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ABSTRACT2

Often in swarm robotics, an assumption is made that all robots in the swarm behave the same3

and will have a similar (if not the same) error model. However, in reality this is not the case and4

this lack of uniformity in the error model, and other operations, can lead to various emergent5

behaviours. This paper considers the impact of the error model and compares robots in a swarm6

that operate using the same error model (uniform error) against each robot in the swarm having a7

different error model (thus introducing error diversity). Experiments are presented in the context8

of a foraging task. Simulation and physical experimental results show the importance of the error9

model and diversity in achieving expected swarm behaviour.10

Keywords: swarm robotics, fault-tolerance, error diversity, task partitioning, foraging11

1 INTRODUCTION

Robot swarms are capable of performing different tasks in an efficient and decentralized way, in part, due12

to their high level of parallelization. In the past, swarm robotic systems were assumed to be inherently13

robust to failures due to their high degree of robot redundancy. However, Winfield and Nembrini (2006)14

demonstrated that this is not always the case, and that specific processes must be introduced to increase the15

robustness of the swarm. Bjerknes and Winfield (2012) demonstrated that in various scenarios, specific16

partial failures in robots can lead to task degradation or, in the worst case, the task not being achieved.17

Fundamental mechanisms to achieve robust fault-tolerant swarm robotic systems, have been considered18

by different authors including detecting faults (Tarapore et al., 2015; Christensen et al., 2009), diagnosing19

the fault type (Keeffe et al., 2017; Li and Parker, 2007) or recovering from the fault (Humza et al., 2009;20

Timmis et al., 2010), or a combination of all of these fault-tolerant methods (Parker, 1998; Parker and21

Kannan, 2006). However, in all of these works, authors classify the robots according to their behaviour i.e.22

a robot being either faulty or non-faulty, where faulty robots exhibit abnormal behaviour compared with23

non-faulty robots. However, in reality, it is often hard to distinguish between a faulty and non-faulty robot24

due to the diversity of errors across the swarm.25

The importance of considering error diversity in swarm robotics can be summarized in three points. 1) It26

is possible to reduce the reality gap between swarm behaviours in simulation and the swarm behaviours in27

hardware. 2) The error non-diversity could lead to false positive results, as well as missing critical faults28
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that ultimately led to failures. 3) It is important for each robot to learn and adapt to its own inherent error in29

this way, the robot swarm will exhibit better performance.30

To the best of the authors’ knowledge, there is no literature where diversity in terms of levels of error31

is considered in fault tolerance experiments. Most related research examines diversity across the swarm32

from an evolutionary perspective, where controllers can be evolved independently for each robot in the33

swarm. For example, reinforcement learning has been used to train task-specialized robots where each34

robot in the swarm learns to perform a specific task (Balch, 1998; Li et al., 2003; Balch, 2005) or tasks have35

been previously allocated to robot members (Zhang et al., 2008). Robot controllers are generally evolved36

with two methods: genetically homogeneous or genetically heterogeneous (Bongard, 2000; Mitchell A.37

Potter, Lisa A. Meeden, 2001; Trianni and Nolfi, 2011; Tuci, 2014; Hart et al., 2018). In the homogeneous38

method, the controller is expressed as a single genotype which is then cloned to each robot in the swarm.39

With respect to the heterogeneous method, each robot has its own genotype and after evolution, each40

robot has a specific role in the task. Despite this work on controller-heterogeneous swarm systems, there41

is no research that considers the appropriate level of error for each robot during the simulation and its42

impact on the performance of the swarm in simulation and in hardware. In this paper, we identify and43

study the discrepancy of results when degrees of diversity of error are considered, referred in this paper as44

heterogeneous error or if all the robots share the same degree of error they are referred to homogeneous45

error.46

The task considered in this paper is task partitioning in foraging. Task partitioning, first observed in47

biological systems (Ratnieks and Anderson, 1999), has been used in the swarm robotics context to prevent48

bottlenecks close to the home area where the items are deposited Goldberg and Matarie (2001); Brutschy49

et al. (2014); Pini et al. (2011). Other approaches such as Pini et al. (2013, 2014); Buchanan et al. (2016)50

have focused on fault-tolerance in order to increase performance when the dead-reckoning error is present51

in a robot. Task partitioning has been also used to study the effect of task decomposition on emergent52

swarm intelligence (Harwell et al., 2020).53

Task partitioning is a technique that consists of dividing a single task into multiple smaller subtasks, with54

the objective to reduce the amount of distance travelled by each robot and hence decreasing the error in55

dead reckoning. A robot finds an item in the environment and transports the item towards the home area56

for a short distance referred to as Partition Length (P ). Then, the item is exchanged by either leaving the57

item on the floor for a different robot to collect (indirect transfer) or waiting for the second robot to receive58

the item directly from the first robot (direct transfer). Since the robots are travelling a shorter distance P59

compared to the total distance between the home area and the items source, the dead-reckoning is smaller.60

The amount of distance P depends on the approach taken.61

The experimental framework in this paper follows a top-down approach from the macro to the micro62

perspective, combined with three layers of abstraction: emulation, simulation and hardware.63

In the first stage, emulation, an ensemble of different machine learning techniques is trained with a64

dataset generated from latin-hypercube sampling in simulations. The main advantage of using emulation is65

to save time and computation resources, compromising the resolution of the simulation. In other words, the66

emulation is used to explore the experiments from a macro or global perspective which is only concerned67

with the behaviour of the swarm as a whole. An emulation is generated for each strategy with each error68

type.69
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The second and third stages, simulation and hardware, are studies from the micro or local perspective70

which is concerned with the contribution of each robot to the task. This aids in obtaining a comprehensive71

understanding of the behaviour of the swarm.72

The contributions are summarized as follows:73

• demonstration that the assumption made that all the robots in a simulated robotic swarm shared the74

same error model can lead to unexpected swarm behaviours when testing the behaviour with physical75

robots where each robot experiences a different error.76

• difference in behaviours introduced by the error diversity can be mitigated by having each robot learn77

the task according to the success of its performance, thus reducing errors for all robots.78

The hypotheses explored in this paper are as follows:79

1. the consideration of error diversity leads to different correlation values than non-diversity.80

2. each robot adapts differently to its inherent error.81

The rest of the paper is organized as follows. In section 2, a case study is presented and each task partitioning82

strategy is described. The methodology followed in the experiments for this paper is described in section 3.83

Experiments and comments on results are presented in section 4, and section 5 provides the summary and84

conclusions.85

2 CASE STUDY: FORAGING TASK PARTITIONING STRATEGIES

Foraging with dead-reckoning as navigation is used as a task to study the impact of the error diversity and86

uniformity across the robots in the swarm to the behaviour and performance of the swarm.87

Within a simple foraging task, a group of robots explore the environment searching for items to collect.88

Then, after an item is found, the position is recorded by the robot and finally, the robot transports the item89

towards the home area. For this paper single home area, however, this work could be used for multiple90

places home (Lu et al., 2018).91

Due to systematic and unsystematic errors in dead-reckoning navigation, the real-time position is often92

inaccurate leading to an error in the positioning estimation. Error accumulates as a robot travels, which in93

turn affects the estimated item position. As a consequence, when the robot attempts to go back to where it94

found the last item, in order to collect further items, the robot reaches a different location. One simple way95

to mitigate this error is to partition the distance travelled by each individual robot.96

In this paper, two task partitioning foraging strategies are used to examine the effect of error diversity97

and uniformity. The objective of this approach is to compare traditional foraging with a strategy where98

robots learn to divide the task into multiple smaller tasks, depending on the success, or otherwise, of item99

collection. Different emergent behaviours are expected to appear when error diversity and uniformity are100

considered for each strategy. In the first part of this section the foraging task is described and the first101

strategy, Non-partitioning Strategy (NPS) (Pini et al., 2011), is introduced. A second strategy is then102

described Dynamic Partitioning Strategy (DPS) (Buchanan et al., 2016), where the number of partitions is103

defined by a penalty and reward mechanism.104
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Figure 1. Foraging arena (left) and finite state machine used by the robots (right). Left: the arena has
a rectangular shape defined by the width (w) and length (l). The distance between home area and items
source is represented by d. Pi represents the individual partition length for robot i. Right: Non-partitioning
strategy finite state machine composed of three states: explore, go to nest and go to source.

2.1 Foraging task and non-partitioning strategy105

In both strategies, contained in the environment is a virtual beacon which guides the robots towards the106

home area (nest). The arena, shown in Figure 1, is rectangular and is defined by the width (w) and length107

(l) and the distance between the home area and the items to be collected (source (d)).108

In the Non-partitioning Strategy (NPS) the robots take the items directly from the item source to the109

home area. The controller is a Finite State Machine (FSM) composed of three states as shown in Figure 1110

and each state is now described.111

First, the robot starts in the explore state in which all the robots are searching for items in the arena. The112

exploration consists of a motor schema-based navigation (Arkin, 1987) with two behaviours: (i) stay on the113

path and (ii) avoid obstacles. Once an item is within the range of vision of the robot, the robot records the114

position, picks up the item and then enters the go to nest state.115

In the go to nest state, the robot travels towards the home area by following the virtual beacon. The robot116

aligns itself towards the source of the light and moves straight to that location. The robot knows it has117

reached the home area when ground sensors on the robot detect a change in colour. The item is deposited,118

and the robot transitions to the go to source state.119

The go to source state consists of the robot travelling back to where the estimated position of the items120

source is recorded. The robot uses dead-reckoning as navigation, to guide itself to reach the items source.121

If an item is found the robot picks up another item and switches to go to nest state, if the robot does not122

find an item then it changes to explore state.123

In an ideal scenario, the robot would be continuously retrieving items from the source without transitioning124

to the explore state. However, in reality, robots are susceptible to systematic and non-systematic errors125

introduced by the dead-reckoning noise, which in turn, affects target position estimation. The error126

accumulates the longer the distance a robot travels, therefore, the probability of finding the items source127

decreases as d increases due to the drift from the actual items source and the estimated item’s source128

position.129

In order to decrease the error introduced by dead-reckoning noise, the task can be decomposed into130

smaller sub-tasks performed by each robot and this is described in the following section.131
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2.2 Dynamic partitioning strategy132

In Dynamic Task Partitioning (DPS), each robot i changes its individual distance travelled (Pi ) using a133

penalty and reward mechanism. Every time a robot finds an item in the go to source state Pi is increased. If134

the robot i does not find an item then Pi is decreased.135

Pi is calculated with Equation 1 where k defines the amount of distance changed to Pi and α defines the136

ratio between reward and penalty. As α decreases, the robot is rewarded. Pi(t) is the partition length after137

the application of the penalty and rewards, and Pi(t− 1) is the value beforehand.138

Pi(t) =

{

Pi(t− 1) + k(1− α) if item found

Pi(t− 1)− kα if item not found
(1)

3 METHODOLOGY

This section presents the methodology followed for all experimental work in the paper. First, parameters139

and outputs are defined, then, the experimental framework followed and tools used are introduced and140

finally, the statistical techniques used to analyse the experiments results are described.141

3.1 Terms, parameters and outputs142

In order to understand the impact of having different error models for each robot in a swarm, compared143

to all robots having the same error model, it is important to perform a study from the macro (the swarm as144

a whole) and the micro (each robot by itself) perspectives.145

From a macro perspective, the total items collected output provides a good performance metric for the146

swarm as a whole and this can be compared with different swarm sizes and distances between home arena147

and items source. The social entropy provides a metric for how homogeneous the swarm is, according to148

the different individual errors.149

From a micro perspective, it is important the outputs reflect the performance of each robot by itself. The150

collection ratio output represents how successful a robot is at finding the item, providing an indication of151

how bad the error is for each robot. In a similar way, the explore ratio provides an indication of the amount152

of time the robot spends exploring.153

3.1.1 Terms and parameters154

To allow appropriate results to be collected and meaningful analysis to be undertaken, a number of155

environmental and system parameters must be defined for the experiments. The terms that are used for the156

experiments are simulation length, swarm size and the parameters are d, P and α.157

Terms:158

The experiment length term represents the duration of the experiment until it stops.159

The swarm size term represents the total number of robots performing the task. The minimum swarm size160

is 2 because at least a pair of robots are required to have task partitioning. The maximum swarm size is 15161

as with greater values the robots spend more time avoiding each other than collecting items for the given162

environments.163

Parameters:164
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The distance between the home area and the items source is shown as d.165

Swarm density is an implicit parameter explored in this paper which is correlated to the swarm size and d.166

The partition length (P) parameter represents the distance that a robot travels from where it found an167

item for the first time, towards the home area, measured in meters. All robots start with the same P .168

The α parameter regulates the amount of penalty and reward assigned to each robot in the swarm for169

DPS.170

3.1.2 Outputs171

The outputs collected and subsequently used to compare and contrast the various methods from the172

experiments are final P̃ , total items collected, explore ratio, collection ratio and social entropy. These173

outputs are described next.174

The total items collected output represents the number of items collected at the end of the experiment.175

Pi The final P̃ represents the last median of P̃of all from all the robots when the experiment stops from a176

uni-modal distribution.177

The explore ratio represents the amount of time spent by the swarm in the explore state. The explore ratio178

is measured as TE
TT

where TE represents the sum of total time spent by all the robots undertaking iterations179

in the explore state and TT is the simulation length multiplied by the swarm size.180

The collection ratio isolates the frequency a robot successfully collects an item allowing for the181

identification of a correlation between the level of error and how often a robot retrieves an item. IF
(IF+IL)

.182

IF is a counter that records the number of times a robot transitions to the go to nest state from the183

neighbourhood exploration state. IL is a counter that records the number of times a robot enters the explore184

state from the beginning of the simulation.185

Social entropy is a metric that measures diversity in robot swarms and was initially introduced by Balch186

(1998). This metric is used to measure robot homogeneity across the swarm according to the classification187

of robots by their individual performance, where a robot can classify as faulty (high error) or non-faulty188

(low error). Social entropy H(R) is calculated with Equation 2 where M is the number of subsets (faulty189

and non-faulty robots), pi is the proportion of agents in each subset i and R represent the group of robots.190

The lower value of H(R) the more homogeneous the swarm is. This parameter output is explored in more191

detail in Section 4.2.2.192

H(R) = −
M
∑

i=1

pilog2(pi) (2)

3.2 Experimental framework and tools193

The experimental framework is a top-down approach divided into three stages, as illustrated in Figure 2.194

The first stage consists of studying the effect of implementing heterogeneous and homogeneous errors195

from a macro perspective (considering the swarm as a whole) by performing a sensitivity analysis on196

each strategy, via emulation. The second stage consists on studying the effects of heterogeneous and197

homogeneous error from a local perspective (considering each robot as an individual) in simulation. Finally,198

experiments with physical robots validate the results from emulation and simulation.199
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Figure 2. Framework for the experiments in this paper. 1) An emulation is generated from different
machine learning techniques in order to perform an enriched model analysis from a macro perspective
which could not be possible to do in simulations due to constraints in time, battery span and computational
power. 2) Simulations are used to study the model from a micro perspective. 3) Experiments in hardware
are used to validate results shown in emulation and simulation.

3.2.1 Simulation and hardware200

The simulator used throughout the work described in this paper was ARGoS (Pinciroli et al., 2011),201

selected due to the support provided to run experiments for large numbers of robots. For the experiments in202

this paper, a simulated and real version of the psi-swarm robot platform (Hilder et al., 2014) (Figure 2).203

This robot has an infra-red and ground colour detector sensors. Since this robot does not have a camera,204

a virtual camera is used in hardware experiments instead to aid the robot to detect the items. The virtual205

camera consists of a tracking system that retrieves the position of an ArUco tag (Garrido-Jurado et al.,206

2014) attached on top of each robot. A blue-tooth signal is sent to the robot to let it know that it has found207

an item.208

The source code for the psi-swarm controller used in the experiments detailed in this paper can be found209

online at https://github.com/edgarbuchanan/psiswarm_task_partitioning.210

3.2.2 Training data211

A total of 4 datasets are generated from the outputs of the latin-hypercube sampling (Mckay et al., 1998)212

in simulations for each strategy (NPS and DPS) and for each error type (heterogeneous and homogeneous).213

On average, 5 hours of simulated time represents roughly 1 minute in real-time. The number of replicates214

needed for the experiments shown in this paper is 180 (see Section 3.3 for more information). Therefore,215

for a set of experiments for a single strategy, it would take 3 hours in real-time. The amount of time required216

for experiments escalates if a population of samples and/or number of generations is required. Therefore,217

for parameter analysis that requires a large number of sample, the data set can take a long time to produce.218

3.2.3 Emulator219

Incorporating a combination of machine learning algorithms, an emulation is created that can be used as220

a surrogate for original simulations. This emulator is capable of making efficient predictions of simulation221

output for a given parameter set, reducing the time and resource requirements inherent in simulation due to222

the large number of replicates and size of the parameter space.223

Parameters and outputs considered for the training of each emulator can be found in Tables 1.224

The procedure to generate the emulator and use this to perform a predicted sensitivity analyses is as225

follows. For each parameter in each strategy, a value range is assigned and sampled using Latin-Hypercube226
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Table 1. Parameters and outputs used for the latin-hypercube sampling
Parameters

Strategy Name Interval

NPS
Swarm size [2-14]

d [0.5-2.0 m]

DPS
Swarm size [2-14]

d [0.5-2.0 m]
α [0-1]

Outputs
Name Interval

total items collected [0 max]
explore ratio [0 1]

collection ratio [0 1]

Figure 3. From simulation to emulation block diagram. A data set is generated from latin-hypercube
analysis in simulations (i). This data set is used to train and validate the ensemble composed with different
machine learning techniques (ii). Different statistical tools are used to analyse the ensemble model (iii).

Sampling, which ensures adequate coverage of the parameter space (Figure 3i). Then, each of the four227

datasets is used to train and validate the performance of five machine learning techniques (Neural Network,228

Random Forest, General Linear Models, Support Vector Machine and Gaussian Process).229

These five individual emulators are combined to form one predictive emulation, or ensemble, where230

predictions are generated by weighting the performance of each algorithm on a test set (Figure 3ii).231

Combining the five algorithms has been shown to increase the accuracy of prediction over using each232

emulator in isolation (Alden et al., 2018).233

Finally, the emulation is used to perform an enriched sensitivity analysis of the parameter space234

(Figure 3iii). Using sensitivity analyses, important parameters are revealed for each strategy, the235

understanding of the relationships between parameters and outputs with each is increased and regions for236

the parameters where maximum and minimum performance can be found.237

The statistical tools used to provide a better understanding for each strategy are the following. To238

assess the degrees of dependency between parameters and outputs, Partial Rank Correlation Coefficients239

are calculated for each parameter-output response pair (Mckay et al., 1998). To determine whether the240

parameters can be optimised to produce the desired behaviour, the evolutionary algorithm Non-dominated241

Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) has been used. More information for each tool242

can be found in Section 3.3.243

Frontiers 8



Buchanan et al. A study of error diversity in robotic swarms

In this paper, we have included figures that show key results from these analyses, which are then244

discussed in more detail. However, for completeness, we include the results of the emulation training245

and test procedures and all statistical analyses in the supporting website https://www.york.ac.uk/246

robot-lab/taskpartitioning/.247

3.3 Statistical tests and techniques248

This section shows the statistical tests used to analyse the results from the experiments. The statistical249

analysis is performed using Spartan (Alden et al., 2013) for more information about each technique, please250

refer to (Alden et al., 2014) and (Alden et al., 2018).251

1) Consistency analysis: The consistency analysis technique allows the identification of the number of252

executions that minimizes the effect of aleatory uncertainty caused by inherent stochastic variation within253

non-deterministic simulations. In this technique, 20 distributions are compared with the Vargha-Delaney254

test for a different number of runs. The Vargha-Delaney A test is a non-parametric effect magnitude test255

that can be used to indicate the difference between two distributions (Delaney and Vargha, 2000). The more256

different the distributions are, the closer the score is to 0 and 1. We believe that our data does not need257

to transformed as suggested in Neumann et al. (2015) because the amount of time that it takes for these258

variables to change is greater than the length of the tick used for simulations (0.1s). The value of 180 as259

sample size has an A-Test score below 0.56 which suggests that the aleatory uncertainty in the outputs has260

been mitigated and also avoids over-fitting the experiments with a larger sample size. In summary, this261

technique is used to minimize variation from non-determinism in the results to get the correct interpretation262

of the results.263

Figure 4. Consistency analysis that shows that the sample size value of 180 is large enough to avoid
aleatory uncertainty effect (A-test lower than 0.56) in the outputs (item collected, P , explore ratio and
collection ratio).

2) Partial Rank Correlation Coefficients: The Partial Rank Correlation Coefficients (PRCC) are used264

here in order to identify the degrees of dependency between each parameter. This is done by performing a265

Latin-hypercube sampling across parameters space and the number of samples is 1000. The main difference266

between random sampling and Latin-hypercube sampling is that with the latter, it is possible to increase267

reliability that the entire space is covered adequately. PRCC provides a measure of the influence of a single268

parameter with a single output. Strong correlations (close to 1 or -1) correspond to influential parameters269

over their respective output in spite of non-linearity introduced by other parameters. In summary, this270
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technique allows us to identify the key parameters for specific outputs and in this way, it is possible to271

identify if the error diversity of lack of it has any influence on these key parameters.272

3) Non-dominated Sorting Genetic Algorithm II: Non-dominated Sorting Genetic Algorithm II (NSGA-II)273

is an evolutionary technique that explores the entire parameter space in order to maximize and/or minimizes274

multiple outputs. Once, all the solutions population converge (or meet the specific convergence criteria)275

this set of solutions is referred to as pareto front. In later sections of this paper, it will be revealed that the276

consideration of error diversity distorts this pareto front and this is correlated to the number of high-error277

robots.278

3.4 Error model279

The error model consists of adding noise to each motor as shown in Equations 3 and 4. The simulated280

noise µ is generated from taking a sample from a Gaussian distribution each time tick with median k[t]281

and σ where σ changes for each robot. Curvature functions k for each robot can be found in the Appendix.282

Every time a robot changes the speed of its motors, timer t is set to 0. This noise model recreates the bias283

in the robot of moving towards a single direction. Examples of trajectories with physical robots are shown284

in Figure 5.285

Figure 5. Trajectories of two different physical robots, A (left) and F (right), moving forwards for 30
seconds with a speed of 0.02 m/s.

Experiments recorded with physical robots and trajectories produced in the simulator for the first 6 robots286

are shown in Figure 6. The error model in simulation closely resemble the error model in hardware. A287

model of the psi-swarm used in the simulator in this work can be found in https://github.com/288

edgarbuchanan/psiswarm_model.289

rightWheelSpeed = actuatedRightWheelSpeed ± µ ∗ actuatedRightWheelSpeed (3)

leftWheelSpeed = actuatedLeftWheelSpeed ± µ ∗ actuatedLeftWheelSpeed (4)

It is important to mention that for the heterogeneous error, the error model for each robot is fixed and it290

does not change for the experiment shown in this paper.291

4 EXPERIMENTS AND RESULTS IN A MULTI-SCALE MODEL APPROACH

This section presents experiments to demonstrate the performance difference between heterogeneous292

and homogeneous errors. First, by using emulation, a sensitivity analysis is performed for each strategy293
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Figure 6. Trajectories of the physical (left column) robots and their respective simulated versions (right
column). The letter on top of each figure represents the ID of the robot and each robot moves forwards
along the x-axis for 30 seconds with a speed of 0.02 m/s and 10 iterations are shown for each robot. X(m)
and Y(m) represent the coordinates of the robot.

(NPS and DPS) from a macro perspective. Second, through experiments in simulations and hardware, the294

performance of the swarm from a micro perspective is considered.295
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Table 2. LHA correlation values for NPS. Values in bold represent a big difference between heterogeneous
and homogeneous

Parameter - output Heterogeneous Homogeneous
Swarm size - total items collected 0.95 0.97

Swarm size - explore ratio -0.03 0.8
Swarm size - collection ratio 0.31 -0.94

d - total items collected -0.87 -0.94
d - explore ratio 0.17 -0.99

d - collection ratio -0.91 0.97

4.1 A study from a macro perspective using emulation296

This section presents the results from the emulation for each strategy NPS and DPS.297

4.1.1 Non-partitioning strategy298

The first strategy to be described is the Non-partitioning Strategy (NPS) where the robots take the items299

directly from the items source and transport them to the home area. Pi is the same as d and it does not300

change across the simulation.301

For the NPS emulation two parameters are considered: swarm size and d. The swarm size is the number of302

robots that comprise the swarm where the range is between 2 to 14 robots. Heterogeneous and homogeneous303

errors are considered for the emulation, in a range for d from 0.5 to 2.0 m. The width of the arena does not304

change, and the home area and items source are against the arena walls.305

Latin-hypercube analysis.306

Results from the latin-hypercube analysis are illustrated in Figure 7, summarized in Table 2 and key307

scatter plots are shown in Figure 8.308

Results for heterogeneous error show that the swarm size term is only positively highly correlated309

(absolute correlation coefficient greater than 0.7) with the total items collected output (Figure 7). This310

means that as the swarm size increases, the total items collected output increases, and this is because there311

are more robots collecting items in the arena.312

The parameter d is negatively highly correlated with the total items collected and collection ratio. As d313

decreases, it takes less time to transport the items from the items source to the home area. In addition, since314

the distance, the robots are travelling is smaller the probability of finding items increases.315

Results for homogeneous error show that the swarm size term is not only highly correlated with the total316

items collected output but also with both the explore ratio and collection ratio (Figure 7, right). As the317

swarm size increases, time spent in the explore state increases because robots spend more time avoiding318

each other. As a consequence robots travel more when transporting items. Therefore, the error increases319

and the probability of finding items decreases and is reflected in the collection ratio output which it has a320

highly negative correlation with the swarm size term.321

In a similar way, d is not only highly correlated with total items collected and collection ratio but also322

with the explore ratio for both error types. As d increases, the probability of finding items decreases,323

therefore, robots spend more time exploring than transporting items because they are getting lost more324

often.325
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Figure 7. LHA for NPS (left) and DPS (right) with homogeneous and heterogeneous error. Left:
Correlations change for each error type except for the total items collected for both parameters (swarm
size and d) and collection ratio for d parameter. Right: results are similar between heterogeneous and
homogeneous error except for correlation between the swarm size term and the explore ratio and collection
ratio

Even though robots with homogeneous and heterogeneous errors are performing the same strategy, NPS,326

with the same settings, results from LHA differ. The main reason for this difference is that the individual327

errors in each robot, for the heterogeneous error, affect the performance of the swarm performance as a328

whole in different ways and this is explained below.329

Total items collected is very similar for homogeneous and heterogeneous error as shown in Figure 8.330

However, as for the explore ratio the correlation coefficient is very different from each other, -0.03331

for heterogeneous error and 0.8 for homogeneous error. With the heterogeneous error model, there are332

fluctuations across the swarm size term space due to the individual errors considered. For example, between333

swarm size 2 and 3 robots (robots A, B and C), the explore ratio ranges from 0.4 to 0.8. This is because334

this group of robots are characterized by their small error compared to other robots in the swarm, as shown335

in the error models in the previous section (Figure 6). Therefore, these robots spend more time transporting336

items than exploring. However, this does not occur with the homogeneous error, as shown in Figure 8,337

where the explore ratio increases steadily without any oscillations present.338

The collection ratio output for heterogeneous error also has fluctuations, as shown in Figure 8. In the339

regions where high error robots are introduced the collection ratio drops and increases again when low340

error robots are introduced (i.e. the range between 5 and 7 robots). However, with homogeneous error the341

collection ratio decreases steadily with no fluctuations as the swarm density increases and the robots spend342

more time avoiding each other. This is due to there being no high-error robots that are introduced at any343

point because all the robots have the same error.344

As shown, results are different from LHA between heterogeneous and homogeneous errors for the345

explore ratio and the collection ratios. This is because fluctuations introduced between high and low346

error robots, affect the correlation coefficients. Complementary LHA scatter plots can be found on-line347

https://www.york.ac.uk/robot-lab/taskpartitioning/.348

Non-dominated Sorting Genetic Algorithm II.349

NSGA-II was used to find the Pareto front for the best values for swarm size and d parameters in order350

to maximize total items collected and collection ratio, and minimize explore ratio as shown in Figure 9.351

Frontiers 13



Buchanan et al. A study of error diversity in robotic swarms

Figure 8. LHA for the swarm size term for NPS with heterogeneous (left column) and homogeneous (right
column) errors and for the total items collected (top row), explore ratio (middle row) and collection ratio
(bottom row) outputs. The blue rectangles represent the proportion of low-error robots and the green box
represents the proportion of high-error robots. Robot individual error models introduce fluctuations with
heterogeneous error as shown with the explore ratio and collection ratio. However, this doesn’t happen
with homogeneous error because all the robots share the same error parameters.

The pareto front is discontinuous for the heterogeneous error (left column), as the emulation captures the352

heterogeneity in the errors. For instance, for small swarm sizes, from 2 to 3 robots (robots A, B and C), the353

error is small, which means that the robots can travel longer distances. This minimizes the explore ratio354

and they spend the least amount of time avoiding each other since the swarm density is minor. Robots355

between swarm size 2 and 4 with d of 0.5 maximize the collection ratio. This is because the robots are356

travelling a shorter distance between home and source, therefore error accumulation is small. Between 5357

and 7 (robots E, F and G), robots are characterized by their high degree of error. Therefore, these robots358

behave more like obstacles and they impede item collection. As a consequence, the swarm is affected359

negatively. Lastly, between 8 and 14 (robots H, I, J, K, L, M and N), robots with low-error are again360

introduced which contribute to a high total items collected output. Further work could potentially use this361

discontinuous pareto front in order to identify the threshold of the number of high error robots that when362
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Table 3. LHA correlation values for DPS. Values in bold represent a big difference between heterogeneous
and homogeneous

Parameter - output Heterogeneous Homogeneous
Swarm size - total items collected 0.9 0.97

Swarm size - explore ratio 0.42 -0.41
Swarm size - collection ratio -0.29 0.37

d - total items collected -0.76 -0.93
d - explore ratio -0.73 -0.36

d - collection ratio -0.42 -0.56
α - total items collected 0.07 -0.22

α - explore ratio -0.97 -0.97
α - collection ratio 0.99 0.99

overcome the swarm throughput is affected negatively. This would help to measure the degrees of the363

robustness of the task.364

The pareto front is continuous for the homogeneous error (right column). As all the robots contribute365

in the same way. If the total items collected was to be maximized the swarm size needs to be increased.366

However, if the collection ratio is maximized and the explore ratio minimized the size of the swarm size367

needs to be decreased. In order to optimize the three outputs it is necessary to have the smallest d.368

Summary.369

From this analysis, it can be concluded that it is important to consider heterogeneous and homogeneous370

errors, as the results can be misleading if they are considered separately because of the different correlation371

values and this validates the first hypothesis. In addition, the use of different statistical techniques helps372

to provide a better, more in-depth, understanding of the system. NSGA-II exploits the heterogeneity and373

finds new solutions that maximize and minimize outputs and strategies described in the following section374

to decrease this effect by dividing the task into multiple components.375

4.1.2 Dynamic partitioning strategy376

The Dynamic Partitioning Strategy (DPS) is a strategy where robots change their individual partition377

length (Pi ) according to a penalty and reward mechanism. Pi changes with the parameter α.378

α regulates the amount of penalty and reward to Pi . As α increases the robot i gets penalized and not379

rewarded, and as α decreases the robot is rewarded more than being penalized. The interval used for the380

experiments shown in this section is [0,1]. Initial Pi is randomly selected from a uniform distribution from381

the same interval as d.382

Latin-hypercube analysis.383

Results from the latin-hypercube analysis are summarized in Table 3 and key scatter plots are shown in384

Figure 10.385

Results between heterogeneous and homogeneous error are very similar for all the correlations, except386

for the correlation between the swarm size term and the explore ratio and the collection ratio, as shown in387

Figure 7. This discrepancy is produced by the heterogeneity within the individual errors. However, the388

correlation is kept low with the absolute correlation coefficient being lower than 0.7.389

The total items collected output is, once again, mainly correlated to the swarm size and d parameters for390

the reasons explained in the previous section. However, α has a negative correlation with explore ratio and391
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Figure 9. NSGA-II results for NPS with heterogeneous (left column) and homogeneous (right column)
error. The two-dimensional inputs are swarm size-d (top row). Two-dimensional outputs are shown as total
items collected-collection ratio (middle row) and total items collected-explore ratio (bottom row). With
both the heterogeneous error and the homogeneous error, the total items collected are maximized with high
swarm sizes (yellow box). With both the heterogeneous error and the homogeneous error, the collection
ratio is maximized with low swarm sizes (blue rectangles). The explore ratio is maximized with low swarm
sizes and high d for heterogeneous error and low swarm sizes and low d with homogeneous error. The latter
result demonstrates that since this proportion of robots experiences a low error, it is better for these robots
to travel a longer d as the robot density is lower the robots spend less time avoiding each other. The pareto
front is discontinuous for the heterogenous error which means that these robots with high error harm more
the item collection than contribute to it.

a positive correlation with collection ratio, This means that as α increases the robots are exploring less and392

finding items more often because all the robots are adjusting their Pi . In other words, as α increases robot393

are travelling shorter distances which allows for less dead-reckoning error accumulation.394
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Figure 10. LHA for the d parameter for DPS with heterogeneous (left column) and homogeneous (right
column) errors and the explore ratio (top row) and collection ratio (bottom row) outputs. The blue rectangle
represents the proportion of low-error robots.

Fluctuations introduce by low-error robots affect the estimation of the correlation coefficient.

The discrepancy mentioned before for the swarm size term is shown in Figure 10. For the heterogeneous395

error, the collection ratio decreases and the explore ratio increases, whereas as for the rest of the swarm396

this correlation pattern can not be seen. This could be due to high error robots compensating for the397

heterogeneous error. Whereas for the homogeneous error, the explore ratio and the collection ratio398

decreases and increases steadily respectively for the homogeneous error. As the swarm size increases, there399

is a higher supply of robots which allows for the creation of a chain successfully between the home area400

and the source.401

Non-dominated Sorting Genetic Algorithm II.402

Large swarm sizes provide the best item collection and α regulates the explore ratio and ratio collection403

where as α increases, the collection ratio increases and the explore ratio decreases, see (Figure 11) for this404

effect with the heterogeneous error. In a similar way, NSGA-II for the heterogeneous error exploits the405

small swarm size in order to achieve the best explore ratio and collection ratio.406

The Pareto front for DPS is smooth and discontinuities, or gaps, are smaller than NPS. This is because407

DPS has better regulation over individual errors homogenising the swarm. Each robot i is learning its own408

Pi for the given alpha (see next section for more details). This can be also seen for the α and swarm size409

inputs where there are only two batches of solutions, the ones closer to swarm size of 2 robots and the ones410
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Table 4. Parameter values for micro perspective experiments
Parameter Value

Experiments length 5 hours
Swarm size 6

d 1 m
P 0.5 m
α 0.5

closer to the swarm size 14. This means that fluctuations by high and low error robots between the intervals411

4 and 10 are ignored and have no significant contributions to the results.412

Results for the homogeneous error show that a larger swarm provides the best item collection and as413

α increases the collection ratio increases and the explore ratio decreases. The Pareto front for the set of414

solutions is continuous and smooth.415

Summary416

α helps to regulate the collection ratio in order to optimize the explore ratio. The total items collected417

output is provided mainly by the swarm size and d. In this way, it is possible to find a set of parameters that418

provides a good trade-off between the explore ratio and the throughput of items according to the needs419

of the user. Finally, fluctuations caused by individual error models are reduced and a continuous Pareto420

front for the output is generated for the heterogeneous error, due to individual convergence of Pi for each421

robot and, since the robots are travelling shorter distances, the error is lower and more uniform. More422

information about Pi convergence can be found in the experiments from simulation and hardware in the423

next section.424

4.2 A study from a micro perspective using simulator and hardware425

In the previous section, the effect of considering individual robot errors in emulation with each strategy426

was explored. An emulator was used to aid with this study and it was found that results differ for427

heterogeneous and homogeneous error. In this section, this discrepancy is explored in detail by using428

experiments from a micro perspective with simulations and hardware (stages 2 and 3 from the experimental429

framework shown in Figure 2).430

The parameter values chosen, unless stated, for the experiments in this section are shown in Table 4.431

4.2.1 Heterogeneous and homogeneous errors432

As discussed in Section 3.4 when modelling the error for each robot, it was found that the error varies433

between robots. This section describes error diversity and non-diversity in simulations (Figure 12).434

In the first set of experiments, the robots are performing DPS where Pi is the same as d. Convergence of435

Pi is shown in Figure 13. All the robots converge to a single similar P with homogeneous error. However,436

robots with heterogeneous error converge to different Pi for each robot i.437

The impact of different errors is reflected in the individual performance. In experiments shown in438

Figure 14, all robots start with a Pi of 0.4 m and α of 0.5 with homogeneous and heterogeneous error439

models for DPS. The robots with homogeneous error have a similar individual performance as each other.440

However, robots with heterogeneous error have different individual performance according to each robot.441

Robot specialization emerges from DPS in the sense that every robot learns its own Pi according to442

their inherent degree of error as shown in Figure 13. This is consistent with the results presented in443
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Figure 11. NSGA-II results for DPS with heterogeneous (left column) and homogeneous (right column)
error. Two-dimensional inputs are shown as swarm size-d (first row) and swarm size-alpha (second row).
Two-dimensional outputs are shown as total items collected-explore ratio (third row) and total items
collected-collection ratio (fourth row).
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Figure 12. Screenshot of one of the experiments in simulation (left) and hardware (right).

Figure 13. Convergence to a solution with homogeneous (left) and heterogeneous (right) errors with DPS.
Robots with homogeneous error converge to a single Pi and robots with heterogeneous error converge to
different Pi .

Figure 14. Individual performance with homogeneous (left) and heterogeneous (right) error models.
Robots with homogeneous have similar individual performance and robots with heterogeneous error have
different individual performance.

Figure 14 where the Pi for each robot is correlated with the amount of time that a robot spends exploring444

the environment. For example, robot A spends the least amount of time in the explore state and, hereby,445

has the greater Pi with a value close to 0.5 m. Robots D and E spend the greatest amount of time in the446

explore state and these robots travel the small Pi with a value close to 0.3 m. In addition, this consistent447

with the trajectories shown in Figure 6.448

For instance, Figure 13 shows that robots D, E and F learn the smallest Pi and this is related to their449

individual performance where these robots spend more time in the explore state than the rest of the robots450

as shown in Figure 14. In addition, Figure 6 shows that these same robots have bigger error drifts.451
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Figure 15. Item collection with homogeneous and heterogeneous errors with different values for α. The
peak for item collection is 0.4 for homogeneous and 0.5 for heterogeneous error model.

Figure 16. Individual performance for different swarm sizes for the homogeneous error (left) and
heterogeneous error (right) for NPS in red and DPS in blue. The individual performance decreases
after the first robot for NPS and after 7 robots for DPS with the homogeneous error. The individual
performance peaks at 4 robots for NPS and at 8 robots with DPS for the heterogeneous error.

It is important to bear in mind the difference in performance between heterogeneous and homogeneous452

errors, in order to select the appropriate value of α for the swarm to maximize the item collection as shown453

in Figure 15. In the case of a homogeneous error model, α should be 0.4 in order to have the best item454

collection. As with the heterogeneous error model, that value would be 0.5.455

Figure 16 shows the individual performance for different swarm sizes, strategies (NPS and DPS) and456

error types (homogeneous and heterogeneous). The individual performance is estimated by dividing the457

total items collected by the swarm size. For the homogeneous error the individual performance starts to458

drop after swarm size 2 for NPS and after swarm size of 7 for DPS. The results differ with the homogeneous459

error and this is due to the mix of low and high error robots in the swarm as mentioned in the previous460

section. For example, NPS peaks at 4 robots because the first 4 robots experience low error and after this,461

the robots introduced experience high error as shown in Figure 8. This is not the case for DPS where the462

distribution resembles more like a bimodal distribution with two peaks at 4 and 9, each peak at the location463

where robots with low error are introduced. More results regarding the robot swarm flexibility against a464

changing d, change of error models and change of swarm size can be found in the supplementary material465

https://www.york.ac.uk/robot-lab/taskpartitioning/.466

Indirect item transference is the method chosen for most of the experiments shown in this section because467

it has the highest item collection with the lowest convergence speed. This is an important aspect to consider468

due to the battery life of the physical robot only lasting 30 minutes.469
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To conclude, the above results demonstrate that each robot exhibits different performance and this470

validates the second hypothesis. It is important to consider individual models for each robot when working471

with swarm robotics. By doing so, it is possible to reduce the reality gap and be able to select the best α472

that maximizes the item collection and, in addition, potentially select the best Pi and α for each robot to473

improve the item collection. In Section 4.2.3 experiments with physical robots are shown and how they474

compare with simulations.475

4.2.2 Social entropy476

Results from NSGA-II in emulation for NPS showed a discontinuous Pareto front for the heterogeneous477

error and a continuous Pareto front for the homogeneous error (Figure 9). In this section, these results are478

explored in more detail to understand the reason of this discrepancy, using an approach based on a social479

entropy metric. This metric measures the error diversity across the swarm and is described in Section 3.1.480

Decision trees and nearest neighbour classifiers are used to categorize robots into two groups according481

to their individual performance. Principal Component Analysis (Wold et al., 1987) is used to convert482

the variables from the individual performance data to their principal components. This is done in order483

to transform possibly correlated variables into a set of values of linearly uncorrelated variables. The484

requirement for classification is that the accuracy should be higher than 90%. Figure 17 illustrates the485

social entropy for each swarm size in the interval [2,14] for each strategy. The social entropy is overlapped486

with the results from the NSGA-II reported in Section 4.1.487

The social entropy for NPS illustrates that the Pareto front breaks when the social entropy highest peak488

is reached. For a swarm interval between 2 and 4 robots, the social entropy is low. This means that the489

swarm is homogeneous and composed of robots with low degree of error. This is the reason for the cluster490

of points in d of 1.75 m. However, after the first robot with high degree of error is introduced (robot D or491

fourth robot), the social entropy increases. At this stage, the swarm is homogeneous enough to have the492

Pareto front continuous. However, the discontinuity in the Pareto front appears when the second robot with493

high degree of error is introduced (robot E or fifth robot). The social entropy reaches its highest peak point494

at this point. The social entropy starts to decrease after the sixth robot (robot F) is introduced. The social495

entropy decreases steadily because more robots with low degree of error are added to the swarm and this496

decreases the diversity. The Pareto front reappears after the ninth robot is introduced. After this point the497

Pareto front is similar to the homogeneous error Pareto front (Figure 9).498

Overall, the social entropy across the swarm for DPS is similar to with NPS. The social entropy peak499

again is located after the fifth robot and the Pareto front becomes discontinuous after this point. However,500

in contrast to NPS the social entropy remains high (greater than 0.8). This prevents the Pareto front from501

being continuous until the social entropy drops below 0.8. DPS creates a clear distinction between high502

and low degree of error and because of this, the social entropy increases. This might be because task503

partitioning is sensible for high noisy degree of error robots.504

As noted the social entropy changes with each strategy and the reason is that each strategy provides a505

different performance for each robot. For NPS, the highest degree of error robots classified are 2, robots506

D and G. DPS, for this scenario, the robots experience the least amount of time in the explore state. The507

number of high-degree error robots increases to 4 (D, E, G and J).508

In the case of DPS, robots D, E, G and J experience the highest degree of error. Therefore, these robots509

can not be further optimized. This is consistent with the results shown in Figure 17 where the Pi for robots510

D and E with a d of 0.4 m does not increase indefinitely as with robots A, B, C and F. This means that511
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Figure 17. Social entropy and individual performance (left and right column) for each strategy: NPS and
DPS (first and second rows respectively). Social entropy changes for each strategy due to the number of
robots classified as high error.

robots have not reached the optimal distance that decreases the error. In other words, robots D, E, G, and J512

experience such a high degree of error, that the partitioning strategies are unable to provide a suitable Pi513

for the robots to increase their performance.514

4.2.3 Experiments with physical robots515

In this section, the experiments studied in the previous section are explored with physical robots. Three516

different arena sizes are used for the experiments using 6 robots where individual performance and517

convergence are explored. A single replicate for each arena is shown in this section. It is important to518

mention definite conclusions cannot be made from the results shown in this section due to this low sample519

size, however the results are promising. A screenshot from an experiment is shown in Figure 12.520

Results for robots performing NPS are shown in Figure 18. Regardless of the arena size, the robots521

experience different individual performance which means that they are not identical to each other. In522

addition, robots spend most of their time exploring instead of retrieving items in the home area. Finally,523

robots spend less time in the go to source than go to nest state. This is because since robots are travelling a524

longer Pi they experience a greater drift from the original position, causing the target to be beyond the525

walls of the small arena as previously seen. This effect decreases as the arena increases because the target526

is within the arena boundaries.527

Individual performance for robots with DPS can be found in Figure 19. In a similar way to experiments528

with NPS, robots performing DPS experience an increment in the amount of time spent in the explore state529

as the arena size increases. In contrast with NPS, robots spend more time in the going to source state. The530
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Figure 18. Individual performance for physical robots performing NPS for three different arenas with
dimensions of 1.0 x 1.3 m (top row), 2.1 x 1.2 m (middle row) and 2.4 x 1.6 m (bottom two). The go to
source rate is smaller than the go to nest as the arena becomes smaller.

reason for this, is that the robots are travelling shorter Pi which decreases the probability of the target being531

beyond the arena size, for the small arena, in a similar way to that in the simulations.532

Since the battery of these robots last 30 minutes, the convergence experiments were divided into three533

different sets shown in Figure 21. In each set, the robots started with a different P of 1, 0.7 and 0.4 m for534

an arena of size 2.1 x 1.2 m. All the robots converge to a distance close to 0.4 m that changes from robot to535

robot. The velocity of convergence is not only related to the degree of error in the robot but also, to the536

speed of the robot which changes slightly for each robot. Furthermore, from the figures can be seen that537

there is no change in the Pi at least for the first 5 minutes of the experiments. This is the time that it takes538

to find the first item.539

As for the item collection, DPS performs better than NPS as the arena size increases as shown in Figure 21540

because of the following issues. First, as the area of the arena decreases, the probability of finding the items541

source increases even though the collection rate is low. This means that partitioning is not required. Second,542

robots are spending more time dropping and picking up items with DPS which causes a delay in the item543

getting to the nest. Finally, robots spend more time avoiding each other when they are in the go to nest.544
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Figure 19. Individual performance for physical robots performing DPS for three different arenas with
dimensions of 1.0 x 1.3 m (a), 2.1 x 1.2 m (c) and 2.4 x 1.6 m (e). Time spent in the go to source state is
roughly similar to the go to nest state and time spent in the explore state is lower than with DPS.

In summary, results from experiments with physical robots are similar to results from simulation. The545

shape of the arena affects the performance of the go to source state mainly for NPS. DPS performs better546

than NPS as the size of the arena increases. Finally, final Pi changes according to the amount of error in547

the robot i. However, there are some differences due to the reality gap because the models used in the548

simulator do not provide enough information about the real world.549

5 DISCUSSION

It is a common assumption that all the robots are similar and a single robot model in simulations represents550

the entire group of robots in a robotic swarm. Furthermore, it was assumed that all robots would have the551

same behaviour when performing a task. However, work in this paper has shown that this is not necessarily552

the case.553
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Figure 20. Convergence of Pi for different initial partition length (P 0
i ) of 1.0 (top left), 0.7 (top right)

and 0.4 m (middle left) for an arena of 2.1 x 1.1 m. Convergence for arenas 1.0 x 1.3 m (middle right) and

2.4 x 1.6 m (bottom left) for P 0
i of 0.4 are also shown. The convergence changes from robot to robot and is

due to the error and velocity of the robot.

At the moment of retrieving the trajectories for each robot as shown in Section 3.4 each robot experiences554

a different degree of error. Each robot has a different bias, small or large, of moving towards the left or555

right direction. The trajectories of 14 robots was modelled and recorded.556

In the enriched analysis in Section 4.1 it was shown that two different patterns emerged from557

heterogeneous and homogeneous errors for each strategy. Each pattern represents different properties of the558

task partitioning approach. On one hand, the pattern shown with homogeneous error provides information559

of the interactions of each parameter with each output. On the other hand, the pattern with heterogeneous560

error provides information how the swarm copes with robots with high and low degree of error for each561

strategy.562

The individual contribution of each robot changes according to its inherent error as shown in Section 4.2.563

If the homogeneous error is considered, all the robots converge to the same Pi value. However, if the564

heterogeneous error is considered, then each robot converges to a different Pi . Pi is able to adapt to565

changes in the error itself, d and swarm size.566
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Figure 21. Item collection with physical robots and different arena sizes. DPS starts to overcome NPS as
the arena size increases.

The social entropy measurement for each strategy bridges the results between the macro and micro567

perspective (Section 4.2.2). The number of high-degree error robots plays an important role at the moment568

of defining optimality. As the number of high degree of error robots increases, this affects the range of569

optimal solutions. In addition, even though the task partitioning strategies increase the performance of each570

robot, there are a specific number of robots that gain no benefit from task partitioning, due to their high571

degree of error.572

Finally, the experiments with physical robots shown in Section 4.2.3 validate the previous results in573

terms that each robot performs differently and each robot converges to a different solution according to the574

inherent error.575

The work presented in this paper is limited to a single task, a single robot platform and a single type of576

error but there is no reason this work could be applied to other domains. Here are some examples of future577

work:578

• The work presented in this paper could be extended to other tasks such as collective object transportation579

and collective decision-making. In collective object transportation, there is a high reliance on the input580

from the sensors and the error in the sensors could be studied. In collective decision-making, error581

diversity could lead to false positives in decisions.582

• The error diversity could be analysed for other robot platforms and this could lead to interesting results.583

On one hand, the error diversity is so uniform that the approach in this paper becomes insignificant, on584

the other hand, the error diversity could be greater and its importance becomes greater.585

• In this paper it was shown that the number of high error robots changes the dynamics of the swarm586

behaviour. Swarm diagnosis and recovery can be implemented to address these robots with errors.587

In conclusion, it is important to consider both, homogeneous and heterogeneous errors, in order to have a588

comprehensive understanding of the performance of a swarm.589

6 CONCLUSION

Task partitioning strategies have been shown to increase performance in foraging tasks in robotic swarms590

with dead-reckoning noise (Pini et al., 2013, 2014; Buchanan et al., 2016). However, a common assumption591

is that all the robots in a swarm share the same error model. In this paper how different degrees of error592

affect the swarm were studied.593
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In this paper, work has shown how each robot in the swarm experiences different degrees of error594

(heterogeneous error) and there is a single degree of error that describes all the robots (homogeneous error)595

and results undertaking a foraging task differ when considering heterogeneous and homogeneous error.596

Work has shown that it is important to consider both error types to have a full understanding of the system.597

Finally, the number of high degree of error in the swarm defines optimality in the system. The degrees of598

robustness can be measured by identifying the ranges of optimality and the reality gap is able to be reduced.599

Work in this paper has also shown that it is possible to distinguish robots that harm the performance of the600

swarm.601

Further work will consider measuring the degrees of robustness in tasks other than foraging. It will be602

important to examine how a range of different degrees of errors would affect fault detection and diagnosis.603

Our hypothesis is that the number of false positives would increase and a threshold that differentiates robots604

between faulty and non-faulty would be required.605
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