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Push-out-shear tests were used in this study to analyze lag screw connections in timber-concrete composite (TCC) slabs based on
the embedment depth. �e goal of this research is to look into the relationship between shear capacity and embedment depth in
TCC, as well as to investigate the embedment strength of the wood. Experiments were carried out at di�erent embedment depths
(5.08 cm, 7.0 cm, and 8.9 cm). �e prepared samples were examined in order to determine the failure modes and provide an
accurate assessment of the in�uence of embedment depth on TCC slabs.�e investigation on the embedment strength of the wood
was performed then for the analysis of the crushing of wood �bers, lag screw yielding strength, and maximum load applied at
embedment depths of 6.6 cm and 7.0 cm. �e results indicate that between 5.08 cm and 7.0 cm, there was an apparent im-
provement in the relationship between embedment depth (ED) and shear capacity of TCC slabs in terms of the shear strength,
while a signi�cant di�erence was observed between 7.0 cm and 8.9 cm. �e study suggests that the ED of the TCC slab should be
maintained at around 7.33 times the diameter of the lag screw.

1. Introduction

1.1. Research Background. �e development of the TCC
system started in Europe after World Wars I and II. Due to
the enormous loss in construction materials resulting from
these two wars, a shortage in steel for reinforcement in
concrete has been noticed. In 1922, Muller studied the
system of nails and steel braces between timber and concrete.
In 1939, Schaub analyzed steel Z-pro�le and I-pro�le
connections [1, 2]. TCC was considered a refurbishment
technique at that time, where it was used to restore old
buildings rather than demolish them. �e �rst report that
was published which combines both theoretical and

experimental refurbishment of historical buildings was re-
ported by Godycki et al. in 1984 [3]. By using this method,
several timber �oors were refurbished in Lodz, Poland, at
that time. Another study by Postulka between 1983 and 1997
mentioned that more than 10.000m2 of timber �oors in the
Czechoslovak Socialist Republic (CSSR) had been renovated
with a timber-concrete structural system since 1960 [4]. In
the last decade, several case studies have been investigating
the practice of TCC in multistory buildings. Many TCC
buildings have been constructed in Australia and Europe,
followed by named Murray Grove building in London, the
Forte building in Australia, and the Treet building in Norway
[5–7]. TCC can o�er numerous advantages. Timber, in
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terms of production, requires small amounts of nonre-
newable energy, different steel, and concrete, as it is a
natural, sustainable material [8, 9]. Furthermore, timber is a
carbon store that can decrease the environmental impact of
construction through its carbon sequestration mechanism,
which is the process of restoration or removal of CO2 from
the atmosphere using a physical or biological process
[10, 11]. Timber reduces the overall weight of a building
while providing sufficient resistance, adding more aesthetic
appeal, and enhancing environmental impact. Concrete, on
the other side, is designed as a floor slab that reduces the
floor vibrations and increases the amount of stiffness. To-
gether, a combination of timber and concrete properties has
developed a structural system known as TCC that can
provide improved sound insulation, increased strength
under gravity load, smaller self-weight, higher stiffness,
which results in smaller deflection and vibration aspects, and
lower cost compared with steel-concrete systems, especially
since the cost of steel is increasing gradually [12].

1.2. Literature Review. It is believed that the structural
performance of the TCC could be attributed to the rela-
tionship between the timber beams or slabs and other
structural elements such as concrete, timber, and steel which
is reflected in the stiffness and loading capacity [13, 14].
However, the classification of the connections could be based
on how they were installed into the timber; they can be
classified into discrete/continuous, prestressed/non-pre-
stressed, glued/nonglued, and vertical/inclined [15]. Scholars
at the Talbot Lab, University of Illinois, performed the Oregon
test between 1938 and 1942 as the first TCC connection test in
which a full-scale bending test was carried out on 32 com-
posite systems by using various shear connectors. Richart and
Williams [16] reported tests on vertical triangular steel plates,
lag screws or spikes, triangular plates and spikes, and sloped
notches with/without spikes. Most of the shear connectors
showed adequate strength and stiffness, but beams with tri-
angular plates and spikes showed more satisfactory results
and were the best outcome group as they developed small slip
and deflection and carried higher load-carrying capacity than
other connections [16]. In 1995, Ceccotti classified the most
common connections that have been used in joining timber to
concrete into four different groups (Figure 1), where group A
has the least stiffness while group D is the stiffest connector
[17]. Group A connectors tend to have the least stiffness and
rigidity as they are easy to install and inexpensive. Group B
showed higher rigidity, ultimate strength, and ductility
compared with group A [18, 19]. Group C, where notches
were cut into the timber and reinforced with either lag screws
or posttensioned bolts, showed better slip resistance and
higher strength compared with group B [18]. Finally, groupD
is considered to be the stiffest, with higher rigidity compared
with all other groups./e failure occurs in TCCmainly due to
the connection between the timber-concrete interface layers.
According to the Johansen yield theory [20], the possible
failure modes for lag screws which is the type of connection
that will be investigated in this study are double plastic hinges,
single plastic hinges, and failure due to the rotation of the lag
screw. A plastic hinge (single or double) occurs when the load

applied causes bending stress, whereas the connection
member would be in an elastic behavior. Once the load has
increased, leading to larger bending stress causing the con-
nections to yield, a plastic hinge occurs when the connections
experience large deformations, but no rupture takes place. A
double plastic hinge occurs when the screw rotates in both
concrete and timber sections due to the embedment stress of
the connection that has been distributed all over the length of
the screw. A single plastic hinge forms at the interface where
the screws would rotate as a stiff member in the timber
section./is failure could occur only if the embedment length
of the connection installed is enough to lead the connection to
act in such a matter. Finally, failure due to rotation occurs
when the lag screw installed in TCC rotates in the whole
specimen. Several researchers have been investigating the
feasibility of different connections among TCCs. Following
these, a considerable body of work has been carried out to
build high-performance shear connectors and quantify the
load slip, load-bearing capacity, and stiffness of the con-
nections, mostly via push-out-shear tests [21–26]. /e con-
nection in TCC was found to affect the load-bearing behavior
of the composite beam, while the structural behavior of the
slab was influenced by the stiffness, ductility, and shear re-
sistance of the connection [27, 28]. Numerous studies on
connection systems have focused on TCC performance [29].

1.3.Motivation ofResearch. /emotivation of the study is to
investigate timber-concrete composite structural design,
which consists of a concrete slab, where concrete is designed
to be in the compression zone, and the timber is attached
below in the tension zone./ese two materials are combined
using different shear connectors, such as coach screw shear
connectors (zinc-plated steel coach screw), stud connectors,
dowels, and notches cut in the timber filled with concrete
[20–30]. /e shear connection between timber and concrete
is essential as these connectors typically govern the strength
and the structural behavior of the TCC structures./erefore,
it is crucial to use connectors that are strong and stiff enough
to resist the shear force in the composite structure, as TCC
typically fails if the connection fails [31].

1.4.Objective ofResearch. /e aim of this work is to examine
the failure modes with various EDs to improve knowledge
on the influence of ED on TCC slabs, as well as to determine
the relationship between connection failure loads and em-
bedment strength. /is was achieved by performing push-
out-shear tests on the lag screw connections in TCC slabs at
ED values of 5.08 cm, 7.0 cm, and 8.9 cm. /e evaluation of
the embedment strength, lag screw shear failure modes, and
lag screw yielding was carried out by evaluating the em-
bedment strength at ED values of 6.6 cm and 7.0 cm.

2. Materials and Methods

2.1. Material Properties

2.1.1. Timber. A sawn lumber section, specifically Douglas
fir-larch (DF-L), No. 2 lumber, is analyzed for the timber
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section. Douglas Fir-Larch, No. 2 is known for its properties
in strength, durability, and workability. Table 1 shows dif-
ferent characteristics of DF-L, No. 2.

2.1.2. Concrete. Concrete is prepared by using a
QUIKRETE concrete mix. /is is a mixture of Portland
cement, sand, and gravel or stone. /e mixture is poured
and cured for 28 days in the structural lab to reach
its specific compressive strength based on ASTM C39
[32], 27,579 KPa, with a slump range between 5.08 and
7.62 cm.

2.1.3. Connections. /e connection used in this test is the
steel lag screw shear connection (otherwise known as lag
bolts or lag screws). /e connections in the test have a fixed
nominal diameter of 0.953 cm and a fixed length of 12.7 cm.
/is type of connection would be between timber and
concrete to affix them together and then investigate the
behavior and the modes of failure.

2.2. Design Parameters. /e study parameters are shown in
Table 2./ese specimens are chosen due to the availability of
the timber section in these dimensions. /e first two em-
bedment depths (5.08 cm and 7.0 cm) are illustrated in
Figures 2(a) and 2(b), whereas Figure 2(c) illustrates an
embedment depth of 8.9 cm, where due to the length of the
timber section, lag screws have to be staggered.

2.3. Experimental Setup

2.3.1. Push-Out-Shear Test. Nine specimens are prepared by
using three different embedment depths, which are 5.08 cm,
7.0 cm, and 8.9 cm. Each embedment depth has been ana-
lyzed by using three different specimens per ASTM mini-
mum requirements. /e push-out-shear test is conducted by
using Tinius Olsen machine, and Tinius Olsen universal
testing machine software (version 6.03.24) has been used to
collect and extract the data (shear capacity and slip). /e
load applied has been increased until the maximum load
where failure occurs in the connection, and the relative slip
was accounted for at that maximum load. Push-out-shear

A
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D 1

3

1

3

1

3

1 2

4

2

4

2

2

4

Figure 1: Connection classification and types (source: [16]).

Table 1: Properties of Douglas fir-larch (DF-L), No. 2 lumber.

Property Value
Density 539.8 kg/m3

Bending (Fb) 9307.7 KPa
Compression parallel to grain (Fc) 6377.7 KPa
Compression perpendicular to grain (Fc) 4309.2 KPa
Tension parallel to grain (Ft) 4654.0 KPa

Table 2: Dimensions of materials.

Timber section
(width× thickness× height) 15.2 cm× 15.2 cm× 30.5 cm

Concrete section
(width× thickness× height) 15.2 cm× 8.9 cm× 35.6 cm
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tests have been conducted in accordance with BS EN 26891
[33], as shown in Figure 3. /e load has been increased
linearly to 0.4Fest in the first 2 minutes and then held for 30
seconds at 0.4 Fest. /en, it was decreased to 0.1Fest and
maintained for another 30 seconds. Later on, the applied
load has been increased gradually up to the ultimate load, or
slippage occurs at 15mm, which is the maximum relative
slip in accordance with EN 26891 [33]. /erefore, specimens
with a slippage exceeding 15mm were considered to have
15mm as the maximum per the code. /eoretical equations
that have been adopted to estimate the test specimen load
capacities are shown in the following sections.

2.3.2. Embedment Strength Test. Embedment strength has
been evaluated by using the Forney compression testing ma-
chine. Eight specimens have been prepared to understand the
limitations per lag screw in two different embedment depths,
which are 6.6 cm and 7.0 cm. Four trials have been conducted
per embedment depth to analyze the yielding strength of the lag
screws, the crushing of wood fibers, and the maximum loads
that each specimen could resist. Figure 4 illustrates the di-
mensions used for both 6.6 and 7.0 cm embedment depths.

2.4. :eoretical Calculations and Predictions

2.4.1. Push-Out-Shear Test. /eoretical loads were estimated
by using ACI 318-14 [34] and AISC 13th edition [35]. /ese
codes were used to analyze the shear friction of the lag screw
by using

A �
πd

2

4
, (1)

S �
πd

3

32
(Ffor Elastic), (2)

Z �
d
3

6
(Ffor plastic), (3)

I �
πd

4

64
, (4)

Mmax �
Pl

2
� 0.6FyS (Ffor Elastic), (5)

Mmax �
Pl

2
� 0.9FyZ (Ffor plastic), (6)

Δmax �
Pl

3

12EI
, (7)

SF � 0.85∗ALS ∗Fy ∗COF, (8)

where ALS is the area of the lag screw, Fy is the yield strength
of the lag screw, and COF is the coefficient of friction which

Concrete

Timber

30.5
cm

35.6 cm

5.08
cm

8.9 cm

33.0 cm

15.2 cm 8.9 cm

Lag Screw

5.08 cm7.62 cm

(a)

Concrete

Timber

30.5
cm

35.6 cm

5.08
cm

8.9 cm

33.0 cm

15.2 cm 8.9 cm

Lag Screw

5.7 cm 7.0 cm

(b)

timber
30.5
cm

35.6 cm

5.08
cm

8.9 cm

33.0 cm

15.2 cm 8.9 cm

8.9 cm3.8 cm
10.16 cm

(c)

Figure 2: (a) Section view for 5.08 cm. (b) Section view for 7.0 cm. (c) Section view for 8.9 cm.
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Figure 3: Testing criteria according to EN 26891 (source: [20]).

4 Advances in Civil Engineering



was estimated as 0.62 [36]. Bearing strength of concrete on
lag screw was analyzed by using

FB � ∅ 0.85 tfc
′nA1,minq􏼐 􏼑, (9)

where∅ is the reduction factor (0.65), fc′ is the compressive
strength of concrete, and A1,min can be found by using

A1,min �
1
4

􏼒 􏼓
9
16

􏼒 􏼓 + L −
1
4

􏼒 􏼓(d), (10)

where d is the diameter of the lag screw, and L is the length of
the lag screw in the concrete section. /e nominal strength
of one shear connector was found by using

Qn � 0.5Asc

����

fc
′Ec

􏽱

< AscFu, (11)

where Ec is the modulus of elasticity of concrete, Asc is the
area of steel lag screw, and Fu is the tensile strength of lag
screw. For the single plastic hinge and based on the single
curvature bending (beam diagram 22) in AISC 9th edition,
the following approach was analyzed by using

Mmax � PL � 0.9FyZ, (12)

Shear Friction of lag screw
� 0.85∗A∗Fy ∗Coefficient of friction,

(13)

Total Force to resist � P + SF orFB􏼂 􏼃( 􏼁(2), (14)

where P is the load applied for plastic bending in addition to
the load that was found based on the controlling limit per
each embedment depth. Estimated values (Fest) are pre-
sented in Table 3 for all of the different penetration depths
analyzed.

2.4.2. Embedment Strength Test. In order to estimate the
embedment strength in the timber section, an equation
adopted from IBC-2012 [37] was used to estimate the
amount of load (P) that could be resisted per each lag screw
by using

P �
A x S1 x b( 􏼁

2.34
, (15)

Total Load � 2P, (16)

where A is the embedment depth into timber, S1 is the
compression parallel to the grain, and b is the diameter of the
lag screw. /is equation is initially used to determine the
nonconstrained embedment depth required to resist the
lateral loads for drilled foundations. /e estimated maxi-
mum loads that each lag screw could resist are provided in
Table 4.

3. Results and Discussion

3.1. Push-Out-Shear Test. /e results from the push-out-
shear test of the nine specimens were analyzed to understand
the behavior of each TCC specimen. All the data collected
for each embedment depth are displayed in Tables 5–7.

In 5.08 cm embedment, two specimens failed due to
double plastic hinge (Figure 5(a)), while one of the trials
failed due to the rotation of the lag screw (Figure 5(b)) as the
specimen experienced yielding between 19.2 kN and 24.2 kN
due to the slippage that occurred between timber and
concrete sections which exceeded 15.0mm, but it was set to
15mm as per the maximum relative slip based on EN 26891.
Moreover, some connections failed as single plastic hinges
due to the compression of the internal timber fibers
(Figure 5(c)). Specimen number 3 at 5.08 cm embedment
depth had the lowest experimental load compared with the
other trails, as the concrete section got cracked when the
specimen was being lifted to the push-out-shear testing
machine. Concrete crack repair epoxy was used to close the
cracks and kept curing for another 24 hours as it is required.
All the specimens experienced a slippage between timber
and concrete within the maximum limit set by EN 26891,
while 2 specimens experienced higher slippage than 15mm.

/e test results showed that the shorter the embedment
depth is, the more the specimen is prone to double plastic
hinge failure, as it only occurred in TCC specimens of

30.5 cm
6.6 cm

Timber

15.2 cm

Metal Bracket

Lag Screw

(a)

30.5 cm
7.0 cm

Timber

15.2 cm

Metal Bracket

Lag Screw

(b)

Figure 4: (a) Section view for 6.6 cm . (b) Section view for 7.0 cm.
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5.08 cm embedment. /e results also showed that changing
embedment depth from 5.08 cm to 7.0 cm could increase the
shear capacity from 16.1 kN to 31.4 kN. /e analysis of all
variations of the embedment depths concluded that there is a
clear increase of shear capacity between 5.08 cm and 7.0 cm,
but no significant changes between 7.0 cm and 8.9 cm. A
statistical test, one-way analysis of variance (ANOVA), was
used to find the effect of the shear strength between the three
different embedment depths. Embedment depth was treated
as an independent variable and shear capacity as the de-
pendent variable. ANOVA showed that there is a statistically
significant difference in response to the shear capacity (F
(2.6)� 50.7, P< 0.05). Post hoc analysis was carried out
using Tukey’s test (HSD∝� 0.05� 9007.6) and then had been
verified. Based on the comparisons between all the trials, it

was found that there is a statistically significant difference
between 5.08 cm and 7.0 cm and between 5.08 cm and
8.9 cm, while there was not any statistically significant dif-
ference in the shear strength between 7.0 cm and 8.9 cm.
Effect size analysis (η2 � 0.94) showed that there is a large
effect between the lowest embedment depth and the other
two embedment depths. 5.08 cm is not recommended due to
the excessive bending of the lag screws. Another factor that
renders 5.08 cm embedment feasible is the excessive com-
pression of the internal wood fibers, which would affect the
overall TCC behavior./e factor of safety (based on the ratio
of experimental and analytical results) is calculated to be 1.3,
which is low when compared with the factor of safety of 2.16
for shear in the NDS-2015 [38], making the system more
vulnerable to failure. 8.9 cm embedment depth is not rec-
ommended, on the other hand, as there is a large discrepancy
between the theoretical and experimental values, with a
factor of 3.81, making it more conservative to account for.
/erefore, 7.0 cm is the most suitable embedment depth
among those tested as it resulted in a factor of safety of 2.65,
which is reasonable compared with 2.50 based on TMS 402/
602-16 [39]. /e theoretical load accounted at 7.0 cm
(18.6 kN) had a higher shear capacity load compared with
8.9 cm embedment (13.7 kN) even when the connections
failed due to the same mode of failure. Moreover, the mean
of the slip resistance accounted for the different trails at
7.0 cm embedment depth showed a smaller slip compared
with the other two embedments, which nominates it to be
found as the best outcome group where connections are
stiffer at 7.0 cm.

3.2. Embedment Strength Test. During the testing for the
embedment strength, the loads were increased manually
until the lag screw would yield in each specimen or a crack
noise of the wood fibers could be noticed. /e loads were
then incremented manually until the timber specimen could
not resist any higher loads. Tables 8 and 9 illustrate data
collected at both embedment depths of 6.6 cm and 7.0 cm in
terms of the crushing of the wood timber, yielding of lag
screws, and maximum load applied on each specimen.

In all of these trials, the wood fibers started to crush and
crack before the lag screw started to yield, concluding that
the lag screw would act as an efficient bond between timber
and concrete, which would secure the composite action in
TCC. Another remark was found that this type of con-
nection is stiff enough to resist the load as timber fibers
started to crack before lag screws get yielded. After the wood
fibers cracked, the load was increased manually until the lag
screw would yield (Figure 6). Once the lag screw yielded and
had a noticed bent, the load was increased until the specimen

Table 4: /eoretical loads of lag screw strength.

Embedment
depth (cm)

/e load applied per
lag screw (kN)
(equation (15))

/e total load applied
on timber (kN)
(equation (16))

6.6 1.72 3.43
7.0 1.81 3.63

Table 5: Results for 5.08 cm embedment specimens.

Specimen Experimental load
(kN) Failure mode Maximum

slip (mm)

1 31.2 Double plastic
hinge 11.7

2 24.2 Rotation 15.0

3 20.4 Double plastic
hinge 12.2

Table 3: Estimated failure load in different embedment depths.

Embedment depth in timber (cm)
Failure mode and estimated failure load

Single plastic hinge mode (kN) Rotation mode (kN) Double plastic hinge mode (kN)
5.08 19.5 (equation (14)) 17.8 (equation (8)) 20.3 (equations (6) and (8))
7.0 18.6 (equation (14)) 17.8 (equation (8)) 19.8 (equations (6) and (9))
8.9 13.7 (equation (14)) 17.8 (equation (8)) 15.4 (equations (6) and (9))

Table 6: Results for 7.0 cm embedment specimens.

Specimen Experimental
load (kN) Failure mode Maximum

slip (mm)
1 47.3 Single plastic hinge 14.0
2 51.8 Single plastic hinge 11.9

3 49.0 Single plastic
hinge + rotation 2.29

Table 7: Results for 8.9 cm embedment specimens.

Specimen Experimental load
(kN) Failure mode Maximum

slip (mm)
1 50.0 Single plastic

hinge

12.4
2 52.8 15.0
3 53.5 13.2
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could not resist any further loads. In most of these trials, the
lag screw almost behaved in elastic deformation, but it did
not return to its original position (zero deflection), which
means that with lag screws, the elastic limit cannot take place
within this type of connection, as proved by Newlin and
Martin Gahagan in 1938 too [40].

After the test, the specimens were investigated regarding
the failure of the lag screws. /e specimens were cut to
extract a clear section of one specimen per each embedment.
Figure 7 shows that the lag screws deformed and that the lag
screw had a single plastic hinge near the surface of the timber
specimen, but it did not fail in the timber section./e results
showed that the experimental results were twice the theo-
retical wood fiber crushing strength calculated. Using the
equation adopted from IBC-2012 [37] for the ultimate load
for the embedment strength, a factor of 1.5 is calculated,
which is lower than the 2.34 as provided. However, after a

more in-depth study, a reduction in the coefficient from 2.34
to 1.5 may be considered. /e two embedment depths that
have been analyzed for this testing showed no significant
difference in the embedment strength or terms of the failure
modes (crushing of wood fibers and yielding of lag screws).
However, it was noticed that the lag screws at 7.0 cm had
lower displacement values, and lower wood fiber crushing
occurred around the lag screws.

/e TCC behavior might be limited by three constraint
limitations based on the findings of this study which are the
bearing strength of concrete on the lag screw, double
bending of lag screws, and embedment strength. As the
connection progresses through these stages, each lag screw
with an ED value of 7.0 cm can safely support stresses of
12.7 kN, as illustrated in Table 10.

Figure 6: Lag screw yielding at 6.6 cm.

(a) (b) (c)

Figure 5: (a) Double plastic hinge. (b) Rotation of lag screw. (c) Single plastic hinge.

Table 8: Results for 6.6 cm embedment specimens.

Trial
number

Crushing of wood
timber (kN)

Yielding of the lag
screw (kN)

Maximum
load (kN)

#1 7.56 10.7 10.9
#2 8.45 9.96 10.6
#3 8.63 9.35 9.70
#4 9.35 9.61 9.79
Mean 8.49 9.90 10.2

Table 9: Results for 7.0 cm embedment specimens.

Trial
number

Crushing of wood
timber (kN)

Yielding of the lag
screw (kN)

Maximum
load (kN)

#1 8.45 10.5 10.6
#2 7.12 10.6 11.3
#3 8.45 10.9 11.4
#4 9.35 10.2 10.5
Mean 8.34 10.6 10.9
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4. Conclusions

/e ED shear capacity relationship of TCC slabs was also
investigated, and a considerable improvement in shear
strength was found between ED values of 5.08 cm and
7.0 cm, but not at ED values of 7.0 cm and 8.9 cm. Hence, an
ED value of 7.0 cm is expected to be the closest to an ideal ED
among the analyzed values./e findings also suggest that the
lag screws must maintain the least penetration depth of
7.33 d (d� diameter of the lag screw) into the timber
specimen; this is because the multiplication of the lag screw
diameter by this factor would offer the required ED to
withstand the applied loads with lower lag screw displace-
ment and deflection. Furthermore, the lag screws at 7.0 cm
showed lower displacement values, as well as less wood fiber
crushing surrounding the lag screws, which is deemed
noteworthy for the majority of the samples in this
investigation.
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