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Abstract: One of the important steps in the annotation of genomes is the identification of regions in
the genome which code for proteins. One of the tools used by most annotation approaches is the
use of signals extracted from genomic regions that can be used to identify whether the region is a
protein coding region. Motivated by the fact that these regions are information bearing structures
we propose signals based on measures motivated by the average mutual information for use in this
task. We show that these signals can be used to identify coding and noncoding sequences with high
accuracy. We also show that these signals are robust across species, phyla, and kingdom and can,
therefore, be used in species agnostic genome annotation algorithms for identifying protein coding
regions. These in turn could be used for gene identification.

Keywords: mutual information; DNA annotation; protein coding

1. Background

The success of sequencing technologies and the resulting explosion of available se-
quence information has made the task of annotating genomic sequences both more impor-
tant and more challenging. One of the major annotation tasks is the identification of protein
coding genes. This task has become especially important because of the increasing risk of
the spread of infectious diseases and the increasing opportunities afforded to molecular
medicine. Identifying genes in pathogens can tell us much about their potential impact
and the possible avenues of control; identifying genes and their interactions can lead to
understanding of disease as well as possible therapeutic pathways.

Computational gene finding techniques are divided into similarity based approaches,
ab initio approaches, and hybrid approaches. Similarity based approaches rely on the
existence of similar sequences in a database; the annotation of the sequence in question
can be guided by the annotation of any similar sequences in the database. Aligning the
sequence to be annotated with an already annotated sequence can help identify functional
regions in the sequence to be annotated [1–3]. As the number of the sequences in the
database grows such comparative methods provide a quick and efficient way of identifying
functional elements such as protein coding regions. Ab initio methods rely on patterns
in the genomic sequence which signal the presence of a gene. These can be patterns of
nucleotides or amino acids identified from existing genomic and amino acid databases [4],
it could be structural signals such as known promotor regions or CpG islands [5], it could be
statistical patterns dependent partially on the triplet nature of coding regions. The statistical
patterns are often captured using Markov models [6–8].

As the structure of genes is different for prokaryotes and eukaryotes the ab initio meth-
ods for gene finding in prokaryotes and eukaryotes generally differ as well. A sequence
beginning with a start codon and ending with a stop codon is called an open reading frame
or ORF. If the nucleotide sequence was random a stop codon will show up about every
fifty nucleotides so if we have a much longer sequence of nucleotides which begin with a
start codon and ends with a stop codon it is likely to be a coding sequence. In prokaryotes
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where the gene is usually a continuous sequence of nucleotides the ORF is often also the
gene. In eukaryotes stop codons may be present in introns as well so for a multi-exon gene
we would look for sequences bound by a start codon and a boundary between an exon and
an intron (i.e., a splice site), regions bound by splice sites, or a region bound by a splice
site and a stop site. Gene finding involves a number of operations. Putative regions that
might be protein coding genes may be flagged by identifying the location of start, stop,
and splice sites, by looking for promoter regions [9], by identifying CpG islands which
tend to occur upstream of genes [5]. Once a putative coding region is identified the region
and their surroundings can then be tested for other signals that may indicate that it is a
coding region. These signals include codon composition as there are codons that occur
with higher frequency in some species, hexamer composition [10], nucleotide composition,
and periodic occurrence of bases. Another popular method for detecting coding regions
is through the use of Markov models. Hidden Markov Models are used in a number of
gene prediction software including the popular GenScan [10]. Interpolated Markov models
form the basis for the GLIMMER tools [11–13].

Coding regions in genes are information bearing structures which is why Markov
models have been the workhorse for identifying coding regions. It thus makes sense to see
if measures of information can be used as signals for distinguishing coding and noncoding
regions. One measure of the information structure of genomes is the average mutual
information (AMI) profile [14–16] which is based on the information contained in a base
about another base k bases away. The average mutual information profile looks at the linear
and nonlinear dependencies between residues separated by different lags. The average
mutual information profile has been used to generate phylogenetic trees at all levels of
the tree of life. The effect of the differences between coding and noncoding regions is
visually apparent when we look at AMI profiles of prokaryotes, whose genomes primarily
consist of coding regions, and animals where only a small portion of the genome consists
of coding regions. However, attempts at using the AMI profile to distinguish between
coding and noncoding regions are not particularly successful as we shall see in the results
section. However, we show that if we remove the averaging effect of the average mutual
information profile by constituting its components to form a new profile we are substantially
more successful in using the resultant vector as a signal for discriminating between protein
coding regions and non protein coding regions.

In this work we show that the signals generated by these derived metrics are suf-
ficiently robust that they can be used in a universal manner to identify coding regions
in organisms throughout the tree of life. While the simplicity of the signals allows for
easy incorporation in high throughput gene prediction pipelines, we are not presenting
such a pipeline. Our more modest goal is to provide a computational signal that provides
effective discrimination between protein coding and noncoding regions in a robust manner.
This robustness allows these signals to be used to explore genomic fragments of unknown
origin. A major contribution of this work is that unlike most known computational signals
used in gene prediction pipelines the signals generated by the proposed metrics are not
only highly discriminatory with most The area under the curve (AUC) values greater than
0.9, they also provide robust discrimination when they are applied to species other than the
ones used to obtain the signals. This is true even when the other species belong to different
kingdoms. The availability of robust signals which can provide cross-species prediction
can help remove a significant barrier for exploration of novel genomes.

The MATLAB programs used to generate the results presented in this work are
available at the GitHub repository, AMICodingRegionPrediction, https://github.com/
gnewcombUNL/AMICodingRegionPrediction (accessed on 7 August 2021). We have
also included a detailed example on how to use the program and modify parameters to
accommodate the interests of the users.

https://github.com/gnewcombUNL/AMICodingRegionPrediction
https://github.com/gnewcombUNL/AMICodingRegionPrediction
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2. Average Mutual Information and Its Derivatives
2.1. Average Mutual Information

Genomic sequences are information bearing sequences and hence the arrangement of
nucleotides in the sequence is not random. This deviation from randomness reflects biological
constraints. There are a number of ways to measure this structure in genomes including
correlation analysis [17], complexity measures [18,19], and various information theoretic
measures [20]. One information theoretic measure that has been particularly effective for
identifying structural similarities between genomes of evolutionarily related organisms has
been the average mutual information.

The information associated with an event depends on the uncertainty associated with
the event. The average uncertainty is quantified by the Shannon entropy [21], H(X), which
is defined as:

H(X) = − ∑
x∈A

p(x) log p(x) (1)

where A is the alphabet which makes up the sample space for the discrete random variable
X. In our current application the alphabet consists of the letters denoting the nucleotides
adenine, cytosine, guanine, and thymine.

A = {A, G, C, T}

This is easily extended to multiple events. Events which influence each other have mu-
tual information. This means that knowing the outcome of one event provides information
about the other. That is, the uncertainty concerning the latter event is reduced. Average
mutual information (AMI), I(X; Y), measures the information contained in event X about
event Y, and is defined as:

I(X; Y) = H(X)− H(X|Y)

= ∑
X∈A

∑
Y∈A

p(X, Y) log
p(X, Y)

p(X)p(Y)
(2)

While the principal use of average mutual information is in the area of communication
and data compression [22] it has been used in a variety of fields, including bioinformatics.
Specifically, it has been used to study the covariation of residues in the envelope protein of
HIV [23] and other proteins [20,24]. It has also been used to aid in sequence assembly [25],
and to generate a species-specific signature [16] for phylogenetic analysis. Previously,
whole and partial genome AMI profiles have been used to classify fungal and mycobacterial
samples [26], study changes in HIV populations [27], and study genomic signatures in viral
sequences [28]. While there have been indications that the average mutual information
could be used to differentiate between coding and noncoding sequences [14,29] the attempts
to do so have not been particularly successful. In this work we show that while the average
mutual information profile as it has been previously used is not a very strong signal for
coding regions we can derive metrics from it that are stronger signals for protein coding
regions than even the highly popular interpolated Markov models.

Let the discrete random variable X correspond to a nucleotide at an arbitrary location
n and the discrete random variable Y correspond to a nucleotide at location n + k. We
refer to k as the lag. The random variables X and Y take on values from the alphabet:
A = {A, C, G, T}. We can estimate the marginal probability distributions p(X) and p(Y) by
counting the number of times each nucleotide occurs divided by the length of the sequence.
In other words the probability that X takes on the value A is estimated by counting the
number of times A occurs in the sequence divided by the length of the sequence. The other
probabilities are estimated in the same manner. Note that because we are not taking into
account the locations of the nucleotides the estimates for p(X) and p(Y) are the same,
since both are measured across the entire sequence. We call this estimate p̂0(X). Similarly,
the joint probability distribution p(X, Y) is estimated by counting the number of times
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each of the 16 possible pairs of nucleotides separated by k base pairs occurs, and dividing
by the total number of such pairs in the sequence. We call this estimate p̂k(X, Y) for lag k.
Using these probability estimates, we generate an AMI profile AMIk for selected values of
k as follows:

AMIK = ∑
X∈A

∑
Y∈A

p̂k(X, Y) log
p̂k(X, Y)

p̂0(X) p̂0(Y)
(3)

If the nucleotide occurring at position n+ k is independent of the nucleotide at position n,
then the average mutual information between the two events is 0 (i.e., AMIK = 0). Likewise,
if there is a peak in the AMI profile at some lag k, this indicates increased dependency
between nucleotides k base pairs apart.

2.2. Average Mutual Information Derivatives

The AMI profile provides a glimpse into how a sequence’s base pairs bias surrounding
base pairs at particular lags. A less succinct profile that provides additional information
can be defined by collecting the individual terms that are summed when calculating AMI.
We call this profile “expanded adjusted Average Mutual Information” (eaAMI). For each
value of k, the profile consists of 16 elements, one for each possible pair of nucleotides
k bases apart. The frequency of each nucleotide pair is estimated, and then scaled by
the dependence between the two nucleotides. That is, the profile element for lag k and
nucleotide pair X, Y is defined as:

eaAMIK(X, Y) = p̂k(X, Y) log
p̂k(X, Y)

p̂0(X) p̂0(Y)
(4)

Thus, the profile consists of 16k values, concatenated into a single vector.
A slightly simpler profile utilizes the unadjusted nucleotide pair frequencies, and is

thus termed the “expanded Average Mutual Information” (eAMI). Formally, each profile
element is defined as:

eAMIK(X, Y) = p̂k(X, Y) (5)

As with eaAMI, the eAMI profile consists of 16k values. These AMI variants are easily
extended to use with amino acid sequences, which may provide different (but overlapping)
information about the sequence.

3. Prediction Methodology

The numerical profiles defined above provide a mechanism to map a nucleic acid se-
quence into a vector space that is readily analyzed and manipulated. Each profile presented
here defines a different space, but the techniques used to operate on the space are generic.
We use linear Support Vector Machines (SVMs) to perform binary classification. As with
any classification problem, data is partitioned into training sets and test sets. In order to
objectively measure the methods’ performance, the data sets are intentionally contrived.
The data sets are generated from a repository of 82 species with well-annotated genomes.
The full list of species is included in the Supplementary Materials. Each species is identified
by its taxonomic ID. We downloaded the genomic FASTA and GTF files for that assembly
from NCBI. For each GTF file, we compiled all annotated protein coding regions, denoted
“CDS” (Coding DNA Sequence) in the annotation. We accepted the annotation as-is and did
not speculate on the possible existence of unannotated CDSs. For large eukaryotic genomes,
we used only the first three chromosomes. Given the CDS coordinates, we extracted each
from the corresponding genome, taking the reverse complement of each CDS on the neg-
ative strand. All CDSs were then concatenated into a parent coding sequence, such that
there was a single coding sequence for each species. These range from 500 thousand base
pairs to tens of millions of base pairs. We then extracted the noncoding sequences. Any
segment of the genome that is not included in any CDS on either strand was considered
to be noncoding. Noncoding regions from both strands were included so that noncoding
regions surrounding CDSs on both strands are represented. These were all extracted and
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concatenated into a single parent noncoding sequence for each species. These range in
length from 60 thousand base pairs to hundreds of millions of base pairs

The data sets are then constructed by randomly drawing 2000 non-overlapping se-
quences of constant length from each of the two parent sequences. Each data set used to
train and test an SVM includes sequences of constant length, but multiple data sets were
constructed with a different length for each. If the genome is too short to allow for 2000
non-overlapping sequences at the given length, the number of sequences in the data set is
reduced accordingly. This allows us to evaluate the effect of sequence length on predictive
performance for a range of 25 to 10,000 base pairs.

We use k-fold cross-validation, with k = 5. The SVM is trained on the training folds,
and its performance evaluated by using it to classify the test folds. The output of the SVM
classifier is a score assigned to each input profile. The magnitude of the classification score
is the distance from the profile to the SVM decision boundary, and the sign specifies on
which side of the boundary the profile falls. Positive scores indicate profiles on the side of
the boundary corresponding to the coding region class. A higher score indicates a higher
probability that the test sequence was drawn from the coding region parent sequence. We
also evaluate a Euclidean distance classifier. Given a training set of sequence profiles from
coding and noncoding regions, we calculate the centroid for both sets. For each sequence in
the test set, we determine the Euclidean distance to both centroids, and subtract one from
the other to determine classification scores. Positive values indicate that the test sequence
profile is closer to the coding region centroid. Scores produced by each classifier for each
type of profile are used to evaluate the classification performance.

In practice, when predicting coding regions for an unannotated genome, we would
need to use a model trained on some other organism. We evaluate this cross-species scenario
by training a model for each organism we consider, and using the model to predict coding
regions in all other organisms.

4. Results

Receiver Operating Characteristic (ROC) curves are generated by sweeping a predic-
tion threshold across the entire range of scores for each prediction methodology. That is,
each score that is produced by the SVM is used as a threshold to generate a point on the
ROC curve. For each threshold, sequences that score higher than the threshold are declared
to be coding regions, while those that score lower are declared to be noncoding regions.
We then calculate the true and false positive rates, which yields a point on the ROC curve.
This is repeated for all scores produced by the SVM.

Sample curves for the organism S. cerevisiae are shown in Figure 1. The area under
the curve (AUC) is then used as an objective single-value metric for evaluating prediction
performance. Additionally, the classifier’s sensitivity and specificity are calculated using a
threshold of 0. That is, coding regions assigned a positive score by the SVM are considered
true positives, while noncoding regions assigned a negative score are considered true
negatives. All quoted values of sensitivity and specificity that appear in this paper use this
0 threshold.

Increasing the information available to the classifiers yields AUC improvements. As is
to be expected, the improvement tapers as k continues to increase. For eAMI, there are
diminishing returns for k values greater than 2. The ROC curves are reasonably symmetric
about the line y = 1− x. This suggests that at the optimal decision threshold (the point
on the ROC curve closest to a 0% false positive rate and 100% true positive rate), the false
positive and true positive rates will be balanced.

The longer a sequence is, the more closely it will tend to resemble the aggregate profile
of the set to which it belongs. Accordingly, we would expect prediction performance to
increase as sequence length increases. To evaluate this effect, we constructed data sets
consisting of sequences of increasing length. This is shown for S. cerevisiae in Figure 2 for
the proposed profiles. We can see that while the results for each profile is different, in each
case the SVM classifier works better than the simple Euclidean distance classifier. For AMI,
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it does no better than Euclidean distance, but there is a significant performance premium
for eAMI, and a small but meaningful gain for eaAMI. For the remainder of this work we
only present results using the SVM classifier.

Figure 1. ROC curves for coding region prediction using SVMs on AMI profiles with length 100 bp
sequences drawn from the S. cerevisiae genome.

Figure 2. AUC for coding region prediction using SVMs and Euclidean distance on AMI profiles
derived from sequences of increasing length drawn from the S. cerevisiae genome.

4.1. Profile Analysis

For all profiles considered here, we can effectively distinguish between coding regions
and noncoding regions provided we have a sequence of sufficient length. This suggests
that profiles for members of both classes converge to some characteristic profile. To best
represent these characteristic profiles, we calculate the centroid of profiles drawn from the
longest sequences considered in this analysis (12,800 base pairs). These centroids provide a
visual representation of the differences between coding and noncoding regions, from which
we can glean features about the class from which they were drawn.

Centroid AMI profiles are presented in Figure 3. The most obvious feature is the presence
of distinct peaks at multiples of three in coding regions, resulting from the triplet periodicity
conferred by codon abundance biases. The notable exception to this periodicity is the inflated
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values for lags 1–2, suggesting biases in the occurrences of certain nucleotide pairs and triplets.
This is possibly due to the fact that most amino acids are encoded by a number of different
triplets or synonymous codons [30]. Different organisms show a bias to one of the synonymous
codons resulting in their higher abundance in the coding sequence. For lags greater than 4,
magnitude decreases only slightly over the window considered here. The noncoding centroid
also has noticeable, if less pronounced features. It too is marked by significant magnitudes for
small lags, but with more gradual degradation thereafter. Curiously, there appear to be small
but significant peaks at even lags from 6 to 14.

Figure 3. Centroid AMI profiles for S. cerevisiae coding and noncoding regions.

Centroid eAMI profiles are presented in Figure 4 for lags 1–4. Subsequent lags are omitted
for brevity, but they bear resemblance to those presented. The presence of strings of thymine
is most indicative of a noncoding region. This would occur in the opposite strand of a poly(A)
tail downstream of a coding region. Noncoding regions are more symmetric, in the sense that
complementary nucleotide pairs have similar abundance. This is due to the relatively higher
likelihood of the opposing strand of a noncoding region also being noncoding.

Figure 4. Centroid eAMI profiles for S. cerevisiae coding and noncoding regions.
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Centroid eaAMI profiles are presented in Figure 5 for lags 1–4. Again, subsequent
lags are omitted for brevity.

Figure 5. Centroid eaAMI profiles for S. cerevisiae coding and noncoding regions.

4.2. All Species Predictions

In order to evaluate the robustness of this method, we applied it to 82 genomes,
consisting of 70 bacteria, 1 archaea, and 11 eukaryotes. For length 100 base pair sequences,
eAMI produced the highest AUC in 78 of the 82 species considered. AUC results for all
profile types and species are summarized in the histograms in Figure 6. The eAMI SVM
performed best for the lone archaea, M. maripaludis (0.971 AUC, 92.7% sensitivity, and 89.6%
specificity), and worst for A. nidulans (0.826 AUC, 80.5% sensitivity, and 68.7% specificity).

Figure 6. AUC distribution for all three profiles across all 82 species.

As would be expected from the results in Figure 2 for S. cerevisiae increasing the length
of the sequences results in better performance as can be seen in Figures 7 and 8.
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Figure 7. Median AUC values for all three profiles as a function of the length of the sequence being
classified.

Figure 8. Median sensitivity and specificity values for all three profiles as a function of the length of
the sequence being classified.

We can see that while the AUC, sensitivity, and specificity values for classifiers using
the AMI metric perform poorly for much of range of lengths, the performance of the
classifiers using the eaAMI and eAMI metrics perform well for a wide range of lengths,
the performance improving with the length of the sequence. Comparing the performance
using eaAMI and eAMI profiles we see that the latter performs better for sequences of
length less than 250 bp wile the former performs better for all lengths greater than 250 bp.

4.3. Cross-Species Predictions

To see the robustness of this approach to training based on organisms from different
branches of the tree of life—other species, phyla, and kingdoms—we show the AUC, sensi-
tivity, and specificity of the classification when using training sets from widely different
organisms. The complete results are available in the Supplementary Materials. We compare
these results to results obtained using the widely used Glimmer package under identical
conditions. In order to get these results we used “build-icm” to train a model, and ”glim-
mer3” to score the test set. We used the “-separate_genes” option, which interprets the
input file as a set of (potential) genes to score as such, rather than a genome fragment
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to be scanned for ORFs that are then scored. We use the “Raw Score” to compute AUC,
sensitivity, and specificity.

AUC results for all proposed profile types and species are summarized in the his-
tograms in Figure 9 for length 1000 base pair sequences. Interestingly, eaAMI produces
better results on average, and is also considerably more consistent. A total of 95.4% of
cross-species predictions made using eaAMI profiles resulted in AUC greater than 0.9,
compared with 76.6% of predictions using eAMI profiles.

Figure 9. AUC distribution for eAMI and eaAMI profiles across all pairwise cross-species predictions.

The corresponding AUC results for Glimmer are shown in Figure 10.

Figure 10. AUC distribution for Glimmer across all pairwise cross-species predictions.

The classification performance using the latest version of Glimmer is better than the
classification performance using AMI, slightly worse than the classification performance
using eAMI, and considerably worse than the classification performance using eaAMI. We
compare the classification performance of Glimmer with the performance using eAMI and
eaAMI in Figure 11.
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Figure 11. AUC distribution for Glimmer, eAMI, and eaAMI across all pairwise cross-species predictions.

Median AUC, sensitivity, and specificity for each profile (including Glimmer) for two
different sequence lengths are shown in Table 1.

Table 1. Median cross-species results for all profiles using length 100 and 1000 base pair sequences.

100 bp Sequences 1000 bp Sequences

AUC Sensitivity Specificity AUC Sensitivity Specificity

eaAMI 0.788 0.606 0.837 0.991 0.904 0.985
eAMI 0.847 0.672 0.840 0.970 0.703 0.983
AMI 0.515 0.494 0.540 0.737 0.678 0.727

Glimmer 0.694 0.253 0.884 0.832 0.122 0.996

Glimmer outperforms the classifier using the AMI profile and is considerably outper-
formed by the eaAMI and eAMI profiles regardless of sequence length.

Given the superior performance of the eaAMI signal we sample some of the results using
eaAMI to show the robustness of this particular signal to differences in the species, phylum,
or kingdom of the organism used for training and the one used for testing. The complete
results for all cross-species predictions are available in the Supplementary Materials.

In Table 2, we show the results when using different organisms in the fungal genus
Aspergillus for training and testing. The first number in the table is the AUC, the second is
the sensitivity, and the third is the specificity.

Table 2. Cross-species coding region prediction results for selected Aspergillus species using eaAMI
profiles. SVMs were trained on length 1000 sequences from the species denoted in the row headers,
and used to classify sequences from the species denoted in the column headers.

A. nidulans A. fumigatus A. niger A. oryzae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. nid 0.98 0.94 0.93 0.99 0.96 0.93 0.99 0.96 0.93 0.97 0.92 0.91
A. fum 0.98 0.93 0.94 0.99 0.94 0.95 0.99 0.94 0.94 0.97 0.89 0.93
A. nig 0.98 0.95 0.92 0.99 0.96 0.92 0.99 0.96 0.93 0.97 0.92 0.90
A. ory 0.98 0.97 0.90 0.99 0.97 0.89 0.99 0.97 0.91 0.98 0.94 0.91

We compare these results with those obtained using the latest version of Glimmer in
Table 3.



Entropy 2021, 23, 1324 12 of 15

Table 3. Cross-species coding region prediction results for selected Aspergillus species using Glimmer.
Glimmer was trained on length 1000 sequences from the species denoted in the row headers, and used
to classify sequences from the species denoted in the column headers.

A. nidulans A. fumigatus A. niger A. oryzae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. nid 0.93 0.91 0.76 0.91 0.92 0.71 0.89 0.84 0.76 0.90 0.88 0.83
A. fum 0.92 0.86 0.84 0.92 0.91 0.80 0.90 0.82 0.84 0.91 0.86 0.88
A. nig 0.93 0.91 0.80 0.92 0.93 0.74 0.92 0.90 0.73 0.92 0.90 0.84
A. ory 0.90 0.89 0.67 0.91 0.91 0.60 0.86 0.83 0.62 0.93 0.90 0.76

Notice that while the performance metrics for Glimmer are close to the performance
metrics using eaAMI when we use the same species for training and prediction they are
worse when we use different species for training and prediction.

To see how the performance changes when we use organisms belonging to differ-
ent orders we use four Gammaproteobacteria: Acinetobacter baumanii belonging to the
Pseudomondales order, Streptococcus pneumoniae belonging to the Lactobacillales order,
Salmonella enterica belonging to the Enterobacter order, and Vibrio cholerae belonging to the
Vibrioles order. The results are shown in Table 4.

Table 4. Cross-species coding region prediction results for selected species from different orders of
the Gammaproteobacteria class using eaAMI profiles.

A. baumannii S. pneumoniae S. enterica V. cholerae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. bau 1.00 0.97 0.99 1.00 0.88 0.99 1.00 0.96 0.99 1.00 0.96 0.99
S. pne 1.00 0.97 0.98 1.00 0.98 0.99 0.99 0.87 0.98 0.99 0.94 0.94
S. ent 0.99 0.88 0.99 0.99 0.86 0.99 1.00 0.97 1.00 1.00 0.94 1.00
V. cho 0.99 0.95 0.97 0.99 0.88 0.99 1.00 0.97 0.98 1.00 0.98 0.99

As we can see there is remarkable consistency in classification performance.
However when we use Glimmer under the same conditions there is a significant drop

in performance as we can see from Table 5.

Table 5. Cross-species coding region prediction results for selected species from different orders of
the Gammaproteobacteria class using Glimmer.

A. baumannii S. pneumoniae S. enterica V. cholerae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. bau 0.92 0.94 0.44 0.79 0.69 0.83 0.30 0.12 0.65 0.64 0.62 0.57
S. pne 0.80 0.73 0.80 0.96 0.98 0.44 0.21 0.03 0.87 0.41 0.24 0.78
S. ent 0.91 0.32 0.99 0.85 0.07 1.00 0.98 0.99 0.43 0.94 0.66 0.99
V. cho 0.96 0.77 0.97 0.93 0.54 0.98 0.91 0.88 0.76 0.98 0.98 0.59

Finally, let us look at what happens if we use DNA sequences from organisms belong-
ing to different kingdoms for training and testing. Our organisms are Homo sapiens from the
Animalia kingdom, Aspergillus nidulans from the Fungi kingdom, Methanococcus maripaludis
from the Archaea kingdom, and Streptococcus pneumoniae from the Bacteria kingdom. The
performance metrics—AUC, specificity, and sensitivity—are shown in Table 6.
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Table 6. Cross-species coding region prediction results for selected highly divergent species from
different kingdoms using eaAMI profiles.

H. sapiens A. nidulans M. maripaludis S. pneumoniae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

H. sap 0.99 0.94 0.97 0.93 0.69 0.94 0.99 0.74 1.00 0.99 0.83 1.00
A. nid 0.93 0.66 0.97 0.98 0.94 0.93 1.00 0.98 0.99 0.99 0.92 0.96
M. mar 0.89 0.59 0.98 0.93 0.66 0.94 1.00 1.00 1.00 0.99 0.84 1.00
S. pne 0.94 0.86 0.89 0.92 0.93 0.70 1.00 0.98 0.99 1.00 0.98 0.99

You can see some drop off in sensitivity but overall the results are quite robust.
Furthermore, given the high values of both the AUC and specificity we could easily adjust
the detection threshold to bring the sensitivity into a desired range without significant
degradation of the specificity.

For completeness we include the corresponding results for Glimmer in Table 7.

Table 7. Cross-species coding region prediction results for selected highly divergent species from
different kingdoms using Glimmer.

H. sapiens A. nidulans M. maripaludis S. pneumoniae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

H. sap 0.71 0.95 0.04 0.50 0.08 0.93 0.88 0.36 0.93 0.77 0.34 0.99
A. nid 0.80 0.77 0.74 0.93 0.91 0.76 0.89 0.16 0.91 0.87 0.30 0.96
M. mar 0.39 0.19 0.77 0.23 0.00 0.99 0.98 0.99 0.55 0.53 0.26 0.89
S. pne 0.42 0.41 0.43 0.22 0.01 0.92 0.92 0.76 0.95 0.96 0.98 0.44

As might be expected we can see a considerable drop off in performance.
The MATLAB programs used to generate the results presented in this work are

available on the GitHub repository, AMICodingRegionPrediction, https://github.com/
gnewcombUNL/AMICodingRegionPrediction (accessed on 7 August 2021). We have
also included a detailed example on how to use the program and modify parameters
to accommodate the interests of the users. We have also included a MATLAB script for
readers who would like to develop an annotation tool using the metrics presented here.

5. Conclusions

We have presented signals generated using three different measures, the average
mutual information, the eaAMI, and the eAMI for differentiating between coding and
noncoding regions. The AMI profile has never quite lived up to its original promise of
differentiating between coding and noncoding regions since their introduction almost
twenty years ago [14,16,29]. Here we show that if we remove some of the averaging effect
involved in the computation of the profile the coding/noncoding signal not only becomes
very strong under conditions where we use sequences from the same species for both
training and testing, the signals are also highly discriminatory when the training and test
sequences belong to different species. This is true even when the different species belong to
different kingdoms thus in a sense redeeming the promise of twenty years. While the AMI
profile has some predictive value, it is substantially outperformed by the simpler derived
measure eaAMI. The signal generated by using eaAMI is strong enough to generate AUC
values for a SVM classifier of greater than 0.9 in almost all cases. This is true even when
the classifier is trained using DNA from an organism belonging to a different kingdom.
The robustness and strength of this signal is such that it should substantially enhance the
performance of current genome annotation algorithms. In particular it should be useful for
annotating genomes of unknown origin. Such situations are likely to arise more often with
the increasing recurrence of previously unknown infectious diseases.

https://github.com/gnewcombUNL/AMICodingRegionPrediction
https://github.com/gnewcombUNL/AMICodingRegionPrediction
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Supplementary Materials: Spreadsheets containing all the cross species prediction results for the
proposed metric and Glimmer and the list of organism with taxa id and accession numbers are
available online at https://www.mdpi.com/article/10.3390/e23101324/s1.
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