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a b s t r a c t

CoastalImageLib is a Python library that produces common coastal image products intended for
quantitative analysis of coastal environments. This library contains functions to georectify and merge
multiple oblique camera views, produce statistical image products for a given set of images, and
create subsampled pixel instruments for use in bathymetric inversion, surface current estimation,
run-up calculations, and other quantitative analyses. This package intends to be an open-source
broadly generalizable front end to future coastal imaging applications, ultimately expanding user
accessibility to optical remote sensing of coastal environments. This package was developed and
tested on data collected from the Argus Tower, a 43 m tall observation structure in Duck, North
Carolina at the US Army Engineer Research and Development Center’s Field Research Facility that
holds six stationary cameras which collect twice-hourly coastal image products. Thus, CoastalImageLib
also contains functions designed to interface with the file storage and collection system implemented
at the Argus Tower.

© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0.0
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Legal Code License MIT Open Source License
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1. Motivation and significance

Optical remote sensing has become an important tool for
coastal scientists and engineers to expand research capabilities in

∗ Corresponding author at: Sonny Astani Department of Civil & Environmental
Engineering, University of Southern California, Los Angeles, CA 90089, United
States of America.

E-mail address: mailemcc@usc.edu (Maile P. McCann).

the nearshore, providing low cost, accurate, and flexible methods
for characterizing coastal environments. Optical imagery can be
collected via a range of remote-sensing approaches, with typical
applications using fixed cameras mounted on elevated platforms
over looking the coast. The first coastal video monitoring system,
called an Argus camera system (named after the figure in Greek
mythology with 100 eyes), was developed by the Coastal Imaging
Lab at Oregon State University in the early 1980s [1], and similar
coastal imaging stations continue to be used worldwide today
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[2–7]. Subsequent advances in low-cost video hardware have fur-
ther broadened the use of optical remote sensing to data collected
from tools such as unmanned aerial vehicle mounted cameras [8]
and even free surf cameras [9].

Using this technology, algorithms quantifying nearshore dy-
namics from remotely-sensed products can estimate geophysical
parameters such as two-dimensional surface currents [10–13],
bathymetry [14–16], directional wave spectra [17,18], and shore-
line position [19,20]. Additionally, recent advances in coastal
imaging are beginning to leverage machine learning and
computer-vision algorithms, such as optical wave gauging using
deep learning [21], automating beach-state classification from
trained neural networks [22], rip-current detection from neural
networks [23], as well as algorithms combining synthetic and
real imagery to train models for bathymetric inversion [24]. These
advances motivate the need for a common coastal imaging library
that can interface with all Python- based machine learning and
computer vision packages such as TensorFlow [25], PyTorch [26],
Scikit-learn [27], and OpenCV [28]. However many nearshore
imaging platforms are either black box algorithms or have li-
censes preventing modification (e.g., Argus [1], Cam-Era, HORUS,
CoastalCOMS, KOSTASYSTEM, COSMOS [5]). SIRENA provides a
java-based code [4], while Beachkeeper plus [29] and ULISES [30]
provide Matlab-based codes that can also be run in Octave to be
open-source.

Additionally, all aforementioned algorithms require common
photogrammetry functions during data preprocessing in order to
convert oblique imagery into compatible georectified input im-
agery. The necessary photogrammetry functions can include geo-
rectification, which is the process of transforming pixel
coordinates in oblique images into real-world coordinates, merg-
ing multiple camera views, preparing statistical image prod-
ucts, and/or creating selected pixel outputs from input imagery.
These preprocessing steps are sometimes outside the expertise
of coastal scientists, engineers, and oceanographers, which can
constrain the availability of optical remote sensing algorithms to
those with extensive photogrammetry backgrounds [31].

Steps have been taken to bridge the knowledge gap and teach
photogrammetry fundamentals, such as the creation of Coastal
Imaging Research Network (CIRN), an international network of
researchers who collaborate to develop and implement coastal
imaging methods [32]. CIRN researchers developed the CIRN
Quantitative Imaging Toolbox [31] which serves as a user- acces-
sible end- to- end package for creating coastal image products.
However, this toolbox is built on Matlab, which can be cost- pro-
hibitive and does not interface easily with open-source tools such
as machine learning packages (TensorFlow, PyTorch, Scikit-learn)
and computer vision packages like OpenCV. CoastalImageLib in-
tends to be a complementary package to CIRN’s Quantitative
Imaging Toolbox, translating these capabilities to an open- source
language. CoastalImageLib is adapted from capabilities in the CIRN
Quantitative Coastal Imaging Library [31], the ARGUS Coastal
Imaging System [1], and the CoastCam System [33] to provide
an open- source package that interfaces with other useful Python
based computer vision algorithms. In addition to CIRN’s Quan-
titative Coastal Imaging Toolbox, the Picoastal camera system
based off of the Argus framework was recently developed for a
similar purpose [34]. However, Picoastal focuses on the hardware
component as well, while the package we present in this paper
will be a software package exclusively with the intention of being
a build-able foundation for applications that may interface with
a variety of hardware applications, not just that of Argus/CIRN/
Picoastal framework.

The recent abundance of hardware and nearshore imagery
holds considerable potential for coastal monitoring of both
chronic and episodic hazards, motivating the need for this open-
source toolbox that the coastal research community can utilize to

derive inter-comparable products. Ultimately, this package aims
to be a broadly generalizable, foundational front end to future
coastal imaging applications that can leverage valuable computer
vision and machine learning techniques.

2. Software description

The CoastalImageLib package contains modules to georectify
and merge multiple camera views, calculate statistical image
products, and create subsampled pixel timestacks. These prod-
ucts can be utilized in a wide range of optical remote sensing
applications, and the library itself can interface directly with open
source computer vision and machine learning algorithms such as
OpenCV, PyTorch, SciPy, and TensorFlow.

2.1. Software architecture

The following list depicts the library structure for Coastal-
ImageLib, expressed in terms of a hierarchical file system. Any
classes contained in each module (*.py file) are included in italics.
Classes, as well as the methods they contain, do not require a
specific order in which to be implemented. Suggested workflows
are included in the Illustrative Example Script Jupyter notebook
contained in the CoastalImageLib repository. Detailed descrip-
tions of each module can be found in the following Software
Functionalities section.

CoastalImageLib/

– corefunctions.py

class XYZGrid()
class CameraData()

– supportfunctions.py
– argusIO.py

The main user- interactive module is corefunctions.py. Two
classes are contained in this module: XYZGrid() and CameraData().
These classes bundle data and functionality vital to the rectifica-
tion process. XYZGrid() holds the real world target grid on which
rectification or pixel subsampling will take place. CameraData()
holds camera calibration values, and contains a method for ex-
trinsic value transforms, and a method for calculating camera
matrices. Users must initialize instances of these classes for each
desired rectification grid, and each calibrated camera.

2.2. Software functionalities: corefunctions.py

2.2.1. Georectification and merging multiple camera views
The module corefunctions.py contains a series of functions

that implement fundamental photogrammetry calculations to
georectify oblique imagery onto a user- defined real world XYZ
grid and merge multiple camera views, for both grayscale and
color images. Additionally, this module contains functions to
generate statistical image products for a given set of images
and their corresponding camera extrinsic and intrinsic values,
as well as functions to generate pixel instruments for use in
bathymetric inversion, surface current, or run-up calculations. For
rectification tasks, the user first initializes an XYZGrid() object. The
user specifies x and y limits and resolution of the real- world grid
in x and y directions. See the CoastalImageLib User Manual for how
coordinate systems are defined.

Next, the user initializes a CameraData() object for each cali-
brated camera being utilized. Each instance of this class requires

2
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Fig. 1. Diagram of the rectification process, shown in grayscale. However, both grayscale and color images are supported.

all camera intrinsic and extrinsic values unique to that device. For
cameras that have not yet been calibrated and the intrinsic values
are not known, the user is directed to the CalTech Camera Calibra-
tion library [35], or other relevant calibration libraries such as the
calibration functions contained on OpenCV [28]. Intrinsic values
are accepted in the direct linear transform notation [36] which
has been adopted by CIRN as common convention [31]. See the
CoastalImageLib User Manual for detailed information on calibra-
tion and intrinsic value formatting. The user can also optionally
specify the coordinate system being utilized, with the further
option of providing the local origin for a coordinate transform.

If oblique imagery was captured using a non-stationary cam-
era, for example an unmanned aerial vehicle mounted camera,
the user is directed to the CIRN Quantitative Coastal Imaging
library for calibration and stabilization [31]. Note that this library
requires stationary ground control points (GCPs) and stabilization
control points (SCPs). See the CIRN Quantitative Coastal Imaging
library User Manual [31] for detailed information on GCPs and
SCPs.

The corefunctions.py function mergeRectify() is designed to
merge and rectify one or more cameras at one timestamp into
a single frame, as shown in Fig. 1. For multiple subsequent
frames, the user can either loop throughmergeRectify() and rectify
each desired frame on the same XYZ grid, or call the function
rectVideos() to merge and rectify frames from one or more cam-
eras provided in video format, sampled at the same time and
frame rate. Merging of multiple cameras includes a histogram
matching step, where the histogram of the first camera view is
used as the reference histogram for balancing subsequent camera
views. This step helps remove visible camera seams and improves
the congruity of illumination [28].

2.2.2. Statistical image products
The corefunctions.py module also contains the function im-

ageStats() to generate statistical image products for a given set
of stationary oblique or georectified images contained in a three
dimensional array, in either grayscale or color. All image product
calculations are taken from the Argus video monitoring conven-
tion [1]. The products and their descriptions are as follows:

1. Brightest: These images are the composite of all the bright-
est (maximum) pixel intensities at each pixel location
throughout the entire collection.

2. Darkest: These images are the composite of all the darkest
(minimum) pixel intensities at each pixel location through-
out the entire collection. In regions of intermittent break-
ing, Darkest images have historically been used to look
through the water column [37].

3. Timex: Time- exposure (timex) images represent the math-
ematical time- mean of all the frames captured over the
period of sampling. Moving features, including waves and
vessels, are averaged out and only mean brightness is re-
turned. Areas of repeated wave breaking in the surf zone
appear as white bands, which can help locate and deter-
mine the morphology of sand bars and rip channels [15].

4. Variance: Variance images are found from the variance of
image intensities of all the frames captured over the pe-
riod of sampling. Variance images are the brightest where
they have the most variation. Variance images are primar-
ily used to delineate the surf zone and regions of wave
breaking [1].

2.2.3. Pixel products
The corefunctions.pymodule also contains the function pixel-

Stack to create subsampled pixel timestacks in either grayscale or
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Fig. 2. Examples of each of the statistical image products calculated by imageStats.

Fig. 3. Pixel locations plotted on input oblique images from each of the six Argus cameras.

color for use in algorithms such as bathymetric inversion, surface
current estimation, or run-up calculations. Pixel timestacks show
variations in pixel intensity over time. The main pixel products
are included below, however additional instruments can be cre-
ated from these main classes. For example, a single pixel, which
may be useful for estimating wave period [38], can be generated
by creating an alongshore transect of length 1.

1. Grid (also known as Bathy Array in Holman and Stanley
2007 and other publications that reference Argus image
products [1]): This is a 2D array of pixels covering the
entire nearshore, which can be utilized in bathymetry esti-
mation algorithms [14]. Example grid products are shown
in Figs. 3 and 4.

2. Alongshore/ Y Transect (sometimes referred to as Vbar [1]):
This product is commonly utilized in estimating longshore
currents [39].

3. Cross- shore/ X Transect (sometimes referred to as Runup
Array [1,38]): Cross- shore transects can be utilized in
estimating wave runup. Alongshore and cross- shore pixel
instruments are depicted in Fig. 5.

2.3. Software functionalities: supportfunctions.py

This module contains functions independent of any overarch-
ing class or specific workflow, which serve to assist the user in

utilizing the core functions. supportfunctions.py contains sup-
porting functions to format intrinsic files, convert extrinsic coor-
dinates to and from geographical and local coordinate systems,
calculate extrinsic values, and other steps necessary to utilize
the core functions of the CoastalImageLib library. Additionally,
supportfunctions.py contains functions that interface with Argus
technology, camera systems initially developed by the Coastal
Imaging Lab at Oregon State University [1], including functions
to create Argus compatible filenames from UTC timestamps, and
convert raw (.raw) Argus files into delivery files collected from the
Argus camera systems. Converting raw Argus data utilizes func-
tions contained in argusIO.py. However argusIO.py will not be
further discussed in this paper because it does not apply to data
collected outside of the Argus system. The argusIO.py module is
included in the library for ease of use for Argus specific appli-
cations. See the CoastalImageLib User Manual for more detailed
documentation of supportfunctions.py, and further discussion of
argusIO.py.

3. Illustrative example: Fixed multi camera demo data

For an interactive example script working through the exam-
ple data, users are directed to the Jupyter Notebook file con-
tained in the CoastalImageLib repository entitled CoastalImageLib
_Illustrative_Example.ipynb. This script walks the user through
five main functionalities of the CoastalImageLib toolbox:

4
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Fig. 4. Output pixel grid at the pixel locations shown in Fig. 3, with a resolution
of 5 m.

1. Rectifying single oblique frames from multiple cameras.
Oblique inputs as well as the correct georectified output
from the example script are shown in Fig. 1.

2. Rectifying multiple oblique frames from multiple cameras
3. Rectifying oblique videos from multiple cameras
4. Creating a pixel timestack. The intended output from the

pixel grid created in this section is shown in Fig. 4, and the
pixel locations projected onto the oblique input frames are
shown in Fig. 3. If the user looped through a longer dataset
of images and retrieved subsampled pixels at alongshore
and cross- shore transects from multiple subsequent im-
ages, the result should look like the plots displayed in
Fig. 5.

5. Calculating image statistics. The intended output from pro-
vided example data is included in Fig. 2.

The provided Fixed Multi-Camera Demo Data is from six fixed
cameras on top of the Argus Tower [1] in Duck, NC. Data was
subsampled from oblique videos that were initially 17 min long
and captured at 2 frames per second. Each video was recorded
simultaneously. Extrinsic and intrinsic values for each camera are
provided in both direct linear transform coefficient format as well
as in CIRN convention.

4. Impact

An intended impact of CoastalImageLib, consistent with the
CIRN ideology [31], is to reduce barriers of entry to photogram-
metry that coastal engineers, geoscientists, and oceanographers
may face when exploring optical remote sensing. Additionally,
this package serves to be a broadly generalizable building block
on which the community can expand. The recent abundance
of low-cost camera hardware and available nearshore imagery
holds considerable potential for future coastal monitoring of both
chronic and episodic hazards, motivating the need for this open-
source toolbox that the entire community can build on to derive

inter-comparable products. Ultimately, this library aims to in-
crease quantitative coastal studies from optical remote sensing
in expanded locations, environmental conditions, and spatial or
temporal scales.

Unlike most previous optical remote sensing packages for
coastal environments, CoastalImageLib is open-source, as Python
and the additional required packages are free and publicly avail-
able, therefore providing a foundational package on which to
build more open source coastal imaging packages. Since this
library utilizes Python, future builds on this library can exploit
valuable open-source Python packages for computer vision and
machine learning, such as OpenCV, TensorFlow, PyTorch, and
SciPy. The ability to harness these capabilities opens the door for
extensive development in the way of coastal imaging, utilizing
new techniques that have previously gone unexplored in optical
remote sensing of coastal environments.

5. Conclusions

CoastalImageLib is a Python- based library that produces
georectified images as well as common coastal image prod-
ucts intended for quantitative analysis of coastal environments.
This library contains functions to georectify and merge multiple
oblique camera views, produce statistical image products for a
given set of images, as well as create subsampled pixel instru-
ments for use in bathymetric inversion, surface current, run-up
calculations, and other quantitative analyses. Additionally, this
library contains support functions to format camera intrinsic
values from various input file formats, convert extrinsic values
from geographical to user defined local coordinates, and functions
to interface with Argus-based camera systems. This package
intends to be an open- source broadly generalizable front end
to future coastal imaging applications, ultimately expanding user
accessibility to optical remote sensing of coastal environments.
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Fig. 5. (a) Pixel locations of an x transect shown on an oblique image taken from Argus camera 2, and the pixel timestack taken from that transect over the course
of 1 min, (b) Pixel locations of a y transect shown on an oblique image taken from Argus camera 3, and the pixel timestack taken from that transect over the course
of 1 minute.
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