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Abstract
1. Most applications of single- scale occupancy models do not differentiate be-

tween availability and detectability, even though species availability is rarely 
equal to one. Species availability can be estimated using multi- scale occupancy 
models; however, for the practical application of multi- scale occupancy models, 
it can be unclear what a robust sampling design looks like and what the statisti-
cal properties of the multi- scale and single- scale occupancy models are when 
availability is less than one.

2. Using simulations, we explore the following common questions asked by ecolo-
gists during the design phase of a field study: (Q1) what is a robust sampling 
design for the multi- scale occupancy model when there are a priori expectations 
of parameter estimates? (Q2) what is a robust sampling design when we have 
no expectations of parameter estimates? and (Q3) can a single- scale occupancy 
model with a random effects term adequately absorb the extra heterogeneity 
produced when availability is less than one and provide reliable estimates of oc-
cupancy probability?

3. Our results show that there is a tradeoff between the number of sites and sur-
veys needed to achieve a specified level of acceptable error for occupancy es-
timates using the multi- scale occupancy model. We also document that when 
species availability is low (<0.40 on the probability scale), then single- scale oc-
cupancy models underestimate occupancy by as much as 0.40 on the probability 
scale, produce overly precise estimates, and provide poor parameter coverage. 
This pattern was observed when a random effects term was and was not in-
cluded in the single- scale occupancy model, suggesting that adding a random- 
effects term does not adequately absorb the extra heterogeneity produced by 
the availability process. In contrast, when species availability was high (>0.60), 
single- scale occupancy models performed similarly to the multi- scale occupancy 
model.

4. Users can further explore our results and sampling designs across a number 
of different scenarios using the RShiny app https://gdire nzo.shiny apps.io/multi-
scale - occ/. Our results suggest that unaccounted for availability can lead to un-
derestimating species distributions when using single- scale occupancy models, 
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1  |  INTRODUC TION

Single- scale occupancy models allow biologists to disentangle the 
ecological and sampling processes that generate observed data 
(Kéry & Royle, 2016, 2021; MacKenzie et al., 2002, 2003; Tyre 
et al., 2003). A key assumption of these models is that populations 
are closed (i.e. no births, deaths, emigration or immigration) among 
replicate surveys at a site within a season. This closure assumption 
reflects the idea that if a site is occupied during at least one sur-
vey, then it is assumed to be occupied during all surveys, and any 
non- detections can be interpreted as ‘false negatives.’ However, 
when the closure assumption is violated, the occupancy probabil-
ity parameter, which describes the probability a species occupies a 
site, needs to be re- interpreted (Grant, 2015; Kendall et al., 2013). 
One of the most common ways that occupancy probability is re- 
interpreted is as ‘habitat use’ in the sense that the species occurs in 
the area for some portion of time (and is unavailable or fails to use 
the habitat for the remainder of the time). Because biologists are 
typically more interested in estimating the occupancy probability 
rather than the probability of habitat use, they may decide to use a 
multi- scale occupancy model instead of the single- scale occupancy 
model (Aing et al., 2011; Mordecai et al., 2011; Nichols et al., 2008). 
Although a great deal of effort has been dedicated to understand-
ing how violations of the closure assumption affects the estimation 
of the occupancy parameter in single- scale occupancy models (e.g. 
Aing et al., 2011; Chandler et al., 2015; Kendall et al., 2013; Mordecai 
et al., 2011; Rota et al., 2009; Valente et al., 2017), it is not as clear 
what a robust sampling design accounting for species availability 
looks like and what the statistical properties of the multi- scale and 
single- scale occupancy models are when availability is less than one.

Species availability will tend to be less than one under at least 
three scenarios, which can act singly or in combination (Figure 1a). 
First, species may move between available and unavailable states 
within their territory, which is also known as temporary emigra-
tion (Chandler et al., 2011; Efford & Dawson, 2012; Kendall & 
Nichols, 1995; Nichols et al., 2009). Temporary emigration is es-
pecially relevant when surveying episodic or mobile species that 
may enter or leave sites over the course of sampling, violating the 
geographic closure assumption (Figure 1a; Hayes & Monfils, 2015). 
Examples of temporary emigration include: aquatic fauna being 
submerged and not surface- active during an aerial survey (Marsh 
& Sinclair, 1989), a mouse entering torpor on cold nights (Kendall 
et al., 1997), salamanders retreating to underground burrows to 

prevent desiccation when surface conditions are too dry (Connette 
et al., 2015; O'Donnell & Semlitsch, 2015), and plant dormancy or 
other plant- specific phenology traits (such as budding, flowering, 
etc.) that makes them unavailable for sampling some portion of the 
time (Bornand et al., 2014; Kéry & Gregg, 2004). Second, availability 
can be less than one when an individual's home range (for mobile 
species) or species occurrence (for sessile species) only partially 
overlaps a sampling unit (Figure 1a; Nichols et al., 2009; Pavlacky 
et al., 2012). In the case of mobile species, their availability corre-
sponds to the extent that an individual's home range or territory at 
least partially overlaps a sampling unit, which could be interpreted 
as a coverage probability or statistic (Nichols et al., 2009). In the case 
of sessile species, the organism may be unavailable for sampling at 
a ‘site’ (i.e. spatial replicate in our study design) if species presence 
is not constant within a site, which would be the case if there are 
microhabitats that are unoccupied within a site (Gray et al., 2013). 
Third, availability can be less than one when the species is present 
at a site but is not available for detection because the species is not 
eliciting a behaviour that makes it detectable (Figure 1a). For exam-
ple, during a point count survey, a bird may be present within the 
radius of the observer conducting the survey, but the bird may be 
unavailable for detection if the bird is not actively singing during the 
survey (Figure 1a). Across all three scenarios, one or more processes 
can be operating to affect species availability during a survey. For 
instance, going back to the point count survey example, it is easy 
to image that bird availability can be subject to both partial overlap 
of the home range and sampling unit and lack of availability related 
to singing behaviour. Therefore, it is up to the biologist to critically 
think about the processes affecting the sampling process that may 
affect statistical inference.

In real field situations, we expect species to be both unavail-
able and that their availability is non- random, leading to a correla-
tion in detection across repeated surveys of a site. For example, 
in the case of the point count survey, the issue of species avail-
ability becomes important if the observer surveys a site and col-
lects data for three sampling events in a single morning that a bird 
is inactive (i.e. the species is unavailable, and their availability is 
non- random). Alternatively, if the observer sampled a site on three 
different mornings, then we might expect that by random chance 
the bird is going to be active during some mornings and not others. 
This process of random availability then gets absorbed into the 
detection model (when using a single- scale occupancy model) and 
does not lead to excess heterogeneity. Said in a slightly different 

which can have large implications on inference and prediction, especially for 
those working in the fields of invasion ecology, disease emergence, and species 
conservation.

K E Y W O R D S
imperfect detection probability, multi- scale occupancy model, Pollock's robust design, single- 
level occupancy model, site occupancy model, temporary emigration
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way, it is the relationship between the temporal scale at which 
the availability process operates and the temporal scale at which 
repeated sampling events occur, which is decisive in determining 
whether species availability needs to be explicitly considered in 
occupancy models.

Methods to account for species availability were originally 
developed for capture- mark- recapture models (e.g. Kendall & 
Nichols, 1995), but these methods have since been used to ac-
commodate a number of other dependence structures in a variety 
of modelling frameworks, such as estimating species availability 
in multi- scale occupancy models (e.g. Aing et al., 2011; Mordecai 
et al., 2011), accounting for multiple sources of imperfect patho-
gen sampling (e.g. Colvin et al., 2015; McClintock et al., 2010), and 
accommodating for spatially nested sampling units (e.g. Chelgren 
et al., 2011; Nichols et al., 2008). Under each application, the man-
ner in which data are collected dictates how parameters are inter-
preted. For example, if data are collected with spatial replicates at 

multiple scales (i.e. ponds within multiple refuges), then a multi- scale 
occupancy model can estimate occupancy probability at both the 
local (e.g. across ponds within a refuge) and regional (e.g. across ref-
uges) spatial scales (Nichols et al., 2008). Alternatively, when data 
are collected with temporal replicates at multiple scales (i.e. second-
ary and tertiary surveys), then the multi- scale occupancy model can 
disentangle species availability and detection (Green et al., 2019; 
Kendall & White, 2009). And, in a third example, when disease ecol-
ogists collect multiple samples from a single individual and then per-
form multiple PCR assays per sample (DiRenzo et al., 2019; Mosher 
et al., 2017), then the multi- scale occupancy model allows an under-
standing of imperfect pathogen detection during different phases 
of the pathogen sampling process (i.e. collecting the sample in the 
field vs. analysing the sample in the lab). In each of these cases, 
the multi- scale occupancy model is applied to a unique dataset re-
quiring thoughtful consideration of how to interpret the parameter 
estimates.

F I G U R E  1  Graphical depiction of three 
ecological conditions which may lead to 
species unavailability (a) along with tree 
diagrams representing data generation, 
latent states, and associated parameters 
for the multi- scale occupancy model (b) 
and the single- scale occupancy model 
(c). In panel (a), species unavailability may 
result from (1) temporary emigration (e.g. 
salamander moving underground), (2a) 
for a mobile species, when the organism's 
home range partially overlaps a sampling 
unit, (2b) for a sessile organism, when 
the probability of occupancy is not 
uniform across a sampling unit (‘site’), 
or (3) when the species is not eliciting a 
behaviour that would make it available 
for detection (e.g. when a bird is present 
at a site but does not sing during a point 
count survey). In panels (b) and (c), Ѱ is 
occupancy probability, θ is availability, 
and p is detection probability (see section 
2. 1 Multi- scale occupancy model in the 
Methods for model explanation).

(a)

(b) (c)
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To obtain robust parameters estimates of biological interest 
(e.g. occupancy, colonization and extinction), biologists either de-
sign their monitoring programs to survey for species when they 
experience their highest availability or they run a power analysis 
for the multi- scale occupancy model. Power analyses can be very 
simple to very complicated, and provide insights related to ‘how 
much sampling is enough?’ (e.g. Bailey et al., 2007; MacKenzie & 
Royle, 2005). However, power analyses can be very time consuming 
and unpractical to run under time constraints, forcing biologists to 
make decisions related to allocating valuable resources with limited 
information.

Here, we answer the following three common questions posed 
by biologists during the design phase of a study: (Q1) what is a robust 
sampling design for the multi- scale occupancy model when there are 
a priori expectations of parameter estimates?, (Q2) what is a robust 
sampling design when we have no expectations of parameter esti-
mates?, and (Q3) can a single- scale occupancy model with a random 
effects term adequately absorb the extra heterogeneity produced 
when availability is less than one and provide reliable estimates of 
occupancy probability?. To answer (Q1) and (Q2), we simulated data 
assuming that species availability was constant across sites (but 
less than one), and we used the multi- scale occupancy model to 
analyse the data. To answer (Q3), we simulated data under each of 
the three additional scenarios: species availability is heterogenous 
across sites, species availability is heterogenous across multi- year 
data, and species availability is correlated with their detection prob-
ability across multi- year data; and we analysed the simulated data 
using each of the following four models: (i) a constant single- scale 
occupancy model, (ii) a constant multi- scale occupancy model, (iii) a 
single- scale occupancy model with a random effects term on detec-
tion and (iv) a multi- scale occupancy model with a random effects 
term on availability. To adequately address (Q3), we compared the 
performance of the multi- scale and the single- scale occupancy mod-
els with and without random effects terms, thus, producing the list 
of four models.

We expected to find that a robust sampling design for the multi- 
scale occupancy model would include tradeoffs in the number of 
sites and surveys performed. For example, if more sites are sur-
veyed, then fewer tertiary surveys are required to achieve a spec-
ified level of acceptable error. We also expected to find that the 
single- scale occupancy model would produce biased estimates of 
occupancy with low coverage across all simulated scenarios regard-
less of the model used to analyse the data and the true values of 
availability and detection probability, given the results from pre-
vious simulation studies examining violations of the closure as-
sumption (e.g. Rota et al., 2009; Valente et al., 2017). In an effort to 
make our results more accessible to others looking to employ these 
methods and explore the results of our simulations further, we also 
provide an RShiny app as a companion to this paper https://gdire 
nzo.shiny apps.io/multi - scale - occ/. Our results serve as a guide to 
biologists looking to produce robust statistical inference on species 
distributions when availability is suspected to be variable and de-
tection is imperfect.

2  |  METHODS

2.1  |  Multi- scale occupancy model

We formulated a single season multi- scale occupancy model as in 
Nichols et al. (2008), Aing et al. (2011) and Mordecai et al. (2011). 
The data for the multi- scale occupancy model consist of species de-
tection/non- detection data collected from site i during secondary 
survey j and tertiary survey k. During secondary surveys, the site is 
closed to open population dynamics (i.e. birth, death, immigration 
and emigration) and provides an opportunity to estimate changes 
in availability (e.g. temporary emigration; Figure 1a), whereas the 
tertiary surveys are closed to changes in availability and open pop-
ulation dynamics (Green et al., 2019). A simple survey design that 
emulates this type of data collection would be to have multiple ob-
servers independently collect data (constituting the tertiary surveys) 
repeatedly over a few days (constituting the secondary surveys) over 
a number of sites (representing the sampling units). Note that the 
number of secondary surveys are performed on a per site basis (e.g. 
two secondary surveys per site), and that the number of tertiary sur-
veys are performed on a per secondary survey basis (e.g. two ter-
tiary surveys per secondary survey).

In the multi- scale occupancy model, first, we define the occu-
pancy of site i as a Bernoulli trial, where 

z is a latent state variable, and if site i is occupied, then zi = 1, 
and 0 otherwise. Ѱ is defined as the occupancy probability (i.e. the 
probability that a site is occupied by the focal species).

Next, we consider the sampling process composed of two parts: 
(1) species availability and (2) species detectability. We define spe-
cies availability at site i during secondary survey j as a Bernoulli trial, 
such that

w is a latent state variable, and if the species occupies site i and is 
available during secondary survey j, then wij = 1, and 0 otherwise. 𝜃 
is defined as the probability that the species is available for sampling 
given that the site is occupied. We multiply 𝜃 by zi because species 
are unavailable at sites where they do not occur. In this way, zi acts 
as an on and off switch to estimating 𝜃.

At last, we define species detectability at site i during secondary 
survey j and tertiary survey k as a Bernoulli trial, where

y is the observed detection/non- detection data of the species at 
site i during secondary survey j and tertiary survey k. yijk = 1 if the 
species is detected at site i during secondary survey j and tertiary 
survey k, and 0 otherwise. p is defined as the probability a species 
is detected given that the site is occupied (zi = 1) and the species is 

zi ∼ Bernoulli(Ψ).

wij ∼ Bernoulli(�
∗
zi).

yijk ∼ Bernoulli
(

p∗wij

)

.

https://gdirenzo.shinyapps.io/multi-scale-occ/
https://gdirenzo.shinyapps.io/multi-scale-occ/
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available (wij = 1). Similarly, we multiply p by wij because the species 
cannot be detected at sites where the species does not occur and is 
unavailable.

2.2  |  Simulation settings

We developed a series of simulations to answer the three ques-
tions outlined in the introduction. We simulated data across a wide 
range of parameter values and study designs (i.e. number of sites, 
secondary surveys and tertiary surveys) to explore the performance 
of the multi- scale and single- scale occupancy models. In all cases, 
we assumed that observations were independent and that sites 
contained closed populations during secondary survey periods (i.e. 
no birth, death, immigration or emigration; Green et al., 2019). We 
also assumed independence and closure to both changes in avail-
ability and open population dynamics during tertiary surveys (Green 
et al., 2019; MacKenzie et al., 2002, 2003). For each of the param-
eters that we varied in our simulations, we selected parameters in-
dependently from a pre- specified range of values. To ensure even 
parameter coverage and that we sampled distributions evenly, we 
used a Latin hypercube sampler with function lhs() in package lhs 
(Carnell, 2019) in the program R (R Core Team, 2019). A Latin hyper-
cube sampler is a method used to generate a near- random sample 
of values from multi- dimensional distributions. Traditional random 
sampling methods do not guarantee that a set of random numbers 
are an adequate representation of their covariance, whereas the or-
thogonal sampling underlying the Latin hypercube sampler does.

We analysed simulated datasets using a Bayesian approach with 
Markov chain Monte Carlo in the programs R (R Core Team, 2019) 
and JAGS (Plummer, 2003). We specified vague priors for all pa-
rameters on the logit scale using a normal distribution with mean 0 
and precision 0.368 following Lunn et al. (2013). We initiated model 
runs with three chains, an adaption period of 10,000, a burning pe-
riod of 5000, and thinning by 10. We used the function autojags() 
in package jagsUI (Kellner, 2016) to update the model until conver-
gence (i.e. Ȓ < 1.1). The maximum allowed number of iterations was 
1 × 106. Model runs that did not converge by 1 × 106 iterations were 
discarded. All simulations were run on the Yeti supercomputer pro-
vided by the Science Analytics and Synthesis (SAS) group at the U.S. 
Geological Survey Advanced Research Computing (USGS ARC).

In the next few sections, we provide more details about how data 
were simulated and processed to answer each question. A directory 
containing the information to reproduce all of the analyses, tables 
and figures is provided in Table S1.

2.3  |  (Q1) What is a robust sampling design for the 
multi- scale occupancy model when there are a priori 
expectations of parameter estimates?

To provide sampling design guidelines when there are a priori ex-
pectations of parameter estimates, we examined the accuracy (i.e. 

how close are mean parameter estimates of the model to the true 
parameter values?), estimated precision (i.e. how large is the 95% 
credible interval?), bias (e.g. what is the magnitude of parameter 
over-  or under- estimation?), and coverage (e.g. what proportion of 
times does the true parameter value fall within the estimated 95% 
CI?) of the multi- scale occupancy model over a range of parameter 
values and sampling designs. We simulated parameter values on the 
logit scale using the following distributions: Ѱ ~ Uniform(−3, 3), 𝜃 ~ 
Uniform(−3, 3), p ~ Uniform(−3, 3). These bounds represent a range 
of 0.05– 0.95 on the probability scale. We chose discrete values 
for sampling design variables from distributions as follows: sites ~ 
Uniform(5, 500), secondary surveys ~ Uniform(2, 8), and tertiary sur-
veys ~ Uniform(2, 8). All datasets were simulated assuming availabil-
ity was less than one. We simulated 10,000 datasets and analysed 
them using the multi- scale occupancy model.

Although parameter values were chosen from continuous dis-
tributions, we assigned each simulated dataset to one of the eight 
discrete groupings depending on their parameter combinations (i.e. 
do parameters take on high [probability scale >0.60] or low [prob-
ability scale <0.40] values?) for the interpretation of results. Group 
assignment was determined by a combination of the true values of 
Ѱ, 𝜃, and p (see Appendix S1 for more details).

Next, for each of the eight discrete groupings, we determined 
how the performance of the occupancy estimator was affected by 
sampling effort by fitting four post- hoc generalized linear models, 
one for each accuracy, precision, bias and coverage. In each of the 
four post- hoc models, we used a measure of accuracy, precision, bias, 
and coverage as the response variable. For accuracy, we used the log 
absolute error between the true occupancy value and the posterior 
mean occupancy estimates from each model run as: log(|truth –  esti-
mate|). For precision, we used the width of the occupancy estimate's 
95% credible interval (CI; i.e. the upper 95% CI estimate minus the 
lower 95% CI estimate). For bias, we used the difference between 
the true occupancy value and the posterior mean occupancy esti-
mate from each model run using: Bias = estimate − truth. In this case, 
negative values represent model underestimates and positive values 
represent model overestimates. Finally, for assessing parameter cov-
erage, we recorded a value of 1 for each simulated dataset when the 
true occupancy estimate fell within the 95% CI of the model run, and 
0 otherwise. In each of the four post- hoc generalized linear models, 
we specified the log(number of sites), log(number of secondary sur-
veys), and log(number of tertiary surveys) as the explanatory vari-
ables. We used a normal distribution and identity link function for 
accuracy and bias, and we used a binomial distribution and logit link 
function for precision and coverage (see Appendix S2, S3, S4 and S5 
for more details).

Then, using the coefficient values obtained from each of the four 
post- hoc generalized linear models for each of the eight discrete 
groupings, we calculated the predicted average accuracy, precision, 
bias, and coverage under a variety of different sampling designs. 
Specifically, we varied the number of sites from 5 to 500, the num-
ber of secondary surveys from 2 to 8, and the number of tertiary 
surveys as either 2 or 4.



    |  1795Methods in Ecology and EvoluonDIRENZO et al.

2.4  |  (Q2) What is a robust sampling design when 
we have no expectations of parameter estimates?

To provide general sampling design guidelines, we started by con-
structing a single post- hoc linear model fit to the same simulated 
datasets from (Q1) analysed with the multi- scale occupancy model. 
Here, we retained all simulated datasets, and we did not assign each 
simulated dataset to one of the eight discrete groupings as we did for 
(Q1). We fit a post- hoc linear model with the log absolute error of oc-
cupancy as the response variable (Appendix S2), and the log(number 
of sites), log(number of secondary surveys), and log(number of ter-
tiary surveys) as fixed effects using the lm() function in R. From 
this post- hoc model, we used the resulting coefficient estimates to 
determine the sampling effort needed to achieve three thresholds 
of acceptable error for the occupancy estimate on the probability 
scale, representing a low (0.01), medium (0.05), and high value (0.10). 
To do this, we indicated the number of sites sampled as: 20, 60, 80, 
or 100; and, the number of secondary surveys as: 2, 3, or 4. For each 
of the 36 combinations (acceptable error, number of sites, number of 
secondary surveys), we then solved the following equation to deter-
mine the number of tertiary surveys required for sampling:

Here, � is the intercept term, and each of the � coefficients are slopes 
estimated from the post- hoc linear model described above. We 
rounded the number of tertiary surveys up to the nearest whole inte-
ger, and we replaced tertiary surveys less than two with a value of two 
since auxiliary information is required to estimate parameters 𝜃 and p.

At this point, we have solved the equation for the number of ter-
tiary surveys needed to achieve an average acceptable level of error. 
Based on these values, we then calculated the expected width of the 
95% CI, bias, and coverage for the occupancy estimate using similar 
methods described for fitting post- hoc generalized linear models for 
occupancy precision, bias, and coverage (Appendix S6).

2.5  |  (Q3) Can a single- scale occupancy model 
with a random effects term adequately absorb the 
extra heterogeneity produced when availability is less 
than one and provide reliable estimates of occupancy 
probability?

To investigate (Q3), we simulated and analysed the following number 
of datasets under each of the four scenarios:

Scenario 1 (n = 10,000): Species availability is constant across sites 
(but less than one).

Scenario 2 (n = 9,358): Species availability is heterogenous across 
sites.

Scenario 3 (n = 2,815): Species availability is heterogenous across 
multi- year data.

Scenario 4 (n = 5,942): Species availability is correlated to their de-
tection probability across multi- year data.

Note that, for Scenario 1, we used the same 10,000 datasets that 
were generated to answer (Q1) and (Q2), and we generated between 
2,800 and 9,360 for Scenarios 2– 4 because of varying model time 
runs and wall time limits on the USGS Yeti Supercomputer.

Next, for each scenario except the first, we analysed the data 
using four different models:

(i) constant multi- scale occupancy model,
(ii) multi- scale occupancy model with a random- effects term on 

availability,
(iii) constant single- scale occupancy model and
(iv) single- scale occupancy model with a random- effects term on 

detection.
Note the formulation of the random- effects terms included in 

the models mimicked the way that data were simulated (e.g. if spe-
cies availability was heterogenous across sites, then a site random- 
effects term was used). The first scenario was analysed using only 
models (i) and (iii). For simplicity, we refer to models (i) and (iii) as 
‘constant’ models and models (ii) and (iv) as ‘random- effects’ mod-
els. For more details on how data were simulated and analysed, see 
Appendix S7.

Then, to compare the performance of each model in each sce-
nario, we examined how well each model predicted true occupancy 
in terms of accuracy, precision, bias and coverage (Appendix S8). 
Given the large quantity of simulated data, we took an approach 
similar to answering (Q1), and we assigned each simulated dataset 
to one of the eight discrete groupings depending on the true val-
ues of Ѱ, 𝜃 and p (Appendix S8). Then, as we did before, we cal-
culated model performance metrics (i.e. accuracy, precision, bias 
and coverage), and we summarized mean and standard error values 
across model types, parameterizations and parameter combinations 
(Appendix S8).

3  |  RESULTS

3.1  |  (Q1) What is a robust sampling design for the 
multi- scale occupancy model when there are a priori 
expectations of parameter estimates?

Our simulations show that the ability of the multi- scale occupancy 
model to recover unbiased and precise occupancy estimates with 
high estimated coverage depends on the true parameter values of Ѱ, 
𝜃, and p and the amount of available data (Figures S1– S4). Parameter 
estimates generally had high accuracy (log absolute difference be-
tween model estimated mean and truth = −3.28 ± 0.01 [mean ± SE]), 
low bias (estimate –  truth = 0.01 ± 0.001 logit units), and high cov-
erage (0.95 ± 0.002; expected coverage for 95% CI is 0.95), but the 
occupancy estimates typically had low precision (mean width of 95% 
CI = 0.36 ± 0.002 probability scale).

We also found that mean accuracy and precision were the 
lowest when few sites were sampled and either occupancy or 
availability were low (Figure S1; ParamCombo's 3, 4, 5 and 6). In 
addition, we found that precision was influenced by the number 

Acceptable error=�+�1
∗log(#of sites)+�2

∗log(#of secondary surveys)

+�3
∗log(#of tertiary surveys)
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of secondary and tertiary surveys (Figure S2), where a higher 
number of secondary and tertiary surveys led to greater preci-
sion. Last, mean bias and coverage were largely determined by 
whether occupancy and availability were high or low, and less 
sensitive to detection, number of surveys and number of sites 
(Figures S3 and S4).

3.2  |  (Q2) What is a robust sampling design when 
we have no expectations of parameter estimates?

We found that when sampling between 20 and 100 sites with two 
to four secondary surveys performed per site, then the observer 
should consider performing between two and 14 tertiary surveys 
per secondary survey to achieve between a 0.01 to 0.10 level of 
error (Table 1). With these proposed sampling designs, the expected 
average estimated coverage is close to expectation (0.93– 0.96), the 
expected average width of 95% CIs is moderately wide (0.31– 0.72), 
and the expected average bias is low (−0.008– 0.022; Table 1).

3.3  |  (Q3) Can a single- scale occupancy model 
with a random effects term adequately absorb the 
extra heterogeneity produced when availability is less 
than one and provide reliable estimates of occupancy 
probability?

We found that the biggest differences in estimated occupancy 
accuracy, precision, bias and coverage between the multi- scale 
occupancy and single- scale occupancy models occurred when avail-
ability was low, regardless of the true occupancy or detection values 
(Figures 2– 5). Results were qualitatively similar across detection lev-
els (Figures S5– S8). There were a few instances when true occupancy 
and availability were low that the multi- scale occupancy model and 
the single- scale occupancy model performed similarly; but this be-
haviour was only detected for parameter accuracy (Figure 2b).

Although the single- scale occupancy model produced more 
precise occupancy estimates (Figure 3), the single- scale occupancy 
model tended to underestimate occupancy probability (Figure 4) and 
experienced low estimated coverage (Figure 5). The single- scale oc-
cupancy model underestimated occupancy probability by as much 
as 0.40 on the probability scale and experienced an average bias 
of −0.10 ± 0.02 (mean ± SE; Figure 4) with an average coverage of 
0.56 ± 0.04 (mean ± SE; Figure 5). Interestingly, when true availability 
was high (>0.60), then the single- scale occupancy model produced 
comparable occupancy probability estimates to the multi- scale oc-
cupancy model in terms of accuracy, precision, bias, and coverage 
(Figures 2– 5).

Finally, we found that adding a random- effects term to the 
single- scale occupancy model does not adequately absorb the extra 
heterogeneity produced by the availability process, where the single- 
scale occupancy model performed similarly under each scenario 
using either a constant or random- effects model parameterization.

3.4  |  Rshiny app

In an effort to encourage the further exploration of our simulation 
results, we created an RShiny app to accompany this paper https://
gdire nzo.shiny apps.io/multi - scale - occ/. The RShiny app parallels the 
structure and information presented in this paper, but it also pro-
vides more practical guidance for those looking for survey design 
assistance.

4  |  DISCUSSION

Using simulations, we show that under a range of scenarios when 
species availability is low, the single- scale occupancy model consist-
ently underestimates occupancy probability, producing overly precise 
occupancy estimates with low coverage. This likely occurs because 
when species have a consistently low availability, they have a higher 
probability of not being observed across multiple secondary surveys, 
and because the single- scale occupancy model does not explicitly ac-
commodate availability, it routinely underestimates occupancy. Other 
studies have documented the same pattern of biased occupancy esti-
mates using the single- scale occupancy model when either detection 
is low (Emmet et al., 2021; MacKenzie et al., 2002) or when heteroge-
neity in detection is not accounted for (Otto et al., 2013). This same 
negative bias also occurs in mark- recapture estimates of abundance 
when individual heterogeneity in detection occurs with the same un-
derlying cause (Otis et al., 1978). The underestimation of the number 
of occupied sites or the number of individuals in a population occurs 
because heterogeneity leads to more all zero encounter histories than 
expected at random (i.e. the species is never detected across all re-
peated surveys at a sites that is truly occupied or an individual is never 
captured across all the of the capture events). We also show that 
adding a random- effects term to the single- scale occupancy model 
does not adequately absorb the extra heterogeneity produced by the 
availability process, regardless of true parameter values or simulation 
scenario. Accommodating the availability process by using a multi- 
scale occupancy model is useful to improve parameter estimation and 
ecological inference, but comes at an additional cost, requiring extra 
data collection. In the following section, we explore the practical ap-
plication of the multi- scale occupancy model.

4.1  |  How can biologists adjust their sampling 
design to accommodate the multi- scale occupancy 
model?

The design phase of a study is the most appropriate place to con-
sider accounting for ecological and sampling processes that influ-
ence robust statistical inference. Note that there is no free lunch, 
and to accommodate availability, for some parameter combinations 
and desired precision, practitioners will need many tertiary surveys 
(Table 1). There are some potential ways around this, such as in the 
definition of a ‘site’ (e.g. adjusting the size and spacing of the spatial 

https://gdirenzo.shinyapps.io/multi-scale-occ/
https://gdirenzo.shinyapps.io/multi-scale-occ/
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subunits according to the expected size of a home range or species 
movement), the timing of surveys (e.g. targeting periods when spe-
cies availability is expected to be constant or relatively high), or if the 
researcher can accept reduced performance in terms of occupancy 
accuracy, precision, bias, and coverage when availability is heteroge-
neous and not explicitly modelled.

One fairly easy modification for some sampling designs that would 
allow for the use of the multi- scale occupancy model is to have multi-
ple observers (independently and simultaneously) conduct repeated 
surveys at sites. In this way, detection probability can be calculated 
from the repeated surveys (if the surveys are conducted over a period 
of time where the site is closed to both open population dynamics 

TA B L E  1  General guidelines on sampling design (i.e. number of sites, secondary surveys, and tertiary surveys) to achieve an acceptable 
level of error (i.e. absolute difference between the true value and model estimate) for occupancy probability using the multi- scale occupancy 
model. Note that the number of tertiary surveys is performed per secondary survey, and values were rounded up to the nearest whole 
number. Using the specified sampling designs, we, then, calculated the expected average width of the 95% CI, bias, and coverage.

Acceptable 
level of error

Number 
of sites

Number of 
secondary surveys

Number of 
tertiary surveys

Expected average width of 95% 
CI (probability scale)

Expected average bias 
(probability scale)

Expected 
average 
coverage

0.01 20 2 14 0.599 −0.008 0.935

0.01 20 3 13 0.537 −0.006 0.938

0.01 20 4 13 0.488 −0.006 0.939

0.01 60 2 12 0.465 −0.004 0.935

0.01 60 3 11 0.403 −0.001 0.937

0.01 60 4 10 0.364 0.001 0.94

0.01 80 2 11 0.433 −0.002 0.935

0.01 80 3 10 0.373 0.001 0.938

0.01 80 4 10 0.329 0.001 0.939

0.01 100 2 11 0.404 −0.001 0.934

0.01 100 3 10 0.346 0.001 0.937

0.01 100 4 9 0.31 0.003 0.94

0.05 20 2 5 0.67 0.004 0.946

0.05 20 3 4 0.623 0.008 0.95

0.05 20 4 4 0.575 0.009 0.951

0.05 60 2 3 0.568 0.014 0.949

0.05 60 3 2 0.53 0.02 0.954

0.05 60 4 2 0.481 0.021 0.955

0.05 80 2 3 0.53 0.015 0.949

0.05 80 3 2 0.491 0.021 0.954

0.05 80 4 2 0.442 0.022 0.955

0.05 100 2 2 0.53 0.02 0.952

0.05 100 3 2 0.461 0.021 0.953

0.05 100 4 2 0.413 0.022 0.954

0.1 20 2 2 0.728 0.016 0.955

0.1 20 3 2 0.67 0.017 0.956

0.1 20 4 2 0.625 0.018 0.957

0.1 60 2 2 0.598 0.019 0.953

0.1 60 3 2 0.53 0.02 0.954

0.1 60 4 2 0.481 0.021 0.955

0.1 80 2 2 0.56 0.02 0.952

0.1 80 3 2 0.491 0.021 0.954

0.1 80 4 2 0.442 0.022 0.955

0.1 100 2 2 0.53 0.02 0.952

0.1 100 3 2 0.461 0.021 0.953

0.1 100 4 2 0.413 0.022 0.954
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and changes in availability; referred to as tertiary surveys), and avail-
ability can be calculated from the multiple observers (if the surveys 
are conducted over a period of time where the site is closed to open 
population dynamics and captures changes in availability; referred 
to as secondary surveys). We urge readers to carefully think about 
the timescales over which open population dynamics and changes in 
availability occur for their study system when designing surveys.

There may be cases where researchers are interested in accounting 
for species availability, but one of several scenarios may occur: the data 
are already collected, the researcher has no control over the sampling 
design, or the researcher cannot easily adjust their sampling design for 
the additional data collection required when using a multi- scale occu-
pancy model. In these cases, we point the reader to two approaches. 
First, the staggered entry model by Kendall et al. (2013) uses the same 

F I G U R E  2  Comparison of model performance related to accuracy of occupancy estimates for single- scale versus multi- scale models, 
constant versus random parameterizations, and four simulated scenarios. Panel (a) corresponds to all high occupancy scenarios (>0.60 on 
probability scale), and panel (b) corresponds to all low occupancy scenarios (<0.40 on probability scale). *Highlight the largest differences 
between single- scale and multi- scale occupancy model performance. ‘NR’ represents models/parameterizations/scenarios not run. See 
methods for value cutoffs of parameter combinations along x- axis.

(a)

(b)
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sampling design of single- scale occupancy model (i.e. sites are repeat-
edly surveyed; no tertiary surveys required), but this model relaxes the 
closure assumption within a season by permitting staggered entry and 
exit times for the species of interest at each site. We note, though, 
that these models only allow a single entry and exit event, which may 
not be appropriate for some species or study systems. Second, to ac-
commodate the heterogeneity in species unavailability, it might be 

worth pursuing the use of a dynamic single- scale occupancy model and 
shortening the ‘seasons’ to sample periods to account for the changes 
in species availability through time within a season (Otto et al., 2013). 
This approach changes the meaning of the dynamic parameters and 
introduces bias in their estimation (see Valente et al., 2017 for a dis-
cussion on the impact of temporary emigration on the estimation of 
dynamic parameters).

F I G U R E  3  Comparison of model performance related to precision of occupancy estimates for single- scale versus multi- scale occupancy 
models, constant versus random parameterizations, and four simulated scenarios. Panel (a) corresponds to all high occupancy scenarios 
(>0.60 on probability scale), and panel (b) corresponds to all low occupancy scenarios (<0.40 on probability scale). *Highlight the largest 
differences between single- scale and multi- scale occupancy model performance. ‘NR’ represents models/parameterizations/scenarios not 
run. See methods for value cutoffs of parameter combinations along x- axis.

(a)

(b)
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4.2  |  How do our results compare to previous 
assessments of closure assumption violations 
using the single- scale occupancy model?

Overall, our results are consistent with the patterns documented 
by others exploring the effects of violating the closure assumption 
in the single- scale occupancy model (e.g. MacKenzie et al., 2002; 

Mordecai et al., 2011; Rota et al., 2009; Valente et al., 2017). As 
mentioned before, when availability is less than one and not ac-
counted for, then the detection probability is the product of the 
probabilities of the detection and availability in the case of the 
single- scale occupancy model. In this paper, we only evaluate the 
impacts of violating the closure assumption around availability 
(leaving detection fixed as we vary availability). Since detection 

F I G U R E  4  Comparison of model performance related to bias of occupancy estimates for single- scale versus multi- scale occupancy 
models, constant versus random parameterizations, and four simulated scenarios. Panel (a) corresponds to all high occupancy scenarios 
(>0.60 on probability scale), and panel (b) corresponds to all low occupancy scenarios (<0.40 on probability scale). *Highlight the largest 
differences between single- scale and multi- scale occupancy model performance. ‘NR’ represents models/parameterizations/scenarios not 
run. See methods for value cutoffs of parameter combinations along x- axis.

(a)

(b)
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was fixed, the product of detection and availability essentially mim-
ics the availability process in the single- scale occupancy model. 
Future explorations of the single- scale occupancy model should 
consider assessing violations of the closure assumption around 
both detection and availability simultaneously to tease apart their 
contribution to model performance. This should be done for situa-
tions expected in real field systems to make the results most useful 
for assessing the potential for misleading inference in these cases.

4.3  |  What is the past and future of the multi- scale 
occupancy model?

We foresee the multi- scale occupancy model being used widely 
across ecological disciplines and accommodating different types of 
data. Future applications of the multi- scale occupancy model may 
include spatial distribution modelling (Jiménez et al., 2016), esti-
mating species- environment relationships (Harju & Cambrin, 2019), 

F I G U R E  5  Comparison of model performance related to coverage of occupancy estimates for single- scale versus multi- scale occupancy 
models, constant versus random parameterizations, and four simulated scenarios. Panel (a) corresponds to all high occupancy scenarios 
(>0.60 on probability scale), and panel (b) corresponds to all low occupancy scenarios (<0.40 on probability scale). *Highlight the largest 
differences between single- scale and multi- scale occupancy model performance. ‘NR’ represents models/parameterizations/scenarios not 
run. See methods for value cutoffs of parameter combinations along x- axis.

(a)

(b)
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species co- occurrence (Green et al., 2020), dynamic species distribu-
tions (Green et al., 2019), pathogen detection (Abad- Franch, 2020), 
estimating species richness or biodiversity metrics (Zamora- Marín 
et al., 2021), species distributions and adaptive sampling of eDNA 
(Davis et al., 2018), predator– prey dynamics (Rehman et al., 2021) 
and estimating nested networks (e.g. community of microbes on a 
community of hosts), among other applications.

Another ripe area of research inquiry in this arena is exploring 
the development of a multi- scale time- to- detection model (for more 
on time- to- detection models, see Garrard et al., 2008; Halstead 
et al., 2018, 2021). Time- to- detection models estimate detection 
probabilities based on a single site visit by one observer, rather 
than based on multiple surveys at a single site, which is the case for 
single- scale occupancy models. The multi- scale time- to- detection 
model would combine these two approaches: use the time between 
the initiation of a survey and the time at which the first individual 
of a species is detected to estimate detection rate and use multiple 
surveys (conducted over a period of time where the site is closed to 
open population dynamics and captures changes in availability) to 
estimate availability. We note though that time- to- detection models 
perform well for widespread, common species (i.e. high occupancy 
probability) with high detection probabilities (Halstead et al., 2021), 
so a multi- scale time- to- detection model may also only perform well 
with species with high availability. To our knowledge, such a model 
does not exist but may be worth further study if it can accommodate 
the availability process with two or a few repeated surveys per site.

5  |  CONCLUSIONS

We show that unaccounted for low species availability can lead to bi-
ased estimates of occupancy probability when using the single- scale 
occupancy model. One way that ecologists can account for hetero-
geneity in species availability is by using the multi- scale occupancy 
model, where sites are repeatedly surveyed over a period of time that 
is open to changes in availability (but not open population dynamics) 
AND survey sites over a period of time that is closed to changes in 
availability and open population dynamics. Collectively, our results 
show that future users of the multi- scale occupancy model should 
keep in mind tradeoffs between the number of sites and surveys, 
and that species availability can impact estimated occupancy prob-
abilities, especially when availability is low. However, purely random 
changes in availability that lead to unaccounted for availability will 
simply be absorbed into the detection part of the single- scale occu-
pancy model and the occupancy parameter (Ψ) should be interpreted 
as ‘habitat use’. Implications of unaccounted for availability in statis-
tical inference has broad applications across ecological disciplines.
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