

This is a repository copy of *Investigating the microbiological risks* associated with urban flooding in the UK.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/194323/</u>

Version: Published Version

Proceedings Paper:

Scutt, S, Shucksmith, J orcid.org/0000-0001-5497-0051 and Douterelo, I orcid.org/0000-0002-3410-8576 (2022) Investigating the microbiological risks associated with urban flooding in the UK. In: Access Microbiology. Microbiology Society Annual Conference 2021, 26-30 Apr 2021, virtual. Microbiology Society .

https://doi.org/10.1099/acmi.ac2021.po0124

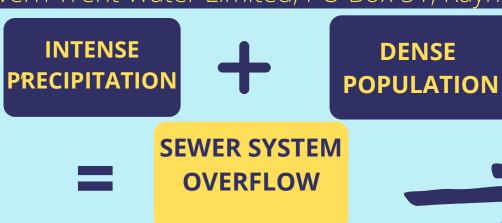
Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

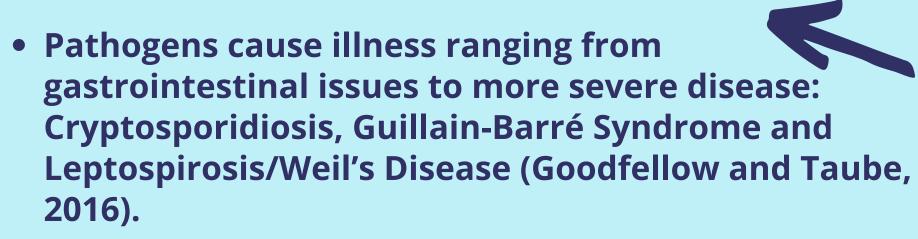
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/


EVALUATING THE MICROBIAL RISKS OF URBAN FLOODING EVENTS

S. SCUTT¹, J. SHUCKSMITH¹, H. JENSEN², J. DIAZ-NIETO³ & I. DOUTERELO¹

¹Department of Civil and Structural Engineering, University of Sheffield, Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK, ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, ³D, ³D ³Capital and Commercial Services – Infrastructure - Waste, Severn Trent Water Limited, PO Box 51, Raynesway, Derby DE21 7JA


INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Waters *et al.*, 2010).

• Urban floodwater can contain many types of pathogen, including bacteria and viruses that spread via the fecal -oral route (Fewtrell et al., 2011).

Figures 1 & 2. Combined sewer overflow outlets at two sample sites in Sheffield.

THE SHORT TERM & LONG TERM RISKS

- Short Term: Direct contact with surface floodwater can result in infection via pathogens.
- Long Term Risk: The contaminated flood water has the potential to move into soils and

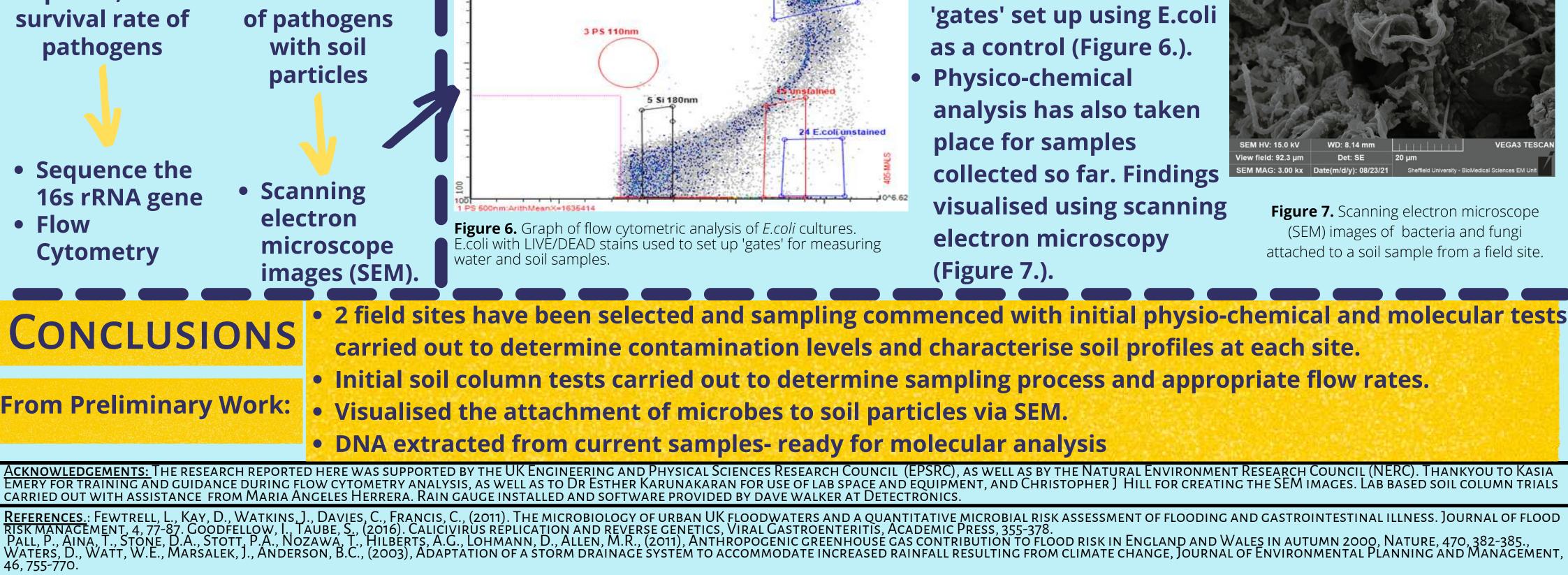

• The true range of pathogen types and species that are common in urban floodwaters is not yet fully understood.

Figure 3. An urban flood at a sample site, Endcliffe Park, Sheffield, November 2021.

surfaces. Pathogens could survive and infect, long after flood water has retreated.

AIM: DETERMINE THE BEHAVIOUR, DIVERSITY, ABUNDANCE, AND SURVIVAL RATE OF PATHOGENS **PRESENT IN URBAN FLOOD WATER AND URBAN SOILS Annular Flume Trials Field Sampling** Soil Column Study MATERIALS & Determine how pathogens • Soil and water samples taken from 2 sample Run wastewater **METHODS** move between soil and sites over a year. through column water when water is with different soil • Sites prone to moving. types, as well as surface water different levels of **Changing: soil types**, flooding due saturation (flood). contamination level of soil to combined • Soil and water and water, depth, velocity. Visit 2- Flood sewer samples taken over overflows/sur Measuring flow rate, along several days and with physio-chemical charging analysed for factors of the soil and **Figure 4.** Rainfall data for sample area. Coloured lines indicate site visits.Data recorded using gauge by Detectronics (2021). manholes. physico-chemical water during the trials. characteristics. 405-MALS-488-Grn [Peak-Peak] RESULTS **Molecular Analysis of Samples** 25 E.coli live Visualise the Determine Flow cytometric analysis abundance, relationship/ has commenced with species, and attachment

