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Nucleon-nucleon potential from instanton holonomies
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We derive the nucleon-nucleon interaction from the Skyrme model using the instanton and product
approximations to skyrmion dynamics. In doing so, we also calculate the classical potential and metric
for skyrmion dynamics in each of the approximations. This is the first time they have been compared in
detail and the results show major disagreements between the approximations. We derive the eight low-
energy nucleon-nucleon interaction potentials and compare them with the Paris model. For the instanton
approximation we find strong negative isoscalar and isovector spin-orbit potentials, matching phenom-
enological models and our geometric intuition. Results for the other potentials are mixed, in part due to the

zero pion mass limit used in this approximation.
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I. INTRODUCTION

Understanding the nucleon-nucleon interaction is one
of the fundamental problems in nuclear physics. Most
models treat nucleons as point particles with spin and
isospin degrees of freedom, and consider the most general
system consistent with the underlying symmetries of QCD.
In the most basic setup the quantum nucleon-nucleon
Hamiltonian consists of eight terms, each arising with an
effective potential depending on the nucleon separation.
The potentials are fitted using theoretical and experimental
inputs, in various different ways [1-3].

Skyrme proposed an alternative theory of nuclei in the
1960s where nucleons arise as localized collective excita-
tions of pions, which owe their existence and stability to
the topology of the system. Now called skyrmions, these
nonlinear field configurations can be interpreted as particles
with a topologically conserved integer charge N identified
as their particle number. Nuclei are described as quantized
skyrmions [4] and the nucleon-nucleon interaction as
quantized skyrmion-skyrmion dynamics. An effective
Hamiltonian can then be extracted and compared to the
phenomenological models mentioned above. Authors have
used the Skyrme model to rederive the Yukawa pion
exchange potential [5] and find the central [6,7] and
spin-orbit potentials [8—11]. Generally, one major problem
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is found in the skyrmion description of the nucleon-nucleon
interaction: the spin-orbit force has the wrong sign.

Most of the previous calculations rely on the product
approximation and first order perturbation theory.
Motivated by an argument based on the geometry of the
2-skyrmion space, the authors of this paper calculated the
isoscalar spin-orbit potential using the dipole approxima-
tion and second order perturbation theory [12]. Despite an
initial apparent success, where the derived potential
matched the phenomenological one, we recently found
an error in the calculation. The corrected spin-orbit poten-
tial has the wrong sign for physically interesting param-
eters. However, neither the dipole or product approximation
properly account for the geometry of the 2-skyrmion space.
Hence our negative result is not wholly surprising. In this
paper, we will recalculate the nucleon-nucleon interaction
in the Skyrme model using the only known approximation
which does account for the geometry of the 2-skyrmion
space: the instanton approximation.

Instantons are solutions of Yang-Mills theory in R*.
Atiyah and Manton first showed that one could approxi-
mate a charge N skyrmion by taking a holonomy of a
charge N instanton [13]. This method has been used to
construct symmetric skyrmions with low charges [14—-16]
and more elaborate families of configurations [17].
Revealing why this works, Sutcliffe showed that Yang-
Mills theory is equivalent to a Skyrme model coupled to an
infinite tower of vector mesons [18]. The standard Skyrme
model is then the first term in this infinite series. Despite
these successes, the instanton approximation has barely
been used to model nuclear physics in the Skyrme model.
Two exceptions are an initial investigation of the skyrmion-
skyrmion interaction [19] and a construction of a simplified
Deuteron wave function [20].
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One reason why instantons have not been widely used to
model skyrmions is their numerical complexity. To calculate
an instanton-generated skyrmion, naively one must solve an
ordinary differential equation (the parallel transport) at each
point in three-dimensional space. Then to calculate the
skyrmion-skyrmion interaction one must generate a four-
dimensional manifold of configurations (which accounts for
relative separations and orientations). Overall, we should
solve an ordinary differential equation at each point in a
seven-dimensional space: a daunting task. Fortunately, a new
method to construct instanton-generated skyrmions has
recently been developed [21]. Using the Atiyah-Drinfeld-
Hitchin-Manin (ADHM) construction, the parallel transport
equation can be solved by multiplying projection operators,
which can be done at great speed. As such, we have been
able to calculate the potential and metric for two interacting
skyrmions in the instanton approximation for the first time.
This is the first serious comparison of the instanton
approximation against the dipole and product approxima-
tions, and we find major disagreements.

Our main result is a calculation of the nucleon-nucleon
interaction for the Skyrme model based on the dipole,
product, and instanton approximations. To obtain this we
generalized the second order perturbation theory developed
in [22]. Although this quantization procedure is cumber-
some, the final result is of broad applicability. To facilitate
dissemination of this result, we have generated data files of
the nucleon-nucleon potentials in terms of the classical
metric and potential of the 2-skyrmion interaction. These
will allow other researchers to quickly calculate the
nucleon-nucleon interaction using different versions of
the Skyrme model and different approximations to sky-
rmion dynamics. We hope this stimulates research which
closer links Skyrme theory to practical nuclear physics. A
guide for how to use the files can be found in Appendix B.

The paper is structured as follows. In Sec. II we describe
the classical two-skyrmion interaction and its symmetries.
We also describe a nontrivial check of a vital sign in the
2-skyrmiom metric. We then carefully describe the dipole,
product, and instanton approximations in Sec. III, including
a comparison between them. Section IV describes the
quantum calculation and Sec. V contains the final results
and a comparison to phenomenological models.

II. SKYRMION-SKYRMION DYNAMICS

A. Dynamics of a single skyrmion

The Skyrme model describes the interactions of nuclei
using an SU(2)-valued field U. The dynamics of U is
governed by the Lagrangian

/ Fr 1) + T, 1] 1)
R3 167 H 32¢2 wy ’

Fam3
813

tr(1, — U))d3y, (1)

in which F, is the pion decay constant, ¢ is a dimensionless
constant, L u= U-! 0,, U is the left-invariant current, and we
parametrize space with y € R3. Throughout this paper
we work in Skyrme units of energy (F,/4e) and length
(2h/eF,); in these units the Lagrangian is

[ (3wt + el L)
— m2tr(1, — U))d3y, (2)

with m = 2m,/eF . This separates into kinetic and poten-
tial energy:

T = /R} <—;tr(L0Lo) - étr([Lo, L;] [Lo’L,‘])> Py,
+ m?tr(1, — U)>d3y, 5)

These are invariant under isorotations g € SU(2), acting
as U gUg™!. They are also invariant under rotations
h € SU(2), which in quaternionic notation act as
x +— hxh~!, and under the parity transformation, which
acts as U(x) — U~!(—x). Skyrmions are energy-minimiz-
ing static solutions of the resulting field equations with
boundary condition U = 1, at |y| = co. Such fields are
maps between three-spheres and as such can be classified
by a topologically conserved integer N, physically identi-
fied with the baryon number. In this paper we will consider
massless pions by choosing m = 0.

The 1-skyrmion has spherical symmetry and takes the
form

Un(y) = exp (=if (Iy])$a0a). (4)

where o, are the Pauli matrices, and the profile function f
satisfies

(IpP2 +2sin® )" + 2yl + sin2f (ffz ~1- |y|f> =0
(5)

and the boundary conditions f(0) =z and f ~ C/|y|* as
ly| = oo. The constant C can be calculated numerically: for
m = 0 it is 2.1596. We can generate a manifold of equal-
energy l-skyrmions, related by translations x € R and
isorotations Q € SU(2). The fields take the form

U(y;x,0) = QUy(y —x)Q07". (6)
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The low-energy dynamics of a 1-skyrmion can be approxi-
mated by treating x and Q as functions of #; substituting the
resulting dynamical Skyrme field into Eq. (2) results in a
Lagrangian,

M .
L=—x+

A
P+ Sl - M, )

2

in which @ is defined by 2Q"Q = —iw - 6. This is a
Lagrangian for a moving and rotating body; the mass M

and moment of inertia A can be calculated numerically and
take the approximate values A = 106.83, M = 145.85.

B. The 2-skyrmion Lagrangian and its symmetries

The focus of this article is the dynamics of two sky-
rmions. There are many ways to model the dynamics of two
skyrmions, and these will be described in the next section.
In this section we describe the general form of a 2-skyrmion
Lagrangian, based on physical expectations and the under-
lying symmetries.

A system of two skyrmions should be described by
two position vectors x;,x, € R} and two orientations
01,0, € SU(2). We choose to work in a center of mass
frame x; +x, =0 and introduce the separation vector
x = x| — x,. The most general 2-skyrmion Lagrangian that
is quadratic in velocities takes the form,1

M A
L = 4xx —|—2wa) + C; xxf+A"xa)a

|
+ B Pwfw), — 2D, (8)
where A, B, C, and D are functions of x, Q;, Q,. The
indices i, j run from 1 to 3 and «, f run from 1 to 2. The
vectors w,, are defined by

i J
Q(l Q(l - 260060 (9)

The kinetic energy part of this Lagrangian can be rewritten
in terms of a 9 x 9 matrix g as follows:

X ¥
T = E(x 0, o)g| o |,
()
Mp 4o A A2
g=| @y AL+B" B2 | (10)
(AZ)T BZ] AI3+BZZ

'"The notation in this Lagrangian has changed slightly from our
earlier paper [22]: we have absorbed p into A, B, C, and D,

written B12 B21 B;; and introduced B,ljl,B22

This matrix g defines a metric on the configuration space
R3 x SU(2) x SU(2). At large separations the Lagrangian
should agree with the Lagrangian of two noninteracting
1-skyrmions, and this means that the functions A, B, C, D
should decay as |x| — oo.

The Lagrangian should be invariant under the action of
isorotations and rotations, parametrized by g, h € SU(2)
and acting as follows:

(x,01,0,) = (x,901,905). (11)

(x.01.05) = (hxh™', Q k7", O,h7"). (12)

It should also be invariant under reversal of parity:

(¥, 01, 02) = (=%, 01, Q) (13)

Since the two skyrmions are indistinguishable, it should be
invariant under

(x,01,02) = (=%, 05, Q). (14)

Finally, it should be invariant under

(x’ le QZ) g
(x’ Q17 QZ) g

(x’ _Ql’ QZ),
(x3 Ql»_QZ)’ (15)

because the single skyrmion (6) satisfies U(y;x,—Q) =
U(y:x. Q).

Isorotation invariance (11) implies that the coefficients
A% B% ... can be written as functions of x and Q :=
Q1‘1Q2. Invariance under sign flips (15) means that all
coefficient functions are invariant under Q — —Q.
Invariance under parity (13) and relabelling (14) implies

that

Al(x,07") = A%(x, Q),
B“(x, Q—l) _ B22(x, Q),
B12(x’ Q—l) — BZI(x, Q),
C(x,07") = C(x,0),
D(x,07") =D(x.Q). (16)

Since the Lagrangian is invariant under rotations (12),
the coefficient functions A, B, C, D are fully determined by
their values at points x = (0,0, r) with r > 0. It will prove
convenient to represent these functions using an expansion
in spherical harmonics of Q. We only use the first two sets
of even spherical harmonics, i.e. the constant function and
the functions R,,(Q) = 1Tr(c,00,07"). Thus we write
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A%((0,0,7), Q) = AG;(r) + A%, (R (Q),

BY((0.0.7).0) = B (r) + B (r)Ru(0).
Cij((0,0,7), Q) = Cy.ij(r) + Capyij(r)Rap(Q),
D((0,0,7),Q) = Do(r) + Dy (r)Rap(Q). (17)

The functions of r on the right of (17) will be referred to as
Fourier coefficients. Note that the functions on the left
of (17) are necessarily invariant under Q — —Q, so odd
spherical harmonics do not appear in the expansions on the
right-hand side. The constraints (16) can be rewritten
as constraints on the Fourier coefficients, using the fact

that Rab(Q_1> :Rba(Q>:
AOt/_AOt/’ Aabt} Abaz]’ Olj BOU’ Babz; Bbal]’
BOU BOU’ Bablj Bbal]’ Cab;ij:Cba;ijv Dy =Dpg.

(18)

By choosing to work on the positive x* axis we have

broken some of the rotational symmetry of the Lagrangian.
However, our Lagrangian should still be invariant under the
action of the subgroup O(2) € O(3) which fixes points on
the axis. This group acts as follows:

|

L gl I gl
Apgr = Al A = —Ayns
1 _4l 1 _4l
Az = —Asnars A3 = A
1 _4l
A21;22 - A12;11’
1
Aab iy has no further components, because Aab ij = Apasij-

01/

T
Az =
a1
Ajzz = —Axs
1 Al al | |
Ay = Al = Al T A HAna-

i R 0\ /4

Xy | B X2 1

X3 0 0 1 X3

of R | 0\ fof

oS | — det(R) 0 w5 |. (19)
f 0 0 1 5

Invariance under this action imposes further constraints on
the Fourier coefficients, which we summarize in the next
subsection.

C. Constraints on the Fourier coefficients

Ag,;; has just one independent component, which we take
to be Ay, ;,. All components with at least one lower index

equal to 3 vanish. The other components can be expressed
as follows:

_ 1 1 7l _
AO 21 A0;12’ AO;]I *AO;ZZ =0, AO ij AO e

Aab ij
be A12;11’ A21;11’ A11;12’ A33;12’ A23;13’ A32;13’ A23;31’ A32;31’
Al,3. All components with an odd number of 3’s in their
lower indices vanish. All components whose lower indices
are a permutation of 1122, 1133, or 2233 vanish. All
components whose four lower indices are all equal vanish.
The remaining components can be expressed as follows:

has nine independent components, which we take to

1 1 — 1
_A33;127 A21;33 - _A12;337

1 _ 1
A13;23 - _A23;13’

has two independent components, which we take to be By}, and BjZ;. Any component with exactly one lower index

equal to 3 vanishes. The remaining components can be expressed as follows:

12

Bi, = By
0 ;j has no further components, because BO ij BO i
Bab ;; satisfies the identity B2 i = ab ij

B012_

021 =0.

due to (18) and the fact that the metric is a symmetric matrix. This tensor

has eight independent components, which we take to be B}3.,|, Bi3.5. Bit.\5. Bi3.\1, Bilss. Bid.is. Bil.js. Bijss. Any
component with an odd number of 3’s amongst its lower indices vanishes. Any component whose lower indices are a
permutation of 1112, 1222, or 1233 vanishes. The remaining components are

Bllll B2222_B2211+B1212+B2112

B1221_B21 12° B2121_B1212’

12 12 12
31122_82211’ B3322_B3311’ 32233_81133

BlS 13> Bl331 _B3223_32332_83113

33131 - 32323 - B3232

B}}..; has no further components, because By . = B, (= B}} ;).
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By, ; has two independent components, which we take to be B!, and Bj;. Any component with exactly one lower index
equal to 3 vanishes. The remaining components can be expressed as follows:

11 _ pll
B0;22 - BO;ll’

has no further components because B3 ;= = By, -
satisfies the identity B! .. = B!!

Olj

B!l

ab;ij abiji — “abij*

BOIZ _BOZI =0.

It has seven independent components, which we take to be Bi1.,,, B{}.5 B3},

Bl 330 313; 13> B_%l;_gl, B33;33. Any component with an odd number of 3’s amongst its lower indices vanishes. Any component
whose lower indices are a permutation of 1112, 1222, or 1233 vanishes. The remaining components are

11
B2222*Bll;ll’
B Bll

22:33 — P11;33»
33223 - 33232 - BSI 13 — BSI 3310

_B]l

22
B baij*

ab:ij has no further components, because B%

ab;ij

The constraints on C,,,;; are the same as those on B}, i»

simply with B'! replaced by C.

Finally, D has three independent components, which
we take to be Dy, Dy, and Ds3. Then D,, = Dy; and the
remaining components are zero.

In summary, we have expressed the potential and metric
using a truncated Fourier expansion (i.e. an expansion
in spherical harmonics, or Wigner D-matrices). Due to
symmetry, the Fourier coefficients can be expressed as
functions on a four-dimensional subspace of the nine-
dimensional configuration space. Altogether our expansion
has 460 Fourier coefficients, but the symmetries mean that
only 41 are independent. In practice, we calculate all the
coefficients and use the symmetry relationships as a check
on our numerical method. We describe the calculation of
the Fourier coefficients in detail in the next section.

D. Expected behavior of the coefficient functions

It is known that the minimal-energy 2-skyrmion has axial
symmetry. This fact has implications for the metric g
and the Fourier coefficients (17), which we explore in this
section.

We consider a pair of skyrmions in the attractive channel.
This means that their relative orientation is a 180 degree
rotation about an axis orthogonal to their axis of separation.
We take the axis of separation to be the x> axis and the axis
of rotation to be the x! axis. Then, up to isorotation, the
separation vector and orientations are

(x.01.05) = (k. L.i) (20)

for some r > 0.

It is known that the skyrmions in this channel attract one
another, and that at a certain separation r, they merge to
form the toroidal energy-minimizing 2-skyrmion. This
2-skyrmion has axial symmetry about the x' axis (not

11
BZ] ;21 *BZI 12 *81221 *812;12’

Bll22_32211 _Bll 11

11 — pll
B33;22 - B33;11’

— — — pll
B23;32 - B23;23 - B13'31 - B13'13’

2Bl2 12-

the x? axis, as might naively be expected). More precisely,
the 2-skyrmion is invariant under a combination of a
rotation e%/2 € SU(2) and isorotation €% € SU(2), for
any angle 6 € [0, 2z). If we apply the same transformation
to a configuration with r > r, we generate a path in
configuration space of the form

(reé)l/Zke—Fh/Z e 8_91/2 e le—Hi/Z)
= (re??ke0/2 %12 je%/2), 0 € [0,27).
(21)

(x le QZ)

This path describes a pair of skyrmions orbiting the x* axis.
Each skyrmion is also spinning about an axis through its
center, and the directions of spinning and orbiting are
opposite. When r = r, this path has length zero, so for
r > ro we expect it to be relatively short. In particular, it
should be shorter than the following similar-looking path:

(x.01.05) = (re

This path, like (21), describes a pair of spinning and
orbiting skyrmions, but this time the directions of spinning
and orbiting are the same.

The tangent vectors to these two paths are given by
(0px, @, w,) with @ = 207 '9,Q. When 0 = 0, they are

—Gi/zkeei/z, 691/2’ ieei/Z)' (22)

U= (~rj.i.i).
V = (rj.i.i). (23)

Our expectation is therefore that

g(V.V) —g(U.U) >0 (24)
for small r. In fact, g(V,V)—g(U,U) tends to zero as
r — 0o, SO assuming monotonicity we expect (24) to hold
for all r.
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In terms of the metric components we have that

g(U.U) = (M +4Cy)r? =2r> A%,

1
2
+ (2/\2 + ZB‘{?),
ap
1
g(V, V) = 5 (M + 4C22)r2 + ZrZA(ZXI
+ (2/\2 + ZB‘{f). (25)
ap

So the constraint (24) becomes
> A% > 0. (26)

The matrix R, (i) is diagonal with entries 1, —1, —1, so
A%} = Afyy + AT — A% — ASzy;- In terms of the in-
dependent components listed in Sec. II C, the constraint is
therefore

=Ab12 = Ay = Alygy + Al > 0. (27)
|

! 1
Aib;ij = PCaje (5 Viper =6V, ;) ;

12 _
Bab;ij = peaicebjdvcdrv

Equation (27) that we have just derived is useful for two
reasons. First, it serves as a useful test on our numerical
calculation of the Fourier coefficients for the instanton
approximation (as the instanton approximation reproduces
the axial symmetry of the energy-minimizing 2-skyrmion).
And second, it will give some insight into the sign of the
spin-orbit potential.

III. THE DIPOLE, PRODUCT, AND INSTANTON
APPROXIMATIONS

In this section we consider the dipole, product, and
instanton approximations to the 2-skyrmion Lagrangian.
We are primarily concerned with the instanton calculation
but as the methods presented here are rather novel, we
review the (numerically simpler) dipole and product cal-
culations first.

A. The dipole approximation

Far from its center, we can model a single skyrmion as a
triplet of dipoles. The metric and potential can be calculated
analytically at large separations r > 1 by assuming that the
skyrmions interact as dipoles in a linear scalar field theory.
For more details, see [22,23]. The tensors A, B, C, D for the
dipole Lagrangian are’

1 1 1 3 1
Coviij =P <Z Vapijr + §5ijvab 778 (64i Vo + 0 Vai + 84j Vi + 64V o) ;)
|
D, = pVap ot (28)
where p is related to the coefficient C in the tail of the 1-skyrmion profile function f. In physical units,
8xh3C?

We use these expressions to evaluate the independent Fourier coefficients along the positive x* axis. Of the 41 independent

Fourier coefficients, 23 vanish, and the remaining 18 are

p
_A53;31 = 2A}1;12 = 2A}2;33 = 2A§3;12 = _2Aé1;1| = _2A53;13 = _2A§2;31 = ﬁ
p
B}%;% = B%;n = _35;13 = -
1 p
4C1101 = 2C 0 = 8C 3.3 = 8C3131 = 5 Ca3,41 = —§C33;33 =3
1 P
—D, ==Dy; = —.
n=503="73

In particular, all Fourier coefficients with a subscript O vanish and all Fourier coefficients associated with B'! or B> vanish.

“Note that our calculation includes terms which are not present in [23], as explained in the erratum of [22]. Hence the expressions for

A and C do not match the calculation from [23].
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B. Numerical implementation
For the product and instanton approximations, we must
resort to using a numerical scheme to calculate the metric
and potential.
It is convenient to write the SU(2)-valued Skyrme field
in terms of four constrained scalar fields,

U=¢,+ipo;, where p3+¢ip;=1. (30)

The potential and kinetic energy are then equal to

V= / ai¢aai¢a
R3

1
+ 5 (0:040ih40,P10; 1, — 01, 0ih10,;0p0;bp ) Ay,
(31)

T = /R3 ¢a¢a + 4§a¢aa[¢bai¢b - ¢a$b6i¢adi¢bd3y, (32)

We approximate the low-energy dynamics by only
considering field configurations which depend on the
separation and orientation parameters of the skyrmions,
so that

¢ =¢y:x.0.0,). (33)

To find the potential energy in this approximation we
substitute (33) into (31). To find the metric we promote
the coordinates x, Q;, O, to time dependent variables and
substitute this into (32). This gives an expression for the
metric tensor g as

31— [ 2DadDbs(b+ B0 O~ 9Oy
(34)

where A,B=1,...,9 and D, is a derivative on the
configuration space generated by ¢(x, Q;, Q,). Explicitly,

Dy = 0,(y;x + tea, Q1. Q2)|—o»
Dai3¢p = 0,(y;x, Q1e7"4/2, 05)|, g,
Daiop = 0,9p(y;x, Oy, Qre™0/2)| _y for A=1,2,3.
(35)

These derivatives are generated numerically using a sym-
metric second order derivative with step size 0.001. This
requires the repeated generation of the Skyrme field ¢ at many
points in the configuration space. One numerical complexity
is that there are two large manifolds: the manifold
of configurations, isomorphic to SU(2) x SU(2) x R3,
and Euclidean space, R*. We need to consider each space
carefully.

As discussed in the previous section, the potential and
metric only depend nontrivially on four coordinates and
we can take (x,Q;, Q) = ((0,0,7),1, Q), which we do
from now on. The metric and potential are then functions
of (r,Q) on R* x S3. Note that although the metric
depends on four coordinates, we still need to take all nine
derivatives (35) to calculate g. To sample R™ we take
r € [1.731,7.731] with lattice spacing 0.1. To sample S
we first consider a hypercube in R*, which has 8 cubic
faces. Each face is sampled evenly by (u,v,w) €
[-1,1] x [=1,1] x [=1,1]. The cell is then projected onto
the sphere using

(1, u,v,w)

36
V14 u?+ 02 +w? ( )

(u,v,w) >

and other permutations. If we sample p points in each
[-1, 1] interval we will sample 8p* points on $* in total,
which grows quickly. In testing we sampled 8, 64, and 216
points, finding that 64 points was a good compromise
between computation time and accuracy. The symmetry
O — —Q means that we actually only need to sample half
these points.

At each point (r, Q) on the space of configurations
we generate a stencil of Skyrme fields, used to find the
derivatives (35). Each Skyrme field will be concentrated at
+r/2, the positions of the skyrmions, and have polyno-
mially decaying tails. To account for these two facts we
introduce new spatial coordinates y, € [—1, 1]. These are
taken from [20]* and depend on the separation r. Explicitly

Ya =7 i“% fora=1,2,
27,-1 .
Vs = { r/2 + 56,17 if y3 > 1/2 (37)
¥3(2r(1 =33) = (1 -253)) 1/2>53>0

with y; continued so that it is odd. This transformation
ensures that most lattice points are concentrated at
y3 = £r/2, that the transformation is continuously differ-
entiable at y; = +1/2 and that the polynomial tails of the
metric densities can be accurately captured. We can then
use ¢(¥) to calculate the potential V(r, Q) (31) and metric
9ag(r, Q) (34).

Once the metric is calculated, the Fourier coefficients
(17), each of which is a function of r, can be computed
using simple integration over the 3-sphere. We calculate
these three times, on evenly distributed grids y € [—1, 1]
with 802 x 160, 90 x 180, and 100%> x 200 points.

3This range is chosen so that the axial 2-skyrmion, which
occurs at r = 1.731, is included in the calculation.

There is an error in the definition of ¥; in this paper, as it is not
continuous. From context, we believe that (37) is what the authors
used.
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The results are extrapolated to approximate the components
on an infinite grid. Extrapolation is often neglected in
soliton numerics; it is important here as the metric densities
fall off slowly.

Overall, we calculate the Fourier coefficients of A, B, C,
and D on R x $3 at 61 x 32 points. Each point requires the
generation of 19 configurations to find the field and its
derivatives (35) on the configuration space. Hence, for our
reported calculation we generate around 37,000 Skyrme
fields: each on three grid sizes.

C. Product approximation

The product approximation was first considered
in [24] and builds a 2-skyrmion configuration using the
1-skyrmion (4), i.e. the solution to the static equations of
motion with baryon number 1. We use the symmetrized
product approximation [25], which preserves interchange
symmetry (14) between skyrmions. Here, two 1-skyrmion
fields U; and U, are combined into a field:

U(y;x,01.0,) Z%(Ule‘l'UzUl), (38)
Ui(y) = Q1Uy(y —x/2)07", (39)
Uy(y) = QxUg(y +x/2)05", (40)

where N is a normalization factor which ensures that
U € SU(2). In ¢ = (¢°, ¢) notation the approximation is

D=7 KB o s+ ). (41)

1
A(J;lZ

0.5+

The paper [23] shows that the dipole approximation agrees
at large separations with a slightly more complicated
variant of the product approximation, called the relativized
product approximation. We do not consider the relativized
product approximation here, because we are interested in
the product approximation mainly as a consistency check
on our calculations, and the level of agreement between
the ordinary product ansatz and the dipole approximation
proved sufficient for these purposes.

We use the product approximation to generate the
Fourier coefficients (17) using the numerical scheme
described above. The results match the dipole approxima-
tion for large r, as expected. We plot four comparisons in
Fig. 1. These demonstrate the possible outcomes when
comparing the product and dipole approximations. On the
left, we see Fourier coefficients which vanish in the dipole
approximation but do not vanish for the product approxi-
mation; in these cases, the coefficients obtained from the
product approximation decay faster than the leading dipole
contribution for that metric term. For instance, the leading
dipole contribution to A is 7> and the Fourier coefficients
which vanish in the dipole approximation all decay at least
as fast as r~>. There are many Fourier coefficients that
vanish (or are constant) in the dipole approximation,
including all coefficients with a subscript 0. On the right
side of Fig. 1 we see some coefficients which are nonzero
in both approximations. For these coefficients, there is
always good agreement at large r. For B}%;33 there is good
agreement even at small . For C, 3.5 the dipole and product
approximations diverge near r = 3.

We plot all 41 independent Fourier coefficients for the
dipole and product approximations in Appendix B. This is
the first time such an extensive comparison has been

12
Byig
30
25
20
15
10
5
: r
2 3 4 5 6 7
0.4l
0.2+
r
-0.2}
—0.4Ff

FIG. 1. Plots of A}, \,, B{1s3. Bil.;;» and C3,5 for the dipole (blue) and product (orange) approximations. We plot the Fourier

coefficients as functions of separation r in Skyrme units.
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presented and we find nothing particularly surprising. We
believe that the calculation in this paper, finding the metric
on a moduli space by numerically calculating derivatives,
is the first of its kind in three dimensions. Hence these
nontrivial checks are important for us to have confidence in
the method.

D. Instanton approximation

Atiyah and Manton first suggested that Yang-Mills
instantons could be used to approximate skyrmions [13,26].
A skyrmion is generated by taking holonomies of an R*
instanton along lines parallel to one of the four coordinate
axes. Naively, this entails solving an ordinary differential
equation at each point in space. But recently, a new
technique has been developed to calculate the skyrmion
efficiently [21,27] based on the ADHM construction [28,29].
In it, the Skyrme field at a point y is approximated by

Uly) = Qy(ty, t,-1)Qy (tuts taz) - (12, 1), (42)

where f,,...,t, discretize one direction in R* and Q are
2 x 2 complex matrices. To construct the Q we need the
quaternionic (N + 1) x N matrix

L
A,—A,,—< o ) (43)
¥ 200 T by — (vl 4 yii - yad - yek)

where L and M are matrices of sizes 1 x N and N x N, said
to form the ADHM data. The ADHM constraint says that
A_‘;Ay should be real and invertible for all y € R*. If this is
satisfied, then the ADHM data can be used to construct an
instanton and hence a skyrmion. The integer N is identified
with the instanton number and hence the baryon number. In
this paper N is always 1 or 2.

The kernel of A, has quaternionic dimension 1 and
can thus be spanned by a single normalized quaternionic
vector v,. These vectors are then used to construct the Q.
In the simplest numerical scheme [27] the Q are given by

Q}<tn+l’ tn) = Ug-t,,ﬂ,y)v(fnsy)' (44)

Recently, higher order methods were developed to increase
the efficiency of the numerical method [21]. We use the
“order 3” method which, due to special properties of the
group SU(2), actually results in an order 4 approximation
to the instanton holonomy. In this approximation we
replace (44) with Q* given by

4 1
Q;(thrlv ty,) = ngz <tn+17§ (1 + fn))

1 1
X Qyz (E (tn-b-l + tn>’ tn) - ngz(tn-&-l’ tn)

1 1
Qr.1) = 5le(t, Y)+ 5le(t’, N~

The numerically generated U(y) will not be an SU(2)
matrix due to small numerical errors. We simply project the
near-SU(2) final result back into the SU(2) group by
dividing through with v/det U. This method is simpler than
the Runge-Kutta method used in [14,20] and is insensitive
to the choice of basis vectors v, other than at the points
t = +oo. We fix the latter gauge freedom by choosing
v’ = (1,0,...,0) at these boundary points. We have used
quaternions throughout this discussion, but these can be
converted to complex 2 x 2 matrices in a straightfor-
ward way.

In practice, the instanton fields are most complicated
near t =0. We make a coordinate transformation ¢ =
tan(z — z/2), so that most points are concentrated at the
origin. The parameter 7 is sampled evenly in [0, 7],
at 42 points.

The 1-instanton can be described by quaternionic

ADHM data
DRC

where Q € S® (a unit quaternion), 1 € R, and x = x,i +
X»j + x3k describe the orientation, size, and position of
the instanton and corresponding skyrmion. The ADHM
data (45) give rise to a skyrmion of the form

Untyix.0) = 0exp (<iri(e: P21 01, (4o

where r = |y — x|. This is of the same form as (4) but with
profile function

£i(r) = ﬂ(l - (1 +f—§>_l/2) ~’2’—f§. 47)

The skyrmion depends on 4, the size of the instanton.
Choosing 4 = 1.45 minimizes the skyrmion mass, giving a
1-skyrmion with mass and moment of inertia
M} =147.24, Al =141.03 (48)
and tail f(r) ~3.30/r%. Note that the tail of the instanton-
generated skyrmion is larger than the true 1-skyrmion,
leading to a significantly larger moment of inertia and a
larger value of p for comparing to the dipole calculation.
Two well-separated instantons with equal size A, posi-
tions +x/2 = +(x;i + x,j + x3k)/2 and orientations Q;
and O, can be described by the Christ-Weinberg-Stanton
ADHM data [29]

L AQy A0,
(M) x4 . (49)
X  —x/2
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where y = 2°x/(2|x]*)(0,Q, — 0,Q). At large |x| the
data diagonalizes and can be thought of as two separated
skyrmions with positions +x/2. When |x| = v/21 and
0, = Ok, the instanton gains toroidal symmetry and
reproduces the well-known toroidal skyrmion. Here, we
lose the notion of individual skyrmions: they merge
completely into one object. We take x to represent the
separation of the skyrmions, but the validity of this
identification is unclear when the skyrmions are close
together. One could define the separation based on the
root-mean-square baryon radius of the configuration. We
repeated the calculation using this identification, but the
final results did not change significantly.

We use the ADHM data (49) to generate the 2-skyrmion
family by choosing Q; =1, 0, =0, and x = rk.
However, the size parameter A means that there is an
additional coordinate compared to the product approxima-
tion. We suppress this coordinate by choosing A which
minimizes the Skyrme energy (31) at each point (r, Q),
using a Newton-Raphson minimization. This process gen-
erates the four-dimensional family needed to calculate the
Fourier coefficients (17) of the metric and potential. We use
the same derivatives, coordinates, and grids as the product
approximation.

It is worth emphasizing that our ansatz (49) explores
only a 10-dimensional subspace of the 12-dimensional
moduli space of centered instantons. In physical terms, we
have assumed that the two instantons have the same size
and that they are both located in the hyperplane y, = 0. It
may be possible to obtain lower-energy Skyrme fields by
allowing the instantons to have different displacements
in the y, direction or different sizes. This could have an

2 3 4 5 6 7

1
AO;]Z

2 3 4 6 7
—05F
-1.0f

—-15F

impact on the symmetries discussed in Sec. II B and, as
such, we have not explored this possibility.

Note that the instanton calculation requires a holonomy
to be calculated at each grid point. Hence, we take around
170 billion holonomies in the final instanton calculation.
An accurate calculation would have taken considerably
longer without the numerical advancements made in [21].

In the results from the instanton approximation, the
numerically generated Fourier components are not very
smooth. The root of the problem seems to be that A varies
with r and Q. The numerical bumpiness will be a problem
later, as we need to calculate the second derivative of some
Fourier coefficients. To avoid the problem, we use a
polynomial interpolation to fit the functions. To do so,
we do trial approximations over r € [2.273,7.731] of
the form

a+br 4+ cr " 4 dr? (50)
for n =1, ..., 8. Of the eight fits, the best one (based on
an adjusted R? measure) is then kept and used. Another
possible solution to this problem of smoothness could be to
choose 4 at each r to minimize the average energy across
the 3-sphere, but we did not explore this.

E. Comparison of approximations

We plot all the independent Fourier coefficients for the
dipole, product and instanton approximations in Figs. 4
and 5 in Appendix A, and a representative sample in Fig. 2.

We find significant differences between the instanton
approximation and the other two approximations. For

Csz11

o

T

FIG.2. Plots of Dy, Cs3.11, A}z; 11>and A%3;l 5 for the dipole (blue), product (orange), and instanton (green) approximations. We plot the
Fourier coefficients as functions of separation r in Skyrme units. Note that the dipole calculation is calibrated to match the product

approximation.
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example, either the signs (A{., Fig. 2, bottom left) or
magnitudes (A};,; Fig. 2, bottom right) can be vastly
different for the product and instanton approximations. In
general, the instanton Fourier coefficients decay much
slower than the product ones. Fitting the instanton tails
to functions, we find that they always decay at least as
fast as 1.

Some of the differences can be explained by the fact that
the dipole strength coefficient C in the instanton approxi-
mation is larger than that of the true skyrmion by a factor
of 1.5. A change of this magnitude would multiply the
dipole Fourier coefficients by a factor of 1.5% ~2.3. With
this adjustment, components such as D;, D33 and Cs3.
(Fig. 2, top right) do roughly match across the three
calculations.

Another notable difference is that the zeroth order
potential D (Fig. 2, top left) has the same shape in both
approximations, but is much larger for the instanton. We
will see later that this results in the instanton approximation
giving a repulsive (rather than attractive) central potential
between nucleons.

Despite a smattering of Fourier coefficients which do
match, the majority do not. This means that the product and
instanton approximations make different predictions for
the dynamics of two skyrmions. We expect that the product
approximation gives a more reliable model of skyrmion
dynamics at large separations, because it agrees with
the dipole picture in that regime. However, the product
approximation is unlikely to be reliable at shorter separa-
tions, because it does not capture the toroidal symmetry of
the energy-minimizing 2-skyrmion. Therefore, we expect
the instanton approximation to be more reliable at shorter
separations, at least in the attractive channel. Clearly, there
is a need to investigate in more detail which approximation
gives the most reliable picture of classical skyrmion
dynamics, but doing so goes beyond the scope of this paper.

IV. THE NUCLEON-NUCLEON POTENTIAL

In this section we explain how the nucleon-nucleon
potential is calculated from the classical Lagrangian for two
skyrmions. This procedure was first used in [22], to which
we refer the reader for more details.

The most general nucleon-nucleon potential consistent
with known symmetries takes the form

1
VNN = Vég -+ V{,‘E,Glo'z + V{‘gslz + E VILS:;L 0

1
+ <V€:V + V56165 + VisSi, + EV%L : ") 172
(51)

Here o4;, 0,; are Pauli matrices corresponding to the spins
of two nucleons, and 6,6, = Y, 6,05; is their dot product.
Similarly, 7,7, = ), 71;7; With 7y;,7,; representing the

isospins of the two nucleons. The operator Sy, is S;, =
(3x;x;/r* = 6,})01,05;, and L = x x P is angular momen-
tum. The eight functions V3 are assumed to be functions of
r only (although in principle they could also depend |P|?
and |L[?). The potential (51) acts on wave functions
yw:R? - C?> ® C?> @ C*> ® C?, where the four copies of
C? correspond to the spins and isospins of the two
nucleons.

The starting point for calculating this from the
Skyrme model is the following formula for an effective
Hamiltonian H:

+é

HONHNMHMO
M,;#O (EN - EO)(EM - EO) ! ! !

e 1

0, 0 700 00 70 0
2 2(1_111\11—1]1v Hl +H1 HlNHllv)

N>0 (EN - EO)

+ 0(e*). (52)

In this formula H = H, + eH, is a Hamiltonian acting on a
large Hilbert space, and Ey < E; < ... are the eigenvalues
of Hy. The operator H is separated into components HY™
mapping from the E,, eigenspace to the Ej eigenspace.
When ¢ = 0, the restriction of H to the E, eigenspace is
simply Hp = E, and Eq. (52) describes how this effective
Hamiltonian changes as e varies away from 0. Slightly
more precisely, (52) is a perturbative formula for the
restriction of Hy + ¢H; to the span of its lowest-energy
eigenspaces.

The Hamiltonian associated with the Lagrangian (8) can
be written

H=Lipp s Bigp i M iopn, (53
M 2A 2A r

in which P is the relative momentum, $* are the spin
operators for the two skyrmions, and H; describes their
interaction. We will apply the perturbative formula to this,
identifying Ho with 2 3" |S%[? and ¢H, with . |P|> + H,.
In doing so, we are assuming that the separation is
sufficiently large and the relative motion sufficiently slow
that these two terms can be treated as a small perturbation
of Hy. Inserting this into (52) results in

P|? 1
H.=E HOO _ HON HNO
E 0 =+ 2M =+ 1 Nz: 1 EN _ E() 1
>0

in 1

oY (P VHIVHYO — NV HYO)

ZMA;) (EN _ E0)2 1 1 1 1
hz 1 ON NO

+— 5 VHYVHP. (54)

M &= (Ey — Ey)
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Here we have discarded terms which are cubic in H; or
quadratic in 1/M (which is consistent with our assumption
that 5; [P|* + H, is small). The formula is derived using the
fact that |P|*> commutes with H,.

The lowest eigenvalues of Hy = ﬂ «|8%|% are Ey =
E, 4 o ’ and E, =
is naturally 1som0rphlc to the space of wave functions

3n?
an>

137 The eigenspace associated with £,

w:R? - C? ® C* ® C*> @ C?, the Hilbert space for two
nucleons. Moreover, the symmetries (11)—(15) guarantee
that the Hamiltonian (54) has the same form as the nucleon-
nucleon Hamiltonian (51).

In order to evaluate the effective Hamiltonian (52) one
first needs to calculate the classical Hamiltonian associated
with the 2-skyrmion Lagrangian (8). We did this perturba-
tively, using the identity [22]

e 72 R o B
H=V- TEKQSAEA + TEKgsidglﬂgMo Ev D) EKg() 59/1#9” 591//)9/’ E + 55 32 [EK’ gﬂ 59/41/] /I[E/lv 98 5.9/)6]’
hz v 2 1 2 e h v X NG
+ § Euv gﬁ Ew 96 591(1 - 596 591/) 0 6gm< - § [E/u ff(l) 591/19%) [EK’ .Q/O 59/}0’]]’ (55)

in which g = g, + 8¢ and we have neglected terms of order §g°. Substituting the Lagrangian (8) and neglecting terms which

1

are cubic in A, B, C, D or quadratic in i results in a Hamiltonian of the form (53), with

2 2
_ o ﬁﬂ o3 a aa ap ap ﬂ a Qo aAAC

H1_2D SA2 [S [S HH 2AM[Si’[Si’ij”_M[Pi’[Pi’Bjo_ZAzSz lij MA(PAUS] SinjPi)

n? n?

~ o3 18 BESE B = o s (IS4 BE). Sk Cul} = gy [Pre B[P B
h2 (l a B B xa Aa 1 aff pa,
16/\3 [S}I;’ [Si’ ﬂBsz + AN M [Sé{, [SGC’AIJAUH + —2M [Pk’ [Pk’szﬁszﬂH
2
n
a (1/3 B prr a pAPIh aca RpPP a Aa sp
+t3A3 (S, Bi7 S}, Byl + 2A2M [S¢, B} [Sj7 Cill ST, [P, A% (S, By || — YYVIT, (S, AL [P, Bi]]
n?
(laﬂ/j apa AP P (laﬁﬂ /jaa/}
WSIB B; ST+ S FAGALS, — A2 (P; ALB Sy + SRATB P;). (56)
|
We have substituted this into the perturbative for- [ P;, Q] =55 [ Ps, Q] + 1631,,[ L. Q]. (58)

mula (54) and written the resulting expression in the ro
form. (51). In -order to do this, we .made use of the The rotational invariance of O means that
Fourier expansion (17) of the coefficients A, B, C, D, [Li+7>,5.0] =0, so
together with the fact that the action of the operators S¢ and @5
R,;,(Q) on the two-skyrmion Hilbert space is known [22].
For example the projections of these operators to the E [P, Q] = _1513 6311 Z Su ) (59)

eigenspace are given by

(S;z)OO

= §Gla02h1'172- (57)

The operators RN? vanish when N > 2, while for N = 1, 2
they describe excitation of one or both nucleons to a delta
resonance.

Our calculation also made use of the rotational symmetry
of the 2-skyrmion Lagrangian in order to simplify terms
involving P. Suppose, for example, that Q is a function on
the 2-skyrmion configuration space that is invariant under
rotations, and that we need to evaluate [P;, Q] for i = 1, 2,
3. Along the positive x> axis, we can write this as

Similarly, if O;P; is an operator invariant under rotations

then [L; +hZaS],(’)P] =0, so
[L +tha } = i€; 3Oy (60)
It follows that
1
[P;, O] = [P3, 03] +~ €3z;[L Ol (61)
do; 2 h 2
:—h<—3+—(’)3> ——e3; Y _[SL0O]. (62)
dr g
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The identities (59) and (62) are useful because they allow
us to express the Hamiltonian in terms of the Fourier
coefficients (17) and their derivatives in r. They obviate the
need to calculate derivatives in all three spacial directions.

To see how these are used in practice consider the term
[P;, [P;, B$7]] on the first line of (56). This is of the form
[P;, [P;, Q)] with Q = B¢ invariant under rotations. So it
can be simplified using (59) and (62),

d2 Baa 2 dB*
P, [P;, B = —i? -2
P [P B (dr + 25

h2
T3 Z [S7. 7. B]l. (63)
ify=l1

Similarly, the final term on the second line of (56)
simplifies as follows:

d (.l(.l
=2 (20

Finally, consider the term P;A7,S7 + STA{,P; on the first

line of (56). This can be rewritten as

PA%SS + SEALP; =

i15] {Pn{A“ S“}}+ [P;. [AG. S]]

A /A

(65)

a (04 3 2 (04
= (P {ag 1)) - [ oy 2 A3,,S]

eglkZ 5% (4% 551 (66)
All of the terms in (56) involving P can be rewritten in a

similar way using (59), (62). Then, using identities pre-
sented in [22], they can be substituted into the first line

dr of (54) and expressed in terms of the operators o,; etc. The
m 2 P terms on the second and third lines can similarly be
+— Z [S7, B [ST,B%].  (64)  evaluated using identities in [22] and the following two
ifr=1 identities, both of which follow from (59) and (62):
|
i ;{P V'H?NH?/O—Hg)NV-H?’O}
2M £~ (Ey — Ep)*
in 1
= 00 (B P (Y H = HY (H))
N>0
+n > : 2236344{11 (5%, HOVJHNO — HOV[s%, HNO]} (67)
2Mr = (Ey — Eo)* £ ™ ! !
n? 1 h? 1
S VHPHY = S () (H)
N>0 (EN - EO) N=0 (EN - Eo)

Mr2z

We used the Maple software package to carry out the
calculation of the Hamiltonian (54) described above. After
doing so we extracted the eight potentials of (51) by reading
off coefficients. This resulted in expressions for the eight
potentials which were polynomial in the Fourier coeffi-
cients, their derivatives, and ﬁ As in earlier stages of the
calculation, we discarded terms which were either cubic in
the 41 independent Fourier coefficients and their deriva-
tives, or quadratic in % The resulting quadratic expressions
for VI are too lengthy to include in the paper, but we have
made them available electronically so that other researchers
can investigate the nucleon-nucleon interaction without

ZZZ Sa HON Sﬂ HNO} (68)

having to rederive the full quantum Hamiltonian. For more
details, see Appendix B. The terms which are linear in the
Fourier coefficients are relatively tractable and we write
these out in full in Appendix C.

We carried out two consistency checks on the calcu-
lation. First, we checked that our expression for the
effective Hamiltonian (54) in terms of Fourier coefficients
is of the form (51) (as would be expected due to symmetry).
Second, we checked that our polynomial expressions for
the eight potentials are consistent with results obtained
in our earlier calculation [22] based on the dipole-dipole
Lagrangian.
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V. RESULTS

In Sec. III we described our calculation of the 41
independent Fourier coefficients of the skyrmion-skymion
Lagrangian for the product and instanton approximations.
In Sec. IV we explained how we calculated expressions for
the eight components of the nucleon-nucleon potential as
polynomials in these Fourier coefficients. By combining
these calculations, we are able to calculate the eight
components of the nucleon-nucleon potential in both of
these approximations. The results are plotted in Fig. 3,

Instanton
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—-0.20¢

FIG. 3.

alongside the Paris potential. In order to compare with the
Paris potential it is necessary to calibrate the Skyrme
model, and we used the calibration of Adkins-Nappi-
Witten [4] (other calibrations did not lead to significantly
improved results). We are mainly interested in the results of
the instanton approximation; the product approximation is
included for comparison.

Taken as a whole, the instanton approximation does not
match the Paris potential well. This is not a surprise. The
instanton approximation assumes that pions are massless,

Product Paris
Vev(r)
1.0F
0.5}
1.5 ” 25 3. .
—-0.5¢f
-1.0}
15}

VIV (r)

oo

0.04}
0.02}

-0.02}
-0.04}
-0.06

-0.08+

The eight low-energy nucleon-nucleon interaction potentials for the product (orange) and instanton (green) approximations,

compared to the phenomenological Partis potential (blue). The potentials all have units of energy (MeV) and are plotted as functions of

separation (fm).
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when in reality pions have a mass of around 137 MeV. Our
earlier calculation [22], based on the dipole approximation
with nonzero pion mass, gave a much better fit to the Paris
potential. Inclusion of a nonzero pion mass is particularly
important for the sigma-sigma isovector potential V2V,
because (at least within the dipole approximation) this
potential vanishes at first order in perturbation theory when
pions are massless, but is nonvanishing at first order when
pions are massive. So we are not concerned that the
instanton-generated V!V has the opposite sign to the
corresponding component of the Paris potential; inclusion
of a pion mass should correct this, as it did in [22].

It is more surprising that both the instanton- and product-
generated central isoscalar potentials are repulsive, rather
than attractive. In contrast, the dipole approximation with
massive pions results in an attractive central isoscalar
potential, similar to the Paris model [22]. The product
and dipole approximations agree at large separations, so in
the case of the product approximation one expects to obtain
an attractive central isoscalar potential if the pion mass is
set to a realistic value, rather than 0. Similarly, the repulsive
central potential in the instanton approximation could be
due in part to the fact that pions are massless in this
approximation.

The repulsive central isoscalar potential V% is also
likely a consequence of our restricted ansatz (49) for the
instantons. The dominant contribution to V3 comes from
the Fourier coefficient D, (see Appendix C). As was
noted in Sec. III, this Fourier coefficient is a positive,
decreasing function of r, so leads to a repulsive potential.
Second order corrections reduce, but do not overcome,
the repulsion seen at first order. The coefficient Dy is the
average over all relative orientations of the interaction
energy of two skyrmions. This interaction energy is
negative in the attractive channel but can be positive
away from the attractive channel. Recall that our ansatz
(49) did not explore the full moduli space of instantons. It
is likely that, by introducing additional parameters and
optimizing these to minimize energy, one could obtain a
lower average interaction energy and hence a less
repulsive V2.

The instanton approximation does much better when it
comes to the spin-orbit potentials, and in particular the
isoscalar spin-orbit potential. We recall that the dipole
approximation, taken to second order in perturbation
theory, failed to produce spin-orbit potentials with the
correct sign [22]. In comparison, the instanton approxima-
tion gives an isoscalar spin-orbit potential with sign and
magnitude comparable with the Paris potential, and an
isovector potential with the correct sign at large
separations.

We argue that this success is not an accident but is
instead a consequence of the fact that the instanton
approximation reproduces the axially symmetric energy-
minimizing 2-skyrmion. We recall from Sec. II that the

existence of an axially symmetric 2-skyrmion leads to the
prediction that

—Ag1z = Aspy — Algny + Az > 0. (69)
On the other hand, to first order in perturbation theory, the
spin-orbit potentials are given by

IS th(l);IZ
LS yAM
h2

V?./S T 9 AM (2A{2;11 +A£1;11 + A%Z;IB + A{mz)- (70)
The simplest way to satisfy the constraint (69) is when all
four terms on the left-hand side are positive. If this is the
case then A, will be negative and the isoscalar spin-orbit
potential will be negative to leading order, consistent
with the Paris potential. Similarly, A},,, and A}, will
be negative and the isovector spin-orbit potential will likely
be negative. The minimal energy two-skyrmion is axially
symmetric for both massless and massive pions. Thus any
reasonable approximation to the dynamics of two sky-
rmions which includes the axial two-skyrmion will likely
give correct signs for both spin-orbit potentials, even when
the pion mass is switched on.

It is interesting to consider how this analysis of the
spin-orbit force applies to the dipole approximation.
In the dipole approximation, a skyrmion is modeled as a
triple dipole with vector-valued charge distribution p; =
CR;V&(x —x;), in which C > 0 is a positive constant, R;
is a 3 x 3 orthogonal matrix and x; € R3. For a pair of
skyrmions in the attractive channel (20) we have x;,x, =
+rk/2 and R, R, = diag(£1, %1, 1). In particular, when
r = 0 the charge distribution is p = p; + p, = 2C0;5°(x).
This charge distribution is invariant under the action of
SO(2) x SO(2) given by

cosf —sinfd 0 cos¢p —sing 0
px)— | sin@ cos® 0 |p singg cos¢p O |x
0 0 1 0 0 1

(71)

This group contains the SO(2) symmetry group of the
energy-minimizing two-skyrmion as a subgroup. Therefore
the path (21) is expected to be short for small values of r,
for the reasons given in Sec. Il D. However, due to the
enhanced SO(2) x SO(2) symmetry, the path (22) is also
expected to be short, for similar reasons. Thus the argument
in Sec. II D does not apply to the dipole approximation, and
there is no reason to expect negative isoscalar or isovector
spin-orbit potentials at first order in perturbation theory.
In fact, the spin-orbit potentials are exactly zero at first
order in the dipole approximation; the potentials calculated
in [22] appear only at second order. This observation
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supports our earlier argument that the symmetries of the
energy-minimizing two-skyrmion explain the signs of the
spin-orbit potentials.

VI. CONCLUSIONS

We have calculated the eight components of the nucleon-
nucleon potential, starting from an approximation to the
dynamics of skyrmions based on instantons. The two spin-
orbit potentials are negative, in agreement with the Paris
potential and most other models of nuclear physics. On the
other hand, mixed results were obtained for the remaining
six potentials. In contrast, our earlier calculation [22] based
on the dipole approximation to skyrmion dynamics agreed
with the Paris model for the six potentials that do not
involve orbital angular momentum, but gave the wrong sign
for the two spin-orbit potentials.

Although the instanton potentials differ from the Paris
potentials, the possibility that they yield similar scattering
data is not ruled out. This is because scattering data
depend both on the potentials and on the boundary
conditions at minimal separation. At minimal separation
skyrmions merge to form a torus, and this is a radical
departure from the traditional view of nucleons as point
particles, leading to different boundary conditions. The
implications of this fact for scattering data are yet to be
worked out.

We have argued that the successful results for the spin-
orbit potential presented here are due to the symmetry of
the energy-minimizing two-skyrmion, which is accurately
modeled in the instanton approximation but not in the
dipole approximation. The failure of the instanton approxi-
mation for the other potentials might be explained by the
fact that the pion mass parameter is set to zero in this
model, and also by our restricted choice of ansatz for the
instantons. To accurately model the nuclear potential and
scattering amplitudes using skyrmions, one would need an
approximation to instanton dynamics that reproduces the
symmetry of the energy-minimizing two-skyrmion and also
includes a tuneable pion mass parameter. Unfortunately, no
such approximation is known at present.

Calculating the nucleon-nucleon potential entailed
calculating a metric and potential on a space of

two-skyrmions generated from instantons. Surprisingly,
these disagreed strongly with two other well-known
approximations, the product and dipole approximations,
even at large separations. This raises the question of
which approximation is a more reliable guide to the
dynamics of skyrmions with massless pions. On the one
hand, the dipole approximation is grounded in well-
established physical principles, and for comparable sys-
tems involving solitons (such as monopoles) even has the
status of a mathematical theorem [30]. On the other hand,
the instanton approximation has proven to be very
reliable when applied in other situations, such as the
study of static energy minimizers [13—17].

The calculation of the potential also involved a calcu-
lation in perturbation theory, following a method devel-
oped in [22]. This calculation is laborious. In the present
article, we have done the calculation in full generality,
expressing our answers in terms of the Fourier coeffi-
cients that enter the two-skyrmion Lagrangian. We have
made these expressions available for others to use. This
means that a nucleon-nucleon potential can be calculated
from any other approximation to two-skyrmion dynamics
simply by calculating the Fourier coefficients, and with-
out having to redo the calculation in perturbation theory.
The files can also be used to study variants of the Skyrme
model. An interesting extension would be to add vector
mesons, which can be naturally included within the
instanton approximation [18].
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APPENDIX A: ALL FOURIER COMPONENTS
FOR THE DIPOLE, PRODUCT, AND INSTANTON
APPROXIMATIONS

In this appendix, we present all 41 independent Fourier
coefficients (17) for the dipole, product, and instanton
approximations. These are plotted in Figs. 4 and 5.
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APPENDIX B: USING OUR RESULTS

The Supplemental Material [31] for this paper includes the full expressions for the eight nuclear potentials that we have
calculated. The potentials include all terms which are quadratic in the Fourier coefficients and their derivatives, and linear in
M~"'. The potentials VI3, VIS VIS VIS VIV vIV VIV and V¥ are contained in VCIS. txt, VSSIS.txt, V12IS. txt,
VSOIS.txt, VCIV.txt,VSSIV.txt, V12IV.txt,and VSOIV.txt respectively. A dictionary between the notation
used in this paper and the terms in the text files is displayed in Table I. The text files are formatted so that they can be
imported directly into both the Maple and MATHEMATICA software packages.

As a typical example, consider the term

hZ

mAézsl(r)arBign(r)- (B1)

In the text file, this term becomes

1/81%hb"2/La*2 *Alr,1,2,3,3,1] *dB[r, 1,2,2,2,1,1].
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TABLE I. Translation from the notation in our paper to the expressions in the appended text files.

LATEX .txt LATEX .txt
M M r r
A La h hb
LATEX .txt 0, 02

Dy(r) DO [r] dDo [r] ddDo [r]

Dgp(r) D[r,a,b] dp[r,a,bl ddp[r, a, b]

AL (r) AO0[r,p,1i,7] dao [r,p,1,3] ddao [r,p, i,3]
AZb;l.j(r) Alr,p,a,b,1,7] dalr,p,a,b,i,j] ddalr,p,a,b,1i,7]
BY(r) BO[r,p,q,i,]] dBO[r,p,q,1,3] ddBoO [r,p,q,1,]]
Bl () B[r,p,q,a,b,1,73] dBlr,p,q,a,b,i,3] ddB[r,p,q,a,b,1i,]]
Cij(r) colr,i,j] acolr,i, 3] ddcolr,i,q]
Cap:ij(1) clr,a,b,i,3] dc[r,a,b,i,3] ddclr,a,b,i,7]

APPENDIX C: LINEAR EXPRESSIONS FOR THE POTENTIALS

In these expressions, all terms which are quadratic in the Fourier coefficients have been discarded.

n*Byl,  h’Bj!
_ 0:11 033 | 5p

2h%0,B)..  h?0.B)!
+ 0;11 + 0,33+

wRBY, | B,

VIS — ,
ce 2A2 4A2 O AM ArM AM 2AM
VIS — _ th(l);zll _ hZB(l);233
o 6A2 12A2
V[S _ th(l);zll _ th(l);zliS
27 1202 1207
VIS — hQA(l);IQ
LS yAM
V[v _ thg;U _ th%%;B _ th%%;B _ th%;lZ _ thég;ll
e 9A2 9A2 36A? 18A2 18A%
VIV — _4thH;ll + thB}%;IZ _ th%%;ll _ thH;33 _ thg;B _ th%}ﬁl
o 27A? 27A2 18A2 18A2 27A? 27A?
_ Sh’Bya;  W’Bil, _ n’Bya | W’Biias _ n*B3 _ n’Bils; 4Dy
108A2 54A2 542 27A? 54\ 542 27
2D | AnPAhy, _ An*Alya _ An’ALss | 2170,ALy _ 21%0,A 153
27 27TArM 27ArM 27TArM 27TAM 27TAM
_ 2flzarAéS;Z%l 4h26rBH;11 _ 4h20r3g;12 2hQarBilié;ll 2Iﬁ"QarBH;ZSS hzarBéili;%
27TAM 27TArM 27ArM 27TArM 27TArM 27TArM
2n°07Bi1,,  2W707Bly., | WOIBiLy, | WO7Biis;  WP07Bys  8ACip
27TAM 27TAM 2TAM 27TAM S4AM 27TAM
87*Ciypo _ 4h° Csa,1) _ 41 C\ 33 _ 21 Ca333
27TAM 27TAM 27TAM 2TAM
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2pll 2pll 2pll
[V_Zh B]l;ll_hB12;12_hB33;]l

211 211 211
WBijs; MW B3 By,

277 27A2 27A2 18A2 36A2 27N> 542
SiBl,  WBR, RBY, RBR, MBR, RBR, 2D,
108A2 54A2 54A2 542 108A2 108A2 27
2Ds33 th%l;ll _ thil;lZ _ h2A53;13 hZA%3;12 _ 2h2A§2;31 2h2A{2;33
27 9ArM IArM OArM IArM 27TArM 27TArM
_ 4h2A%3;31 _ hzarA%yZ;ﬁil hzarA{Z;SS _ tharAé&Sl thH;ll _ 2h23g;12
27ArM 27TAM 27TAM 27TAM 3APM 3AFM
_W’Byyy,  2%0,Bii,y,  200,Biyy, 2h°0,Biyy  h0,Biis;  h’0,Bl
3APPM 27TArM 27TArM 27TArM 27TArM 27TArM
_ hza%BHgll hzagB}é;IZ hzazB%;ll _ hza%BHﬁB» hza%B%;B»B 4'h'zcll;]l
2TAM 27TAM 2TAM S54AM S54AM 27TAM
4h2C12;12 4h2C33;11 2h2C11;33 2712C33;33
27TAM 27TAM 27TAM 27AM
IV _ 2ﬁzAb;ll th%Z;l?) thél;ll th%l;lZ
LS ™ 9rAM 9rAM  9ArM  9ArM
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