1210273E-01

0.9266817 -0.1025302E-01

0.9358053 -0.8611374E-02

0.9441957 -0.7183169E-02

0.9517876 -0.5964818E-02

0.9585708 -0.4942371E-02

0.9645853 -0.4091663E-02

0.9698990 -0.3384618E-02

0.9745920 -0.2795426E-02

0.9787516 -0.2302361E-02

0.9824612 -0.1886201E-02

0.9857895 -0.1526513E-02

0.9887891 -0.1207319E-02

0.9915041 -0.9181047E-03

0.9939740 -0.6532547E-03

0.9962349 -0.4093456E-03

0.9983176 -0.1834008E-03

1.000000 0.000000

64

APPENDIX B

PYTHON CODE

B.1 Run Commands: Baseline - 0 Control Sections

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jan 5 15:40:08 2022

5

6 @author: justice

7 """

8 import numpy as np

9 import matplotlib.pyplot as plt

10 import sys

11 sys.path.insert(0, ’/home/justice/Documents/Thesis/Base -Optimization -Code’)

12 from Ikhana_updated_twist_optimization_conditional_functional import pitch_trim_flap_optimize_functional

13 from timing import secondsToStr

14

15 # Aircraft , Scene , and configuration information

16 scene_filename = "Ikhana_scene_input.json"

17 aircraft_json = "Ikhana.json"

18 aircraft_name = "Ikhana"

19 num_flaps = 0

20 upperFlapBound = 25.0

21 lowerFlapBound = -25.0

22

23 # Create titles for all files , plots , and saved results

24 title = str(num_flaps) + "_Flaps_" + aircraft_name + "_CL_0 .1_0.9__" + secondsToStr ()

25 deflection_title = title + ’FLAP_DEFLECTIONS ’

26 aoa_title = title + "AOA"

27 horizontal_stabilizer_title = title + "HS_DEFLECTIONS"

28 CL_CD_graph_filename = title + ".png"

29 aoa_graph_title = aoa_title + ".png"

30 hs_graph_title = horizontal_stabilizer_title + ".png"

31

32 # Initialize an array to store all results

33 results = np.zeros((9,6))

34

35 # Loop through Cl = 0.1 -0.9 and run the optimization

36 for lift_coeff in range(1,10):

37 CL = lift_coeff/10

38 index = lift_coeff - 1

39 print("---------- Running CL: " + str(CL) + " ----------")

40

41 # Call to optimization code

65

42 dist_filename , CD, act_CL , act_Cm , aoa , elevator , deflections , solutions_array =

pitch_trim_flap_optimize_functional(scene_filename , aircraft_json , aircraft_name , num_flaps , CL,

upperFlapBound , lowerFlapBound)

43

44 # Store Results

45 results[index][0] = CL

46 results[index][1] = CD

47 results[index][2] = act_Cm

48 results[index][3] = aoa

49 results[index][4] = elevator

50 results[index][5] = act_CL

51

52

53 # Print out and save results.

54 print(’CL CD Cm alpha elevator act_CL ’)

55 print(results)

56 np.savetxt(title , results , header=’CL CD Cm alpha elevator act_CL ’)

57

58 # Print out final CL and CD arrays

59 print(’\n------------------------------------’)

60 print("\nCL\n")

61 print(results[:,0])

62 print("\nCD\n")

63 print(results[:,1])

64

65

66 # --- Make and save plots ---

67 # Plot CL v CD and save

68 plt.figure(0)

69 plt.plot(results[:,0], results[:,1])

70 plt.title(title)

71 plt.xlabel("CL")

72 plt.ylabel("CD")

73 plt.savefig(CL_CD_graph_filename)

74

75 # Plot Cl v alpha

76 plt.figure(1)

77 plt.plot(results[:,0], results[:,3])

78 plt.title(aoa_title)

79 plt.xlabel("CL")

80 plt.ylabel("Alpha , deg")

81 plt.savefig(aoa_graph_title)

82

83 # Plot CL v Horizontal stabilizer angle

84 plt.figure(2)

85 plt.plot(results[:,0], results[:,4])

86 plt.title(horizontal_stabilizer_title)

87 plt.xlabel("CL")

88 plt.ylabel("Horizontal Stabilizer , deg")

89 plt.savefig(hs_graph_title)

66

B.2 Run Commands: With Control Sections, Looping Through CL = 0.1− 0.9

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jan 5 15:40:08 2022

5

6 @author: justice

7 """

8 import numpy as np

9 import matplotlib.pyplot as plt

10 import sys

11 sys.path.insert(0, ’/home/justice/Documents/Thesis/Base -Optimization -Code’)

12 from Ikhana_updated_twist_optimization_conditional_functional import pitch_trim_flap_optimize_functional

13 from timing import secondsToStr

14

15 ’’’

16 This code uses the MachUpX/SLSQP optimization code to determine the trimmed drag coefficient

17 for a range of lift coefficients (CL 0.1 - 0.9). This is done by passing the aircraft and scene

18 jsons into MachUpX to be initialized. The configuration settings are also specified

19 (the number of control points (num_flaps), upper bound and lower bound on alpha and horizontal stab deflections)

20

21

22 Then all titles for outputs are generated based off of the aircraft name. The optimization

23 code is then called in a loop where one lift coefficient is solved at a time. After each lift

24 coefficient iteration is solved for the drag coefficient then the next lift coefficient is

25 passed in and the solution (camber for each control point , horizontal stabilizer deflection , angle of attack)

26 is used as the initial guess for the new lift coefficient.

27

28 ie:

29 CL 0.1 run with initial guess of all zeros

30 -Returns [0.25, 0.25, 0.4, 0.4, 3.26, 5.7]

31 (cp @ 0.0 camber , cp @ 0.5 camber , cp @ 0.5 camber , cp @ 1.0 camber , hs defl in deg , alpha in deg)

32

33 then CL 0.2 is run with initial guess of [0.25, 0.25, 0.4, 0.4, 3.26, 5.7]

34 - returns xxxxxx

35

36 then CL 0.3 is run with initial guess of xxxxxx

37

38 and so on until CL 0.9 has been run.

39

40 After all lift coefficients (CL 0.1 - 0.9) have been run then the process is ran in revers.

41 Meaning that the program starts at CL 0.8 and solves using the solution from the CL 0.9 iteration.

42 If the new result is a lower drag coefficient then the new solution replaces the old CL 0.8 solution.

43 If not then the CL 0.8 solution is unchanged.

44

45 The best result for CL 0.8 (either the first solution , or the new solution achieved with initial guess of CL 0.9

results)

46 is then used as the initial guess for CL 0.7 and again if the solution is better than the "first"

47 CL 0.7 solution the first solution is replaced with the new solution and the process continues all the way to CL

0.1.

48

49 **I used "first" when referring to the first solution because it is the result obtained from the

50 CL xx iteration of the first for loop in this program. Inside of the optimization in the first

51 for loop the optimization process could have been run multiple times. This is because the optimization

67

52 code was written in such a way that once the optimization has returned , that solution can immediately

53 be plugged back into the optimization process as an initial guess. If this is done then the solution

54 will be plugged back in until it stops changing within some error limit. This functionality does not have

55 to be enabled , but it is in this code. So , I used "first" because the "first" solution could have been the

56 result of multiple optimization calls within the call to the optimization function , but it was the first

57 solution returned for the given lift coefficient in this code.

58

59 I decided to go "up" from CL 0.1 - 0.9 and then "down" from CL 0.9 - 0.1 to help

60 ensure that the results of the optimization didn’t get stuck in a local minima. There

61 were instances before I implemented this up/down approach where looking at the results

62 for CL 0.1 - 0.9 it looked like there were almost two different solution valleys achieved.

63 The first part of the CL v CD curve would be along one parabolic function , then it would

64 jump to another parabolic function at some intermediate CL (indicating a different solution valley).

65

66 By going up then down it helped get all of the CD values on the same parabolic curve

67 and in the same solution valley.

68

69 ’’’

70

71

72 # Aircraft , Scene , and configuration information

73 scene_filename = "Ikhana_scene_input.json"

74 aircraft_json = "Ikhana.json"

75 aircraft_name = "Ikhana"

76 num_flaps = 2

77 upperFlapBound = 25.0

78 lowerFlapBound = -25.0

79

80 # Create titles for all files , plots , and saved results

81 title = str(num_flaps) + "_Flaps_" + aircraft_name + "_CL_0.1_0.9__" + secondsToStr ()

82 deflection_title = title + ’__FLAP_DEFLECTIONS ’

83 aoa_title = title + "__AOA"

84 horizontal_stabilizer_title = title + "__HS_DEFLECTIONS"

85 solution_array_title = title + "__SOLUTIONS_ARRAY"

86 changed_title = title + "__CHANGED"

87

88 CL_CD_graph_filename = title + ".png"

89 flap_schedule_graph_filename = deflection_title + ".png"

90 aoa_graph_title = aoa_title + ".png"

91 hs_graph_title = horizontal_stabilizer_title + ".png"

92

93 # Initialize an array to store all results , previous solutions , and if the solution changed on the second time

through

94 results = np.zeros((9,6))

95 previous_solution_array = np.zeros ((9,num_flaps+2))

96 has_changed = np.zeros ((9,1)) # 0 indicates no change , 1111 indicates change

97

98 #-------------------------------- Going "Up" --------------------------------

99 # Go through from CL 0.1 to 0.9.

100 # For CL 0.1 use initial guess of all 0’s. After that ,

101 # use the previous CL’s solution as the initial guess.

102 for lift_coeff in range(1,10):

103 CL = lift_coeff/10

104 index = lift_coeff - 1

105 print("---------- Running CL: " + str(CL) + " ----------")

68

106

107 if lift_coeff == 1:

108 # Run with NO initial deflections (ie: they will be assumed to be zero)

109 dist_filename , CD, act_CL , act_Cm , aoa , elevator , deflections , solution_array =

pitch_trim_flap_optimize_functional(scene_filename , aircraft_json , aircraft_name , num_flaps , CL,

upperFlapBound , lowerFlapBound , run_mult_solutions =(True))

110 prev_solution = solution_array

111 previous_solution_array[index ,:] = solution_array

112 else:

113 # Run with initial deflections set to the previous solution (Start at last solution as initial guess)

114 dist_filename , CD, act_CL , act_Cm , aoa , elevator , deflections , solution_array =

pitch_trim_flap_optimize_functional(scene_filename , aircraft_json , aircraft_name , num_flaps , CL,

upperFlapBound , lowerFlapBound , run_mult_solutions =(True), initial_defl =(prev_solution))

115 prev_solution = solution_array

116 previous_solution_array[index ,:] = solution_array

117

118 # Store results

119 results[index][0] = CL

120 results[index][1] = CD

121 results[index][2] = act_Cm

122 results[index][3] = aoa

123 results[index][4] = elevator

124 results[index][5] = act_CL

125

126 # Store deflections for CL 0.1 -0.9

127 if (lift_coeff == 1): # Create the all_deflections array

128 rows , cols = np.shape(deflections)

129 all_deflections = np.zeros((rows , 10))

130 all_deflections [:,0:2] = deflections

131 else: # Add to the all_deflections array

132 # Need to go one above the index (ie: lift_coeff)

133 # all_deflections goes: Span Loc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

134 all_deflections [:, lift_coeff] = deflections [:,1]

135

136 # Make and save copies of the original results and deflections

137 results_from_going_up = results.copy()

138 deflections_going_up = all_deflections.copy()

139 orig_prev_solutions_array = previous_solution_array.copy()

140

141 results_up_title = title + "__UP"

142 deflections_up_title = results_up_title + "__deflections"

143 prev_sol_title = results_up_title + "__orig_solutions"

144

145 np.savetxt(results_up_title ,results_from_going_up , header=’CL CD Cm alpha elevator act_CL ’)

146 np.savetxt(deflections_up_title , deflections_going_up , header=’Span Loc 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9’)

147 np.savetxt(prev_sol_title , orig_prev_solutions_array , header=’Flaps ... Elevator Alpha’)

148

149

150

151 #------------------------------- Going "Down" -------------------------------

152 # Now go from CL 0.9 to CL 0.1 using the "previous" CL’s solution as the initial guess.

153 # Work way down , if the solution is better than that from going up, then update the results.

154 # Also , update the hasChanged array so I know which ones were updated.

155 for down_num in range(9,1,-1):

69

156 CL = (down_num - 1)/10.0

157 down_index = down_num - 1

158 CL_index = down_num - 2

159

160 # Get results from CL above the CL being run (ie: results for CL 0.9 used for running CL 0.8)

161 # Need to use down_index because that is down_num - 1 which will give the prev solution for down_num

162 prev_results = previous_solution_array[down_index ,:]

163 dist_filename , CD, act_CL , act_Cm , aoa , elevator , deflections , solution_array =

pitch_trim_flap_optimize_functional(scene_filename , aircraft_json , aircraft_name , num_flaps , CL,

upperFlapBound , lowerFlapBound , run_mult_solutions =(True), initial_defl =(prev_results))

164

165 # If CD is lower , replace results & deflections

166 if (CD < results[CL_index][1]):

167 results[CL_index][0] = CL

168 results[CL_index][1] = CD

169 results[CL_index][2] = act_Cm

170 results[CL_index][3] = aoa

171 results[CL_index][4] = elevator

172 results[CL_index][5] = act_CL

173

174 # Update all_deflections.

175 # Need to go one above the CL_index to get the proper location (ie: down_index)

176 # all_deflections goes: Span Loc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

177 all_deflections [:, down_index] = deflections [:,1]

178

179 # Update the previous solutions array

180 previous_solution_array[CL_index ,:] = solution_array

181

182 # update the has_changed array to indicate there was a change

183 has_changed[CL_index] = 1111

184

185 #--

186 #------------------------ Print & Save Results/Plots ------------------------

187 #--

188

189 print(’CL CD Cm alpha elevator act_CL ’)

190 print(results)

191 np.savetxt(title , results , header=’CL CD Cm alpha elevator act_CL ’)

192 np.savetxt(deflection_title , all_deflections , header=’Span Loc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9’)

193 np.savetxt(solution_array_title , previous_solution_array , header=’Flaps ... Elevator Alpha ’)

194 np.savetxt(changed_title , has_changed , header="CL Status")

195

196 # Print out the CL and CD arrays

197 print(’\n------------------------------------’)

198 print("\nCL\n")

199 print(results[:,0])

200 print("\nCD\n")

201 print(results[:,1])

202

203 # Plot CD v CL

204 plt.figure(0)

205 plt.plot(results[:,0], results[:,1])

206 plt.title(title)

207 plt.xlabel("CL")

70

208 plt.ylabel("CD")

209 plt.savefig(CL_CD_graph_filename)

210

211 # Plot Camber schedule for all CL’s (0.1 -0.9)

212 plt.figure(1)

213 plt.plot(all_deflections [:,0], all_deflections [:,1], label = ’CL 0.1’)

214 plt.plot(all_deflections [:,0], all_deflections [:,2], label = ’CL 0.2’)

215 plt.plot(all_deflections [:,0], all_deflections [:,3], label = ’CL 0.3’)

216 plt.plot(all_deflections [:,0], all_deflections [:,4], label = ’CL 0.4’)

217 plt.plot(all_deflections [:,0], all_deflections [:,5], label = ’CL 0.5’)

218 plt.plot(all_deflections [:,0], all_deflections [:,6], label = ’CL 0.6’)

219 plt.plot(all_deflections [:,0], all_deflections [:,7], label = ’CL 0.7’)

220 plt.plot(all_deflections [:,0], all_deflections [:,8], label = ’CL 0.8’)

221 plt.plot(all_deflections [:,0], all_deflections [:,9], label = ’CL 0.9’)

222 plt.title(title)

223 plt.xlabel(’Span’)

224 plt.ylabel("Camber")

225 plt.legend(loc=’right ’)

226 plt.savefig(flap_schedule_graph_filename)

227

228 # Plot CL v Alpha

229 plt.figure(2)

230 plt.plot(results[:,0], results[:,3])

231 plt.title(aoa_title)

232 plt.xlabel("CL")

233 plt.ylabel("Alpha , deg")

234 plt.savefig(aoa_graph_title)

235

236 # Plot CL v Horizontal stabilizer deflections

237 plt.figure(3)

238 plt.plot(results[:,0], results[:,4])

239 plt.title(horizontal_stabilizer_title)

240 plt.xlabel("CL")

241 plt.ylabel("Horizontal Stabilizer , deg")

242 plt.savefig(hs_graph_title)

71

B.3 Run Commands: Single Lift Coefficient

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jan 5 15:40:08 2022

5

6 @author: justice

7 """

8 # Get optimization code from different folder

9 import sys

10 sys.path.insert(0, ’/home/justice/Documents/Thesis/Base -Optimization -Code’)

11 from Ikhana_updated_twist_optimization_conditional_functional import pitch_trim_flap_optimize_functional

12 import numpy as np

13

14 # Set Desired CL

15 CL = 0.6

16

17 # Give aircraft and scene json names as well as aircraft name

18 scene_filename = "Ikhana_scene_input.json"

19 aircraft_json = "Ikhana.json"

20 aircraft_name = "Ikhana"

21

22 # Specify number of flaps

23 num_flaps = 4

24

25 # Specify upper and lower bounds for elevator and angle of attack deflections

26 upperFlapBound = 25.0

27 lowerFlapBound = -25.0

28

29 # Specify initial guess (number of control points + elevator + angle of attack)

30 init_guess = np.array([-2.0, -1.0, -2.0, 2.0, -4.0, 3.5])

31

32 # Run optimization

33 dist_filename , CD, act_CL , act_Cm , aoa , elevator , deflections , solution_array =

pitch_trim_flap_optimize_functional(scene_filename , aircraft_json , aircraft_name , num_flaps , CL,

upperFlapBound , lowerFlapBound , initial_defl =(init_guess))

72

B.4 Optimization Code

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Oct 20 13:53:39 2021

5

6 @author: Justice Schoenfeld

7 """

8

9 import machupX as mx

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import json

13 import scipy as sp

14 import copy

15 import jsonpickle

16 from Ikhana_join import create_span_fraction_array , double_repeat_and_join

17 from airfoil_functional_creation import create_Ikhana_airfoils_function_dict

18 from Ikhana_cos_clustering_array import create_cos_cluster_array

19 import timing

20 from timing import secondsToStr

21

22

23 def pitch_trim_flap_optimize_functional(orig_scene_filename , orig_aircraft_json_filename , aircraft_name ,

num_flaps , CL_to_set , upDeflBound , lowDeflBound , run_mult_solutions = False , initial_defl = None , dragType =

"Total", write_results = True , print_results = False , show_plots = False , dump_forces_and_moments = False):

24 ’’’

25 This code is used to pitch trim the given aircraft and then find the minimum drag

26 at the specified lift coefficient using the SLSQP method to minimize the drag value

27 returned from the MachUpX forces and moments calculation. This code has the capability to

28 re-run a solution multiple times until the difference between consecutive solutions is below

29 an error threshold (similar to Optix , see note below with run_mult_solutions flag).

30

31 This code will also write the results obtained out to txt files for saving and data

32 analysis.

33

34 Once the MachUpX files are read in and MachUpX scene class has been created , the aircraft

35 in the scene class is manipulated to get to the trimmed state , then the optimization is run.

36

37 The first part of this function is administrative: creating filenames , getting the scene

38 class set up and properly configured , creating the initial x array to be passed to

39 scipy.optimize.minimize , etc..

40

41 Then the actual optimization function is defined , followed by the cost function

42 definition. The cost function is used in the scipy.optimize.minimize call.

43

44 After the cost function , this function extracts the needed reporting information:

45 - angle of attack

46 - elevator mounting angle

47 - CD, CL , Cm

48 and creates the output text files for saving the results of the optimization.

49

50 Parameters

51 ----------

73

52 orig_scene_filename : string

53 Filename of the aircraft scene json.

54 orig_aircraft_json_filename : string

55 Filename of the aircraft json.

56 aircraft_name : string

57 Name of the aircraft as given for the ’tag’ in the aircraft scene json.

58 num_flaps : float

59 Desired number of flaps/control points to be used.

60 CL_to_set : float

61 Desired lift coefficient.

62 upDeflBound : float

63 Upper bound on the elevator and angle of attack deflections.

64 lowDeflBound : float

65 Lower bound on the elevator and angle of attack deflections.

66 run_mult_solutions : boolean , optional

67 Whether or not to take the solution from scipy.optimize.minimize and plug it back in as an initial guess

before this function returns. The default is False.

68 initial_defl : array , [float], optional

69 An array of the initial deflections for the optimization. Length should be = num_flaps + 2 (ie: 4 control

points would give [x, x, x, x, x, x]). The default is None.

70 dragType : string , optional

71 What type of Drag to use (’Total ’, ’Inviscid ’, or ’Viscous ’). The default is "Total".

72 write_results : boolean , optional

73 Whether or not to write the results out to files. The default is True.

74 print_results : boolean , optional

75 Whether or not to print out results to the console. The default is False.

76 show_plots : boolean , optional

77 Whether or not to show a plot of the normalized lift distribution. The default is False.

78 dump_forces_and_moments : boolean , optional

79 Whether or not display forces and moments in nice json format. The default is False.

80

81 Returns

82 -------

83 distributions_filename : string

84 The filename for the distributions file , returned so that it can be passed to a function that generates

the lift distribution.

85 CD : float

86 The value of the drag coefficient from the MachUpX calculated forces and moments.

87 fm_CL : float

88 The lift coefficient from the MachUpX calculated forces and moments.

89 fm_Cm : float

90 The pitching moment coefficient from the MachUpX calculated forces and moments.

91 aoa : float

92 The angle of attack (deg) needed to pitch trim the aircraft.

93 elevator : float

94 The horizontal stabilizer rotation angle (deg) needed to pitch trim the aircraft using an all flying tail

.

95 deflection_array : array , [float]

96 The deflections used to achieve the minimum drag at the desired lift coefficient.

97 solution.x : array , [float]

98 The solution x array from scipy.optimize.minimize. Includes the deflections as well as the elevator and

angle of attack values.

99 ’’’

100 if (dragType != "Total") and (dragType != "Inviscid") and (dragType != "Viscous"):

101 print("Invalid dragType entered! Drag Type must be either ’Total’ (default), ’Inviscid ’, or ’Viscous ’.")

74

102 return

103

104 # --- Create Filenames ---

105 partitioned_file_name = orig_scene_filename.partition(’.’)

106 output_title = str(num_flaps) + "_FLAPS_" + partitioned_file_name[0] + "_CL_" + str(CL_to_set) + "__" +

secondsToStr ()

107 force_moment_output_filename = "F_M_" + output_title + ".json"

108 distributions_filename = "distributions_" + output_title

109

110 # --- If not Base Case (0 control points) then create span fraction array ---

111 if (num_flaps > 0):

112 span_frac_array = create_span_fraction_array(num_flaps)

113

114 length_x_array = num_flaps + 2 # Number of control points + elevator + alpha

115 end_flap_index = num_flaps # Index of last control point in x array

116 elevator_index = num_flaps # Index of the elevator value in x array

117 aoa_index = length_x_array - 1 # Index of the aoa value in x array

118

119 # Create unique scene and aircraft jsons for the given CL

120 scene_filename = str(CL_to_set) + "_" + orig_scene_filename

121

122 # Create aircraft dictionary

123 orig_aircraft_dict = json.load(open(orig_aircraft_json_filename))

124

125 # If not the Baseline case (0 control points) then set cosine clustering points and functions for CD, CL , Cm

126 if (num_flaps > 0):

127 # Set the cosine clustering points for the number of inboard and outboard flaps

128 orig_aircraft_dict[’wings ’][’main_wing ’][’grid’][’cluster_points ’] = create_cos_cluster_array(num_flaps)

129

130 # Replace airfoil poly_fits with function calls (functional)

131 orig_aircraft_dict[’airfoils ’] = create_Ikhana_airfoils_function_dict ()

132

133 # Create scene dictionary

134 orig_scene_dict = json.load(open(orig_scene_filename))

135

136 # Load state from scene json & save original horizontal tail twist

137 scene_state_dict = copy.deepcopy(orig_scene_dict)["scene"]["aircraft"][aircraft_name]["state"]

138 orig_aircraft_horizontal_twist = copy.deepcopy(orig_aircraft_dict)["wings"]["horizontal_tail"]["twist"]

139

140 # Remove the aircraft so that I can add the aircraft dictionary with functions

141 scene_dict = copy.deepcopy(orig_scene_dict)

142 scene_dict[’scene ’][’aircraft ’].pop(aircraft_name)

143

144 # --If desired , format and print the json after changes have been made. Not currently used , but wanted to

keep functionality.

145 # def notSerializable(thingToPickle):

146 # name = jsonpickle.encode(thingToPickle)

147 # return name

148

149 # print(json.dumps(scene_dict , indent = 4))

150 # print ("\n\n------------------------")

151 # print(json.dumps(orig_aircraft_dict , indent = 4, default = notSerializable))

152 # print ("\n\n------------------------")

153

154

75

155 # Create scene and add scene with functions for airfoils

156 my_scene = mx.Scene(scene_dict)

157 my_scene.add_aircraft(aircraft_name , orig_aircraft_dict , scene_state_dict)

158

159 # --Can be used to display wireframe of aircraft if so desired. Not currently used , but wanted to keep

functionality.

160 #my_scene.display_wireframe ()

161

162 # Declaration of optimization function , this function makes the call to scipy.optimize.minimize

163 def optimize_twist_with_pitch_trim(CL_to_set):

164 ’’’

165 This is the actual function where the drag is minimized. All of the set up has been

166 done prior to this point. This function then sets up the bounds and constriants for the

167 optimization and makes the call to the scipy.optimize.minimize method.

168

169 After the minimization has happend , this function can plug the solution back into

170 the minimzation if so desired and do so iteratively until the new solution is within

171 a given error margin of the old solution (the solution has converged). This functionality

172 was inspired by Dr Hunsaker and Optix.

173

174 Once a final solution has been achieved , the settings needed for the final

175 solution are returned from this function so that the final results can be

176 calculated and returned to the user.

177

178 ** This function MUST stay within the pitch_trim_flap_optimize_functional

179 function because of how the scene class in MachUpX works. This function is

180 inside of the parent function so that the scene class is within scope. If it

181 were to be moved otuside of the parent class it is not possible to keep

182 the MachUpX scene class in scope and this code would break.

183

184 Parameters

185 ----------

186 CL_to_set : float

187 The desired CL to solve for the minimum drag coefficient.

188

189 Returns

190 -------

191 solution : OptimizeResult object

192 An OptimizeResult object containing the result of the minimization.

193 deflection_array : array , [float]

194 An array of the camber deflections.

195 forces_and_moments : dictionary

196 A dictionary of all forces and moments calcuated by MachUpX.

197 CD : float

198 The value of the drag coefficient calculated using MachUpX ’s forces and moments solver.

199 aoa : float

200 The angle of attack (deg) needed to pitch trim the aircraft.

201 elevator : float

202 The horizontal stabilize mounting angle (deg) needed to pitch trim the aircraft with an all moving

tail.

203 twist_data_post_solution : array , [[float], [float]]

204 A (nx2 array (2D) [span location , twist] with the updated twist used to change the mounting angle (

deg) on the horizontal stabilizer in order to pitch trim the aircraft.

205 calc_CL : float

206 The lift coefficient from the MachUpX calculated forces and moments.

76

207 calc_Cm : float

208 The pitching moment coefficient from the MachUpX calculated forces and moments.

209

210 ’’’

211 # Whether to use zeros as initial guess or the passed in initial deflections as the initial guess

212 if initial_defl is None: # If no initial_defl given use 0 as initial guess

213 x = np.zeros(length_x_array) # Flaps , Elevator , Alpha

214 else: # Use the initial deflections given as the initial guess , if of proper size (num_flaps + 2).

215 if len(initial_defl) == length_x_array:

216 print(’Initial Deflections: \n’)

217 print(initial_defl)

218 print(’\n’)

219 x = initial_defl

220 else: # initial_defl given is of improper length and CANNOT be used.

221 print("Invalid initial_deflection array.\n")

222 print("Length needs to be " + str(length_x_array) + "\n")

223 print("Entered length is " + str(len(initial_defl)))

224 return

225

226 # Set the bounds for the optimization. Bounds apply to elevator and angle of attack

227 lowerBoundsArray = np.ones(length_x_array)*lowDeflBound

228 lowerBoundsArray[elevator_index] = -np.inf

229 lowerBoundsArray[aoa_index] = -np.inf

230

231 upperBoundsArray = np.ones(length_x_array)*upDeflBound

232 upperBoundsArray[elevator_index] = np.inf

233 upperBoundsArray[aoa_index] = np.inf

234

235 bnds = sp.optimize.Bounds(lowerBoundsArray , upperBoundsArray , keep_feasible = True)

236

237 # Set the constraints necessary to pitch trim the aircraft. The constraints are on CL and Cm

238 constr1 = {"type" : "eq",

239 "fun" : twist_cost_function ,

240 "args" : (CL_to_set , "moment")}

241 constr2 = {"type": "eq",

242 "fun" : twist_cost_function ,

243 "args" : (CL_to_set , "lift")}

244 constr = [constr1, constr2]

245

246 # --- CALL TO OPTIMIZATION ---

247 solution = sp.optimize.minimize(twist_cost_function , x, args = (CL_to_set), bounds = bnds , constraints =

constr)

248

249 # Plug the solution back in as initial guess and re-run optimization if desired. (This functionality

mimics Optix)

250 if run_mult_solutions:

251 epsilon = 5.0; # Error initial value

252 prev_solution = solution

253 x = prev_solution.x

254 run_mult_iter = 1

255 print("Iteration " + str(run_mult_iter) + "\n")

256 print(str(solution) + "\n\n")

257 # Run until the difference in solutions is smaller than 0.0001

258 while(abs(epsilon) > 0.0001): # By using the norm of the epsilon vector a threshold of 0.0001

requires all individual differences be at or below 1e-5

77

259 run_mult_iter += 1

260 solution = sp.optimize.minimize(twist_cost_function , x, args = (CL_to_set), bounds = bnds ,

constraints = constr)

261 epsilon = np.linalg.norm(prev_solution.x - solution.x)

262 prev_solution = solution

263 x = solution.x

264 print("Iteration " + str(run_mult_iter) + "\n")

265 print(str(solution) + "\n\n")

266

267 ’’’

268 The if statement and while loop above help ensure that we have actually reached the minimum value

with the optimization.

269 The optimization is currently running a SLSQP with bounds. As part of the SLSQP scheme the first

derivative is calculated

270 directly and then the differences in the first derivative are used to calculate the second

derivative.

271

272 Calculating the second derivative in this manner means that error builds up in the Jacobian

inside the SLSQP optimization

273 and the result may not be the actual minimum. By taking the first solution and plugging it back

in as the initial guess for

274 a second optimization essentially clears the error from the optimization and the optimization

starts from the previous result.

275 Then by comparing the solutions and setting a threshold for the difference between two

consecutive solutions I can run the

276 optimization as many times as necessary , each time starting at the result of the previous

solution , to get to what is the "true"

277 solution where my result between optimization runs isn’t changing significantly.

278

279 This was suggested by Dr Hunsaker and is similar to what he implemented in Optix , which is

written for Fortran.

280 ’’’

281

282 # Store the angle of attack and elevator deflections

283 aoa = solution.x[aoa_index] # deg

284 elevator = solution.x[elevator_index] # deg

285

286 # --- Update the twist on the horizontal tail by changing the mounting angle

287 aircraft_dict_post_solution = copy.deepcopy(orig_aircraft_dict)

288

289 # Add to the mounting angle

290 twist_data_post_solution = copy.deepcopy(orig_aircraft_horizontal_twist)

291 for row in range(0,len(twist_data_post_solution)):

292 twist_data_post_solution[row][1] += elevator # deg

293

294 # Update the twist in the aircraft dictionary

295 aircraft_dict_post_solution["wings"]["horizontal_tail"]["twist"] = twist_data_post_solution

296

297 # Update the angle of attack in the scene state

298 scene_state_dict["alpha"] = aoa # deg

299

300 # Re-initialize MachUpX with new angle of attack and "twist" (tail mounting angle)

301 my_scene = mx.Scene(scene_dict)

302 my_scene.add_aircraft(aircraft_name , aircraft_dict_post_solution , scene_state_dict)

303

78

304 deflection_array = []

305 if(num_flaps > 0): # If using control points , set the deflections using values from optimization.

306 deflection_array = double_repeat_and_join(span_frac_array , solution.x[0:end_flap_index])

307 deflections = {"flaps1" : deflection_array}

308 my_scene.set_aircraft_control_state(control_state = deflections) # deg

309

310 # Calculate Forces & Moments as well as the Distributions and save the results

311 forces_and_moments = my_scene.solve_forces(filename = force_moment_output_filename)

312 my_scene.distributions(filename = distributions_filename)

313

314 # Get the CL and Cm values and print them. They will only be printed at the end of each CL that is run ,

if run in a loop.

315 calc_CL = forces_and_moments[aircraft_name][’total’][’CL’]

316 calc_Cm = forces_and_moments[aircraft_name][’total’][’Cm’]

317 print("CL: " + str(forces_and_moments[aircraft_name]["total"]["CL"]))

318 print("Cm: " + str(forces_and_moments[aircraft_name]["total"]["Cm"]))

319

320 # Get the correct drag value from the forces and moments

321 if dragType == "Inviscid":

322 CD = forces_and_moments[aircraft_name]["inviscid"]["CD"]["total"]

323 elif dragType == "Viscous":

324 CD = forces_and_moments[aircraft_name]["viscous"]["CD"]["total"]

325 else:

326 CD = forces_and_moments[aircraft_name]["total"]["CD"]

327

328 # Plot normalized washout with respect to span location if desired.

329 if show_plots:

330 ’’’ Plot normalized washout from optimization. Normalize w/ respect to last deflection (-1 index)’’’

331 span_locations = deflections["flaps1"][:,0] # Get the span locations that correspond to

deflections

332 normalized_deflections = deflections["flaps1"][:,1] # Gets all deflections

333 normalized_deflections /= normalized_deflections[-1] # Normalizes w/ respect to last deflection

334

335 plt.plot(span_locations , normalized_deflections , label = "Optimized Values")

336 plt.show()

337

338 # Return the results of the optimization at the given CL

339 return solution , deflection_array , forces_and_moments , CD, aoa , elevator , twist_data_post_solution ,

calc_CL , calc_Cm

340

341

342 ’’’ Optimizer function for minimizing drag by "twisting" the wing ’’’

343 def twist_cost_function(x, desired_CL ,flag = "drag"):

344 ’’’

345 The cost function to be optimized in order to minimize drag. Also used for

346 the constraints.

347

348 This function can be used for the constraints to change the horizontal

349 stabilizer mounting angle and angle of attack (both in degrees) in

350 order to pitch trim the aircraft.

351

352 Or this function can be used to find the drag coefficient to be minimized.

353 When the drag coefficient is found with this function , it’s value is scaled

354 by 100.0. This was done because it was found that the CL constraint could

355 dominate the minimization , since the CL is often 1 to 2 orders of magnitude

79

356 larger than CD. By scaling the drag coefficient it brings the CD value closer

357 to the order of magnitude of CL and it was found that better results were obtained.

358

359 ** This function MUST stay within the pitch_trim_flap_optimize_functional

360 function because of how the scene class in MachUpX works. This function is

361 inside of the parent function so that the scene class is within scope. If it

362 were to be moved outside of the parent class it is not possible to keep

363 the MachUpX scene class in scope and this code would break.

364

365 Parameters

366 ----------

367 x : array , [float]

368 x array from scipy.optimize.minimize.

369 desired_CL : float

370 The desired lift coefficient.

371 flag : string , optional

372 Which value to return , either ’drag ’, ’lift ’, or ’moment ’. The default is "drag".

373

374 Returns

375 -------

376 value : float

377 The value of CL , Cm , or CD depending on the flag that was given. (** Note CD will be scaled by 100.0

to bring to same order of magnitude as CL constraint)

378

379 ’’’

380 # --- Update the twist on the horizontal tail by changing the mounting angle

381 aircraft_dict = copy.deepcopy(orig_aircraft_dict)

382

383 # Pull in original twist info and add new optimized mounting angle

384 twist_data = copy.deepcopy(orig_aircraft_horizontal_twist)

385 for row in range(0,len(twist_data)):

386 twist_data[row][1] += x[elevator_index] # deg

387

388 # Set new twist

389 aircraft_dict["wings"]["horizontal_tail"]["twist"] = twist_data

390

391 # --- Set the angle of attack

392 scene_state_dict["alpha"] = x[aoa_index] # deg

393

394 # Re-initialize MachUpX with new "twist" (tail mounting angle)

395 my_scene = mx.Scene(scene_dict)

396 my_scene.add_aircraft(aircraft_name , aircraft_dict , scene_state_dict)

397

398 # --- Change the flap deflections if num_flaps > 0

399 if (num_flaps > 0):

400 deflection_array = double_repeat_and_join(span_frac_array , x[0:end_flap_index])

401 deflections = {"flaps1" : deflection_array}

402 my_scene.set_aircraft_control_state(control_state = deflections) # deg

403

404 # Call for forces and moments to get CL and Cm for constraints or CD for value to minimize.

405 forces_and_moments = my_scene.solve_forces(verbose=False)

406

407 # Get the appropriate value (either a constraint or the minimization value)

408 if flag == "moment": # Get Cm for constraint

409 value = forces_and_moments[aircraft_name]["total"]["Cm"]

80

410 elif flag == "lift": # Get CL for constraint

411 temp_value = forces_and_moments[aircraft_name]["total"]["CL"]

412 value = abs(temp_value - desired_CL)

413 else: # Return CD

414 if dragType == "Inviscid":

415 value = forces_and_moments[aircraft_name]["inviscid"]["CD"]["total"]

416 elif dragType == "Viscous":

417 value = forces_and_moments[aircraft_name]["viscous"]["CD"]["total"]

418 else:

419 value = forces_and_moments[aircraft_name]["total"]["CD"]

420

421 # Scale the drag value so that it is on the same order of magnitude as CL and helps the optimization

422 value *= 100.0

423

424 return value

425

426 ############################

427 ###### Run Analysis ######

428 ############################

429 # Get results from the optimization call

430 solution , deflection_array , forces_and_moments , CD , aoa , elevator , hs_twist_data , fm_CL , fm_Cm =

optimize_twist_with_pitch_trim(CL_to_set)

431

432 # Write results out to a file

433 if write_results:

434 output = open(output_title , ’w’)

435 output.write("CL: " + str(CL_to_set) + "\n")

436 if type(initial_defl) != type(None):

437 output.write("Initial Defl: " + str(initial_defl) + "\n")

438 output.write("Num Flaps: " + str(num_flaps) + "\n")

439 output.write("Scene File Name: " + scene_filename + "\n")

440 output.write(str(solution) + "\n")

441 output.write(str(deflection_array))

442 output.write("\n" + dragType + " Drag (CD): " + str(CD) + "\n")

443 output.write("Calc CL: " + str(fm_CL) + "\n")

444 output.write("Calc Cm: " + str(fm_Cm) + "\n")

445 output.write("Angle of Attack: " + str(aoa) + " (deg)\n")

446 output.write("Elevator: " + str(elevator) + " (deg)\n")

447 output.write("\nHorizontal Stabilizer Twist: \n" + str(hs_twist_data) + "\n")

448 if dump_forces_and_moments:

449 output.write(json.dumps(forces_and_moments , indent = 4))

450 output.close()

451

452 # Print results out if so desired.

453 if print_results:

454 print(solution)

455 print("\nDeflection Array: \n")

456 print(deflection_array)

457 print("\nDrag: ", CD)

458 if dump_forces_and_moments:

459 print(json.dumps(forces_and_moments , indent = 4))

460

461 # Return the any values necessary for looping through multiple CL’s

462 return distributions_filename , CD , fm_CL , fm_Cm , aoa , elevator , deflection_array , solution.x

81

B.5 Supporting Code: Ikhana join.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Nov 17 14:08:02 2021

5

6 @author: justice

7 """

8

9 import numpy as np

10

11 ’’’

12 This file is used to create the twist distribution array for MachUpX used for the

13 Ikhana. This code is specific to the Ikhana.

14 Also , this code generates the twist distribution such that we get

15 rectangular flaps. If you specify the twist distribution as:

16 [span_frac , twist]

17 ([[0.0 , 0],

18 [0.2, 1],

19 [0.4, 2], Linearly Interpolated Example

20 [0.6, 3],

21 [0.8, 4],

22 [1.0, 5]])

23 you will get a linear extrapolation between the span fractions you specified.

24 So at a span fraction of 0.1 your twist will be 0.5, at span frac 0.5 your twist

25 will be 2.5 and so forth.

26

27 We don’t want the linear extrapolation between specified locations. We want

28 rectangular flaps like you would get on an actual airplane. So to do this , we

29 needed to double up the span fractions and the twist values , like this:

30 ([[0.0 , 0],

31 [0.0, 1],

32 [0.2, 1],

33 [0.2, 2],

34 [0.4, 2], Rectangular Flap Example

35 [0.4, 3],

36 [0.6, 3],

37 [0.6, 4],

38 [0.8, 4],

39 [0.8, 5],

40 [1.0, 5]])

41 This way between 0.0 and 2.0 we maintain a constant value of 1.

42 Between 2.0 and 4.0 we maintain a constant value of 2 and so on so forth.

43

44 In order to dynamically generate the doubled up span fraction list and the associated

45 twist’s, the following code was written such that the user can specify the desired

46 number of inboard and outboard flaps.

47

48 Also , the code can be used with scipy.optimize.minimize by using the "create_span_fraction_array"

49 function at the beginning of the optimization to get the span fraction distribution that

50 will yield the desired number of inboard and outboard flaps.

51

52 Then each time the optimization runs , call the "double_and_repeat" function to

53 get the x array used in scipy.optimize.minimize in the appropriate form.

82

54

55 Once you have the x array doubled and repeated you can use the "join" function

56 to combine the span fraction array with the doubled x array and get your twist

57 distribution , like that in the Rectangular Flap Example , that can be passed into

58 MachUpX.

59 ’’’

60

61

62 def create_span_fraction_array(num_control_points):

63 ’’’This function creates the span fraction array for the NASA Ikhana.

64 The user can specify the number of control points and then the span fraction

65 array will be created such that there will be rectangular flaps in between

66 each span frac.

67

68 Parameters

69 ----------

70 num_control_points : int , the number of control points desired

71

72 Returns

73 -------

74 span_frac_list : list , all of the span fractions necessary to create the

75 desired number of rectangular flaps.

76

77 ’’’

78 max_span_frac = 1.0

79

80 step = max_span_frac / num_control_points

81

82 span_frac_list = []

83 span_frac_list.append(0.0)

84 span_frac_list.append(0.0)

85 last_frac = 0.0

86

87 for x in range(0,num_control_points -1):

88 span_frac_list.append(last_frac + step)

89 span_frac_list.append(last_frac + step)

90 last_frac += step

91

92 span_frac_list.append(max_span_frac)

93

94 return span_frac_list

95

96

97 def double_and_repeat(array):

98 ’’’This function creates an array twice the length of the orignal by repeating

99 each value in the original array. For example:

100 Given: [1,2,3,4]

101 Returns: [0,1,1,2,2,3,3,4,4]

102

103 Parameters

104 ----------

105 array : list or array , the original array you want repeated

106

107 Returns

108 -------

83

109 doubled_array : list , double the length of original array and with values repeated

110

111 ’’’

112 doubled_array = []

113 doubled_array.append(0.0)

114 for val in array:

115 doubled_array.append(val)

116 doubled_array.append(val)

117

118 return doubled_array

119

120

121 def join(a, b):

122 ’’’This function takes two strings and merges them together. I wrote it so that

123 I could dynamically create span distributions. The A matrix represents the span

124 fractions , and the B matrix represents the twist at that span fraction. The two

125 arrays are then combined into the form they need to be in for reading in twist

126 information based on span fraction for MachUpX. For example:

127 deflections = {" flaps1" : np.array ([[0.0 , 0.0],

128 [0.2, x[0]],

129 [0.4, x[1]],

130 [0.6, x[2]],

131 [0.8, x[3]],

132 [1.0, x[4]]])}

133

134 Parameters

135 ----------

136 a : list or array , Span Fractions

137 b : list or array , twist at the span fraction

138

139 Returns

140 -------

141 output_array : 2D array for the twist distribution over the span of the wing that can

142 be used in MachUpX

143

144 ’’’

145 length_a = len(a)

146 length_b = len(b)

147

148 if length_a != length_b:

149 return

150 else:

151 output_array = np.full((length_a ,2),0.0)

152 for x in range(0,length_a):

153 output_array[x][0] = a[x]

154 output_array[x][1] = b[x]

155

156 return output_array

157

158

159 def double_repeat_and_join(a, b):

160 ’’’This function combines the double_and_repeat function and the join function.

161 The user passes the span fractions in as A and the x array from scipy.optimize.minimize

162 in as B. B is doubled and repeated and then joined with A (span_fractions)

163 to get the twist distribution array needed for MachUpX.

84

164

165 Parameters

166 ----------

167 a : list or array , the span fraction locations for flaps.

168 b : list or array , the x array from scipy.optimize.minimize (the twist values

169 for each span_frac)

170

171 Returns

172 -------

173 array , distribution array containing the span fractions and associated twist for

174 rectangluar flaps.

175

176 ’’’

177 b = double_and_repeat(b)

178 return join(a, b)

179

180

181 def span_frac_to_cos_cluster(doubled_span_frac):

182 ’’’This function takes the span fraction list and pulls out only the distinct

183 span fraction locations , minus 0 and 1. This is needed so that the span fraction

184 locations can be passed to the cosine clustering in MachUp X.

185

186 Example of logic for removing doubled values:

187 array Index 0 1 2 3 4 5

188 arrayn value x x y y z z

189 iteration

190 1 0 1 2 3 4

191 x y y z z

192

193 2 0 1 2 3

194 x y z z

195

196 3 0 1 2

197 x y z

198

199 Parameters

200 ----------

201 doubled_span_frac : array , the span fraction list with doubles

202

203 Returns

204 -------

205 doubled_span_frac : array , the span fraction list without doubles , 0, or 1

206

207 ’’’

208 del doubled_span_frac[0] #Remove the first 0.0

209 del doubled_span_frac[0] #Remove the second 0.0

210 del doubled_span_frac[-1] #Remove the 1.0 at the end of the list

211

212 #remove the doubled values

213 last_delete = int(len(doubled_span_frac)/2) + 1

214 for x in range(1, last_delete):

215 del doubled_span_frac[x]

216

217 return doubled_span_frac

85

B.6 Supporting Code: airfoil functional creation.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon Apr 25 13:50:03 2022

5

6 @author: justice

7 """

8 from Ikhana_main_wing_functions import *

9

10 ’’’

11 This code is used by to get to create a dictionary used by MachUpX that uses functions

12 to get CL, CD, and Cm. Passing in functions cannot be set up in the aircraft json before run time

13 so it is necessary to read in the aircraft json (making it a dictionary) and then replace

14 the airfoils section of the dictionary with output of this function , which now has the

15 CL, CD , Cm functions inside of the dictionary.

16 ’’’

17

18 def create_Ikhana_airfoils_function_dict ():

19 return {

20 "Ikhana_NACA_0010_main": {

21 "type" : "functional",

22 "CL" : get_Ikhana_CL ,

23 "CD" : get_Ikhana_CD ,

24 "Cm" : get_Ikhana_Cm ,

25 "geometry" : {

26 "outline_points" : "AirfoilDatabase/airfoils/uCRM -9 _wr0_xfoil.txt"

27 }

28 },

29 "Ikhana_NACA_0010" : {

30 "type": "linear",

31 "aL0": 0.0,

32 "CLa": 6.43365,

33 "CmLo": 0.0,

34 "Cma": 0.0,

35 "CD0": 0.00513,

36 "CD1": 0.0,

37 "CD2": 0.00984

38 }

39 }

86

B.7 Supporting Code: Ikhana main wing functions.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon Apr 25 14:21:05 2022

5

6 @author: justice

7 """

8 from math import pi

9 ’’’

10 These are the functions that are used by MachUpX to get CL, CD, and Cm whenever they

11 are needed for calculations. The data used to get the coefficients comes from

12 Hunsaker and Phillips

13 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

14 AIAA SciTech Forum

15 9-13 January 2017, Grapevine Texas

16 55th AIAA Aerospace Sciences Meeting

17 ’’’

18

19 def get_Ikhana_CL (** kws):

20 c1 = kws.get("trailing_flap_deflection", 0) # radians 0 is a default value in this syntax

21 alpha = kws.get("alpha", 0) # radians

22 c1_deg = c1 * (180/pi) # degrees (treating as camber)

23

24 aL0 = get_alpha_L0(c1_deg) # radians

25 CLa = get_CL_alpha(c1_deg) # 1/ radians

26

27 return CLa*(alpha -aL0) # unitless coefficient

28

29 def get_Ikhana_CD (** kws):

30 c1 = kws.get("trailing_flap_deflection", 0) # radians

31 CL = get_Ikhana_CL () # unitless coefficient

32 c1_deg = c1*(180/pi) # degrees (treating as camber)

33

34 CD0 = get_CD0(c1_deg) # unitless coefficient

35 CD1 = get_CD1(c1_deg) # unitless coefficient

36 CD2 = get_CD2(c1_deg) # unitless coefficient

37

38 return (CD0 + CD1*CL + CD2*CL*CL) # unitless coefficient

39

40 def get_Ikhana_Cm (** kws):

41 c1 = kws.get("trailing_flap_deflection", 0) # radians

42 alpha = kws.get("alpha", 0) # radians

43 c1_deg = c1*(180/pi) # degrees (treating as camber)

44

45 CmL0 = get_Cm_L0(c1_deg) # unitless coefficient

46 Cma = get_Cm_alpha(c1_deg) # 1/ radians

47 aL0 = get_alpha_L0(c1_deg) # radians

48

49 return CmL0 + Cma*(alpha -aL0) # unitless coefficient

50

51 ##

52 # The following formulas are based off of camber as a percentage of the chord.

53 def get_alpha_L0(c):

87

54 ’’’

55 This is a linear fit for the data generated by Hunsaker and Phillips in

56 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

57 AIAA SciTech Forum

58 9-13 January 2017, Grapevine Texas

59 55th AIAA Aerospace Sciences Meeting

60

61 Parameters

62 ----------

63 c : float

64 camber as percentage of the chord.

65

66 Returns

67 -------

68 float

69 Value of alpha L0 in Radians.

70

71 ’’’

72 return -0.0183*c - 0.0003 # radians

73

74 def get_CL_alpha(c):

75 ’’’

76 This is an average from the data generated by Hunsaker and Phillips in

77 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

78 AIAA SciTech Forum

79 9-13 January 2017, Grapevine Texas

80 55th AIAA Aerospace Sciences Meeting

81

82

83 Parameters

84 ----------

85 c : float

86 camber as percentage of the chord.

87

88 Returns

89 -------

90 float

91 CL_alpha in (1/rad).

92 ’’’

93 return 6.257605 # 1/ radians

94

95 def get_CD0(c):

96 ’’’

97 This is a parabolic fit for the data generated by Hunsaker and Phillips in

98 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

99 AIAA SciTech Forum

100 9-13 January 2017, Grapevine Texas

101 55th AIAA Aerospace Sciences Meeting

102

103 Parameters

104 ----------

105 c : float

106 camber as percentage of the chord.

107

108 Returns

88

109 -------

110 float

111 The unitless value for the coefficient CD0.

112

113 ’’’

114 return 0.0002*(c**2) - (4e-5)*c + 0.0049 # unitless coefficient

115

116 def get_CD1(c):

117 ’’’

118 This is a linear fit for the data generated by Hunsaker and Phillips in

119 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

120 AIAA SciTech Forum

121 9-13 January 2017, Grapevine Texas

122 55th AIAA Aerospace Sciences Meeting

123

124 Parameters

125 ----------

126 c : float

127 camber as percentage of the chord.

128

129 Returns

130 -------

131 float

132 The unitless value for the coefficient CD1.

133

134 ’’’

135 return -0.003*c + 0.0002 # unitless coefficient

136

137 def get_CD2(c):

138 ’’’

139 This is a parabolic fit for the data generated by Hunsaker and Phillips in

140 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

141 AIAA SciTech Forum

142 9-13 January 2017, Grapevine Texas

143 55th AIAA Aerospace Sciences Meeting

144

145 Parameters

146 ----------

147 c : float

148 camber as percentage of the chord.

149

150 Returns

151 -------

152 float

153 The unitless value for the coefficient CD2.

154

155 ’’’

156 return 0.0001*(c**2) - 0.0004*c + 0.0095 # unitless coefficient

157

158 def get_Cm_L0(c):

159 ’’’

160 This is a linear fit for the data generated by Hunsaker and Phillips in

161 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

162 AIAA SciTech Forum

163 9-13 January 2017, Grapevine Texas

89

164 55th AIAA Aerospace Sciences Meeting

165

166 Parameters

167 ----------

168 c : float

169 camber as percentage of the chord.

170

171 Returns

172 -------

173 float

174 The unitless value for the coefficient Cm_L0.

175

176 ’’’

177 return -0.0253*c - 0.0004 # unitless coefficient

178

179 def get_Cm_alpha(c):

180 ’’’

181 This is an average from the data generated by Hunsaker and Phillips in

182 "Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions"

183 AIAA SciTech Forum

184 9-13 January 2017, Grapevine Texas

185 55th AIAA Aerospace Sciences Meeting

186

187

188 Parameters

189 ----------

190 c : float

191 camber as percentage of the chord.

192

193 Returns

194 -------

195 float

196 CM_alpha in (1/rad).

197 ’’’

198 return 0.016353333 # 1/ radians

90

B.8 Supporting Code: Ikhana cosine clustering.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jan 5 15:42:29 2022

5

6 @author: justice

7 """

8

9 from Ikhana_join import *

10

11 def create_cos_cluster_array(num_control_points , print_results = False):

12 ’’’

13 This function can be used to get a cosine clustering array for any given

14 number of control points for the NASA Ikhana. This code is used in the main

15 optimization code (Ikhana_update_twist_optimization_conditional_functional.py)

16 to set the cluster points used for the grid for the Ikhana. This function is needed

17 because the cluster points are set dynamically during run time of the optimization ,

18 meaning any number of control points can be passed in and this function

19 will be used to get the appropriate cluster points.

20

21 Parameters

22 ----------

23 num_control_points : float

24 The number of control points to use for the NASA Ikhana.

25 print_results : boolean , optional

26 Whether to print out the cluster points , useful for debugging and informational purposes. The default is

False.

27

28 Returns

29 -------

30 cos_cluster : array , [float]

31 The span fraction array without doubles , 0, or 1

32

33 ’’’

34 span_frac = create_span_fraction_array(num_control_points)

35 cos_clust = span_frac_to_cos_cluster(span_frac)

36

37 if print_results:

38 print("Ikhana span locations for cos clustering (ie span locations for control points)")

39 print(cos_clust)

40

41 return cos_clust

91

B.9 Supporting Code: timing.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jan 5 10:00:21 2022

5

6 Pulled from stackoverflow on Wed Jan 5, 2022

7 https :// stackoverflow.com/questions /1557571/ how -do-i-get -time -of-a-python -programs -execution

8 answered Sep 10 ’12 at 2:03 by Nicojo

9

10 Used to display the runtime for each of the run code files. It also gives a method

11 for getting the current time with secondsToStr (), which is used to differentiate

12 the multiple output files generated during each run.

13 """

14

15 import atexit

16 from time import time , strftime , localtime

17 from datetime import timedelta

18

19 def secondsToStr(elapsed=None):

20 if elapsed is None:

21 return strftime("%Y-%m-%d %H:%M:%S", localtime ())

22 else:

23 return str(timedelta(seconds=elapsed))

24

25 def log(s, elapsed=None):

26 line = "="*40

27 print(line)

28 print(secondsToStr (), ’-’, s)

29 if elapsed:

30 print("Elapsed time:", elapsed)

31 print(line)

32 print()

33

34 def endlog ():

35 end = time()

36 elapsed = end -start

37 log("End Program", secondsToStr(elapsed))

38

39 start = time()

40 atexit.register(endlog)

41 log("Start Program")

	Multi-Fidelity Predictions for Control Allocation on the NASA Ikhana Research Aircraft to Minimize Drag
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	INTRODUCTION AND LITERATURE REVIEW
	COMPUTATIONAL METHODS AND TOOLS
	Aerodynamic Modeling
	Optimization Method
	Software Versions Used
	Optimization Approach
	Example Ikhana Calculation
	User Input
	General Initialization and Creating MachUpX Scene Class
	Optimization Set Up and Call
	Cost Function
	Final Forces and Moments Solution
	Single CL Case
	Looping Through a Range of CL Values

	RESULTS
	NASA Ikhana
	NASA Ikhana with Rectangular Wing
	NASA Ikhana vs. Rectangular Ikhana Comparison
	Common Research Model

	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDICES
	A IKHANA JSON INPUT FILES
	Ikhana Aircraft JSON
	Ikhana Scene JSON
	Rectangular Ikhana Aircraft JSON
	Rectangular Ikhana Scene JSON
	Supporting Text File: uCRM_9_wr0_xfoil.txt

	B PYTHON CODE
	Run Commands: Baseline - 0 Control Sections
	Run Commands: With Control Sections, Looping Through CL = 0.1-0.9
	Run Commands: Single Lift Coefficient
	Optimization Code
	Supporting Code: Ikhana_join.py
	Supporting Code: airfoil_functional_creation.py
	Supporting Code: Ikhana_main_wing_functions.py
	Supporting Code: Ikhana_cosine_clustering.py
	Supporting Code: timing.py

