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We derive the nucleon-nucleon interaction from the Skyrme model using the instanton and product
approximations to skyrmion dynamics. In doing so, we also calculate the classical potential and metric
for skyrmion dynamics in each of the approximations. This is the first time they have been compared in
detail and the results show major disagreements between the approximations. We derive the eight low-
energy nucleon-nucleon interaction potentials and compare them with the Paris model. For the instanton
approximation we find strong negative isoscalar and isovector spin-orbit potentials, matching phenom-
enological models and our geometric intuition. Results for the other potentials are mixed, in part due to the
zero pion mass limit used in this approximation.
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I. INTRODUCTION

Understanding the nucleon-nucleon interaction is one
of the fundamental problems in nuclear physics. Most
models treat nucleons as point particles with spin and
isospin degrees of freedom, and consider the most general
system consistent with the underlying symmetries of QCD.
In the most basic setup the quantum nucleon-nucleon
Hamiltonian consists of eight terms, each arising with an
effective potential depending on the nucleon separation.
The potentials are fitted using theoretical and experimental
inputs, in various different ways [1–3].
Skyrme proposed an alternative theory of nuclei in the

1960s where nucleons arise as localized collective excita-
tions of pions, which owe their existence and stability to
the topology of the system. Now called skyrmions, these
nonlinear field configurations can be interpreted as particles
with a topologically conserved integer charge N identified
as their particle number. Nuclei are described as quantized
skyrmions [4] and the nucleon-nucleon interaction as
quantized skyrmion-skyrmion dynamics. An effective
Hamiltonian can then be extracted and compared to the
phenomenological models mentioned above. Authors have
used the Skyrme model to rederive the Yukawa pion
exchange potential [5] and find the central [6,7] and
spin-orbit potentials [8–11]. Generally, one major problem

is found in the skyrmion description of the nucleon-nucleon
interaction: the spin-orbit force has the wrong sign.
Most of the previous calculations rely on the product

approximation and first order perturbation theory.
Motivated by an argument based on the geometry of the
2-skyrmion space, the authors of this paper calculated the
isoscalar spin-orbit potential using the dipole approxima-
tion and second order perturbation theory [12]. Despite an
initial apparent success, where the derived potential
matched the phenomenological one, we recently found
an error in the calculation. The corrected spin-orbit poten-
tial has the wrong sign for physically interesting param-
eters. However, neither the dipole or product approximation
properly account for the geometry of the 2-skyrmion space.
Hence our negative result is not wholly surprising. In this
paper, we will recalculate the nucleon-nucleon interaction
in the Skyrme model using the only known approximation
which does account for the geometry of the 2-skyrmion
space: the instanton approximation.
Instantons are solutions of Yang-Mills theory in R4.

Atiyah and Manton first showed that one could approxi-
mate a charge N skyrmion by taking a holonomy of a
charge N instanton [13]. This method has been used to
construct symmetric skyrmions with low charges [14–16]
and more elaborate families of configurations [17].
Revealing why this works, Sutcliffe showed that Yang-
Mills theory is equivalent to a Skyrme model coupled to an
infinite tower of vector mesons [18]. The standard Skyrme
model is then the first term in this infinite series. Despite
these successes, the instanton approximation has barely
been used to model nuclear physics in the Skyrme model.
Two exceptions are an initial investigation of the skyrmion-
skyrmion interaction [19] and a construction of a simplified
Deuteron wave function [20].
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One reason why instantons have not been widely used to
model skyrmions is their numerical complexity. To calculate
an instanton-generated skyrmion, naively one must solve an
ordinary differential equation (the parallel transport) at each
point in three-dimensional space. Then to calculate the
skyrmion-skyrmion interaction one must generate a four-
dimensional manifold of configurations (which accounts for
relative separations and orientations). Overall, we should
solve an ordinary differential equation at each point in a
seven-dimensional space: a daunting task. Fortunately, a new
method to construct instanton-generated skyrmions has
recently been developed [21]. Using the Atiyah-Drinfeld-
Hitchin-Manin (ADHM) construction, the parallel transport
equation can be solved by multiplying projection operators,
which can be done at great speed. As such, we have been
able to calculate the potential and metric for two interacting
skyrmions in the instanton approximation for the first time.
This is the first serious comparison of the instanton
approximation against the dipole and product approxima-
tions, and we find major disagreements.
Our main result is a calculation of the nucleon-nucleon

interaction for the Skyrme model based on the dipole,
product, and instanton approximations. To obtain this we
generalized the second order perturbation theory developed
in [22]. Although this quantization procedure is cumber-
some, the final result is of broad applicability. To facilitate
dissemination of this result, we have generated data files of
the nucleon-nucleon potentials in terms of the classical
metric and potential of the 2-skyrmion interaction. These
will allow other researchers to quickly calculate the
nucleon-nucleon interaction using different versions of
the Skyrme model and different approximations to sky-
rmion dynamics. We hope this stimulates research which
closer links Skyrme theory to practical nuclear physics. A
guide for how to use the files can be found in Appendix B.
The paper is structured as follows. In Sec. II we describe

the classical two-skyrmion interaction and its symmetries.
We also describe a nontrivial check of a vital sign in the
2-skyrmiom metric. We then carefully describe the dipole,
product, and instanton approximations in Sec. III, including
a comparison between them. Section IV describes the
quantum calculation and Sec. V contains the final results
and a comparison to phenomenological models.

II. SKYRMION-SKYRMION DYNAMICS

A. Dynamics of a single skyrmion

The Skyrme model describes the interactions of nuclei
using an SUð2Þ-valued field U. The dynamics of U is
governed by the LagrangianZ

R3

�
−

F2
π

16ℏ
trðLμLμÞ þ ℏ

32e2
trð½Lμ; Lν�½Lμ; Lν�Þ

−
F2
πm2

π

8ℏ3
trð12 − UÞ

�
d3y; ð1Þ

in which Fπ is the pion decay constant, e is a dimensionless
constant, Lμ ¼ U−1

∂μU is the left-invariant current, and we
parametrize space with y ∈ R3. Throughout this paper
we work in Skyrme units of energy (Fπ=4e) and length
(2ℏ=eFπ); in these units the Lagrangian is

Z
R3

�
−
1

2
trðLμLμÞ þ 1

16
trð½Lμ; Lν�½Lμ; Lν�Þ

−m2trð12 −UÞ
�
d3y; ð2Þ

with m ¼ 2mπ=eFπ . This separates into kinetic and poten-
tial energy:

T ¼
Z
R3

�
−
1

2
trðL0L0Þ −

1

8
trð½L0; Li�½L0; Li�Þ

�
d3y;

V ¼
Z
R3

�
−
1

2
trðLiLiÞ −

1

16
trð½Li; Lj�½Li; Lj�Þ

þm2trð12 − UÞ
�
d3y: ð3Þ

These are invariant under isorotations g ∈ SUð2Þ, acting
as U ↦ gUg−1. They are also invariant under rotations
h ∈ SUð2Þ, which in quaternionic notation act as
x ↦ hxh−1, and under the parity transformation, which
acts as UðxÞ ↦ U−1ð−xÞ. Skyrmions are energy-minimiz-
ing static solutions of the resulting field equations with
boundary condition U ¼ 12 at jyj ¼ ∞. Such fields are
maps between three-spheres and as such can be classified
by a topologically conserved integer N, physically identi-
fied with the baryon number. In this paper we will consider
massless pions by choosing m ¼ 0.
The 1-skyrmion has spherical symmetry and takes the

form

UHðyÞ ¼ exp ð−ifðjyjÞŷaσaÞ; ð4Þ

where σa are the Pauli matrices, and the profile function f
satisfies

ðjyj2 þ 2 sin2 fÞf00 þ 2jyjf0 þ sin2f

�
f02 − 1−

sin2 f
jyj2

�
¼ 0

ð5Þ

and the boundary conditions fð0Þ ¼ π and f ∼ C=jyj2 as
jyj → ∞. The constant C can be calculated numerically: for
m ¼ 0 it is 2.1596. We can generate a manifold of equal-
energy 1-skyrmions, related by translations x ∈ R3 and
isorotations Q ∈ SUð2Þ. The fields take the form

Uðy; x; QÞ ¼ QUHðy − xÞQ−1: ð6Þ
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The low-energy dynamics of a 1-skyrmion can be approxi-
mated by treating x andQ as functions of t; substituting the
resulting dynamical Skyrme field into Eq. (2) results in a
Lagrangian,

L ¼ M
2
j _xj2 þ Λ

2
jωj2 −M; ð7Þ

in which ω is defined by 2Q−1 _Q ¼ −iω · σ. This is a
Lagrangian for a moving and rotating body; the mass M
and moment of inertia Λ can be calculated numerically and
take the approximate values Λ ¼ 106.83, M ¼ 145.85.

B. The 2-skyrmion Lagrangian and its symmetries

The focus of this article is the dynamics of two sky-
rmions. There are many ways to model the dynamics of two
skyrmions, and these will be described in the next section.
In this section we describe the general form of a 2-skyrmion
Lagrangian, based on physical expectations and the under-
lying symmetries.
A system of two skyrmions should be described by

two position vectors x1; x2 ∈ R3 and two orientations
Q1; Q2 ∈ SUð2Þ. We choose to work in a center of mass
frame x1 þ x2 ¼ 0 and introduce the separation vector
x ¼ x1 − x2. The most general 2-skyrmion Lagrangian that
is quadratic in velocities takes the form,1

L ¼ M
4

_xi _xi þ Λ
2
ωi
αω

i
α þ Cij _xi _xj þ Aα

ij _x
iωj

α

þ 1

2
Bαβ
ij ω

i
αω

j
β − 2D; ð8Þ

where A, B, C, and D are functions of x; Q1; Q2. The
indices i, j run from 1 to 3 and α, β run from 1 to 2. The
vectors ωα are defined by

Q−1
α

_Qα ¼ −
i
2
ωj
ασj: ð9Þ

The kinetic energy part of this Lagrangian can be rewritten
in terms of a 9 × 9 matrix g as follows:

T ¼ 1

2
ð _x ω1 ω2 Þg

0
B@

_x

ω1

ω2

1
CA;

g ¼

0
B@

M
2
I3 þ 2C A1 A2

ðA1ÞT ΛI3 þ B11 B12

ðA2ÞT B21 ΛI3 þ B22

1
CA: ð10Þ

This matrix g defines a metric on the configuration space
R3 × SUð2Þ × SUð2Þ. At large separations the Lagrangian
should agree with the Lagrangian of two noninteracting
1-skyrmions, and this means that the functions A, B, C, D
should decay as jxj → ∞.
The Lagrangian should be invariant under the action of

isorotations and rotations, parametrized by g; h ∈ SUð2Þ
and acting as follows:

ðx; Q1; Q2Þ ↦ ðx; gQ1; gQ2Þ; ð11Þ

ðx; Q1; Q2Þ ↦ ðhxh−1; Q1h−1; Q2h−1Þ: ð12Þ

It should also be invariant under reversal of parity:

ðx; Q1; Q2Þ ↦ ð−x; Q1; Q2Þ: ð13Þ

Since the two skyrmions are indistinguishable, it should be
invariant under

ðx; Q1; Q2Þ ↦ ð−x; Q2; Q1Þ: ð14Þ

Finally, it should be invariant under

ðx; Q1; Q2Þ ↦ ðx;−Q1; Q2Þ;
ðx; Q1; Q2Þ ↦ ðx; Q1;−Q2Þ; ð15Þ

because the single skyrmion (6) satisfies Uðy; x;−QÞ ¼
Uðy; x; QÞ.
Isorotation invariance (11) implies that the coefficients

Aα; Bαβ;… can be written as functions of x and Q ≔
Q−1

1 Q2. Invariance under sign flips (15) means that all
coefficient functions are invariant under Q ↦ −Q.
Invariance under parity (13) and relabelling (14) implies
that

A1ðx; Q−1Þ ¼ A2ðx; QÞ;
B11ðx; Q−1Þ ¼ B22ðx; QÞ;
B12ðx; Q−1Þ ¼ B21ðx; QÞ;
Cðx; Q−1Þ ¼ Cðx; QÞ;
Dðx; Q−1Þ ¼ Dðx; QÞ: ð16Þ

Since the Lagrangian is invariant under rotations (12),
the coefficient functions A, B, C,D are fully determined by
their values at points x ¼ ð0; 0; rÞ with r > 0. It will prove
convenient to represent these functions using an expansion
in spherical harmonics of Q. We only use the first two sets
of even spherical harmonics, i.e. the constant function and
the functions RabðQÞ ¼ 1

2
TrðσaQσbQ−1Þ. Thus we write

1The notation in this Lagrangian has changed slightly from our
earlier paper [22]: we have absorbed ρ into A, B, C, and D,
written B12

ij ¼ B21
ji ¼ Bij and introduced B11

ij ; B
22
ij .
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Aα
ijðð0; 0; rÞ; QÞ ¼ Aα

0;ijðrÞ þ Aα
ab;ijðrÞRabðQÞ;

Bαβ
ij ðð0; 0; rÞ; QÞ ¼ Bαβ

0;ijðrÞ þ Bαβ
ab;ijðrÞRabðQÞ;

Cijðð0; 0; rÞ; QÞ ¼ C0;ijðrÞ þ Cab;ijðrÞRabðQÞ;
Dðð0; 0; rÞ; QÞ ¼ D0ðrÞ þDabðrÞRabðQÞ: ð17Þ

The functions of r on the right of (17) will be referred to as
Fourier coefficients. Note that the functions on the left
of (17) are necessarily invariant under Q → −Q, so odd
spherical harmonics do not appear in the expansions on the
right-hand side. The constraints (16) can be rewritten
as constraints on the Fourier coefficients, using the fact
that RabðQ−1Þ ¼ RbaðQÞ:

A2
0;ij¼A1

0;ij; A2
ab;ij¼A1

ba;ij; B22
0;ij¼B11

0;ij; B22
ab;ij¼B11

ba;ij;

B21
0;ij¼B12

0;ij; B21
ab;ij¼B12

ba;ij; Cab;ij¼Cba;ij; Dab¼Dba:

ð18Þ

By choosing to work on the positive x3 axis we have
broken some of the rotational symmetry of the Lagrangian.
However, our Lagrangian should still be invariant under the
action of the subgroup Oð2Þ ⊂ Oð3Þ which fixes points on
the axis. This group acts as follows:

0
B@

_x1
_x2
_x3

1
CA ↦

0
B@

R 0

0

0 0 1

1
CA
0
B@

_x1
_x2
_x3

1
CA;

0
B@

ωα
1

ωα
2

ωα
3

1
CA ↦ detðRÞ

0
B@

R 0

0

0 0 1

1
CA
0
B@

ωα
1

ωα
2

ωα
3

1
CA: ð19Þ

Invariance under this action imposes further constraints on
the Fourier coefficients, which we summarize in the next
subsection.

C. Constraints on the Fourier coefficients

Aα
0;ij has just one independent component, which we take

to be A1
0;12. All components with at least one lower index

equal to 3 vanish. The other components can be expressed
as follows:

A1
0;21 ¼ −A1

0;12; A1
0;11 ¼ A1

0;22 ¼ 0; A2
0;ij ¼ A1

0;ij:

A1
ab;ij has nine independent components, which we take to

be A1
12;11, A

1
21;11, A

1
11;12, A

1
33;12, A

1
23;13, A

1
32;13, A

1
23;31, A

1
32;31,

A1
12;33. All components with an odd number of 3’s in their

lower indices vanish. All components whose lower indices
are a permutation of 1122, 1133, or 2233 vanish. All
components whose four lower indices are all equal vanish.
The remaining components can be expressed as follows:

A1
22;21 ¼ −A1

11;12; A1
12;22 ¼ −A1

21;11; A1
33;21 ¼ −A1

33;12; A1
21;33 ¼ −A1

12;33;

A1
31;32 ¼ −A1

32;31; A1
31;23 ¼ −A1

32;13; A1
13;32 ¼ −A1

23;31; A1
13;23 ¼ −A1

23;13;

A1
21;22 ¼ −A1

12;11; A1
22;12 ¼ −A1

11;21 ¼ A1
11;12 þ A1

21;11 þ A1
12;11:

A2
ab;ij has no further components, because A2

ab;ij ¼ A1
ba;ij.

B12
0;ij has two independent components, which we take to be B12

0;11 and B
12
0;33. Any component with exactly one lower index

equal to 3 vanishes. The remaining components can be expressed as follows:

B12
0;22 ¼ B12

0;11; B12
0;12 ¼ B12

0;21 ¼ 0:

B21
0;ij has no further components, because B21

0;ij ¼ B12
0;ij.

B12
ab;ij satisfies the identity B12

ba;ji ¼ B12
ab;ij due to (18) and the fact that the metric is a symmetric matrix. This tensor

has eight independent components, which we take to be B12
22;11, B

12
12;12, B

12
21;12, B

12
33;11, B

12
11;33, B

12
13;13, B

12
31;13, B

12
33;33. Any

component with an odd number of 3’s amongst its lower indices vanishes. Any component whose lower indices are a
permutation of 1112, 1222, or 1233 vanishes. The remaining components are

B12
12;21 ¼ B12

21;12; B12
21;21 ¼ B12

12;12; B12
11;11 ¼ B12

22;22 ¼ B12
22;11 þ B12

12;12 þ B12
21;12

B12
11;22 ¼ B12

22;11; B12
33;22 ¼ B12

33;11; B12
22;33 ¼ B12

11;33

B12
31;31 ¼ B12

23;23 ¼ B12
32;32 ¼ B12

13;13; B12
13;31 ¼ B12

32;23 ¼ B12
23;32 ¼ B12

31;13:

B21
ab;ij has no further components, because B21

ab;ij ¼ B12
ba;ijð¼ B12

ab;jiÞ.
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B11
0;ij has two independent components, which we take to be B11

0;11 and B
11
0;33. Any component with exactly one lower index

equal to 3 vanishes. The remaining components can be expressed as follows:

B11
0;22 ¼ B11

0;11; B11
0;12 ¼ B11

0;21 ¼ 0:

B22
0;ij has no further components, because B22

0;ij ¼ B11
0;ij.

B11
ab;ij satisfies the identity B

11
ab;ji ¼ B11

ab;ij. It has seven independent components, which we take to be B11
11;11, B

11
12;12, B

11
33;11,

B11
11;33, B

11
13;13, B

11
31;31, B

11
33;33. Any component with an odd number of 3’s amongst its lower indices vanishes. Any component

whose lower indices are a permutation of 1112, 1222, or 1233 vanishes. The remaining components are

B11
22;22 ¼ B11

11;11; B11
21;21 ¼ B11

21;12 ¼ B11
12;21 ¼ B11

12;12; B11
33;22 ¼ B11

33;11;

B11
22;33 ¼ B11

11;33; B11
23;32 ¼ B11

23;23 ¼ B11
13;31 ¼ B11

13;13;

B11
32;23 ¼ B11

32;32 ¼ B11
31;13 ¼ B11

31;31; B11
11;22 ¼ B11

22;11 ¼ B11
11;11 − 2B11

12;12:

B22
ab;ij has no further components, because B22

ab;ij ¼ B11
ba;ij.

The constraints on Cab;ij are the same as those on B11
ab;ij,

simply with B11 replaced by C.
Finally, D has three independent components, which

we take to be D0, D11, and D33. Then D22 ¼ D11 and the
remaining components are zero.
In summary, we have expressed the potential and metric

using a truncated Fourier expansion (i.e. an expansion
in spherical harmonics, or Wigner D-matrices). Due to
symmetry, the Fourier coefficients can be expressed as
functions on a four-dimensional subspace of the nine-
dimensional configuration space. Altogether our expansion
has 460 Fourier coefficients, but the symmetries mean that
only 41 are independent. In practice, we calculate all the
coefficients and use the symmetry relationships as a check
on our numerical method. We describe the calculation of
the Fourier coefficients in detail in the next section.

D. Expected behavior of the coefficient functions

It is known that the minimal-energy 2-skyrmion has axial
symmetry. This fact has implications for the metric g
and the Fourier coefficients (17), which we explore in this
section.
We consider a pair of skyrmions in the attractive channel.

This means that their relative orientation is a 180 degree
rotation about an axis orthogonal to their axis of separation.
We take the axis of separation to be the x3 axis and the axis
of rotation to be the x1 axis. Then, up to isorotation, the
separation vector and orientations are

ðx; Q1; Q2Þ ¼ ðrk; 1; iÞ ð20Þ

for some r > 0.
It is known that the skyrmions in this channel attract one

another, and that at a certain separation r0 they merge to
form the toroidal energy-minimizing 2-skyrmion. This
2-skyrmion has axial symmetry about the x1 axis (not

the x3 axis, as might naively be expected). More precisely,
the 2-skyrmion is invariant under a combination of a
rotation eθi=2 ∈ SUð2Þ and isorotation eθi ∈ SUð2Þ, for
any angle θ ∈ ½0; 2πÞ. If we apply the same transformation
to a configuration with r > r0 we generate a path in
configuration space of the form

ðx; Q1; Q2Þ ¼ ðreθi=2ke−θi=2; eθie−θi=2; eθiie−θi=2Þ
¼ ðreθi=2ke−θi=2; eθi=2; ieθi=2Þ; θ ∈ ½0; 2πÞ:

ð21Þ

This path describes a pair of skyrmions orbiting the x3 axis.
Each skyrmion is also spinning about an axis through its
center, and the directions of spinning and orbiting are
opposite. When r ¼ r0 this path has length zero, so for
r > r0 we expect it to be relatively short. In particular, it
should be shorter than the following similar-looking path:

ðx; Q1; Q2Þ ¼ ðre−θi=2keθi=2; eθi=2; ieθi=2Þ: ð22Þ
This path, like (21), describes a pair of spinning and
orbiting skyrmions, but this time the directions of spinning
and orbiting are the same.
The tangent vectors to these two paths are given by

ð∂θx;ω1;ω2Þ with ω ¼ 2Q−1
∂θQ. When θ ¼ 0, they are

U ¼ ð−rj; i; iÞ;
V ¼ ðrj; i; iÞ: ð23Þ

Our expectation is therefore that

gðV; VÞ − gðU;UÞ > 0 ð24Þ

for small r. In fact, gðV; VÞ − gðU;UÞ tends to zero as
r → ∞, so assuming monotonicity we expect (24) to hold
for all r.
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In terms of the metric components we have that

gðU;UÞ ¼ 1

2
ðM þ 4C22Þr2 − 2r

X
α

Aα
21

þ
�
2Λ2 þ

X
α;β

Bαβ
11

�
;

gðV; VÞ ¼ 1

2
ðM þ 4C22Þr2 þ 2r

X
α

Aα
21

þ
�
2Λ2 þ

X
α;β

Bαβ
11

�
: ð25Þ

So the constraint (24) becomesX
α

Aα
21 > 0: ð26Þ

The matrix RabðiÞ is diagonal with entries 1, −1, −1, so
Aα
21 ¼ Aα

0;21 þ Aα
11;21 − Aα

22;21 − Aα
33;21. In terms of the in-

dependent components listed in Sec. II C, the constraint is
therefore

−A1
0;12 − A1

21;11 − A1
12;11 þ A1

33;12 > 0: ð27Þ

Equation (27) that we have just derived is useful for two
reasons. First, it serves as a useful test on our numerical
calculation of the Fourier coefficients for the instanton
approximation (as the instanton approximation reproduces
the axial symmetry of the energy-minimizing 2-skyrmion).
And second, it will give some insight into the sign of the
spin-orbit potential.

III. THE DIPOLE, PRODUCT, AND INSTANTON
APPROXIMATIONS

In this section we consider the dipole, product, and
instanton approximations to the 2-skyrmion Lagrangian.
We are primarily concerned with the instanton calculation
but as the methods presented here are rather novel, we
review the (numerically simpler) dipole and product cal-
culations first.

A. The dipole approximation

Far from its center, we can model a single skyrmion as a
triplet of dipoles. The metric and potential can be calculated
analytically at large separations r ≫ 1 by assuming that the
skyrmions interact as dipoles in a linear scalar field theory.
For more details, see [22,23]. The tensors A, B, C,D for the
dipole Lagrangian are2

A1
ab;ij ¼ ρϵajc

�
1

2
∇ibcr − δib∇c

1

r

�
;

B12
ab;ij ¼ ρϵaicϵbjd∇cdr;

Cab;ij ¼ ρ

�
1

4
∇abijrþ

1

2
δij∇ab

1

r
−
3

8
ðδai∇bj þ δbj∇ai þ δaj∇bi þ δbi∇ajÞ

1

r

�

Dab ¼ ρ∇ab
1

r
; ð28Þ

where ρ is related to the coefficient C in the tail of the 1-skyrmion profile function f. In physical units,

ρ ¼ 8πℏ3C2

e4F2
π

: ð29Þ

We use these expressions to evaluate the independent Fourier coefficients along the positive x3 axis. Of the 41 independent
Fourier coefficients, 23 vanish, and the remaining 18 are

−A1
23;31 ¼ 2A1

11;12 ¼ 2A1
12;33 ¼ 2A1

33;12 ¼ −2A1
21;11 ¼ −2A1

23;13 ¼ −2A1
32;31 ¼

ρ

r2

B12
11;33 ¼ B12

33;11 ¼ −B12
31;13 ¼

ρ

r

4C11;11 ¼ 2C12;12 ¼ 8C13;13 ¼ 8C31;31 ¼
2

3
C33;11 ¼ −

1

2
C33;33 ¼

ρ

r3

−D11 ¼
1

2
D33 ¼

ρ

r3
:

In particular, all Fourier coefficients with a subscript 0 vanish and all Fourier coefficients associated with B11 or B22 vanish.

2Note that our calculation includes terms which are not present in [23], as explained in the erratum of [22]. Hence the expressions for
A and C do not match the calculation from [23].
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B. Numerical implementation

For the product and instanton approximations, we must
resort to using a numerical scheme to calculate the metric
and potential.
It is convenient to write the SUð2Þ-valued Skyrme field

in terms of four constrained scalar fields,

U ¼ ϕ0 þ iϕiσi; where ϕ2
0 þ ϕiϕi ¼ 1: ð30Þ

The potential and kinetic energy are then equal to

V ¼
Z
R3

∂iϕa∂iϕa

þ 1

2
ð∂iϕa∂iϕa∂jϕb∂jϕb − ∂iϕa∂iϕb∂jϕa∂jϕbÞd3y;

ð31Þ

T ¼
Z
R3

_ϕa
_ϕa þ _ϕa

_ϕa∂iϕb∂iϕb − _ϕa
_ϕb∂iϕa∂iϕbd3y: ð32Þ

We approximate the low-energy dynamics by only
considering field configurations which depend on the
separation and orientation parameters of the skyrmions,
so that

ϕ ¼ ϕðy; x; Q1; Q2Þ: ð33Þ

To find the potential energy in this approximation we
substitute (33) into (31). To find the metric we promote
the coordinates x; Q1; Q2 to time dependent variables and
substitute this into (32). This gives an expression for the
metric tensor g as

gAB ¼
Z
R3

2DAϕaDBϕbðδabþ δab∂iϕc∂iϕc− ∂iϕa∂iϕbÞd3y

ð34Þ

where A;B ¼ 1;…; 9 and DA is a derivative on the
configuration space generated by ϕðx; Q1; Q2Þ. Explicitly,

DAϕ ¼ ∂tϕðy; xþ teA;Q1; Q2Þjt¼0;

DAþ3ϕ ¼ ∂tϕðy; x; Q1e−itσA=2; Q2Þjt¼0;

DAþ6ϕ ¼ ∂tϕðy; x; Q1; Q2e−itσA=2Þjt¼0 for A ¼ 1; 2; 3:

ð35Þ

These derivatives are generated numerically using a sym-
metric second order derivative with step size 0.001. This
requires the repeated generationof theSkyrme fieldϕ atmany
points in the configuration space. One numerical complexity
is that there are two large manifolds: the manifold
of configurations, isomorphic to SUð2Þ × SUð2Þ ×R3,
and Euclidean space, R3. We need to consider each space
carefully.

As discussed in the previous section, the potential and
metric only depend nontrivially on four coordinates and
we can take ðx; Q1; Q2Þ ¼ ðð0; 0; rÞ; 1; QÞ, which we do
from now on. The metric and potential are then functions
of ðr;QÞ on Rþ × S3. Note that although the metric
depends on four coordinates, we still need to take all nine
derivatives (35) to calculate g. To sample Rþ we take
r ∈ ½1.731; 7.731�3 with lattice spacing 0.1. To sample S3

we first consider a hypercube in R4, which has 8 cubic
faces. Each face is sampled evenly by ðu; v; wÞ ∈
½−1; 1� × ½−1; 1� × ½−1; 1�. The cell is then projected onto
the sphere using

ðu; v; wÞ → ð�1; u; v; wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2 þ v2 þ w2

p ð36Þ

and other permutations. If we sample p points in each
½−1; 1� interval we will sample 8p3 points on S3 in total,
which grows quickly. In testing we sampled 8, 64, and 216
points, finding that 64 points was a good compromise
between computation time and accuracy. The symmetry
Q → −Q means that we actually only need to sample half
these points.
At each point ðr;QÞ on the space of configurations

we generate a stencil of Skyrme fields, used to find the
derivatives (35). Each Skyrme field will be concentrated at
�r=2, the positions of the skyrmions, and have polyno-
mially decaying tails. To account for these two facts we
introduce new spatial coordinates ỹa ∈ ½−1; 1�. These are
taken from [20]4 and depend on the separation r. Explicitly

ya ¼
ỹa

1 − ỹ2a
for a ¼ 1; 2;

y3 ¼
(
r=2þ 2ỹ3−1

8ðỹ3−1Þ2 if ỹ3 ≥ 1=2

ỹ3ð2rð1 − ỹ3Þ − ð1 − 2ỹ3ÞÞ 1=2 > ỹ3 ≥ 0
ð37Þ

with y3 continued so that it is odd. This transformation
ensures that most lattice points are concentrated at
y3 ¼ �r=2, that the transformation is continuously differ-
entiable at ỹ3 ¼ �1=2 and that the polynomial tails of the
metric densities can be accurately captured. We can then
use ϕðỹÞ to calculate the potential Vðr;QÞ (31) and metric
gABðr;QÞ (34).
Once the metric is calculated, the Fourier coefficients

(17), each of which is a function of r, can be computed
using simple integration over the 3-sphere. We calculate
these three times, on evenly distributed grids ỹ ∈ ½−1; 1�3
with 802 × 160, 902 × 180, and 1002 × 200 points.

3This range is chosen so that the axial 2-skyrmion, which
occurs at r ¼ 1.731, is included in the calculation.

4There is an error in the definition of ỹ3 in this paper, as it is not
continuous. From context, we believe that (37) is what the authors
used.
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The results are extrapolated to approximate the components
on an infinite grid. Extrapolation is often neglected in
soliton numerics; it is important here as the metric densities
fall off slowly.
Overall, we calculate the Fourier coefficients of A, B, C,

and D on R × S3 at 61 × 32 points. Each point requires the
generation of 19 configurations to find the field and its
derivatives (35) on the configuration space. Hence, for our
reported calculation we generate around 37,000 Skyrme
fields: each on three grid sizes.

C. Product approximation

The product approximation was first considered
in [24] and builds a 2-skyrmion configuration using the
1-skyrmion (4), i.e. the solution to the static equations of
motion with baryon number 1. We use the symmetrized
product approximation [25], which preserves interchange
symmetry (14) between skyrmions. Here, two 1-skyrmion
fields U1 and U2 are combined into a field:

Uðy; x; Q1; Q2Þ ¼
1

2N
ðU1U2 þ U2U1Þ; ð38Þ

U1ðyÞ ¼ Q1UHðy − x=2ÞQ−1
1 ; ð39Þ

U2ðyÞ ¼ Q2UHðyþ x=2ÞQ−1
2 ; ð40Þ

where N is a normalization factor which ensures that
U ∈ SUð2Þ. In ϕ ¼ ðϕ0;ϕÞ notation the approximation is

ϕ ¼ 1

N
ðϕ0

1ϕ
0
2 − ϕ1 · ϕ2;ϕ0

1ϕ2 þ ϕ0
2ϕ1Þ: ð41Þ

The paper [23] shows that the dipole approximation agrees
at large separations with a slightly more complicated
variant of the product approximation, called the relativized
product approximation. We do not consider the relativized
product approximation here, because we are interested in
the product approximation mainly as a consistency check
on our calculations, and the level of agreement between
the ordinary product ansatz and the dipole approximation
proved sufficient for these purposes.
We use the product approximation to generate the

Fourier coefficients (17) using the numerical scheme
described above. The results match the dipole approxima-
tion for large r, as expected. We plot four comparisons in
Fig. 1. These demonstrate the possible outcomes when
comparing the product and dipole approximations. On the
left, we see Fourier coefficients which vanish in the dipole
approximation but do not vanish for the product approxi-
mation; in these cases, the coefficients obtained from the
product approximation decay faster than the leading dipole
contribution for that metric term. For instance, the leading
dipole contribution to A is r−2 and the Fourier coefficients
which vanish in the dipole approximation all decay at least
as fast as r−3. There are many Fourier coefficients that
vanish (or are constant) in the dipole approximation,
including all coefficients with a subscript 0. On the right
side of Fig. 1 we see some coefficients which are nonzero
in both approximations. For these coefficients, there is
always good agreement at large r. For B12

11;33 there is good
agreement even at small r. ForC13;13 the dipole and product
approximations diverge near r ¼ 3.
We plot all 41 independent Fourier coefficients for the

dipole and product approximations in Appendix B. This is
the first time such an extensive comparison has been
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FIG. 1. Plots of A1
0;12, B

12
11;33, B

11
11;11, and C13;13 for the dipole (blue) and product (orange) approximations. We plot the Fourier

coefficients as functions of separation r in Skyrme units.
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presented and we find nothing particularly surprising. We
believe that the calculation in this paper, finding the metric
on a moduli space by numerically calculating derivatives,
is the first of its kind in three dimensions. Hence these
nontrivial checks are important for us to have confidence in
the method.

D. Instanton approximation

Atiyah and Manton first suggested that Yang-Mills
instantons could be used to approximate skyrmions [13,26].
A skyrmion is generated by taking holonomies of an R4

instanton along lines parallel to one of the four coordinate
axes. Naively, this entails solving an ordinary differential
equation at each point in space. But recently, a new
technique has been developed to calculate the skyrmion
efficiently [21,27] based on the ADHM construction [28,29].
In it, the Skyrme field at a point y is approximated by

UðyÞ ¼ Ωyðtn; tn−1ÞΩyðtn−1; tn−2Þ � � �Ωyðt2; t1Þ; ð42Þ
where t1;…; tn discretize one direction in R4 and Ω are
2 × 2 complex matrices. To construct the Ω we need the
quaternionic ðN þ 1Þ × N matrix

Δy ¼ Δðy0;yÞ ¼
�

L

M − ðy01þ y1iþ y2 jþ y3kÞ

�
; ð43Þ

where L andM are matrices of sizes 1 × N and N × N, said
to form the ADHM data. The ADHM constraint says that
Δ†

yΔy should be real and invertible for all y ∈ R4. If this is
satisfied, then the ADHM data can be used to construct an
instanton and hence a skyrmion. The integer N is identified
with the instanton number and hence the baryon number. In
this paper N is always 1 or 2.
The kernel of Δy has quaternionic dimension 1 and

can thus be spanned by a single normalized quaternionic
vector vy. These vectors are then used to construct the Ω.
In the simplest numerical scheme [27] the Ω are given by

Ω1
yðtnþ1; tnÞ ¼ v†ðtnþ1;yÞvðtn;yÞ: ð44Þ

Recently, higher order methods were developed to increase
the efficiency of the numerical method [21]. We use the
“order 3” method which, due to special properties of the
group SUð2Þ, actually results in an order 4 approximation
to the instanton holonomy. In this approximation we
replace (44) with Ω3 given by

Ω3
yðtnþ1; tnÞ ¼

4

3
Ω2

y

�
tnþ1;

1

2
ðtnþ1 þ tnÞ

�

×Ω2
y

�
1

2
ðtnþ1 þ tnÞ; tn

�
−
1

3
Ω2

yðtnþ1; tnÞ

Ω2
yðt; t0Þ ¼

1

2
Ω1

yðt; t0Þ þ
1

2
Ω1

yðt0; tÞ−1:

The numerically generated UðyÞ will not be an SUð2Þ
matrix due to small numerical errors. We simply project the
near-SUð2Þ final result back into the SUð2Þ group by
dividing through with

ffiffiffiffiffiffiffiffiffiffiffi
detU

p
. This method is simpler than

the Runge-Kutta method used in [14,20] and is insensitive
to the choice of basis vectors v, other than at the points
t ¼ �∞. We fix the latter gauge freedom by choosing
v† ¼ ð1; 0;…; 0Þ at these boundary points. We have used
quaternions throughout this discussion, but these can be
converted to complex 2 × 2 matrices in a straightfor-
ward way.
In practice, the instanton fields are most complicated

near t ¼ 0. We make a coordinate transformation t ¼
tanðτ − π=2Þ, so that most points are concentrated at the
origin. The parameter τ is sampled evenly in ½0; π�,
at 42 points.
The 1-instanton can be described by quaternionic

ADHM data

�
L

M

�
¼

�
λQ

x

�
; ð45Þ

where Q ∈ S3 (a unit quaternion), λ ∈ R, and x ¼ x1iþ
x2 jþ x3k describe the orientation, size, and position of
the instanton and corresponding skyrmion. The ADHM
data (45) give rise to a skyrmion of the form

UHðy; x; QÞ ¼ Q exp

�
−ifIðrÞσi

ðy − xÞi
r

�
Q−1; ð46Þ

where r ¼ jy − xj. This is of the same form as (4) but with
profile function

fIðrÞ ¼ π

�
1 −

�
1þ λ2

r2

�−1=2�
∼
πλ2

2r2
: ð47Þ

The skyrmion depends on λ, the size of the instanton.
Choosing λ ¼ 1.45 minimizes the skyrmion mass, giving a
1-skyrmion with mass and moment of inertia

MI
1 ¼ 147.24; ΛI

1 ¼ 141.03 ð48Þ

and tail fðrÞ ∼ 3.30=r2. Note that the tail of the instanton-
generated skyrmion is larger than the true 1-skyrmion,
leading to a significantly larger moment of inertia and a
larger value of ρ for comparing to the dipole calculation.
Two well-separated instantons with equal size λ, posi-

tions �x=2 ¼ �ðx1iþ x2 jþ x3kÞ=2 and orientations Q1

and Q2 can be described by the Christ-Weinberg-Stanton
ADHM data [29]

�
L

M

�
¼

0
B@

λQ1 λQ2

x=2 χ

χ −x=2

1
CA; ð49Þ
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where χ ¼ λ2x=ð2jxj2ÞðQ̄2Q1 − Q̄1Q2Þ. At large jxj the
data diagonalizes and can be thought of as two separated
skyrmions with positions �x=2. When jxj ¼ ffiffiffi

2
p

λ and
Q2 ¼ Q1k, the instanton gains toroidal symmetry and
reproduces the well-known toroidal skyrmion. Here, we
lose the notion of individual skyrmions: they merge
completely into one object. We take x to represent the
separation of the skyrmions, but the validity of this
identification is unclear when the skyrmions are close
together. One could define the separation based on the
root-mean-square baryon radius of the configuration. We
repeated the calculation using this identification, but the
final results did not change significantly.
We use the ADHM data (49) to generate the 2-skyrmion

family by choosing Q1 ¼ 1, Q2 ¼ Q, and x ¼ rk.
However, the size parameter λ means that there is an
additional coordinate compared to the product approxima-
tion. We suppress this coordinate by choosing λ which
minimizes the Skyrme energy (31) at each point ðr;QÞ,
using a Newton-Raphson minimization. This process gen-
erates the four-dimensional family needed to calculate the
Fourier coefficients (17) of the metric and potential. We use
the same derivatives, coordinates, and grids as the product
approximation.
It is worth emphasizing that our ansatz (49) explores

only a 10-dimensional subspace of the 12-dimensional
moduli space of centered instantons. In physical terms, we
have assumed that the two instantons have the same size
and that they are both located in the hyperplane y0 ¼ 0. It
may be possible to obtain lower-energy Skyrme fields by
allowing the instantons to have different displacements
in the y0 direction or different sizes. This could have an

impact on the symmetries discussed in Sec. II B and, as
such, we have not explored this possibility.
Note that the instanton calculation requires a holonomy

to be calculated at each grid point. Hence, we take around
170 billion holonomies in the final instanton calculation.
An accurate calculation would have taken considerably
longer without the numerical advancements made in [21].
In the results from the instanton approximation, the

numerically generated Fourier components are not very
smooth. The root of the problem seems to be that λ varies
with r and Q. The numerical bumpiness will be a problem
later, as we need to calculate the second derivative of some
Fourier coefficients. To avoid the problem, we use a
polynomial interpolation to fit the functions. To do so,
we do trial approximations over r ∈ ½2.273; 7.731� of
the form

aþ br−n þ cr−n−1 þ dr−n−2 ð50Þ

for n ¼ 1;…; 8. Of the eight fits, the best one (based on
an adjusted R2 measure) is then kept and used. Another
possible solution to this problem of smoothness could be to
choose λ at each r to minimize the average energy across
the 3-sphere, but we did not explore this.

E. Comparison of approximations

We plot all the independent Fourier coefficients for the
dipole, product and instanton approximations in Figs. 4
and 5 in Appendix A, and a representative sample in Fig. 2.
We find significant differences between the instanton

approximation and the other two approximations. For
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FIG. 2. Plots ofD0, C33;11, A1
12;11, and A

1
23;13 for the dipole (blue), product (orange), and instanton (green) approximations. We plot the

Fourier coefficients as functions of separation r in Skyrme units. Note that the dipole calculation is calibrated to match the product
approximation.
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example, either the signs (A1
0;12 Fig. 2, bottom left) or

magnitudes (A1
23;13 Fig. 2, bottom right) can be vastly

different for the product and instanton approximations. In
general, the instanton Fourier coefficients decay much
slower than the product ones. Fitting the instanton tails
to functions, we find that they always decay at least as
fast as r−1.
Some of the differences can be explained by the fact that

the dipole strength coefficient C in the instanton approxi-
mation is larger than that of the true skyrmion by a factor
of 1.5. A change of this magnitude would multiply the
dipole Fourier coefficients by a factor of 1.52 ≈ 2.3. With
this adjustment, components such as D11, D33 and C33;11

(Fig. 2, top right) do roughly match across the three
calculations.
Another notable difference is that the zeroth order

potential D0 (Fig. 2, top left) has the same shape in both
approximations, but is much larger for the instanton. We
will see later that this results in the instanton approximation
giving a repulsive (rather than attractive) central potential
between nucleons.
Despite a smattering of Fourier coefficients which do

match, the majority do not. This means that the product and
instanton approximations make different predictions for
the dynamics of two skyrmions. We expect that the product
approximation gives a more reliable model of skyrmion
dynamics at large separations, because it agrees with
the dipole picture in that regime. However, the product
approximation is unlikely to be reliable at shorter separa-
tions, because it does not capture the toroidal symmetry of
the energy-minimizing 2-skyrmion. Therefore, we expect
the instanton approximation to be more reliable at shorter
separations, at least in the attractive channel. Clearly, there
is a need to investigate in more detail which approximation
gives the most reliable picture of classical skyrmion
dynamics, but doing so goes beyond the scope of this paper.

IV. THE NUCLEON-NUCLEON POTENTIAL

In this section we explain how the nucleon-nucleon
potential is calculated from the classical Lagrangian for two
skyrmions. This procedure was first used in [22], to which
we refer the reader for more details.
The most general nucleon-nucleon potential consistent

with known symmetries takes the form

VNN ¼ VIS
C þ VIS

σσσ1σ2 þ VIS
12S12 þ

1

ℏ
VIS
LSL · σ

þ
�
VIV
C þ VIV

σσσ1σ2 þ VIV
12S12 þ

1

ℏ
VIV
LSL · σ

�
τ1τ2:

ð51Þ

Here σ1i; σ2i are Pauli matrices corresponding to the spins
of two nucleons, and σ1σ2 ¼

P
i σ1iσ2i is their dot product.

Similarly, τ1τ2 ¼
P

i τ1iτ2i with τ1i; τ2i representing the

isospins of the two nucleons. The operator S12 is S12 ¼
ð3xixj=r2 − δijÞσ1iσ2j, and L ¼ x × P is angular momen-
tum. The eight functions V���� are assumed to be functions of
r only (although in principle they could also depend jPj2
and jLj2). The potential (51) acts on wave functions
ψ∶R3 → C2 ⊗ C2 ⊗ C2 ⊗ C2, where the four copies of
C2 correspond to the spins and isospins of the two
nucleons.
The starting point for calculating this from the

Skyrme model is the following formula for an effective
Hamiltonian HE:

HE ¼ E0 þ ϵH00
1 − ϵ2

X
N>0

1

EN − E0

H0N
1 HN0

1

þ ϵ3
X

M;N≠0

1

ðEN − E0ÞðEM − E0Þ
H0N

1 HNM
1 HM0

1

−
ϵ3

2

X
N>0

1

ðEN − E0Þ2
ðH0N

1 HN0
1 H00

1 þH00
1 H0N

1 HN0
1 Þ

þOðϵ4Þ: ð52Þ

In this formulaH ¼ H0 þ ϵH1 is a Hamiltonian acting on a
large Hilbert space, and E0 < E1 < … are the eigenvalues
of H0. The operator H1 is separated into components HNM

1

mapping from the EM eigenspace to the EN eigenspace.
When ϵ ¼ 0, the restriction of H to the E0 eigenspace is
simply HE ¼ E0, and Eq. (52) describes how this effective
Hamiltonian changes as ϵ varies away from 0. Slightly
more precisely, (52) is a perturbative formula for the
restriction of H0 þ ϵH1 to the span of its lowest-energy
eigenspaces.
The Hamiltonian associated with the Lagrangian (8) can

be written

H ¼ 1

M
jPj2 þ ℏ2

2Λ
jS1j2 þ ℏ2

2Λ
jS2j2 þHI; ð53Þ

in which P is the relative momentum, Sα are the spin
operators for the two skyrmions, and HI describes their
interaction. We will apply the perturbative formula to this,
identifying H0 with

ℏ2
2Λ

P
α jSαj2 and ϵH1 with

1
M jPj2 þHI .

In doing so, we are assuming that the separation is
sufficiently large and the relative motion sufficiently slow
that these two terms can be treated as a small perturbation
of H0. Inserting this into (52) results in

HE ¼ E0 þ
jPj2
2M

þH00
I −

X
N>0

H0N
I

1

EN −E0

HN0
I

þ iℏ
2M

X
N>0

1

ðEN −E0Þ2
fPi;∇iH0N

I HN0
I −H0N

I ∇iHN0
I g

þ ℏ2

M

X
N>0

1

ðEN −E0Þ2
∇iH0N

I ∇iHN0
I : ð54Þ
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Here we have discarded terms which are cubic in HI or
quadratic in 1=M (which is consistent with our assumption
that 1

M jPj2 þHI is small). The formula is derived using the
fact that jPj2 commutes with H0.
The lowest eigenvalues ofH0¼ ℏ2

2Λ
P

α jSαj2 are E0 ¼ 3ℏ2
4Λ ,

E1 ¼ 9ℏ2
4Λ , and E2 ¼ 15ℏ2

4Λ . The eigenspace associated with E0

is naturally isomorphic to the space of wave functions

ψ∶R3 → C2 ⊗ C2 ⊗ C2 ⊗ C2, the Hilbert space for two
nucleons. Moreover, the symmetries (11)–(15) guarantee
that the Hamiltonian (54) has the same form as the nucleon-
nucleon Hamiltonian (51).
In order to evaluate the effective Hamiltonian (52) one

first needs to calculate the classical Hamiltonian associated
with the 2-skyrmion Lagrangian (8). We did this perturba-
tively, using the identity [22]

H ¼ V −
ℏ2

2
Eκgκλ0 Eλ þ

ℏ2

2
Eκgκλ0 δgλμg

μν
0 Eν −

ℏ2

2
Eκgκλ0 δgλμg

μν
0 δgνρg

ρσ
0 Eσ þ

ℏ2

32
½Eκ; g

μν
0 δgμν�gκλ0 ½Eλ; g

ρσ
0 δgρσ�;

þ ℏ2

8

�
Eμ; g

μν
0

�
Eν; gκλ0 δgκλ −

1

2
gκλ0 δgλρg

ρσ
0 δgσκ

��
−
ℏ2

8
½Eμ; g

μν
0 δgνλgλκ0 ½Eκ; g

ρσ
0 δgρσ��; ð55Þ

in which g ¼ g0 þ δg and we have neglected terms of order δg3. Substituting the Lagrangian (8) and neglecting terms which

are cubic in A, B, C, D or quadratic in 1
M results in a Hamiltonian of the form (53), with

HI ¼ 2D−
ℏ2

8Λ2
½Sαi ; ½Sαi ; Bββ

jj �� −
ℏ2

2ΛM
½Sαi ; ½Sαi ; Cjj�� −

1

4MΛ
½Pi; ½Pi; Bαα

jj �� −
ℏ2

2Λ2
Sαi B

αβ
ij S

β
j þ

ℏ
MΛ

ðPiAα
ijS

α
j þ SαjA

α
ijPiÞ

−
ℏ2

32Λ3
½Sγk; Bαα

ii �½Sγk; Bββ
jj � −

ℏ2

8MΛ2
f½Sγk; Bαα

ii �; ½Sγk; Cjj�g −
1

16Λ2M
½Pk; Bαα

ii �½Pk; B
ββ
jj �

þ ℏ2

16Λ3
½Sγk; ½Sγk; Bαβ

ij B
αβ
ij �� þ

ℏ2

4Λ2M
½Sβk; ½Sβk; Aα

ijA
α
ij�� þ

1

8Λ2M
½Pk; ½Pk; B

αβ
ij B

αβ
ij ��

þ ℏ2

8Λ3
½Sαi ; Bαβ

ij ½Sβj ; Bγγ
kk�� þ

ℏ2

2Λ2M
½Sαi ; Bαβ

ij ½Sβj ; Ckk�� −
ℏ

4Λ2M
½Pi; Aα

ij½Sαj ; Bββ
kk �� −

ℏ
4Λ2M

½Sαj ; Aα
ij½Pi; B

ββ
kk ��

þ ℏ2

2Λ3
Sαi B

αβ
ij B

βγ
jkS

γ
k þ

ℏ2

Λ2M
Sαi A

α
jiA

β
jkS

β
k −

ℏ
MΛ2

ðPiAα
ijB

αβ
jk S

β
k þ SβkA

α
ijB

αβ
jk PiÞ: ð56Þ

We have substituted this into the perturbative for-
mula (54) and written the resulting expression in the
form (51). In order to do this, we made use of the
Fourier expansion (17) of the coefficients A, B, C, D,
together with the fact that the action of the operators Sαi and
RabðQÞ on the two-skyrmion Hilbert space is known [22].
For example the projections of these operators to the E0

eigenspace are given by

ðSαi Þ00 ¼
1

2
σαi; ðRabÞ00 ¼

1

9
σ1aσ2bτ1τ2: ð57Þ

The operators RN0 vanish when N > 2, while for N ¼ 1, 2
they describe excitation of one or both nucleons to a delta
resonance.
Our calculation also made use of the rotational symmetry

of the 2-skyrmion Lagrangian in order to simplify terms
involving P. Suppose, for example, that Q is a function on
the 2-skyrmion configuration space that is invariant under
rotations, and that we need to evaluate ½Pi;Q� for i ¼ 1, 2,
3. Along the positive x3 axis, we can write this as

½Pi;Q� ¼ δi3½P3;Q� þ 1

r
ϵ3ij½Lj;Q�: ð58Þ

The rotational invariance of Q means that
½Li þ ℏ

P
α S

α
i ;Q� ¼ 0, so

½Pi;Q� ¼ −iδi3ℏ
dQ
dr

−
ℏ
r
ϵ3ij

X2
α¼1

½Sαj ;Q�: ð59Þ

Similarly, ifOiPi is an operator invariant under rotations
then ½Lj þ ℏ

P
α S

α
j ;OiPi� ¼ 0, so�

Lj þ ℏ
X
α

Sαj ;Oi

�
¼ iϵijkOk: ð60Þ

It follows that

½Pi;Oi� ¼ ½P3;O3� þ
1

r
ϵ3ij½Lj;Oi� ð61Þ

¼ −iℏ
�
dO3

dr
þ 2

r
O3

�
−
ℏ
r
ϵ3ij

X2
α¼1

½Sαj ;Oi�: ð62Þ
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The identities (59) and (62) are useful because they allow
us to express the Hamiltonian in terms of the Fourier
coefficients (17) and their derivatives in r. They obviate the
need to calculate derivatives in all three spacial directions.
To see how these are used in practice consider the term

½Pi; ½Pi; Bαα
jj �� on the first line of (56). This is of the form

½Pi; ½Pi;Q�� with Q ¼ Bαα
jj invariant under rotations. So it

can be simplified using (59) and (62),

½Pi; ½Pi; Bαα
jj �� ¼ −ℏ2

�
d2Bαα

jj

dr2
þ 2

r

dBαα
jj

dr

�

þ ℏ2

r2
X2

i;β;γ¼1

½Sβi ; ½Sγi ; Bαα
jj ��: ð63Þ

Similarly, the final term on the second line of (56)
simplifies as follows:

½Pi; Bαα
jj �½Pi; Bδδ

kk� ¼ −ℏ2

�
dBαα

jj

dr

�
2

þ ℏ2

r2
X2

i;β;γ¼1

½Sβi ; Bαα
jj �½Sγi ; Bδδ

kk�: ð64Þ

Finally, consider the term PiAα
ijS

α
j þ SαjA

α
ijPi on the first

line of (56). This can be rewritten as

PiAα
ijS

α
j þ SαjA

α
ijPi ¼

1

2
fPi; fAα

ij; S
α
jgg þ

1

2
½Pi; ½Aα

ij; S
α
j ��
ð65Þ

¼ 1

2
fPi; fAα

ij; S
α
jgg −

iℏ
2

�
∂Aα

3j

∂r
þ 2

r
Aα
3j; S

α
j

�

−
ℏ
2r

ϵ3ik
X
β¼1;2

½Sβk; ½Aα
ij; S

α
j ��: ð66Þ

All of the terms in (56) involving P can be rewritten in a
similar way using (59), (62). Then, using identities pre-
sented in [22], they can be substituted into the first line
of (54) and expressed in terms of the operators σαi etc. The
terms on the second and third lines can similarly be
evaluated using identities in [22] and the following two
identities, both of which follow from (59) and (62):

iℏ
2M

X
N>0

1

ðEN − E0Þ2
fPi;∇iH0N

I HN0
I −H0N

I ∇iHN0
I g

¼ iℏ
2M

X
N>0

1

ðEN − E0Þ2
fP3; ðH0

IÞ0NHN0
I −H0N

I ðH0
IÞN0g

þ ℏ
2Mr

X
N>0

1

ðEN − E0Þ2
X2
α¼1

ϵ3ijfPi; ½Sαj ; H0N �HN0 −H0N ½Sαj ; HN0�g ð67Þ

ℏ2

M

X
N>0

1

ðEN − E0Þ2
∇iH0N

I ∇iHN0
I ¼ ℏ2

M

X
N>0

1

ðEN − E0Þ2
ðH0

IÞ0NðH0
iÞN0

−
ℏ2

Mr2
X
N>0

1

ðEN − E0Þ2
X2
p¼1

X
α;β

½Sαp;H0N
I �½Sβp;HN0

I �: ð68Þ

We used the Maple software package to carry out the
calculation of the Hamiltonian (54) described above. After
doing so we extracted the eight potentials of (51) by reading
off coefficients. This resulted in expressions for the eight
potentials which were polynomial in the Fourier coeffi-
cients, their derivatives, and 1

M. As in earlier stages of the
calculation, we discarded terms which were either cubic in
the 41 independent Fourier coefficients and their deriva-
tives, or quadratic in 1

M. The resulting quadratic expressions
for V���� are too lengthy to include in the paper, but we have
made them available electronically so that other researchers
can investigate the nucleon-nucleon interaction without

having to rederive the full quantum Hamiltonian. For more
details, see Appendix B. The terms which are linear in the
Fourier coefficients are relatively tractable and we write
these out in full in Appendix C.
We carried out two consistency checks on the calcu-

lation. First, we checked that our expression for the
effective Hamiltonian (54) in terms of Fourier coefficients
is of the form (51) (as would be expected due to symmetry).
Second, we checked that our polynomial expressions for
the eight potentials are consistent with results obtained
in our earlier calculation [22] based on the dipole-dipole
Lagrangian.
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V. RESULTS

In Sec. III we described our calculation of the 41
independent Fourier coefficients of the skyrmion-skymion
Lagrangian for the product and instanton approximations.
In Sec. IV we explained how we calculated expressions for
the eight components of the nucleon-nucleon potential as
polynomials in these Fourier coefficients. By combining
these calculations, we are able to calculate the eight
components of the nucleon-nucleon potential in both of
these approximations. The results are plotted in Fig. 3,

alongside the Paris potential. In order to compare with the
Paris potential it is necessary to calibrate the Skyrme
model, and we used the calibration of Adkins-Nappi-
Witten [4] (other calibrations did not lead to significantly
improved results). We are mainly interested in the results of
the instanton approximation; the product approximation is
included for comparison.
Taken as a whole, the instanton approximation does not

match the Paris potential well. This is not a surprise. The
instanton approximation assumes that pions are massless,
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FIG. 3. The eight low-energy nucleon-nucleon interaction potentials for the product (orange) and instanton (green) approximations,
compared to the phenomenological Partis potential (blue). The potentials all have units of energy (MeV) and are plotted as functions of
separation (fm).
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when in reality pions have a mass of around 137 MeV. Our
earlier calculation [22], based on the dipole approximation
with nonzero pion mass, gave a much better fit to the Paris
potential. Inclusion of a nonzero pion mass is particularly
important for the sigma-sigma isovector potential VIV

σσ ,
because (at least within the dipole approximation) this
potential vanishes at first order in perturbation theory when
pions are massless, but is nonvanishing at first order when
pions are massive. So we are not concerned that the
instanton-generated VIV

σσ has the opposite sign to the
corresponding component of the Paris potential; inclusion
of a pion mass should correct this, as it did in [22].
It is more surprising that both the instanton- and product-

generated central isoscalar potentials are repulsive, rather
than attractive. In contrast, the dipole approximation with
massive pions results in an attractive central isoscalar
potential, similar to the Paris model [22]. The product
and dipole approximations agree at large separations, so in
the case of the product approximation one expects to obtain
an attractive central isoscalar potential if the pion mass is
set to a realistic value, rather than 0. Similarly, the repulsive
central potential in the instanton approximation could be
due in part to the fact that pions are massless in this
approximation.
The repulsive central isoscalar potential VIS

C is also
likely a consequence of our restricted ansatz (49) for the
instantons. The dominant contribution to VIS

C comes from
the Fourier coefficient D0 (see Appendix C). As was
noted in Sec. III, this Fourier coefficient is a positive,
decreasing function of r, so leads to a repulsive potential.
Second order corrections reduce, but do not overcome,
the repulsion seen at first order. The coefficient D0 is the
average over all relative orientations of the interaction
energy of two skyrmions. This interaction energy is
negative in the attractive channel but can be positive
away from the attractive channel. Recall that our ansatz
(49) did not explore the full moduli space of instantons. It
is likely that, by introducing additional parameters and
optimizing these to minimize energy, one could obtain a
lower average interaction energy and hence a less
repulsive VIS

C .
The instanton approximation does much better when it

comes to the spin-orbit potentials, and in particular the
isoscalar spin-orbit potential. We recall that the dipole
approximation, taken to second order in perturbation
theory, failed to produce spin-orbit potentials with the
correct sign [22]. In comparison, the instanton approxima-
tion gives an isoscalar spin-orbit potential with sign and
magnitude comparable with the Paris potential, and an
isovector potential with the correct sign at large
separations.
We argue that this success is not an accident but is

instead a consequence of the fact that the instanton
approximation reproduces the axially symmetric energy-
minimizing 2-skyrmion. We recall from Sec. II that the

existence of an axially symmetric 2-skyrmion leads to the
prediction that

−A1
0;12 − A1

21;11 − A1
12;11 þ A1

33;12 > 0: ð69Þ

On the other hand, to first order in perturbation theory, the
spin-orbit potentials are given by

VIS
LS ¼

ℏ2A1
0;12

rΛM
;

VIV
LS ¼

ℏ2

9rΛM
ð2A1

12;11 þ A1
21;11 þ A1

32;13 þ A1
11;12Þ: ð70Þ

The simplest way to satisfy the constraint (69) is when all
four terms on the left-hand side are positive. If this is the
case then A1

0;12 will be negative and the isoscalar spin-orbit
potential will be negative to leading order, consistent
with the Paris potential. Similarly, A1

12;11 and A1
21;11 will

be negative and the isovector spin-orbit potential will likely
be negative. The minimal energy two-skyrmion is axially
symmetric for both massless and massive pions. Thus any
reasonable approximation to the dynamics of two sky-
rmions which includes the axial two-skyrmion will likely
give correct signs for both spin-orbit potentials, even when
the pion mass is switched on.
It is interesting to consider how this analysis of the

spin-orbit force applies to the dipole approximation.
In the dipole approximation, a skyrmion is modeled as a
triple dipole with vector-valued charge distribution ρi ¼
CRi∇δ3ðx − xiÞ, in which C > 0 is a positive constant, Ri

is a 3 × 3 orthogonal matrix and xi ∈ R3. For a pair of
skyrmions in the attractive channel (20) we have x1; x2 ¼
�rk=2 and R1; R2 ¼ diagð�1;�1; 1Þ. In particular, when
r ¼ 0 the charge distribution is ρ ¼ ρ1 þ ρ2 ¼ 2C∂3δ3ðxÞ.
This charge distribution is invariant under the action of
SOð2Þ × SOð2Þ given by

ρðxÞ↦

0
B@
cosθ − sinθ 0

sinθ cosθ 0

0 0 1

1
CAρ

0
B@
0
B@
cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CAx

1
CA:

ð71Þ

This group contains the SOð2Þ symmetry group of the
energy-minimizing two-skyrmion as a subgroup. Therefore
the path (21) is expected to be short for small values of r,
for the reasons given in Sec. II D. However, due to the
enhanced SOð2Þ × SOð2Þ symmetry, the path (22) is also
expected to be short, for similar reasons. Thus the argument
in Sec. II D does not apply to the dipole approximation, and
there is no reason to expect negative isoscalar or isovector
spin-orbit potentials at first order in perturbation theory.
In fact, the spin-orbit potentials are exactly zero at first
order in the dipole approximation; the potentials calculated
in [22] appear only at second order. This observation
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supports our earlier argument that the symmetries of the
energy-minimizing two-skyrmion explain the signs of the
spin-orbit potentials.

VI. CONCLUSIONS

We have calculated the eight components of the nucleon-
nucleon potential, starting from an approximation to the
dynamics of skyrmions based on instantons. The two spin-
orbit potentials are negative, in agreement with the Paris
potential and most other models of nuclear physics. On the
other hand, mixed results were obtained for the remaining
six potentials. In contrast, our earlier calculation [22] based
on the dipole approximation to skyrmion dynamics agreed
with the Paris model for the six potentials that do not
involve orbital angular momentum, but gave the wrong sign
for the two spin-orbit potentials.
Although the instanton potentials differ from the Paris

potentials, the possibility that they yield similar scattering
data is not ruled out. This is because scattering data
depend both on the potentials and on the boundary
conditions at minimal separation. At minimal separation
skyrmions merge to form a torus, and this is a radical
departure from the traditional view of nucleons as point
particles, leading to different boundary conditions. The
implications of this fact for scattering data are yet to be
worked out.
We have argued that the successful results for the spin-

orbit potential presented here are due to the symmetry of
the energy-minimizing two-skyrmion, which is accurately
modeled in the instanton approximation but not in the
dipole approximation. The failure of the instanton approxi-
mation for the other potentials might be explained by the
fact that the pion mass parameter is set to zero in this
model, and also by our restricted choice of ansatz for the
instantons. To accurately model the nuclear potential and
scattering amplitudes using skyrmions, one would need an
approximation to instanton dynamics that reproduces the
symmetry of the energy-minimizing two-skyrmion and also
includes a tuneable pion mass parameter. Unfortunately, no
such approximation is known at present.
Calculating the nucleon-nucleon potential entailed

calculating a metric and potential on a space of

two-skyrmions generated from instantons. Surprisingly,
these disagreed strongly with two other well-known
approximations, the product and dipole approximations,
even at large separations. This raises the question of
which approximation is a more reliable guide to the
dynamics of skyrmions with massless pions. On the one
hand, the dipole approximation is grounded in well-
established physical principles, and for comparable sys-
tems involving solitons (such as monopoles) even has the
status of a mathematical theorem [30]. On the other hand,
the instanton approximation has proven to be very
reliable when applied in other situations, such as the
study of static energy minimizers [13–17].
The calculation of the potential also involved a calcu-

lation in perturbation theory, following a method devel-
oped in [22]. This calculation is laborious. In the present
article, we have done the calculation in full generality,
expressing our answers in terms of the Fourier coeffi-
cients that enter the two-skyrmion Lagrangian. We have
made these expressions available for others to use. This
means that a nucleon-nucleon potential can be calculated
from any other approximation to two-skyrmion dynamics
simply by calculating the Fourier coefficients, and with-
out having to redo the calculation in perturbation theory.
The files can also be used to study variants of the Skyrme
model. An interesting extension would be to add vector
mesons, which can be naturally included within the
instanton approximation [18].
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APPENDIX A: ALL FOURIER COMPONENTS
FOR THE DIPOLE, PRODUCT, AND INSTANTON

APPROXIMATIONS

In this appendix, we present all 41 independent Fourier
coefficients (17) for the dipole, product, and instanton
approximations. These are plotted in Figs. 4 and 5.
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FIG. 4. Plots of 24 of the independent Fourier coefficients for the dipole (blue), product (orange), and instanton (green)
approximations.
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APPENDIX B: USING OUR RESULTS

The Supplemental Material [31] for this paper includes the full expressions for the eight nuclear potentials that we have
calculated. The potentials include all terms which are quadratic in the Fourier coefficients and their derivatives, and linear in
M−1. The potentials VIS

C , VIS
σσ , VIS

12, V
IS
LS, V

IV
C , VIV

σσ , VIV
12 , and V

IV
LS are contained in VCIS.txt, VSSIS.txt, V12IS.txt,

VSOIS.txt, VCIV.txt, VSSIV.txt, V12IV.txt, and VSOIV.txt respectively. A dictionary between the notation
used in this paper and the terms in the text files is displayed in Table I. The text files are formatted so that they can be
imported directly into both the Maple and MATHEMATICA software packages.
As a typical example, consider the term

ℏ2

81Λ2
A1
2331ðrÞ∂rB12

2211ðrÞ: ðB1Þ

In the text file, this term becomes

1=81 � hb^2=La^2 � A½r;1;2;3;3;1� � dB½r;1;2;2;2;1;1�:
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FIG. 5. Plots of the remaining 17 independent Fourier coefficients for the dipole (blue), product (orange), and instanton (green)
approximations.
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APPENDIX C: LINEAR EXPRESSIONS FOR THE POTENTIALS

In these expressions, all terms which are quadratic in the Fourier coefficients have been discarded.

VIS
CC ¼ −

ℏ2B11
0;11

2Λ2
−
ℏ2B11

0;33

4Λ2
þ 2D0 þ

2ℏ2
∂rB11

0;11

ΛrM
þ ℏ2

∂rB11
0;33

ΛrM
þ ℏ2

∂
2
rB11

0;11

ΛM
þ ℏ2

∂
2
rB11

0;33

2ΛM
;

VIS
σσ ¼ −

ℏ2B12
0;11

6Λ2
−
ℏ2B12

0;33

12Λ2
;

VIS
12 ¼

ℏ2B12
0;11

12Λ2
−
ℏ2B12

0;33

12Λ2
;

VIS
LS ¼

ℏ2A1
0;12

rΛM
;

VIV
CC ¼ −

ℏ2B12
12;12

9Λ2
−
ℏ2B12

13;13

9Λ2
−
ℏ2B12

33;33

36Λ2
−
ℏ2B12

21;12

18Λ2
−
ℏ2B12

22;11

18Λ2
;

VIV
σσ ¼ −

4ℏ2B11
11;11

27Λ2
þ 2ℏ2B11

12;12

27Λ2
−
ℏ2B11

33;11

18Λ2
−
ℏ2B11

11;33

18Λ2
−
ℏ2B11

13;13

27Λ2
−
ℏ2B11

31;31

27Λ2

−
5ℏ2B11

33;33

108Λ2
þ ℏ2B12

21;12

54Λ2
−
ℏ2B12

22;11

54Λ2
þ ℏ2B12

31;13

27Λ2
−
ℏ2B12

33;11

54Λ2
−
ℏ2B12

11;33

54Λ2
þ 4D11

27

þ 2D33

27
þ 4ℏ2A1

32;31

27ΛrM
−
4ℏ2A1

12;33

27ΛrM
−
4ℏ2A1

23;31

27ΛrM
þ 2ℏ2

∂rA1
32;31

27ΛM
−
2ℏ2

∂rA1
12;33

27ΛM

−
2ℏ2

∂rA1
23;31

27ΛM
þ 4ℏ2

∂rB11
11;11

27ΛrM
−
4ℏ2

∂rB11
12;12

27ΛrM
þ 2ℏ2

∂rB11
33;11

27ΛrM
þ 2ℏ2

∂rB11
11;33

27ΛrM
þ ℏ2

∂rB11
33;33

27ΛrM

þ 2ℏ2
∂
2
rB11

11;11

27ΛM
−
2ℏ2

∂
2
rB11

12;12

27ΛM
þ ℏ2

∂
2
rB11

33;11

27ΛM
þ ℏ2

∂
2
rB11

11;33

27ΛM
þ ℏ2

∂
2
rB11

33;33

54ΛM
−
8ℏ2C11;11

27ΛM

þ 8ℏ2C12;12

27ΛM
−
4ℏ2C33;11

27ΛM
−
4ℏ2C11;33

27ΛM
−
2ℏ2C33;33

27ΛM
;

TABLE I. Translation from the notation in our paper to the expressions in the appended text files.

LATEX .txt LATEX .txt

M M r r
Λ La ℏ hb

LATEX .txt ∂r ∂
2
r

D0ðrÞ D0[r] dD0[r] ddD0[r]
DabðrÞ D[r,a,b] dD[r,a,b] ddD[r,a,b]
Ap
ijðrÞ A0[r,p,i,j] dA0[r,p,i,j] ddA0[r,p,i,j]

Ap
ab;ijðrÞ A[r,p,a,b,i,j] dA[r,p,a,b,i,j] ddA[r,p,a,b,i,j]

Bpq
ij ðrÞ B0[r,p,q,i,j] dB0[r,p,q,i,j] ddB0[r,p,q,i,j]

Bpq
ab;ijðrÞ B[r,p,q,a,b,i,j] dB[r,p,q,a,b,i,j] ddB[r,p,q,a,b,i,j]

CijðrÞ C0[r,i,j] dC0[r,i,j] ddC0[r,i,j]
Cab;ijðrÞ C[r,a,b,i,j] dC[r,a,b,i,j] ddC[r,a,b,i,j]
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VIV
12 ¼ 2ℏ2B11

11;11

27Λ2
−
ℏ2B11

12;12

27Λ2
−
ℏ2B11

33;11

18Λ2
þ ℏ2B11

11;33

36Λ2
−
ℏ2B11

13;13

27Λ2
þ ℏ2B11

31;31

54Λ2

−
5ℏ2B11

33;33

108Λ2
þ ℏ2B12

21;12

54Λ2
−
ℏ2B12

22;11

54Λ2
−
ℏ2B12

31;13

54Λ2
þ ℏ2B12

33;11

108Λ2
þ ℏ2B12

11;33

108Λ2
−
2D11

27

þ 2D33

27
þ ℏ2A1

21;11

9ΛrM
−
ℏ2A1

11;12

9ΛrM
−
ℏ2A1

23;13

9ΛrM
þ ℏ2A1

33;12

9ΛrM
−
2ℏ2A1

32;31

27ΛrM
þ 2ℏ2A1

12;33

27ΛrM

−
4ℏ2A1

23;31

27ΛrM
−
ℏ2
∂rA1

32;31

27ΛM
þ ℏ2

∂rA1
12;33

27ΛM
−
2ℏ2

∂rA1
23;31

27ΛM
þ ℏ2B11

11;11

3Λr2M
−
2ℏ2B11

12;12

3Λr2M

−
ℏ2B11

33;11

3Λr2M
−
2ℏ2

∂rB11
11;11

27ΛrM
þ 2ℏ2

∂rB11
12;12

27ΛrM
þ 2ℏ2

∂rB11
33;11

27ΛrM
−
ℏ2
∂rB11

11;33

27ΛrM
þ ℏ2

∂rB11
33;33

27ΛrM

−
ℏ2
∂
2
rB11

11;11

27ΛM
þ ℏ2

∂
2
rB11

12;12

27ΛM
þ ℏ2

∂
2
rB11

33;11

27ΛM
−
ℏ2
∂
2
rB11

11;33

54ΛM
þ ℏ2

∂
2
rB11

33;33

54ΛM
þ 4ℏ2C11;11

27ΛM

−
4ℏ2C12;12

27ΛM
−
4ℏ2C33;11

27ΛM
þ 2ℏ2C11;33

27ΛM
−
2ℏ2C33;33

27ΛM
;

VIV
LS ¼

2ℏ2A1
12;11

9rΛM
þ ℏ2A1

32;13

9rΛM
þ ℏ2A1

21;11

9ΛrM
þ ℏ2A1

11;12

9ΛrM
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