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By minimizing the magnetostatic potential energy and by finding zeros in the sum of the squares
of the torques, we find the equilibrium states of six dipoles of identical strength at the vertices of
a regular hexagon and a variable-strength dipole at the center. The seven dipoles spin freely about
fixed axes that are perpendicular to the plane of the hexagon, with their dipole moments directed
parallel to the plane. When the central dipole is weak compared with the perimeter dipoles, a
“circular” state applies in which the perimeter dipole moments circle around the central dipole,
which points toward a perimeter dipole. When the central dipole is strong, a more symmetric
“dipolar” state applies in which the perimeter dipole moments align approximately with the field of
the central dipole. Over an intermediate range of dipole strengths bounded by two critical values,
both states are locally stable and the state of the system depends upon its history. Iron filings are
used to observe both states in experiments on small spherical neodymium magnets. A “misaligned”
state that is barely unstable theoretically is also observed experimentally; this state resembles the
circular state except that the central dipole moment points toward a point of contact between two
perimeter magnets.

I. INTRODUCTION

Collections of small neodymium magnet spheres
are popular desk toys that are used to build beau-
tiful sculptures, thanks to the angular dependence
of the dipole interaction.1 These collections also
serve as pedagogical tools for demonstrating prin-
ciples of mathematics, physics, chemistry, biology,
and engineering.2

These magnets have spherically symmetric
dipole distributions, so their magnetic interactions
match those of two point dipoles.3–5 This equiv-
alence simplifies investigations of magnet chain,
ring, and tube formation,6–8 magnet chain energy,9

mechanical properties of chains and cylinders,10

chain pattern formation,11 stable defects along
chains and rings,12 eigenmodes for lateral oscil-
lations of a straight chain,13 stability of vertical
chains,14 magnetic crystal formation,15 stability of
magnetic rings with a central dipole directed out
of the plane,16 radiation damping for two magnets
oscillating in each other’s fields,17 the motion of a
dipole that slides freely along the surface of a fixed
dipole,18 the dynamics of a free dipole that bounces
elastically against a fixed dipole,19,20 the motion of
two dipoles that slide freely against each other,21

and the normal modes for dipoles whose rotation
axes are fixed at the vertices of a regular polygon.22

In this paper, we illustrate how a simple dipole
system can exhibit complex nonlinear behavior. We
explore the equilibrium states of a system of seven
dipoles, with six identical perimeter dipoles located
at the vertices of a regular hexagon and one dipole
of variable strength at the center, forming a “filled
hexagon” (Fig. 1). The relative strength of the cen-
tral dipole α = m0/m is the ratio of the magnitudes
of the magnetic moments of the central and perime-
ter dipoles. The filled hexagon with α = 1 serves
as a building block for many sculptures made from
collections of small neodymium magnets.1

The positions of the seven dipoles are fixed and
the dipoles are allowed to spin freely about axes that
are perpendicular to the plane of the hexagon, with
their magnetic moments confined to this plane. We
calculate equilibrium dipole orientations as a func-
tion of α by minimizing the magnetostatic poten-
tial energy and by finding zeros in the sum of the
squares of the torques on the seven dipoles. We test
the stability of equilibrium states by examining the
eigenvalues and the determinant of the Hessian of
the potential energy.

We also observe equilibrium states experimen-
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FIG. 1. Illustration of the positions p0...p6 and dipole
moments m0...m6 of seven dipoles confined to the x− y
plane. The seven dipoles are free to rotate about fixed
axes in the z direction.

tally by photographing patterns of iron filings on a
piece of paper resting on a filled hexagon of seven
nickel-plated neodymium magnet spheres of diam-
eter 5 mm. In these observations, we use magnets
of two different strengths but of the same size: com-
mercially available fully-magnetized “strong” mag-
nets and partially magnetized “weak” magnets ob-
tained from the same manufacturer.23 These mag-
nets enable observations for α = 0 (using six strong
magnets in the perimeter and no magnet at the cen-
ter), α = 0.42 (using a weak magnet at the center
and six strong magnets in the perimeter), α = 1
(using strong magnets for all seven magnets), and
α = 2.4 (using a strong magnet at the center and six
weak magnets in the perimeter).

In the lowest-energy “circular” state for α = 1,
the six perimeter dipole moments circle around the
central dipole, whose moment points toward the
center of a perimeter dipole [Fig. 2(a)]. This state
is stable theoretically and is observed in our exper-
iments [Fig. 2(b)]. The circular state is predicted
to be stable for α < α2 = 2.47, above which it no
longer exists.

With an energy that is barely larger than the cir-

cular state for α = 1, the “misaligned" state re-
sembles the circular state except that the central
dipole moment points not toward a perimeter dipole,
but toward the gap between two perimeter dipoles
[Fig. 2(c)]. This equilibrium state is unstable theo-
retically for all α , is barely unstable for α = 1, and
is observed in our α = 1 experiments with about the
same frequency as the circular state [Fig. 2(d)]. Our
calculations ignore friction between magnets, which
is present in our experiments.

The “dipolar" state has the third-lowest energy
at α = 1. This state is unstable and unobservable
at this value of α , but is predicted to be stable
for α > α1 = 1.15. In this state, the six perime-
ter dipoles align approximately with the field of the
central dipole and the central dipole moment points
toward the center of a perimeter dipole. Figures 2(e)
and (f) show this state theoretically and experimen-
tally for α = 2.4. As α → ∞, the perimeter dipoles
are predicted to align exactly with the field of the
central dipole.

The circular, misaligned, and dipolar states have
planes of reflection symmetry that are perpendicu-
lar to the magnetic moment of the center dipole. In
Figs. 2(b), (d), and (f), these planes are indicated by
green dotted lines. The dipolar state also has a time-
reversed reflection symmetry (a reflection followed
by a time reversal) that is indicated in Fig. 2(f) by
blue dashed lines.

The circular and misaligned states show approxi-
mate pentagonal symmetries that honor their reflec-
tion symmetries, with five clumps of iron filings
located approximately at the vertices of a regular
pentagon [Fig. 2(b), (d)]. This curious symmetry
contrasts with the underlying hexagonal symmetry
of the magnet positions and helped to motivate this
study. Experimentally, it is easy to distinguish be-
tween the circular and misaligned states. In the cir-
cular state, the plane of reflection symmetry passes
through points of contact between perimeter mag-
nets [Fig. 2(b)]. In the misaligned state, the plane of
reflection symmetry passes through the centers of
perimeter magnets [Fig. 2(d)]. As α→ 0, the circu-
lar and misaligned states reduce to the equilibrium
state of a hexagon ring, with all six dipoles pointing
tangent to a circle.22

The system is predicted to exhibit hysteresis as
α varies because the circular and dipolar states are
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(a) α = 1 circular state, fields (b) α = 1 circular state, filings

(c) α = 1 misaligned state, fields (d) α = 1 misaligned state, filings

(e) α = 2.4 dipolar state, fields (f) α = 2.4 dipolar state, filings

FIG. 2. Predictions (left panels) and observations (right panels) of the circular, misaligned, and dipolar states. In the left
panels, green dots show the positions of the seven dipoles, red arrows show the directions of their dipole moments, and
directed blue lines show magnetic field lines B(x,y,0.5) given by Eq. (10). The right panels show the positions of seven
5 mm magnet spheres (grey discs), iron filings (black) on the surface of a piece of paper resting atop the seven magnets,
reflection planes (green dotted lines), and time-reversed reflection planes (blue dashed lines).
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both stable to small perturbations for α1 < α < α2.
If α comes into this intermediate range by increas-
ing through α1, the system will be in the circular
state. Continuing to increase α through α2 results
in an abrupt phase transition to the dipolar state. If
α comes into the intermediate range by decreasing
through α2, the system will be in the dipolar state.
Continuing to decrease α through α1 results in an
abrupt phase transition to the circular state.

Thus, despite having only seven degrees of free-
dom, our seven-magnet system features nonlinear
phase transitions and hysteresis reminiscent of the
Ising model, which involves large quantities of
dipoles.24,25

Contributions of this paper include: (a) identifica-
tions, symmetry classifications, and observations of
the circular, misaligned, and dipolar states and (b)
calculation of the range α1 < α < α2 over which
the circular and dipolar states are both stable.

In a companion paper, we explore the normal
modes of oscillation about these states.26

II. SYSTEM DESCRIPTION

We consider the rotational motion of seven
dipoles that are arranged to form a filled regular
hexagon in the x− y plane, with their dipole mo-
ments confined to this plane. The dipoles are free
to rotate about fixed axes in the z direction (Fig. 1).
Adjacent dipoles are separated by a distance a. Di-
mensionless positions of the six perimeter dipoles
are measured in units of a, and are given by

pi =

{
cos

[
2π

(i−1)
6

]
, sin

[
2π

(i−1)
6

]
, 0

}
,

(1)
where i = 1, 2, · · · , 6.

The magnitude of the dipole moment of each
of the six perimeter dipoles is denoted by m. Di-
mensionless magnetic moments of these dipoles are
measured in units of m and are given by (Fig. 1)

mi = (cosφi, sinφi, 0), (2)

where φi is the angle between the magnetic moment
of dipole i and the x axis, measured counterclock-
wise from the x axis in the x− y plane.

The dimensionless position of the central dipole,
measured in units of a, is given by

p0 = (0,0,0), (3)

and its dimensionless magnetic dipole moment,
measured in units of m, is given by (Fig. 1)

m0 = α(cosφ0,sinφ0, 0). (4)

Here,

α =
m0

m
(5)

is the ratio of the magnitudes of the dipole moments
of the central and perimeter dipoles. The angle φ0 is
the angle between the magnetic moment of the cen-
tral dipole and the x axis, measured counterclock-
wise from the x axis in the x− y plane.

The energy scale of interaction between two
perimeter dipoles is given by

U0 =
µ0m2

4πa3 . (6)

The dimensionless magnetostatic potential energy
of the system is measured in units of U0, and is given
by the sum over all pairwise interactions,27

U =
5

∑
i=0

6

∑
j=i+1

mi ·m j−3(mi · r̂i j)(m j · r̂i j)

r3
i j

, (7)

where ri j = p j−pi is the dimensionless position of
dipole j relative to dipole i, ri j = |ri j| is the magni-
tude of this vector, and r̂i j = ri j/ri j is the unit vector
that points in the direction of ri j. Using the forego-
ing, U can be expressed in terms of the seven orien-
tation angles φi (for i = 0, 1, · · · , 6), which are free
to respond to the magnetic torques of the other six
magnets.

To distinguish between different equilibrium
states, we consider the dimensionless net dipole mo-
ment of the seven dipoles

M =
6

∑
i=0

mi. (8)

The magnetic field scale is

B0 =
µ0m
4πa3 . (9)
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The dimensionless magnetic field strength B at di-
mensionless position r is measured in units of B0,
and is given by27

B(r) =
6

∑
i=0

[
3

mi · (r−pi)

|r−pi|5
(r−pi)−

mi

|r−pi|3

]
.

(10)
The process of finding the stable equilibria of

this system is equivalent to finding the local min-
ima of U as a function of the seven orientation an-
gles φi. This is performed numerically for α = 1
using the minimization function “minimize” from
the Sage computer math library using 5000 random
initial states in order to identify all stable equilib-
rium states. We achieve each random initial state by
assigning seven random numbers between 0 and 2π

to the seven orientation angles φi.
In comparing theory with experiments, it is also

useful to investigate unstable equilibrium states
such as saddle points in the potential energy. For
this purpose we calculate the sum of squares of the
magnitudes of the torques on the seven dipoles,18

Q =
6

∑
i=0

(
∂U
∂φi

)2

. (11)

Q is never negative and its zeroes correspond to
equilibrium states, where the torques on all of the
dipoles vanish. Thus, at both stable and unstable
equilibrium points, Q reaches a minimum value of
Q = 0. Q can also reach minima where Q > 0; such
minima are not equilibrium states. We identified
minima with Q < 10−11 as equilibrium states.

Minimizing U yields stable equilibrium states
and finding zeros of Q yields all of the equilibrium
states. In practice, finding zeros of Q gives better
convergence than minimizing U for barely stable
equilibria by providing a larger basin of attraction
for the minimization procedure. We used the Sage
computer math library function “diff” to carry out
the partial derivatives of Eq. (11) in closed form.
Doing so reduces Q to a function of the seven ori-
entation angles φi.

To test the stability of equilibrium states, we ex-
amine the seven eigenvalues of the Hessian of the
potential energy,

(HU)i, j =
∂ 2U

∂φiδφ j
. (12)

The equilibrium is stable if all seven eigenvalues
are positive. As α varies, equilibrium states pass
through critical points where their stability changes.
We detect these critical points by watching for sign
changes in the determinant of the Hessian. This
method works because the determinant of a matrix
is equal to the product of its eigenvalues; when the
number of positive eigenvalues changes, the sign of
the determinant also changes (excluding the special
case that an even number of eigenvalues change sign
simultaneously). After ascertaining that a state is
stable for a particular value of α by explicitly cal-
culating the eigenvalues, we simply calculate the
values of the determinant for other values of α to
determine where the state ceases to be stable.

III. STATES FOR α = 1

In this section, we investigate the equilibrium
states for α = 1, for which all seven dipoles have
the same strength. Finding zeros of Q yields 504
equilibrium states. Eliminating redundant states by
considering reflections and rotations leaves 54 dis-
tinct equilibrium states for α = 1. Figure 3 shows
the energies of these 54 states, 30 of which are 12-
fold redundant (solid green lines) and 24 of which
are 6-fold redundant (dotted red lines). The three
lowest-energy states are, in order of increasing en-
ergy, the stable “circular” state, the unstable “mis-
aligned” state, and the unstable “dipolar” state.

Figures 4(a)-(c) show the magnetic configura-
tions of these three states for α = 1. In the circu-
lar state (a), the perimeter dipole moments circle
around the center dipole and the center dipole mo-
ment points toward the center of a perimeter dipole.
In the misaligned state (b), the perimeter dipole mo-
ments again circle around the center dipole, but the
center dipole moment points toward the point of
contact between two perimeter dipoles. In the dipo-
lar state (c), the perimeter dipole arrangement has
the same symmetry as the magnetic field of the cen-
ter dipole.

It is instructive to consider the symmetries of
these three states. Doing so requires care because
magnetic moments such as those shown in Fig. 4
are pseudovectors, or “axial vectors,” which behave
differently under reflections than true, or “polar,”
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FIG. 3. Magnetostatic potential energies U of 54 distinct states for α = 1. Of these states, 30 are 12-fold redundant
(green solid lines) and 24 are 6-fold redundant (red dotted lines). The energy splitting of the two lowest-energy states
is shown in the inset. At α = 1, the circular state has the lowest energy and is stable, the misaligned state has the
next-lowest energy (just slightly higher than the circular state) and is unstable, and the dipolar state has the third-lowest
energy and is also unstable.

vectors such as the position vector.28 The reflection
of a polar vector is the same as its mirror image,
meaning that its components parallel to the reflec-
tion plane remain the same and its component per-
pendicular to the reflection plane is reversed. In
contrast, the reflection of an axial vector is opposite
to its mirror image, meaning that its components
parallel to the reflection plane are reversed and its
component perpendicular to the reflection plane re-
mains the same. Magnetic moments and magnetic
fields are axial vectors because reflections of elec-
tric currents yield magnetic moments and magnetic
fields that are opposite to their mirror images.29

Accordingly, the circular state of Fig. 4(a) is sym-
metric under reflection about the x = 0 plane (green
dotted line). This reflection operation is denoted by

mx. The point-group symmetry of the circular state
is m(E,mx), where E is the identity operation.30 The
misaligned state of Fig. 4(b) is symmetric under re-
flection my about the y = 0 plane (green dotted line)
and has point-group symmetry m(E,my).

The dipolar state of Fig. 4(c) is symmetric un-
der three operations: reflection mx about the x =
0 plane (green dotted line), time-reversed reflec-
tion m′y about the y = 0 plane (blue dashed line),
and time-reversed 180-degree (two-fold) rotation 2′z
about the z axis (perpendicular to the plane of the
figure). A time-reversed reflection is a reflection
followed by a time reversal, and a time-reversed ro-
tation is a rotation followed by a time reversal. A
time reversal, denoted by a prime on the operation,
has no effect on the positions of the dipoles, but re-
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(a) α = 1 circular state, stable (b) α = 1 misaligned state, unstable (c) α = 1 dipolar state, unstable

(d) α = 1.5 circular state, stable (e) α = 1.5 misaligned state, unstable (f) α = 1.5 dipolar state, metastable

(g) α = 3 misaligned state, unstable (h) α = 3 dipolar state, stable

FIG. 4. Circular, misaligned, and dipolar states for relative central dipole strengths α = 1, 1.5, and 3. Arrows indicate
dipole moment directions, green dotted lines indicate reflection planes, and blue dashed lines indicate time-reversed
reflection planes.
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verses the directions of their magnetic moments by
reversing the directions of the currents that produce
these moments, as if time were running backwards.
Thus, the point-group symmetry of the dipolar state
of Fig. 4(c) is mm′2′(E,mx,m′y,2

′
z).

We now explain the 12-fold and 6-fold redun-
dancies of Fig. 3. Our minimization procedure
places no constraints on the directions of the seven
dipole moments, but does constrain the positions of
the seven dipoles to coincide with those shown in
Fig. 1. For α = 1, this procedure finds six redun-
dant circular states with perimeter dipole moments
circling counterclockwise, including Fig. 4(a) and
rotations of this figure by 60◦, 120◦, 180◦, 240◦,
and 300◦. This procedure also finds six redundant
circular states with perimeter dipole moments cir-
cling clockwise; these six states can be obtained
from the six counterclockwise states by applying
a time-reversed reflection about the plane that con-
tains the center dipole moment and is perpendicular
to the plane of the hexagon. For Fig. 4(a), for ex-
ample, this plane is the y = 0 plane and the associ-
ated time-reversed reflection m′y produces a redun-
dant state with the dipole moments circling clock-
wise. Thus, the α = 1 circular state is 12-fold re-
dundant. Similar logic shows that the misaligned
state is also 12-fold redundant.

The dipolar state is only 6-fold redundant be-
cause the time-reversed reflection about the plane
containing the center dipole moment is a symme-
try operation for this state, and does not produce
a new redundant state. For Fig. 4(c), for example,
this plane is the y = 0 plane (blue dashed line) and
the associated time-reversed reflection m′y produces
a state that is identical to Fig. 4(c).

IV. STATES FOR GENERAL α

In this section, we investigate the stability of
the circular, misaligned, and dipolar states for gen-
eral α . Shown in Fig. 5 are the respective deter-
minants |HUc|, |HUm|, and |HUd| of the Hessian
for these states as a function of α . The sign of
the determinant indicates stability to small pertur-
bations, with a positive determinant indicating sta-
bility (solid traces) and a negative determinant indi-
cating instability (dashed traces).

The circular state is stable for 0 < α < α2 and
does not exist for α > α2, where |HUc| and the ori-
entation angles φi are complex (Fig. 5). For α ap-
proaching α2 from below, the behaviors of |HUc|
and φi are strongly nonlinear, with the derivative of
|HUc| approaching −∞. A least squares fit to the
form

|HU |= A(α2−α)n (13)

gives A= 14932, α2 = 2.4724, and n= 0.5040. The
nearness of n to 1/2 suggests that the square of the
determinant is approximately linear for α .α2. Ac-
cordingly, a least-squares fit to the linear form

|HU |2 =C(α2−α) (14)

gives C = 2.094007×108 and α2 = 2.472448. Both
fits agree on the value

α2 = 2.4724 (15)

to within five significant figures.
The misaligned state is unstable for all α > 0

(Fig. 5). For small α , |HUm| ≈ −|HUc|.
The dipolar state is stable for α > α1 and un-

stable for 0 < α < α1 (Fig. 5). To find α1, we
set φ0 = 0, exploit Eq. (2) to define Cartesian com-
ponents of the dimensionless perimeter dipole mo-
ments (for i = 1, 2, . . . , 6),

xi = cosφi (16a)
yi = sinφi (16b)

and invoke the symmetry relationships

x2 = x3 = x5 = x6 (17a)
y2 = y5 =−y3 =−y6 (17b)

to convert the system of equilibrium trigonometric
equations into a system of multivariate quadratic
polynomial equations. We rearrange these equa-
tions into a single quartic polynomial and use the
quartic formula to obtain exact general expressions
for the φi and |HUd| as a function of α . Finding the
zero of |HUd| gives

α1 = 1.154460452378. (18)

Curiously, |HUd| = 0 at α = 2.05 (Fig. 5). Be-
cause |HUd| > 0 on either side of this zero, the
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FIG. 5. Determinants |HUc|, |HUm|, and |HUd| of the Hessian for the respective circular, misaligned, and dipolar
states as a function of the relative strength α of the center dipole. The dipolar determinant is multiplied by 100 to
improve visibility. Positive determinants imply stability to small perturbations and are denoted by solid traces. Negative
determinants imply instability and are denoted by dashed traces. The circular state is stable for α < α2 = 2.47, above
which the state ceases to exist. The dipolar state is stable for α > α1 = 1.15 and unstable for α < α1. The misaligned
state is unstable for all α . Numerals indicate stability regions 1, 2, and 3 (Table I).

zero corresponds to a point of neutral stability sur-
rounded by a region of stability. As discussed in a
companion paper, one of the modes of oscillation
vanishes at this point.26

The foregoing identifies three stability regions
that are summarized in Table I and are indicated in
Fig. 5. In region 1, only the circular state is stable.
In region 2, both the circular and the dipolar states
are stable. And in region 3, only the dipolar state is
stable.

TABLE I. Stability regions.

Region Range Stable State(s) Illustration(s)
1. α < α1 circular Fig. 4(a)
2. α1 < α < α2 circular, dipolar Figs. 4(d), (f)
3. α > α2 dipolar Fig. 4(h)

Figure 4 shows magnetic configurations of the
circular, misaligned, and dipolar states for α = 1,
α = 1.5, and α = 3, which respectively illustrate
regions 1, 2, and 3. The circular state does not exist
in region 3, which explains the missing panel in the
lower left corner of Fig. 4. The point group symme-
tries for the circular, misaligned, and dipolar states
at α = 1 (Sec. III) evidently apply to other values of
α as well. The magnetic field of each state has the
same symmetries as its dipoles.

Figure 6 shows the energies of the circular, mis-
aligned, and dipolar states as a function of α , with
stable states denoted by solid traces and unstable
states denoted by dashed traces. In region 1, the
perimeter dipoles dominate the magnetic interac-
tions and only the circular state is stable. In region
2, the circular and dipolar states are both stable to
small perturbations. Within this region, the circular
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FIG. 6. Magnetostatic potential energies Uc, Um, and Ud of the circular, misaligned, and dipolar states vs. the relative
strength α of the central dipole. Solid traces denote states that are stable to small perturbations and dashed traces denote
unstable states. Indicated are the critical values α1 = 1.15 and α2 = 2.47 between which the circular and dipolar states
are both stable, and the value α∗ = 2.41 at which their energies match. The inset shows detail near α∗ and α2.

state has the lower energy for α <α∗ = 2.41, where
the dipolar state is metastable, and the dipolar state
has the lower energy for α > α∗, where the circular
state is metastable. A “metastable” state is stable
to small perturbations but unstable to large ones be-
cause its energy is not a global minimum. In region
3, the center dipole dominates the magnetic inter-
actions, the dipolar state is stable, and the circular
state does not exist.

The system exhibits hysteresis (Fig. 6). The cir-
cular state is stable at α = 0 and remains stable for
increasing α until α > α2 (region 3), where the cir-
cular state vanishes and the system converts sponta-
neously to the dipolar state. For decreasing α , the
dipolar state remains stable until α < α1 (region 1),
where it becomes unstable and the system reverts to
the circular state. The circular and dipolar states are
both stable to small perturbations over the interme-
diate range α1 < α < α2 (region 2), where the state

of the system is determined by its history.
As α→ 0, the influence of the central dipole van-

ishes and the energies of the circular and misaligned
states converge to22 (Fig. 6)

U0 =−
5
√

3
6
− 87

8
=−12.318. (19)

At α = 0 for both of these states, the moments of the
six perimeter dipoles point tangent to a circle of unit
radius and the configuration has six-fold rotational
symmetry 6z about the z axis. Thus, the perimeter
dipoles in the circular and misaligned states are per-
fectly circular for α = 0.

The circular and misaligned states depart from
perfect circularity for α > 0, with these depar-
tures becoming more and more pronounced as α in-
creases (Fig. 4).

For the dipolar state as α→ ∞, the central dipole
dominates and the perimeter dipoles align exactly
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FIG. 7. Components Mxc, Mym, and Mxd of the net dipole moment for the respective circular, misaligned, and dipolar
states from Eq. (22) vs. α . Solid traces denote locally stable states and dashed traces denote unstable states. Indicated
also are the critical values α1 = 1.15 and α2 = 2.47 between which the circular and dipolar states are both locally stable.
The magnitude of the central dipole moment, m0 = α , is also shown as a dotted line. At the intersection Mxd = m0, the
net dipole moment of the perimeter magnets of the dipolar state vanishes. This intersection occurs at α = 2.05, where
|HUd|= 0 (Fig. 5).

with the magnetic field of the central dipole. The i=
0 term of Eq. (10) describes the field of this dipole,
which overwhelms the other six terms as α→∞. In
this limit, the magnetic field at the location r= p2 =
(1/2,

√
3/2, 0) of dipole m2 is given by

B(p2) =
α

4

(
−1, 3

√
3, 0

)
, (20)

obtained by inserting Eqs. (1), (3), and (4) with φ0 =
0 into Eq. (10). Aligning dipole m2 with this field
gives the orientation angle φ2 of this dipole in the
α → ∞ limit,

φ∞ = π− tan−1
(

3
√

3
)
≈ 100.9◦. (21)

The other orientation angles follow by symme-
try. As α decreases, the influence of the central

dipole diminishes and the directions of the perime-
ter dipole moments depart increasingly from the
field of the central dipole (Fig. 4), while retaining
the symmetry of the dipolar state.

The reflection symmetry of a state determines the
direction of its net dipole moment M, which must be
unchanged under reflection. Being the sum of axial
vectors according to Eq. (8), M must also be an ax-
ial vector. As discussed above, the components of
an axial vector that are parallel to a reflection plane
are reversed under reflection. But M must be un-
changed under reflection. Consequently, M must
have no components that are parallel to the reflec-
tion plane; it must therefore point normal to the re-
flection plane. Accordingly, owing to the mx, my,
and mx reflection symmetries of the circular, mis-
aligned, and dipolar states shown in Figs. 4(a), (b),
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(a) circular state

(b) misaligned state

(c) dipolar state

FIG. 8. Predicted equilibrium orientation angles vs. α for the circular (a), misaligned (b), and dipolar (c) states (Fig. 4).
The circular state is stable (solid traces) for α < α2 = 2.47 and does not exist for α > α2. The misaligned state is
unstable (dashed traces) for all α . The dipolar state is unstable (dashed traces) for α < α1 = 1.15 and stable (solid
traces) for α > α1. For the dipolar state, dotted lines give the α → ∞ asymptotes φ →±φ∞ =±100.9◦ from Eq. (21).
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and (c), respectively, the net dipole moments for
these states take the forms

Mc = Mxcx̂ (22a)
Mm = Mymŷ (22b)
Md = Mxdx̂. (22c)

The α dependencies of the components Mxc,
Mym, and Mxd of these vectors are shown in Fig. 7.
Because Mxc > 0 and Mym > 0 for α > 0, the
net dipole moments of the circular and misaligned
states point in the same direction as the central
dipole for all α > 0 [in the +x and +y directions, re-
spectively; Figs. 4(a), (b), (d), (e), and (g)]. But be-
cause Mxd < 0 for α < 1.45, the net dipole moment
of the dipolar state points opposite to the central
dipole (in the−x direction) for α < 1.45 [Fig. 4(c)],
and points in the same direction as the central dipole
(in the +x direction) for α > 1.45 [Fig. 4(f), (h)].

Also shown in Fig. 7 is the magnitude of the cen-
tral dipole moment, m0 = α . At the intersection
Mxd = m0, the net dipole moment of the perimeter
magnets of the dipolar state vanishes. This intersec-
tion occurs at α = 2.05, where |HUd|= 0 (Fig. 5).

Figures 8(a)-(c) show predicted equilibrium ori-
entation angles vs. α for the circular, misaligned,
and dipolar states, respectively. These figures show
that the α = 1 symmetries discussed in Sec. III per-
sist for α 6= 1. Figure 8(a) shows nonlinear changes
in the orientation angles near α2, where the circular
state disappears.

V. EXPERIMENTAL OBSERVATIONS

To observe the circular, misaligned, and dipo-
lar states, we use standard commercially available
nickel-coated “strong” magnet spheres of diame-
ter 5 mm and partially magnetized “weak” magnets
of the same size that we obtained from the same
manufacturer.23 Using a magnet in the center of the
hexagon whose strength differs from the strength of
the perimeter magnets allows us to explore equilib-
rium states for values of α that differ from unity.

Using a Hall-effect magnetometer, we measure
the magnitude Bw of the magnetic field at the poles
of about 100 weak magnets. For our experiments,

we select six of these with field magnitudes satisfy-
ing

Bw = 0.20±0.01 T. (23)

We also measure the magnitude Bs of the magnetic
field at the poles of about 20 strong magnets. For
our experiments, we select seven of these with field
magnitudes satisfying

Bs = 0.48±0.01 T. (24)

The magnitude of the magnetic field at the pole
of a magnetic dipole is proportional to the magni-
tude of its dipole moment [Eq. (10)]. Accordingly,
Eq. (5) gives

α = 0 (25)

for six strong magnets in the perimeter and no mag-
net at the center,

α =
Bw

Bs
= 0.42±0.02 (26)

for a weak magnet at the center and six strong mag-
nets in the perimeter,

α =
Bs

Bs
= 1.00±0.03 (27)

for a strong magnet at the center and six strong mag-
nets in the perimeter, and

α =
Bs

Bw
= 2.4±0.1 (28)

for a strong magnet at the center and six weak mag-
nets in the perimeter.

We use iron filings to visualize magnetic fields
produced by equilibrium configurations of magnet
spheres, using the apparatus shown in Fig. 9. These
filings reside on a piece of paper that is placed on
top of the magnets. The piece of paper is tapped
to align the filings with the fields. We use Eq. (10)
to predict the fields B(x,y,0.5) at the height z = 0.5
of the paper as a function of the horizontal coordi-
nates x and y. In Figs. 10, 11, and 12, we compare
the predicted field lines (left panels) and contours of
constant B (right panels) with the patterns and sym-
metries of the iron filings (right panels), and find
good general agreement.
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(a) view from above (b) view from below

FIG. 9. Experimental apparatus. A configuration of spherical neodymium magnets of diameter 5 mm is placed on a
transparent sheet of plastic and a piece of paper is placed on the magnets. Iron filings are sprinkled on the paper and the
paper is gently tapped. A flashlight is used from below to project a silhouette of the magnet positions onto the paper so
that their locations can be known in relation to the iron-filing pattern. Photographs taken from above the paper show this
silhouette and the pattern of iron filings (Figs. 2, 10, 11, and 12).

In Figs. 10, 11, and 12, clumps of filings gather
where the fields are strong, robbing nearby weak-
field regions of filings. For example, in Fig. 10(f),
seven minima in the field strength are indicated by
seven circular regions formed by weak-field B= 2.0
contours (solid violet traces). These regions are de-
void of iron filings. Conversely, the strong-field
B = 4.5 contours (dashed turquoise traces) tend to
enclose regions with densely packed iron filings.

Far from the magnets in Figs. 10, 11, and 12, the
forces on the iron filings are too weak to pull them
into clumps but the torques are still strong enough to
align them with the field (because F ∝ r−4 but τ ∝

r−3). Arcs of iron filings thus show the direction of
the magnetic fields projected onto the z = 0.5 plane,
and agree with the predicted field lines.

Figure 10 shows the circular state for α = 0,
0.42, 1, and 2.4, consistent with the predicted sta-
bility of this state for α < α2 = 2.47 (Sec. IV).
In addition to the m(E,mx) point group symmetry
(Sec. III) that applies generally to the circular state,

the α = 0 circular state is symmetric under a six-
fold rotation 6z about the z axis, with the magnetic
moments pointing tangent to a circle of unit radius
[Fig. 10(a),(b)]. As the influence of the central mag-
net increases with increasing α , departures from
this six-fold symmetry become more pronounced.

The misaligned state is predicted to be unstable
for all α (Sec. IV), yet we observe it for α = 1
at about the same frequency as the circular state
(Fig. 11). As discussed in Sec. I, the misaligned
state is easy to distinguish from the circular state
experimentally because of differences between their
planes of reflection symmetry relative to the perime-
ter magnets.

The dipolar state is predicted to be stable for
α > α1 = 1.15 (Sec. IV). Indeed, of our experi-
mental values α = 0, 0.42, 1, and 2.4, we observe
the dipolar state only for α = 2.4 (Fig. 12). This ob-
servation evidently obeys the point-group symmetry
of this state, mm′2′(E,mx,m′y,2

′
z).

Why is the misaligned state observed experimen-
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(a) α = 0 circular state, fields (b) α = 0 circular state, filings

(c) α = 0.42 circular state, fields (d) α = 0.42 circular state, filings

(e) α = 1 circular state, fields (f) α = 1 circular state, filings

(g) α = 2.4 circular state, fields (h) α = 2.4 circular state, filings

FIG. 10. Predictions (left panels) and observations (right panels) of the circular state for various values of α , similar to
Fig. 2. The right panels show contours of constant B(x,y,0.5) obtained from Eq. (10).
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(a) α = 1.0 misaligned state, fields (b) α = 1.0 misaligned state, filings

FIG. 11. Prediction (a) and observation (b) of the misaligned state for α = 1, similar to Fig. 10.

(a) α = 2.4 dipolar state, fields (b) α = 2.4 dipolar state, filings

FIG. 12. Prediction (a) and observation (b) of the dipolar state for α = 2.4, similar to Fig. 10.

tally when it is predicted to be unstable? One possi-
bility is that friction between magnet spheres, which
is not included in our calculations, is sufficient to
stabilize this state. But if friction is sufficient to
stabilize the misaligned state for α = 1, then why
doesn’t it stabilize the dipolar state at α = 1?

The answer might lie in the relative degrees of in-
stability of the misaligned and dipolar states. A neg-
ative eigenvalue of the Hessian of the potential en-
ergy renders a state unstable [Eq. (12)]. The α = 1
misaligned state has one negative eigenvalue that
is close to zero, −0.0833, meaning that the associ-
ated eigenmode is barely unstable. The α = 1 dipo-
lar state also has one negative eigenvalue, −0.373,
but this eigenvalue is considerably more negative,
meaning that the associated eigenmode is less sta-
ble than the unstable eigenmode of the misaligned

state. This difference might enable friction to stabi-
lize the barely unstable misaligned state but not the
dipolar state.

Similarities between the misaligned and circular
states offer further clues about the stability of the
misaligned state. Despite the differences between
their planes of reflection symmetry relative to the
perimeter dipoles (Sec. III), the two states have sim-
ilar potential energies, net dipole moments, reflec-
tion symmetries, and approximate pentagonal sym-
metries [Table II, Fig. 2(b), (d)]. As seen in Figs. 6
and 7, the potential energies and net dipole moments
of the circular and misaligned states approach each
other as α → 0 and are equal at α = 0. And even
at α = 1, their differences are tiny (Fig. 3, Table
II). These tiny differences may help to explain how
friction can stabilize what would otherwise be an
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unstable state.
The potential energy and net dipole moment dif-

ferences between the circular and dipolar states are
much more pronounced (Table II). This might help
to explain why frictional effects are insufficient to
stabilize the dipolar state at α = 1.

VI. CONCLUSION

We have predicted the magnetic configurations,
symmetries, and stabilities of three equilibrium
states of a filled hexagon arrangement of magnetic
dipoles as a function of the ratio α of the inner
dipole strength to the perimeter dipole strength. Us-
ing small neodymium magnet spheres, we observe
the circular and dipolar states at values of α that
are consistent with the predicted stability ranges of
these states. We also observe the α = 1 misaligned
state, which is barely unstable theoretically. Pat-
terns of iron filings for these states agree with their
predicted magnetic fields.

We predict a hysteretic transition for variable α

that might be accessible experimentally. For α <
α1, only the circular state is stable. For α1 < α <
α2, the circular and dipolar states are both locally
stable. And for α > α2, only the dipolar state is sta-
ble. The hysteresis loop can be realized by starting
with α < α1 in the circular state and by increasing
α . We predict that the circular state will persist until
α > α2, where it is abruptly replaced by the dipolar
state. Then for decreasing α , the dipolar state will
persist until α < α1, where it is abruptly replaced
by the circular state.

Our observations supply preliminary experimen-
tal evidence of hysteresis. We observe the circular
state for α = 0, 0.42, 1, and 2.4, consistent with

TABLE II. Magnetostatic potential energies U and net
dipole moments Mxc, Mym, and Mxd of the α = 1 circular,
misaligned, and dipolar states, respectively, from Eqs. (7),
(8), and (22). See Figs. 3, 6 and 7.

State Potential Energy Net Dipole Moment
circular -13.577 2.1986

misaligned -13.570 2.1989
dipolar -8.853 -0.9901

the predicted stability range α < α2 = 2.47 of this
state (Fig. 10). We also observe the dipolar state
for α = 2.4, consistent with the predicted stability
range α > α1 = 1.15 of this state (Fig. 12). Fig-
ures 10(h) and 12(b) show our observations of these
states at α = 2.4, with distinct differences in the
symmetries of the iron filings that are consistent
with the predicted symmetries of these states. These
observations supply evidence that both states are
stable over an intermediate region (α1 < α < α2),
a necessary condition for hysteresis.

Stronger experimental evidence of hysteresis
might be obtained using an electromagnet at the
center of the hexagon and permanent magnets in the
perimeter, with the current through the electromag-
net controlling the value of α . To minimize fric-
tion during this process, it would be useful to elim-
inate contact between the seven magnets by plac-
ing them on seven low-friction vertical spindles that
pass through their centers. It would be interesting to
see if doing so would preclude the misaligned state.

We investigate equilibrium states for which the
positions and dipole moments of all seven mag-
nets are coplanar. It would be interesting to inves-
tigate the consequences of relaxing these assump-
tions. We have performed preliminary calculations
that allow one or more of the seven dipole moments
to point out of the plane, while restricting the posi-
tions of the seven dipoles to the plane. None of the
resulting equilibrium states is stable. This suggests
the possibility that the stable equilibrium states of
any planar configuration of magnetic dipoles have
dipole moments that are also restricted to the plane.
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