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A semi-supervised Teacher-Student framework for surgical tool detection and 
localization
Mansoor Ali Teevno a, Gilberto Ochoa-Ruiz a and Sharib Ali b

aEscuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Guadalajara, México; bSchool of Computing, University of Leeds, Leeds, UK

ABSTRACT
Surgical tool detection in minimally invasive surgery is an essential part of computer-assisted interven
tions. Current approaches are mostly based on supervised methods requiring large annotated datasets. 
However, labelled datasets are often scarce. Semi-supervised learning (SSL) has recently emerged as a 
viable alternative showing promise in producing models retaining competitive performance to super
vised methods. Therefore, this paper introduces an SSL framework in the surgical tool detection para
digm, which aims to mitigate training data scarcity and data imbalance problems through a knowledge 
distillation approach. In the proposed work, we train a model with labelled data which initialises the 
Teacher-Student joint learning, where the Student is trained on Teacher-generated pseudo-labels from 
unlabelled data. We also propose a multi-class distance with a margin-based classification loss function in 
the region-of-interest head of the detector to segregate the foreground-background region effectively. 
Our results on m2cai16-tool-locations dataset indicates the superiority of our approach on different 
supervised data settings (1%, 2%, 5% and 10% of annotated data) where our model achieves overall 
improvements of 8%, 12%, and 27% in mean average precision on 1% labelled data over the state-of-the- 
art SSL methods and the supervised baseline, respectively. The code is available at https://github.com/ 
Mansoor-at/Semi-supervised-surgical-tool-detection.
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1. Introduction

Recent works in deep learning (DL) based on visual recognition 
methods have delivered enormous advantages towards com
puter-assisted interventions (CAIs) (Ward et al. 2021). CAI tools 
have been primarily focused on specific information gathering, 
such as the presence or location of lesions. Nonetheless, recent 
developments in the image recognition tasks with improved 
accuracy have led to expansion of its scope to several other 
areas including intraoperative decision support systems 
(Bouget et al. 2017). These applications provide contextual 
information to the surgeon during the surgery, as a postopera
tive feedback (Bhatia et al. 2007; Sarikaya et al. 2017) for surgi
cal training and video content analysis (Wang et al. 2019).

More recently, CAI systems capable of performing effectively 
the sub-tasks such as surgical phase recognition, identification 
of the tool presence and their recognition, localisation and 
instance-based segmentation are getting increased attention 
(Bouget et al. 2017). The development of these task-based 
automated approaches can ensure improved surgical care 
and patient safety and alleviate surgeon fatigue.

DL-based surgical tool detection task has attracted a lot of 
attention in recent years. However, most of the state-of-the-art 
(SOTA) methods have employed fully supervised approaches 
(Jin et al. 2018; Zhang et al. 2020), and only a few weakly 
supervised methods, mostly implementing classification mod
els for determining tool presence (Vardazaryan et al. 2018), 
have been proposed. Nonetheless, training complex DL models 
under the supervised setting requires difficult-to-acquire and 

precisely annotated datasets, which is a time-consuming task 
and susceptible to intra- and inter-observer bias in annotations. 
As a result, only a few labelled surgical tool datasets are publicly 
available (Sarikaya et al. 2017; Jin et al. 2018), and this lack of 
annotated datasets has essentially hindered the development 
of robust and generalisable deep architectures for the surgical 
instrument detection.

Alternatively, the annotation cost could be greatly mitigated 
by exploiting unlabelled data through efficient semi-supervised 
learning (SSL) frameworks. The core idea of SSL is to be able to 
extract information from the unlabelled data that is essential 
for label prediction. One solution is to train a network to solve a 
pre-defined pretext task (Teacher model generating pseudo 
labels) and then using the learned knowledge in the down
stream task (Student network). Recently, SSL has shown pro
mising outcomes in improving model performance and is 
receiving growing attention of the computer vision research 
community (Van Engelen and Hoos 2020; Sohn et al. 2020). 
Despite these progresses, most of these advances are in the 
domain of image classification rather than object detection as 
the bounding box annotations require more time and effort to 
generate. Traditionally, SSL can be approached with adapting 
state-of-the-art (SOTA) image classification methods such as 
method proposed by Sohn et al. (2020) for object detection. 
However, the existence of some unique characteristics such as 
foreground–background and foreground class imbalance make 
object detection interact poorly with those methods. The class 
imbalance problem may greatly impede the use of pseudo- 
labelling-based training pipelines since Teacher-generated 
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pseudo labels will be overly biased towards dominant classes 
and ignoring minor and less dominant classes. As a result, 
adapting image classification to object detection will likely 
exacerbate the class-imbalance problem and cause severe 
overfitting.

To overcome these issues, we propose a jointly trained 
Teacher–Student model on m2cai16-tool-locations dataset 
(Jin et al. 2018) which is initialised by a supervised detector. 
We argue that slowly updating the Teacher by exponential 
moving average (EMA) via the Student can alleviate pseudo- 
labelling bias problem and improve pseudo label quality and, 
hence, overall performance improvement. Additionally, we pro
pose a multi-class distance and margin-based classification loss 
in the region-of-interest (ROI) head of the detector network to 
boost the classification performance. This is achieved by max
imising the distance between foreground classes and the back
ground. To the best of our knowledge, our approach is the first 
effort towards leveraging Teacher–Student joint training para
digm for addressing data scarcity problem in surgical tool 
detection applications. We employ strong and weak augmenta
tion pipelines to improve model robustness (Figure 1(b)). Our 
proposed pipeline outperforms supervised baseline and other 
SOTA semi-supervised methods in terms of classification and 
localisation performance (Figure 1(a)).

In the rest of the paper, we discuss related work (Section 2), 
materials and method (Section 3), quantitative and qualitative 
results (Section 5), ablation studies (Section 5.3) and lastly 
discussion and conclusion (Section 6).

2. Related work

Some of the early works on surgical tool detection used radio
frequency identification tags (Kranzfelder et al. 2013), Viola– 
Jones detection algorithm (Lalys et al. 2011) and segmentation, 
contour delineation and three-dimensional modelling (Speidel 
et al. 2009). With the advent of DL-based approaches using 
convolutional neural networks, computer vision methods have 
evolved with remarkable growth and demonstrated promising 
outcomes (Russakovsky et al. 2015). In the surgical domain, 
several works have leveraged DL approaches to obtain SOTA 

performance on surgical instrument detection (Sahu et al. 2016; 
Twinanda et al. 2016a; bJin et al. 2018).

Most of the studies conducted on surgical tool detection 
have proposed supervised pipelines or only have targeted 
frame-level tool presence detection. For example, AGNet (Hu 
et al. 2017) used global and local prediction networks to obtain 
visual cues for tool presence detection and showed a signifi
cant improvement over m2cai16-tool challenge (Raju et al.  
2016) winners. Jin et al. (2018) proposed region-based convolu
tional neural network to perform surgical skill assessment 
adapted to tool presence detection, spatial localisation and 
tracking. The authors also extended the m2cai16-tool dataset1 

to include tool bounding boxes (subsequently named as 
m2cai16-tool-locations) which we have used in this work. 
Sarikaya et al. (2017) used image and temporal motion cues 
to train multi-modal convolutional neural network (CNN) mod
els for tool detection and localisation in robotic-assisted surgi
cal training task videos. Tool detection and pose estimation 
were also studied by Reiter et al. (2012), but it was limited to 
robotic arms that return kinematic data. Shi et al. proposed a 
lightweight attention-guided framework (Shi et al. 2020a) for 
tool detection and conducted an ablation study on three dif
ferent datasets (two public datasets, EndoVis Challenge 
(Kurmann et al. 2017) and ATLAS Dione (Sarikaya et al. 2017) 
and one self-prepared cholec80-locations). However, their 
model performed well on all tools except grasper and irrigator 
classes. In another study (Zhang et al. 2020), irrigator can be 
observed as worst performing instrument with average preci
sion (AP) of 41.6%, followed by grasper with 54.1% in a super
vised setting at intersection-over-union (IoU) threshold of 50%. 
A ghost feature map-based pipeline was used to reduce the 
computational burden for tool detection in Yang et al. (2021). A 
CNN-based hidden Markov model was proposed by Twinanda 
et al. (2016a) for surgical tool detection from laparoscopic 
videos. A combination of CNN to extract spatial features and 
long–short-term memory for temporal cues was proposed to 
perform surgical tool detection from laparoscopic videos 
(Mishra et al. 2017).

Although the results of some of these approaches have 
been mostly encouraging, they have reported only one mean 

(a)
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Student

Class-wise NMS Pseudo Label
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aug. : augmentation
EMA: exponential moving average
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Figure 1. Comparison at different percentages of supervision and augmentation strategies in a Teacher–Student paradigm. (a) The proposed approach efficiently 
leverages unlabelled data and produces substantial improvement over supervised baseline and on the state-of-the-art Unbiased Teacher (Ubteacher) Liu et al. (2021) 
framework. (b) Data augmentation workflow of the proposed Teacher–Student mutual learning approach. Unlabelled data given with weak augmentation to Teacher 
and with strong augmentation to Student. Student gets pseudo labels through non-maximum suppression and thresholding from the Teacher.
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average precision (mAP) result (Sarikaya et al. 2017; Shi et al.  
2020b) which is not quite sufficient to gauge the classification 
and localisation performance. Furthermore, previous 
approaches require completely labelled datasets to train the 
model. Such datasets are either scarcely available or the pro
cess of annotating them can lead to other issues such as 
introducing unintended biases in the trained model.

In this work, we aim to demonstrate the advantages of an 
SSL approach and propose a novel semi-supervised Teacher– 
Student framework to alleviate the limited data problem and 
annotation cost requirement for training on larger datasets. 
Our literature search revealed that there are only two studies 
conducted on SSL in the medical domain where one is based 
on cataract surgery dataset (Jiang et al. 2021) while another 
study (Yoon et al. 2020) used a tracker to detect instruments 
from unlabelled private surgery videos. To the best of our 
knowledge, this is the first approach that investigates the effec
tiveness of unlabelled data through a Teacher–Student learn
ing pipeline for tool detection on a minimally invasive surgery 
dataset. We report results from our model in terms of mAP on 
various IoU thresholds to demonstrate the effectiveness of our 
approach in detecting and localising surgical tools.

3. Materials and method

3.1. Dataset

In this work, we use an extended version of the m2cai16-tool 
dataset which was originally released for M2CAI 2016 Tool 
Presence Detection Challenge (Twinanda et al. 2016b). This 
dataset consists of 15 videos each with duration from 20 to 
75 min of cholecystectomy procedures performed at the 
University Hospital of Strasbourg in France. After down sam
pling at 1 fps, it leaves 23,000 frames annotated with tool 
presence classification.

Later, m2cai16-tool-locations dataset was built with spatial 
bounding box annotations (Jin et al. 2018). This dataset consists 
of a total of 2812 frames that were annotated under supervision 
and spot-checking from clinical experts. We have used 80%, 
10% and 10% for training, validation and test splits, respec
tively. The annotations breakdown per class is given in the 
Supplementary material (Table S1), and the tool instances 
with example box annotations are presented in Figure 2. 

We use AP computed per class and mAP for all seven classes 
which are the standard object detection evaluation metric. 
These metrics are evaluated at different IoU thresholds, usually 
denoted as mAPIoU� threshold. We report results for 50%, 75%, 
50:95% (average of AP values for IoU thresholds from 50% to 
95% with interval of 5%), medium and large IoU thresholds.

3.2. Data augmentation

We have used two data augmentation strategies in this work, 
which we refer as weak and strong augmentations (Figure 1(b)). 
For the weak augmentation, we apply random horizontal flips, 
whilst for strong augmentation, we randomly perform several 
photometric augmentations like greyscale, colour jittering, 
Gaussian blur, patch masking and cut-out patches DeVries 
and Taylor (2017). For the complete description of data aug
mentation with parameter values, please refer to Liu et al. 
(2021).

4. Method

In this work, we address multi-instance surgical tool detec
tion problem in a semi-supervised setting. Let the training 
set in various arrangements of labelled datasets be denoted 
as Ds ¼ fxs

i ; ys
i g

Ns
i¼1 and unlabelled datasets be Du ¼ fxu

i g
Nu
i¼1, 

where Ns and Nu represent number of supervised and unsu
pervised training samples, while ys represents bounding box 
annotation of each labelled image xs. Here, ys consists of 
bounding boxes for all object instances, height and width 
of image and instance category names. It is important to 
mention that since all the training data samples contain 
labels, during training, we removed the labels of the portion 
we categorise as unlabelled. The overall training pipeline is 
divided into two stages as shown in Figure 3 The first stage 
is the initialisation stage (Section 4.1), while the second is the 
Teacher–Student joint learning mechanism (Section 4.2). In 
the second stage, the Teacher generates pseudo-labels, and 
Student network is trained on both pseudo labelled data and 
supervised data. Each stage is detailed separately below 
along with Student learning and Teacher update scheme 
and margin.

Figure 2. (Top) Samples from m2cai16-tool-locations dataset with representative classes of seven tools. (Bottom) Example frames with bounding box annotations 
where colour of the box refers to tool class.
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4.1. Initialisation stage

The initialisation stage acts as a trigger point for Teacher–Student 
joint learning. It sets the stage for the Teacher model to be able to 
generate qualitative pseudo-labels for better Student learning. In 
this stage, we exploit the available labelled data Ds ¼ fxs

i ; ys
i g

Ns
i¼1 

to train the Faster-RCNN detector model (θ) with supervised loss 
Lsup. The standard Faster-RCNN model makes use of four losses: 
RPN classification loss Lrpn

cls , RPN regression loss Lrpn
reg , ROI classifi

cation loss Lroi
cls and ROI regression loss Lroi

reg (Equation (1)). 

Lsup ¼
XNs

i

L
rpn
cls ðx

s
i ; ys

i Þ þ L
rpn
regðx

s
i ; ys

i Þ þ L
roi
clsðx

s
i ; ys

i Þ þ L
roi
regðx

s
i ; ys

i Þ

(1) 

The weights and architecture of the model trained during this 
initialisation phase are then copied to be used for both the 
Student and Teacher models ðθT  θ; θS  θÞ. The trained 
detector from this stage provides a good initialisation for next 
stage, where we further exploit unsupervised data to improve 
object detection.

4.2. Teacher–Student joint learning stage

The proposed knowledge distillation framework leverages 
Student and Teacher joint training to address lack of data 
problem. During training, Teacher generates pseudo labels 
on unlabelled data and Student is trained on those labels. 
Thus, a continuously learning Student passes on the learned 
knowledge to the Teacher. We posit that this evolving mutual 
learning would result in better detection performance by 
generating stable and reliable pseudo labels. Weak and 
strong augmentation pipelines ensure reliable pseudo label 
generation by Teacher and diversity in Student models, 
respectively.

4.3. Student learning and Teacher update scheme

We tackle the pseudo-label noise problem which may cause 
severe performance degradation (Sohn et al. 2020) by 

confidence thresholding (τ). Although this step could have suf
ficed in the case of image classification, for object detection 
tasks, additional steps must be enforced as duplicated bounding 
box predictions, and class-imbalanced prediction problems are 
typically encountered in these settings. We address the dupli
cated box predictions problem by applying class-wise non-max
imum suppression (NMS) before a confidence thresholding step. 
As simple confidence thresholding only removes samples with 
low confidence on predicted object categories and does not take 
into account the quality of bounding box locations, we do not 
use unsupervised loss on bounding box regression which is thus 
represented as below with θS as weight updates between both 
supervised Lsup and unsupervised Lunsup losses: 

Lunsup ¼
XNu

i

L
rpn
cls ðx

u
i ;~y

u
i Þ þ L

roi
clsðx

u
i ;~y

u
i Þ (2) 

θS  θS þ γ
@ðLsup þ λuLunsupÞ

@θS
; (3) 

where γ is the learning rate and λu is the unsupervised loss weight. 
The overall unsupervised loss in Equation (2) consists of the sum of 
RPN and ROI head classification losses. Equation (3) depicts the 
Student weight update scheme which includes both supervised 
and unsupervised losses with a loss weight parameter λu.

Finally, we perform Teacher model refinement by using EMA 
following Mean Teacher to slowly update Teacher network 
which in turn will generate stable and reliable pseudo labels. 
The update can be represented as: 

θT  αθT þ ð1 � αÞθS ; (4) 

where α is the EMA rate, and θT , θS are the network weights for 
Teacher and Student.

4.4. Logistic loss with added margin and distance 
penalisation

In the surgical domain, foreground class imbalance exists in 
every dataset due to the fact that tool usage frequency varies 
from one tool to another (Mishra et al. 2017). In this work, to 

Supervised
Detector

Figure 3. Overview of the proposed Surgical tool detection model. It consists of two modules: (1) an initialisation module, where a supervised model makes use of 
strongly augmented labelled data, and (2) a Teacher–Student mutual learning module, where the Student is trained with strongly augmented unlabelled data with 
Teacher-generated pseudo labels. The Student transfers learned weights to the Teacher gradually through exponential moving average (EMA).
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address the class imbalance problem, we target the foreground 
and background class imbalance problems by introducing a 
multi-class loss function based on a margin, which tries to 
maximise foreground–background distance. Unlike the focal 
or cross entropy losses, our proposed loss tries to predict 
relative distance between inputs. Specifically, we divide classi
fication logits between foreground and background instances 
and then compute sigmoid probability, respectively. We then 
sum the softmax of the probabilities over all the batch for the 
foreground ρ and background β instances. These probabilities 
are then used to maximise foreground–background distance in 
the final loss computation which is in the form of a logistic loss 
function for classification defined as 

Lroi
cls ¼

X

n
wl logð1þ

es�ðβ� ρþσÞ

s
Þ; (5) 

where n is the mini-batch size, wl represents loss weight, s is the 
smoothness parameter and σ denotes margin.

Apart from the multi-class loss, Teacher update with EMA will 
also help reduce pseudo label bias since new Teacher is regu
larised by previous Teacher model which prevents drastic move
ment of the decision boundary towards under-represented 
classes.

Algorithm 1 Multi-class distance and margin-based classifica
tion loss

1 : procedure losslogits; targets 

2 : classes class indices 

3 : g logits logitsðtargets ¼ classesÞ

4 : bg logits logitsðtargets! ¼ classesÞ

5 : fg prob sigmoidðfg logitsÞ

6 : bg prob sigmoidðbg logitsÞ

7 : ρ 
X

softmaxðfg probÞ

8 : β 
X

softmaxðbg probÞ

9 : loss Eq : 5 

10 : end procedure

5. Experiments and results

5.1. Implementation details

The implementation of our proposed framework is based on 
Faster-RCNN detector model with ResNet50-FPN backbone, 
whose network weights are initialised by ImageNet pretrained 
model. We use a confidence threshold (τ) of 0.7, regularisation 
co-efficient for unsupervised loss (λu) of 0.2 and EMA rate (α) of 
0.9996. We use WarmupMultiStepLR as a learning rate (α) sche
duler in initialisation stage while a constant learning rate of 0.01 

for the Teacher–Student mutual learning stage. In the initialisa
tion stage, we use strong augmentation, while during the 
Teacher–Student mutual learning, we use weak augmentation 
for the Teacher and strong augmentation for Student. We 
report results in terms of mAP on different IoU thresholds. We 
use a batch size of 8 (4 labelled images and 4 unlabelled 
images) throughout the experiments. We performed network 
training through detectron2 (Wu et al. 2019) object detection 
framework using 4 graphical processing units (GPUs) on NVIDIA 
Tesla P100-SXM2-16GB system. We use fixed seed values for 
generating the data splits to make the results more 
reproducible.

5.2. Results

5.2.1. Quantitative results
We evaluate our model with different labelled and unlabelled 
data protocols and present the results on a 10% held-out set in 
Table 1. The table also includes results on the supervised base
line, UnbiasedTeacher (Liu et al. 2021), with both 
CrossEntroppy and focal losses and SoftTeacher (Xu et al.  
2021). Table 2 shows per class mAP50:95 results on 1% labelled 
data setting. Furthermore, we also conduct a paired t-test 
between AP50 obtained by our proposed model and AP50 

obtained by other SOTA methods. The resulting box-plot on 
1%, 2%, 5% and 10% labelled data setting is shown in Figure 5, 
and p-values are shown in Table 1.

5.2.2. Qualitative results
In this section, we report the qualitative performance of our 
model as shown in Figure 4. The example of surgical scenes 
is carefully chosen to contain several instances in one frame 
(column 2 from left), only partially visible instrument (col
umn 3 from left) and irregular orientation (column 4 from 
left). Results on all data settings have been presented to see 
how well model performs in terms of detection and 
localisation.

5.3. Ablation study

Several ablation studies were conducted to validate the effec
tiveness of different parameters. We evaluated the effect of 
initialisation, confidence threshold (τ), EMA rates and normal
isation parameter (s) on model performance. We trained the 
model with and without initialisation stage and concluded that 
such process does improve the overall performance by a sub
stantial margin (Supplementary material section 1.1). We also 
evaluated the model on different values of τ where τ = 0.7 gives 
the best performance (Supplementary material section 1.2). We 
also performed multiple experiments to evaluate the impact of 
Teacher update with EMA rate on model performance for which 
EMA of 0.9996 gave the optimum performance (Supplementary 
material section 1.3).

Here, we present ablation for use of different loss functions 
and our proposed loss with different normalisation parameter 
‘s’ values. It can be observed that our proposed loss with s ¼ 5 
provided the best performance with the highest mAP over all 
IoU thresholds (see Table 3).
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6. Discussion and conclusion

We demonstrate that our proposed approach performs favour
ably against the SOTA semi-supervised models proposed by Liu 
et al. (2021) and Xu et al. (2021). In 1% setting, our proposed 
model outperforms unbiased Teacher with focal loss by a large 
margin and cross entropy loss by 8 points on every evaluation 
metric while also outperforming SoftTeacher (Xu et al. 2021) 
model. It is worth noting that our approach achieves 50.632% 
mAP50 on 1% labelled data which is even higher than super
vised baseline trained on 2% labelled data, and this trend can 
be witnessed in all settings. This improvement can be attribu
ted to several crucial factors such as gradual improvement in 
pseudo label quality through EMA training which is in contrast 
to previous approaches in which Teacher model is freezed after 

training on labelled data. Another factor is the introduction of 
loss function which effectively increases the foreground–back
ground distance and helps in improving detection 
performance.

Furthermore, the proposed framework performs much bet
ter on mAP75 in all settings consistently which indicates 
improved localisation performance. On the 2% labelled data 
setting, our model obtained 72.341% mAPon 50% IoU thresh
olds, while unbiased Teacher on focal and cross entropy losses 
achieved 71.608% and 72.416% which is just slightly greater 
than our model. However, if we compare the performance of 
our model on mAP at 50:95 and 75 IoU thresholds, we observe 
that our model consistently gives superior performance. 
Moreover, on 5% and 10% setting, Unbiased Teacher (Liu et 
al. 2021) with focal loss achieves slightly higher performance on 

Table 1. Experimental results with ResNet50-FPN as backbone.

1% Labelled data p-Values

Method mAP50 mAP50:95 mAP75 mAPm mAPl

Supervised 23.578 7.673 2.322 6.189 9.050 5.996e-17
Unbiased Teacher* (Liu et al. 2021) 34.374 14.145 7.855 10.687 15.880 5.626e-02
Unbiased Teacher** (Liu et al. 2021) 42.382 18.008 11.387 13.041 20.135 6.229e-03
SoftTeacher (Xu et al. 2021) 38.421 13.556 6.623 16.756 13.045 5.526e-02
Ours 50.632 20.094 12.713 15.219 21.774 –

2% Labelled data
Supervised 47.140 18.609 9.480 24.033 18.586 2.558e-14
Unbiased Teacher* (Liu et al. 2021) 71.608 31.752 20.479 27.871 32.430 3.975e-04
Unbiased Teacher** (Liu et al. 2021) 72.416 31.490 21.446 26.767 32.666 2.010e-01
SoftTeacher (Xu et al. 2021) 60.366 25.421 14.767 17.991 28.323 2.558e-8
Ours 72.341 32.311 21.614 29.780 33.556 –

5% Labelled data
Supervised 71.082 32.249 21.995 29.505 35.041 5.866e-05
Unbiased Teacher* (Liu et al. 2021) 84.721 42.269 32.826 35.697 44.204 1.298e-01
Unbiased Teacher** (Liu et al. 2021) 82.592 40.393 30.735 33.665 42.904 3.424e-04
SoftTeacher (Xu et al. 2021) 83.211 38.857 26.643 30.567 40.718 4.566e-04
Ours 84.427 42.392 33.376 31.156 44.610 –

10% Labelled data
Supervised 80.193 38.640 30.625 29.845 40.958 7.108e-03
Unbiased Teacher* (Liu et al. 2021) 92.981 47.369 41.049 41.137 48.714 2.291e-01
Unbiased Teacher** (Liu et al. 2021) 90.353 45.972 45.103 39.247 47.787 1.00
SoftTeacher (Xu et al. 2021) 89.362 42.717 41.522 38.312 43.849 1.00
Ours 90.250 46.886 46.234 42.635 48.644 –

* With Focal Loss; ** with Cross Entropy Loss.

Table 2. The average precision (AP50:95) per class on 1% labelled data.

Class Supervised Ubteacher* Ubteacher** SoftTeacher Ours

Grasper 12.434 23.457 23.046 7.0 20.203
Bipolar 13.450 19.472 33.384 22.2 29.499
Hook 11.349 38.529 44.614 29.8 43.924
Scissors 3.592 4.130 5.052 3.8 6.860
Clipper 4.273 5.045 4.800 0.0 4.970
Irrigator 4.022 3.393 8.468 27.9 10.331
SpecimenBag 4.592 4.986 6.692 4.1 24.873

* Unbiased Teacher with focal loss; ** Unbiased Teacher with cross entropy loss.

Table 3. Normalisation parameter s grid search.

Loss mAP50:95 mAP50 mAP75 mAPm mAPl

Focal 14.145 34.374 7.855 10.687 15.880
Cross entropy 18.008 42.382 11.387 13.041 20.135
Proposed loss (s = 3) 16.260 41.438 8.260 10.801 18.848
Proposed loss (s = 4) 18.475 44.534 9.252 13.246 20.483
Proposed loss (s = 5) 20.094 50.632 12.713 15.216 21.774
Proposed loss (s = 6) 18.993 47.597 11.156 10.380 22.006

Note: Best values are provided in bold.
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mAP50, but the proposed method gives superior performance 
in terms of mAP50:95 and mAP75. This validates the effectiveness 
of our method on both classification and localisation perfor
mance. We also present per class AP (AP50:95) in Table 2. Here, 
we observe a significant improvement in AP on all instances, 
especially hard-to-detect classes like Specimen Bag (20 points), 
Irrigator (6 points) and Bipolar (16 points) against the super
vised baseline.

The qualitative results also indicate strong performance of 
our approach as most of the tools (even when four tools in one 
frame) are detected and localised correctly. The localisation 
accuracy increases as we add more labelled data as is evident 
from Figure 4 from bottom to top; however, the detection 
performance remains largely unchanged. There are some 
missed detections on 1% of the labelled data setting (see row 
5 in column 3) and incorrect class label prediction (see row 5 in 
column 4). The missed detection occurred mostly on 1% 
labelled data setting where model did not see enough anno
tated examples. Incorrect class prediction in the bottom right 
may be due to less discriminative features between both 
instances. Similarly, the missed detection in second last image 

on the bottom row can be because the tool was only partly 
visible.

The paired t-test p-values computed between the pro
posed method and SOTA methods are given in Table 1. 
Also, we have shown a bar-plot with median and devia
tions and significance between the SOTA and proposed 
methods (see Figure 5). We can observe that our proposed 
approach performs well on different data settings. From 
Figure 5, it can be observed that for 1% setting our 
method is significantly different compared to other SOTA 
methods with the highest median AP50 value reported. 
Similarly, on the 2% setting, our model and Unbiased 
Teacher model on cross entropy loss (UbTeacher_ce) per
formed equally well (p-value = 0.20) but still with the high
est median value compared to other methods. Similar 
performance changes can be observed for 5% data where 
Unbiased Teacher model on focal loss (UbTeacher_focal) 
has p-value = 0.13 (computed at AP50), while on mAP75 our 
method is still better. The reason behind competitive 
scores in these cases is because the reported APs are 
only done at 50% IoU threshold, while it is evident from 

Figure 4. Qualitative results: First row shows images with ground truth. Second, third, fourth and fifth rows present results on 10%, 5%, 2% and 1% setting, 
respectively. Green and red boxes indicate correct and wrong predictions.
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Table 1 that our method performance for other mAPs at 
higher IoU thresholds has distinguishable improvements. 
However, with the 10% labelled data setting, we reach 
non-significant difference in p-values for other unbiased 
models and SoftTeacher model. This is because 10% in 
this case is enough data for supervision during training.

In this paper, we addressed a lack of annotated data pro
blem in surgical domain for the first time by proposing a 
knowledge distillation framework. We tackle a multi-label, 
multi-class detection problem by implementing an end-to- 
end Teacher–Student learning with a multi-class foreground– 
background distance loss. We used strong and weak augmen
tation strategies to improve model robustness and class-wise 
NMS and EMA to improve pseudo label quality. Our experi
ments on m2cai16-tool dataset show the effectiveness of our 
model in terms of mAP on various supervision protocols against 
SOTA semi-supervised models. We also conducted extensive 
ablation experiments to demonstrate the validity of our pro
posed framework.

Endnotes

1. See: http://camma.u-strasbg.fr/datasets
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Figure 5. Box-plots for paired t-test on 1%, 2%, 5% and 10% labelled data setting. Here, the AP_50 scores above 1 are only shown to represent standard deviation in 
the scores.
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