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Abstract

Objective: The aim of this study was to provide a systematic review of studies that investigated the effectiveness
of robot-assisted therapy on ankle motor and function recovery from musculoskeletal or neurologic ankle injuries.

Methods: Thirteen electronic databases of articles published from January, 1980 to June, 2012 were searched using
keywords ‘ankle*’, ‘robot*’, ‘rehabilitat*’ or ‘treat*’ and a free search in Google Scholar based on effects of ankle
rehabilitation robots was also conducted. References listed in relevant publications were further screened.
Eventually, twenty-nine articles were selected for review and they focused on effects of robot-assisted ankle
rehabilitation.

Results: Twenty-nine studies met the inclusion criteria and a total of 164 patients and 24 healthy subjects
participated in these trials. Ankle performance and gait function were the main outcome measures used to assess
the therapeutic effects of robot-assisted ankle rehabilitation. The protocols and therapy treatments were varied,
which made comparison among different studies difficult or impossible. Few comparative trials were conducted
among different devices or control strategies. Moreover, the majority of study designs met levels of evidence that
were no higher than American Academy for Cerebral Palsy (CP) and Developmental Medicine (AACPDM) level IV.
Only one study used a Randomized Control Trial (RCT) approach with the evidence level being II.

Conclusion: All the selected studies showed improvements in terms of ankle performance or gait function after a
period of robot-assisted ankle rehabilitation training. The most effective robot-assisted intervention cannot be
determined due to the lack of universal evaluation criteria for various devices and control strategies. Future research
into the effects of robot-assisted ankle rehabilitation should be carried out based on universal evaluation criteria,
which could determine the most effective method of intervention. It is also essential to conduct trials to analyse
the differences among different devices or control strategies.
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Introduction
Tejima, 2000 [1] The human ankle joint is a very complex
bony structure in the human skeleton and plays a signifi-
cant role in maintaining body balance during ambulation
[1]. In fact, the ankle is the most common site of sprain in-
juries in the human body, with over 23,000 cases esti-
mated to occur per day in the United States [2] and about
100, 000 emergency department presentations per year in
Australia [3]. In New Zealand, more than 82,000 new
claims and 17,200 ongoing claims related to ankle injuries
were made to the Accident Compensation Corporation
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(ACC) in the 2000/01 year, costing an estimated 31.8 mil-
lion New Zealand dollars and making ankle related claims
the fourth biggest cost to ACC [4]. Additionally, neuro-
logic injuries like stroke, traumatic brain and spinal cord
injuries are also leading causes for ankle disabilities. In the
United States, at least 750, 000 incident and recurrent stro-
kes occurred with the prevalence rate being about 200 to
300 patients per 100,000 inhabitants in 1995 [5]. However,
the biggest effect on patients with ankle disabilities and
their family members is usually a result of long-term im-
pairment, limitation of activities and reduced participation.
Traditionally ankle injuries are rehabilitated via physio-

therapy and however evidence suggests that without suf-
ficient rehabilitation: 44% of people will have future
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problems [6,7]; ambulation is markedly compromised;
re-injury prevalence is high; and approximately 38% of
people will have recurrent activity limitations affecting
their function [8]. Furthermore, during a rehabilitation
treatment, cooperative and intensive efforts of therapists
and patients are required over prolonged sessions [9].
Robotics technology can provide an overdue transform-
ation of rehabilitation clinics from labor-intensive opera-
tions to technology-assisted operations as well as a rich
stream of data that can facilitate patient diagnosis, cus-
tomization of the therapy, and maintenance of patient re-
cords (at the clinic and at home) [10]. Thus, robotic
devices have been developed for human ankle rehabilita-
tion by some research groups [11-13]. Currently, there are
mainly two kinds of robot-assisted ankle rehabilitation de-
vices: those that are wearable devices mainly aiming at im-
proving ankle performance during gait and those that are
platform based devices focusing solely on improvement of
ankle performance [14-16].
However, little is known about the effects of robot-

assisted therapy on ankle recovery from disabilities and
the intervention most effective for a specific case. The
purpose of this systematic review was to provide a com-
prehensive investigation and examination of published
evidence on the effectiveness of robot-assisted therapy
used to help human ankles recover from musculoskeletal
or neurologic injuries.

Method
Search strategy
The literature search was limited to English-language arti-
cles (i.e., journal articles, extended abstracts, and conference
proceedings) published between January 1980 and June
2012 in the following electronic databases recommended
by a librarian in Auckland University: PubMed, EMBASE
(Excerpta Medical database), MEDLINE (OvidSP), CDSR
(Cochrane database of systematic reviews), Web of Science,
Scopus, Compendex, IEEE Xplore, ScienceDirect, Wiley
Online Library, Digital Dissertations, Academic Search
Premier, SpringerLink. The electronic search terms were
“‘Ankle*’AND ‘Robot*’AND (‘rehabilitat*’ or ‘treat*’)”. A free
search in Google Scholar was also conducted and valuable
references listed in relevant publications were screened, which
made our search as systematic and complete as possible.
The two primary reviewers (MZ, TCD) were a PHD stu-

dent with expertise in mechatronics system and a senior
lecturer with expertise in assistive technologies of rehabili-
tation, respectively. The third reviewer (SX) was a profes-
sor with expertise in medical robotics, assistive and
rehabilitation robots. Two of reviewers (TCD, SX) hold
doctorates in their respective fields. The initial search was
conducted in thirteen electronic databases by one primary
reviewer (MZ) and the total number of articles identified
was 686. To start with, one primary reviewer (MZ)
assessed all the titles for eligibility using the screening cri-
teria described below. MZ independently assessed all ab-
stracts after the first round screening. Abstracts considered
as meeting the inclusion criteria by MZ were automatically
included in the full review. Otherwise, they were excluded.
Studies one primary reviewer (MZ) was not sure whether
to include or not were discussed by two primary reviewers.
Discrepancies between the two primary reviewers were
resolved through participation from the third reviewer and
discussion among these three reviewers. A search in
Google Scholar was conducted by one primary reviewer
(MZ) based on therapeutic effects of ankle rehabilitation
robots and the references of the included papers were
also screened by MZ for any additional studies. These
studies newly selected were also reviewed.
Twenty-nine studies were included in the final review.

Data extraction was then undertaken. The review con-
centrated on evidence based therapeutic effects of robot-
assisted ankle rehabilitation, design types, levels of
evidence and quality levels of the articles. The sche-
matic overview of selection process with search results is
shown in Figure 1.

Inclusion and exclusion criteria
Robotics was defined as: “The application of electronic,
computerized control systems to mechanical devices
designed to perform human functions [17].” The American
Heritage Dictionary defined a robot as a mechanical device
that sometimes resembled a human and was capable of
performing a variety of often complex human tasks on
command or by being programmed in advance, or a ma-
chine or device that operated automatically or by remote
control [18].
All trials assessing the clinical outcomes of robot-

assisted ankle rehabilitation training were included. These
included participants who sustained any grade of ankle
disabilities caused by musculoskeletal or neurologic injur-
ies. Both male and female participants from athletic and
non-athletic populations were included to allow the gener-
alisation of results to different populations. Papers involv-
ing platform based ankle rehabilitation robots or wearable
ankle rehabilitation robots were included.
However, studies were excluded if participants under-

went ankle surgeries or wore ankle prostheses. Animal
based trials assessing humans and healthy subjects based
trials assessing patients were also excluded. Studies fo-
cusing on the whole lower limb but not related to ankle
recovery were excluded as well. Only English articles
published in peer-reviewed journals or published as con-
ference papers or abstracts were included.

Organization of evidence
The data extraction form used for this study was the crit-
ical review form for quantitative studies developed by the



1408 publications were searched out with PubMed (114), EMBASE (154), MEDLINE (OvidSP) (142), CDSR 
(3), Web of Science (138), Scopus (193), Compendex (142), IEEE Xplore (291), ScienceDirect (59), Wiley 
Online Library (1), Digital Dissertations (45), Academic Search Premier (91), SpringerLink (35).

686 publications were selected from major databases by one reviewer.

159 publications were selected based on titles by one reviewer.
Criteria: Robot and Ankle Rehabilitation.

63 publications were selected based on abstracts by one reviewer. (Some 
studies one reviewer was not sure whether to include or not were discussed 
among three reviewers)
Criteria: Robot and Ankle Rehabilitation

29 publications remained after reading full text by one reviewer and data extraction were conducted by two primary 
reviewer with discrepancies solved through input from the third reviewer.
Criteria: Robot, Ankle Rehabilitation and Effectiveness. 

10 publications were 
selected based on free 
search in Google Scholar 
to check whether or not 
there are new materials 
by one reviewer.
Criteria: Robot, Ankle 
Rehabilitation and 
Effectiveness

722 duplicates

Figure 1 Flow diagram of selection process for final review.

Zhang et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:30 Page 3 of 16
http://www.jneuroengrehab.com/content/10/1/30
Occupational Therapy Evidence-Based Practice Group at
McMaster University, Hamilton, Ontario, Canada [19,20]
provided guidelines for the reviewer to summarize infor-
mation about study purpose, background literature, design
category, sample size, outcome measures, treatment inter-
ventions, results and conclusions. Levels of evidence for
the selected studies were assessed according to guidelines
from AACPDM [21] and were evaluated by the two pri-
mary reviewers.
Results
The search results are summarized in Figure 1. Sixty-three
abstracts appeared to meet the inclusion criteria, and the
associated full articles were obtained through downloading
from electronic databases. Moreover, ten papers that
appeared to meet the inclusion criteria were obtained from
Google Scholar. Sixteen papers were excluded because they
attempted to assess the effects of robot-assisted ankle re-
habilitation devices by setting healthy subjects to partici-
pate the training [22-37]. A further two papers were
excluded because they only validated the feasibility of
robotic devices through simulations [38,39]. Eighteen pa-
pers focusing on the design of ankle rehabilitation robots
without application were also excluded [11-13,40-54]. Four
other papers involved descriptive review about robot-
assisted lower extremity rehabilitation [14-16,55] and they
were excluded. A conference paper [56] with its main con-
tent included in a journal article [13] was excluded; studies
[57] and [58] involved the same patients and the former
was excluded. Both [59] and [60] which focused on a novel
approach to walking therapy were excluded. Another two
studies [61,62] concerning the whole lower limb recovery
but no ankle were excluded. Eventually, 29 papers that still
met the inclusion criteria were selected for this systematic
review [58,63-90]. These studies were carried out to evalu-
ate the therapeutic effects of ankle rehabilitation robots
through participation from related patients.
Study characteristics
A total of 29 original papers, with data from 164 patients
and 24 healthy participants used as control participants
in different studies, met the inclusion criteria after the



Table 1 Reviewed studies of platform based ankle rehabilitation robot

Study Design Subjects Characteristics Age Intervention Measures Outcomes Assumptions

Single Subject Research Designs (SSRD)

M. Girone, 2000 [80] Level V, Case
Study

N = 4 2 patients exhibited
hypermobility
secondary to chronic
ankle instability and
the other 2 presented
with hypomobility as
the sequelae of
fractures

26-81 Rutgers Ankle
prototype

Displacement and
torque

The displacement of the
uninvolved leg was
comparable to normal ROM
at the ankle with five
degrees of dorsiflexion to 45
degrees of plantarflexion and
that of the involved limb
reflects a loss of ROM of −10
degrees of dorsiflexion and
28 degrees of plantarflexion;
The maximum torque
generated by the uninvolved
limb was much larger
(4 ft · lbs. for dorsiflexion and
8 ft · lbs. for plantarflexion)
than that generated by the
involved limb (0.5 ft · lbs. for
dorsiflexion and 4 ft · lbs. for
plantarflexion)

Increase in ROM and ankle
torque can result in
improvements in ankle
performance and gait

J. E. Deutsch, 2001 [83] Level IV, Single
Case Series

N = 3 Musculoskeletal ankle
injuries

14-56 Rutgers ankle
system with a
3-D piloting of
an airplane

ROM, torque
generation capacity
and ankle
mechanical work

Task accuracy improved to
100% for Case 1; a fivefold
increase in ankle power
output for Case 2 and a
three-fold increase for Case
3; both Case 2 and Case 3
reached 100% task accuracy

Improved task accuracy
means improved ankle
performance and gait

J. E. Deutsch, 2001[82] Level IV, Before-
After, Single Case

N = 1 A left cerebral
vascular accident

69 Rutgers ankle
system with a
3-D piloting of
an airplane

Ankle and foot
mobility, force
generation,
coordination and the
ability to walk and
climb stairs

Strength, endurance,task
accuracy, coordination,
walking and stair-climbing
ability improved over six
rehabilitation sessions

Laboratory functional
improvements correlate with
activities of daily life

R. F. Boian, 2002 [90] Level IV, Single
Case Series

N = 3 3 patients with post-
stroke

Mean age: 52 The Rutgers
Ankle with
two video
games

Power and walking
endurance

Increase in power generation
for all motions and walking
endurance increase for one
patient

Increase in power generation
and walking endurance
means improved ankle
performance and gait

R. F. Boian, 2003 [76] Level IV, Single
Case Series

N = 3 2 patients had
normal sensation and
the third had a
decrease with 8/12
on the FM lower
extremity sensory
score

Not stated The second
version of VR-
based ankle
rehabilitation
system

Muscle strength Subject 1 increased strength
in all four muscle groups,
subject 2 in two muscle
groups and subject 3 in
three muscle groups

Increase in ankle muscle
strength means improved
ankle performance

J. E. Deutsch, 2004 [77] Level IV, Single
Case Series

N = 6 Post-stroke 41-81 A robotic
device (the
Rutgers Ankle

Gait and elevation
speed

Gait speed increased 11%
(p = .08) and elevation time
decreased 14% (p = .05); gait

Improved elevation speed
means improvements in
ankle performance and gait
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Table 1 Reviewed studies of platform based ankle rehabilitation robot (Continued)

was the input
to the virtual
environment)

endurance increased 11%;
gait and elevation speed
improved from 0 to 44% and
3 to 33% respectively

R. W. Selles, 2005 [75] Level IV, Single
Case Series

N = 10 spasticity and/or
contracture after
stroke

Mean: 54.6 A feedback-
controlled and
programmed
stretching
device

ROM, muscle
strength, joint
stiffness, joint viscous
damping, reflex
excitability, walking
speed, and subjective
experiences

Significant improvements
were found in the passive
ROM, maximum voluntary
contraction, ankle stiffness,
and comfortable walking
speed

Improved ROM, muscle
strength, joint stiffness, joint
viscous damping, reflex
excitability, walking speed
and subjective experiences
means improved ankle
performance and gait and all
these correlate with activities
of daily life

D. Cioi, 2011 [64] Level IV, Single
Case (ABA)

N = 1 A child with mild
ataxic CP

7 Rutgers Ankle
CP

Impairment, function
and quality of life

Strength, motor control, gait
function, overall function
and qualify of life improved
obviously

Laboratory functional
improvements correlate with
activities of daily life

G. C. Burdea, 2012 [84] Level V, Case
Study

N = 3 3 male children
with CP

7-12 Rutgers Ankle
CP

Impairment, function,
quality of Life and
game performance

Strength, motor control, gait
function, overall function,
qualify of life and game
performance improved
obviously

Laboratory functional
improvements correlate with
activities of daily life; good
game performance means
good ankle performance

Group Research Designs (GRD)

L-Q. Zhang, 2002 [78] Level IV, Before-
After, Case Control

N = 9 5 healthy subjects
and 4 chronic stroke
patients with ankle
contracture and/or
spasticity

All subjects
(36.8 ±12.8),
4 stroke patients
(53.2 ± 7.9)

A custom-
designed joint
stretching
device

ROM, joint stiffness,
viscous damping and
reflex excitability

The passive and active ROM
of the ankle joint increased;
joint stiffness and viscosity
were reduced; reductions in
reflex excitability were also
observed

Increase in ROM, decreased
joint stiffness, viscosity and
reflex excitability will result in
improvements in ankle
performance and gait

J. E. Deutsch, 2007 [88] Level IV, Before-
After (Group
performance)

N = 6 Post-stroke Not stated Rutgers Ankle
prototype
robot with VR

Accuracy of ankle
movement, exercise
duration, training
efficiency,
mechanical power of
ankle and number of
repetitions

All measures improved in
the first three weeks and did
not decrease during the
transition

Improved ankle movement
accuracy, exercise duration,
training efficiency, ankle
power and repetitions mean
improved ankle performance
and gait

K. Homma, 2007 [69] Level IV, Case
Control, Single
Case

N = 5 4 healthy subjects
and a male with
hemiplegia

30-50 A passive
exercise
device for
ankle
dorsiflexion
and
plantarflexion

ROM and pressure
distribution

These improvements were
within the margin of the
measuring error

Improved ROM means
improved ankle performance
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Table 1 Reviewed studies of platform based ankle rehabilitation robot (Continued)

A. Mirelman, 2008 [73] Level II, RCT N = 18 Chronic hemiparesis
after stroke

VR Group: (61.8
± 9.94, 41–75);
Robotic Group:
(61 ± 8.32,
45–71)

Rutgers Ankle
Rehabilitation
System
coupled with
VR VS Rutgers
Ankle
Rehabilitation
System alone

Velocity and distance
walked

Greater changes in velocity
and distance walked were
demonstrated for the group
trained with the robotic
device coupled with the VR
than training with the robot
alone

Improved velocity and
distance walked mean
improved ankle performance
and gait

P. Cordo, 2009 [67] Level IV,
Before-After

N = 11 Patients with post-
stroke and severe
motor disability of
the lower extremity

38-75 AMES
treatment
device for
ankles

Strength, joint
position and motor
function

Strength increased 10% in
most ankles; joint position
improved 10% in all ankles;
motor function improved
significantly

Improved strength, joint
position and motor function
will result in improvements in
ankle performance and gait

Y-N. Wu, 2011 [58] Level IV,
Before-After

N = 12 Children with CP 5-15 and mean
age is 8 years
6 months

A portable
rehabilitation
robot with
computer
game

PROM, AROM,
dorsiflexor and
plantarflexor muscle
strength, selective
control assessment
of the lower
extremity and
functional outcome
measures

Improvements in dorsiflexion
PROM (P = .002), AROM
(P = .02), and dorsiflexor
muscle strength (P = .001);
spasticity of the ankle
musculature was reduced (P
= .01); selective motor
control improved (P = .005);
functionally, participants
improved balance (P = .0025)
and increased walking
distance within 6 minutes
(P = .025)

Improved dorsiflexor ROM
and muscle strength,
decreased ankle spasticity,
improved motor control
improved ankle performance
and gait; laboratory
functional improvements in
terms of balance and
walking distance correlate
with activities of daily life

G. Waldman, 2011 [86] Level IV,
Before-After

N = 8 Stroke survivors 50.4 ± 8.9 A portable
ankle
rehabilitation
robot

Active dorsiflexion
range, dorsiflexor
muscle strength, the
average MAS,
STREAM and Berg
Balance

Active dorsiflexion range and
dorsiflexor muscle strength
improved (p = 0.001 and 0.01,
respectively) as well as the
average MAS, STREAM, Berg
Balance (p = 0.04, 0.03, 0.04)

Improved active dorsiflexion
range, dorsiflexor muscle
strength and the average
MAS, STREAM, Berg Balance
mean improved ankle
performance and gait
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Table 2 Reviewed studies of wearable ankle rehabilitation robot

Study Design Subjects Characteristics Age Intervention Measures Outcomes Assumptions

Single Subject Research Designs (SSRD)

J. Furusho, 2007 [70] Level V, Case
Study

N = 1 A man (case: right
ankle flaccid paralysis;
height: 157 cm; weight:
44 kg)

59 An AFO with
MR brake

Ankle angle, reaction
force and a bending
moment

In swing phase, the subject can
maintain the dorsal flexion and
prevent the drop foot; the subject
can contact ground at heel; at
contact ground, GRF doesn’t lack
smoothness; maximal value of a
bending moment with control is
larger than one without control;
walking cycle is shorter than one
without control

Preventing drop foot in
swing phase and slap
foot at heel strike can
result in gait
improvement

S. Tanida, 2009 [79] Level V, Case
Study

N = 1 A patient of the
Guillain-Barre syndrome
(183 cm and 83.1 kg)

34 I-AFO Ankle joint angle and
reaction force

The foot clearance in the swing
phase was kept effectively by
preventing the drop foot and the
initial contact occurred in the
primary stance phase normally

Preventing drop foot
effectively in swing
phase means good
ankle joint control and
performance

Y. Ren, 2011 [68] Level V, Case
Study

N = 4 Acute post-stroke Not stated A wearable
robot for in-
bed acute
stroke
rehabilitation

Passive and active
biomechanical
properties

Changes of passive and active
biomechanical properties can be
detected

These changes
contribute to ankle
performance and gait

L. W. Forrester,
2011 [66]

Level IV, Single
Case Series

N = 8 Chronic stroke 62.4 ± 10.4 A visually
guided,
impedance
controlled,
ankle robotic
intervention

Ankle ROM, strength,
motor control, and
overground gait
function

Increased target success, faster and
smoother movements, walking
velocity whereas durations of
paretic single support increased
and double support decreased

Improved target
success, movement and
walking velocity
contribute to ankle
performance and they
correlate with activities
of daily life

K. McGehrin, 2012
[65]

Level V, Case
Study

N = 2 Sub-acute stroke Not stated A single
session of
anklebot
training

Ankle motor control Increased targeting accuracy, faster
speed and smoother movements.

Improved target
success, movement and
walking velocity
contribute to ankle
performance and they
correlate with activities
of daily life

Group Research Designs (CRD)

J. A. Blaya, 2004 [63] Level IV, Before-
After

N = 5 2 drop-foot subjects
and 3 normal
participants

62, 62, 66, 67, 67 AAFO Occurrence of slap
foot and swing phase
ankle kinematics

The occurrence of slap foot was
reduced and swing phase ankle
kinematics more closely resembled
normal compared to zero and
constant control schemes

Decreased slap foot
means improved ankle
performance and gait

M. M. Mirbagheri,
2005 [89]

Level IV, Before-
After

N = 5 Incomplete SCI Not stated Robotic-
Assisted
Locomotor
Training

Reflex stiffness, ROM,
peak-velocity, peak-
acceleration

Reflex stiffness was significantly
reduced after training; voluntary
movement of ankle plantarflexion
and dorsiflexion were substantially
improved

Decreased ankle
stiffness and increased
ankle movement mean
improvements in ankle
performance and gait
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Table 2 Reviewed studies of wearable ankle rehabilitation robot (Continued)

G. S. Sawicki,
2006 [71]

Level IV,
Before–After

N = 5 Chronic incomplete SCI 44.6 ± 13.4 PAFO Push-off kinematics
and muscle activation
amplitude

Assistance from PAFO improved
ankle push-off kinematics without
large decreases in muscle
activation

Improvement in push-
off kinematics means
improved gait function

J. Ward, 2010 [87] Level IV, Before-
After, Single
Case Series

N = 3 stroke syndrome 60, 48 and 48 PAFO Robot Assisted Gait Six-minute walk test showed an
increase in distance walked for
subjects 1 and 3

Laboratory functional
improvement in six-
minute walk correlates
with activities of daily
life

L. F. Chin, 2010 [74] Level IV,
Before-After

N = 23 Both inpatients and
outpatients with
mobility problems
secondary to an
acquired brain injury

51 ± 13, 26-68 A robotic-
assisted
locomotor
training
device

Functional
independence
measure (FIM), the
Rivermead Motor
Assessment (RMA)
gross function subscale
and Motricity Index
(MI)

FIM transfer improved (p is less
than 0.05); FIM ambulation
improved (p is less than 0.05); RMA
improved (p is less than 0.05) and
MI of ankle dorsiflexion improved
(p is less than 0.05)

Laboratory functional
improvement correlates
with activities of daily
life

k. A. Shorter,
2011 [81]

Level IV, Case
Control, Single
Case

N = 4 3 nondisabled male
volunteer subjects and
1 male volunteer
subject with a
diagnosis of CES

Nondisabled
volunteer subjects
(26 ± 4) and a
patient (51)

A novel
PPAFO

PPAFO System
performance
characteristics and
functional walking

Data from nondisabled walkers
demonstrated functionality and
data from an impaired walker
demonstrated the ability to
provide functional plantar flexor
assistance

Providing functional
assistance contributes
to ankle rehabilitation

M. M. Mirbagheri,
2011 [72]

Level IV,
Before-After

N = 10 Incomplete SCI Not stated Robotic-
Assisted
Locomotor
Training

Passive stiffness, reflex
stiffness and maximum
voluntary contraction
(MVC)

Reflex stiffness and intrinsic
stiffness was respectively reduced
up to 65% and 60% after
LOKOMAT training; MVCs were
increased up to 93% in ankle
extensors and 180% in ankle
flexors following 4-week training

Decreased ankle
stiffness and increased
ankle movement mean
improvements in ankle
performance and gait

A. Roy, 2011 [85] Level IV, Before-
After Case
Control

N = 14 7 chronic stroke who
had residual
hemiparetic deficits
and an equal number
of age- and sex-
matched nondisabled
control subjects

Stroke subjects:
63.7 ± 10.5, 43–75;
nondisabled
subjects: 56.5 ±
7.5, 50-64

A single
session of
Impedance-
controlled
ankle robot
(anklebot)

Ankle motor control Increased targeting accuracy (21.6
± 8.0 to 31.4 ± 4.8, p = 0.05), higher
angular speeds (mean: 4.7 ± 1.5
degrees/s to 6.5 ± 2.6 degrees/s, p
< 0.01, peak: 42.8 ± 9.0 degrees/s to
45.6 ± 9.4 degrees/s, p = 0.03), and
smoother movements (normalized
jerk: 654.1 ± 103.3 s–2to 537.6 ±
86.7 s–2, p < 0.005, number of
speed peaks: 27.1 ± 5.8 to 23.7 ±
4.1, p < 0.01) while nondisabled
subjects did not make significant
gains except in the number of
successful passages (32.3 ±7.5 to
36.5 ± 6.4, p = 0.006)

Improved target
accuracy, movement
and angular speed
mean improvements in
ankle performance and
gait
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eventual discussion among three reviewers. 16 of these
studies focused on evaluating the therapeutic effects of
platform based ankle rehabilitation devices, as shown in
Table 1. Another 13 papers discussed the therapeutic ef-
fects of wearable ankle rehabilitation robots (three studies
involved anklebot, one was for in-bed ankle rehabilitation
robot, six studies focused on ankle-foot orthoses (AFOs)
and three papers involved a robotic-assisted locomotor
training device partly focused on ankle rehabilitation), as
shown in Table 2. The 164 patients spanned the ages 7
to 81 while the age of 30 patients in six papers
[65,68,76,88,89,91] was not stated. The majority of par-
ticipants sustained ankle disabilities mainly caused by
musculoskeletal injuries and stroke. Additionally, trau-
matic or non-traumatic brain, spinal cord injuries,
Cauda Equine syndrome and Guillain-Barre syndrome
were also key factors for ankle disabilities.
Studies meeting the inclusion criteria were quantitative.

Study designs included one RCT with only 18 participants,
one single case design, nine before-after designs, six single
case series and six case study designs [19]. The remaining
six studies adopted two kinds of designs, specifically,
[69,81] adopted case control design and single case de-
sign, [78,85] applied case control design and before-after
design, [87] adopted a combination of single case series and
before-after design, [82] applied both single case design and
before-after design. [83] contained three case reports. RCTs’
essential feature is a set of clients/subjects are identified
and then randomly allocated to two or more different treat-
ment groups; for single case designs, changes in accessibil-
ity using several types of technology are compared with
baseline data from the same individual using intervention
sequences such as ABA, ABAB, ABACA, or ABCD; single
case series designs involve more than one subject/client but
evaluate pre and post treatment for that individual; before-
after designs allow the evaluator to collect information
about the initial status of a group of clients in terms of the
outcomes of interest and then collect information again
after treatment is received; in case control designs charac-
teristic or situation of interest is compared with a control
group of people who are similar in age, gender and back-
ground; case study designs involved task completion exer-
cises without control group in order to provide descriptive
information about the relationship between a particular
treatment and an outcome of interest [20,21].

Outcome measures
None of the studies involved outcomes classified using the
health dimensions of the World Health Organization’s
International Classification of Functioning, Disability, and
Health [92]. Most studies tested outcomes in terms of either
ankle performance (e.g. ankle strength, ankle range of motion
(ROM) and ankle motor control) [58,64,65,68-71,76,78-
80,83,85,86,88-91] or gait functionality [63,73,74,77,81,87].
Five studies assessed both ankle performance and gait
functionality to verify the effects of robot-assisted ankle re-
habilitation devices [66,67,75,82,84]. One study [69] also
tried to assess the device’s effectiveness through pressure
distribution on the footplate, but whether pressure distri-
bution could be used as an indicator of ankle recovery is
not clear. Two studies [75,80] also considered satisfaction
level of participants as the evaluation criteria.
It is difficult to know how functional improvements in

laboratories correlate with activities of daily life. One study
[93] showed that for people with stroke, the six-minute
walk test was correlated to StepWatch monitor outputs
over three days. However half of the variability in usual
walking performance was not explained by clinical walking
tests, and the study concluded that activity monitoring
should also be included in functional assessments.
Several studies have shown that gait performance is af-

fected by ankle muscle strength (in stroke [94] and spastic
diplegia CP [95]) and ankle joint position [96]. One study
[97] concluded that the isokinetic torques of the paretic
ankle plantar flexors had moderate to high correlations
with gait and stair-climbing speeds. Another [98] revealed
that the dorsiflexors strength was the most important fac-
tor for gait velocity and dynamic spasticity was the most
important determinant for gait spatial symmetry. It also
showed that adequate ankle control during gait was im-
portant for normal gait pattern. To some extent, however,
a functional recovery of gait can be thought of as an indi-
cator of ankle joint functional recovery.

Methodological quality
The level of evidence was based on the AACPDM guide-
lines. 28 studies were conducted with evidence no higher
than level IV. Only one study was designed through
RCT with only 18 participants and thus the evidence
level was II [21].

Research results
The studies were grouped into two general areas based on
the type of devices used for robot-assisted ankle rehabilita-
tion. One was platform based ankle rehabilitation robot,
and the other was wearable ankle rehabilitation robot.

Discussion
Our goal in this systematic review was to identify
research describing the therapeutic effects of ankle re-
habilitation robot. In total, we found 29 studies of robot-
assisted ankle rehabilitation for individuals with any
grade of ankle disability.

Platform based ankle rehabilitation robots
Platform based ankle rehabilitation devices have a fixed
platform and thus cannot be used during gait training
[37]. Parallel mechanisms are typically used for multiple
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degrees of freedom (DOF) systems to reduce the size of
robots. With the exception of the Stewart platform
based device which is capable of six DOF motion, most
researchers have opted for designs which offer two or
three DOF in rotational motion.
A range of platform based devices have been devel-

oped by researchers for the purpose of ankle rehabilita-
tion. They are usually designed to carry out various
ankle rehabilitation exercises such as motion therapy
and muscle strength training. Motion therapy can be di-
vided into passive, active-assist and active exercises, each
requiring a different level of participation from patients,
ranging from no active effort in the passive exercises to
full users driven motion in active exercises. Strength
training on the other hand requires robots to apply a re-
sistive load to impede the users’ movement to improve
muscle strength.
The Rutgers Ankle Rehabilitation System was adopted

in nine studies [64,73,76,77,80,82,83,88,90]. All these
studies except [73] focused on the development and ef-
fects of this ankle rehabilitation system. The study [73]
used an RCT design and showed that a robot Virtual
Reality (VR) system had better outcomes compared with
a robot alone whose improvements were modest and did
not transfer to significant functional or behavioural
changes on the gait of individuals after stroke. Two stud-
ies [77,82] adopted VR Rutgers Ankle to conduct post-
stroke rehabilitation and assessed the effects based on
different criteria. One was gait and elevation speed and
the other was ankle and foot mobility, force generation,
coordination and the ability to walk and climb stairs.
The results indicated that Lower Extremity (LE) rehabili-
tation of a post-stroke individual was promising [82] and
could transfer to improve gait and elevation speed
[77,90] further verified the conclusion in [82] through a
two-month study in which three chronic post-stroke in-
dividuals underwent LE rehabilitation. The second ver-
sion of the Rutgers Ankle robot used in [76] included
VR based ankle rehabilitation with task-level haptic ef-
fects to enhance patients’ experience and alleviate bore-
dom. Results through a single case series design with
three participants indicated that strength capabilities for
some ankle muscles were improved and haptic effects
did not interfere with patients’ ability to use the plat-
form. Cioi, 2011 [64] proposed an updated Rutgers
Ankle CP robot to allow access by youth with CP. It was
concluded that patient function and quality of life im-
proved based on increased ankle strength and motor
control after 36 rehabilitation sessions. Burdea, 2012
[84] further verified the conclusion through test on three
children with CP and wider evaluation criteria. VR based
telerehabilitation consisting of Rutgers Ankle and a lo-
cal PC connected with a remote PC over the internet
was evaluated in [88] through six post-stroke patiens.
Performance in terms of accuracy of ankle movement,
exercise duration and training efficiency, ankle mechan-
ical power and number of repetitions did not decrease
during the transition from the third week to the fourth
week. Two studies [80,83] involved orthopaedic rehabili-
tation using the Rutgers Ankle haptic interface. In [80],
a proof-of-concept patient trial found that this device
can be used for ankle rehabilitation in patients with hy-
per and hypomobile ankles by comparison between the
healthy ankle and the injured ankle. Furthermore, [83]
presented three case reports about rehabilitation of mus-
culoskeletal injuries using the Rutgers Ankle haptic in-
terface. The results showed improvements in ROM, torque
generation capacity and ankle mechanical work over six re-
habilitation sessions. However, the evidence level of these
papers involving Rutgers Ankle was relatively low.
All in all, ankle rehabilitation using VR based Rutgers

Ankle as compared to the Rutgers Ankle Robot alone
was encouraging based on the testing of 45 participants
(a child with CP and 44 with post stroke or varying mus-
culoskeletal ankle injuries). The main effect is likely due
to the alleviation of end-users’ boredom.
Rehabilitation through ankle stretching was conducted

in five studies [58,68,75,78,86]. An intelligent stretching
device was developed in [78] to treat the spastic/
contractured ankles of neurologically impaired patients.
This device stretched the ankle safely to extreme dorsi-
flexion and plantarflexion position where spasticity and
contracture were significant until a specified peak resist-
ance torque was reached and then the ankle was held at
the extreme position for a period of time to let stress re-
laxation occur before it moved to the other extreme pos-
ition. This made the treatment more effective than
existing methods in terms of active and passive ROM,
joint stiffness, viscous damping and reflex excitability in
the sample of spastic patients. Selles, 2005 [75] further
verified the therapeutic effects of the intelligent stret-
ching device through a single case series design and
found improvements with more outcome measures in-
cluding additional muscle strength, walking speed and
subjective experience of the subjects. Waldman, 2011
[86] mentioned a portable robot used for ankle rehabili-
tation after stroke. Each training session in this trial in-
cluded passive stretching under intelligent control and
biofeedback active movement training through motivating
games with the robot providing assistance or resistance as
needed. After 18 training sessions, eight subjects showed
improvements in active dorsiflexion range, dorsiflexion
muscle strength, MAS, STREAM and Berg Balance. These
improvements were still observed six weeks after the study
was completed. Such a device with similar training was
also used for rehabilitation of LE impairments in children
with CP and results demonstrated improvements in joint
biomechanical properties, motor control performance,
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and functional capability in balance and mobility [58]. Al-
though numerous articles have shown significant improve-
ments of ankle performance or gait functionality, the
mode by which this is achieved is unknown. Other types
of trainings have not been compared to game based ro-
botic assistance or resistance during passive stretching
under intelligent control and biofeedback active move-
ment training. Homma, 2007 [69] developed an ankle
dorsiflexion/plantarflexion exercise device with passive
mechanical joint and its effects were evaluated by pressure
distribution on the footplate. Whether pressure distribu-
tion can be used as an indicator of recovery was not clear
and the relation with biological data should be further
investigated.
A novel therapeutic approach (Assisted movement

with enhanced sensation (AMES)) was proposed in [67].
The effects of AMES as a treatment for hemiplegia was
assessed through strength and joint positioning tests as
well as motor function. For 11 subjects with severe LE
motor disability, improvements on most functional tests
were sustained for six months. This strategy appeared
safe and effective in chronic stroke patients. However,
further studies with high level evidence should be
conducted to verify its therapeutic effects.

Wearable ankle rehabilitation robots
Wearable robots known as exoskeleton robots or as
powered orthoses are being developed in contrast to
platform based rehabilitation robots [99]. In this review
wearable ankle rehabilitation robots mainly referred to
wearable anklebot and AFOs. The AFO is a single-joint
orthosis designed to assist and support movements of
the ankle joint. It plays an important role during human
walking. The first AFO was made in the late 1960s [14].
Some original robotic orthoses have been developed
around the world and some trials with patients have
been conducted for assessing their effects.
Three studies [65,66,85] proposed a visually guided,

impedance controlled, seated anklebot intervention for
ankle rehabilitation and corresponding trial designs were
conducted for assessing its effects on the paretic ankle.
This control approach allowed subjects to reach targets
unassisted while automatically tracking their perform-
ance; however, if subjects failed to move their ankles to
reach a target in time, the robot provided assistive ankle
torques [85]. In [65], two sub-acute stroke survivors
performed ankle targeting movements in plantarflexion/
dorsiflexion and inversion/eversion ranges with robotic
assistance-as-needed and improved their ankle motor con-
trol in terms of targeting accuracy, faster speed and smoo-
ther movements. These short-term improvements were
accompanied by changes in EEG power and coherence,
which was possibly useful for the development of more ef-
fective anklebot training that may translate to gains in gait
function. Roy, 2011 [85] evaluated short-term ankle motor
performance in chronic hemiparetic stroke through a
double–arm pilot study with 560 movement repetitions
training only in plantarflexion/dorsiflexion ranges. Statis-
tically significant gains were achieved as indexed by in-
creased targeting accuracy, higher angular speed, smoother
movements and number of speed peaks. Forrester, 2011
[66] adopted a similar training protocol as [85] but with a
different trial design and the purpose focused on effects on
hemiparetic gait after a stroke. Results showed promise for
the use of a modular impedance controlled anklebot in the
treatment of post-stroke hemiparesis, and seated anklebot
training could reduce ankle impairment and improve gait
function. However, whether seated anklebot training with a
task based video game and impedance controller has better
therapeutic effects compared with other ankle rehabilita-
tion robots has not been shown.
Ren, 2011 [68] proposed a wearable robot for in-bed

acute stroke rehabilitation and this device also applied pas-
sive stretching and active movement training through
playing a game. Four patients participating in this trial were
satisfied with this device and the positive changes of active
and passive biomechanical properties were detected.
An active ankle-foot orthosis (AAFO) was developed

in [63] where the impedance of the orthotic joint was
modulated throughout the walking cycle to treat drop-
foot gait. A before-after trial design with two drop-foot
participants and three control subjects showed that a
variable-impedance orthosis might have certain clinical
benefits for the treatment of drop-foot gait compared to
conventional AFO having zero or constant stiffness joint
behaviours. University of Michigan Powered Ankle-foot
orthoses’ (PAFOs’) effects were assessed through five pa-
tients with chronic incomplete spinal cord injury [71]. It
has been shown that mechanical assistance from PAFOs
improved ankle push-off kinematics without substan-
tially reducing muscle activation during walking. Robotic
plantarflexion assistance could be used during gait re-
habilitation without promoting patients passivity. Two
studies [70,79] assessed an intelligent ankle-foot orthosis
(IAFO). In [70], an experiment carried out using the
IAFO with developed Magneto-rheological (MR) brake
and control algorithm demonstrated that drop foot in
swing phase and slap foot at heel strike was prevented in
control participants, which was further confirmed by a
patient with Guillain-Barre Syndrome in [79]. In [87],
the PAFO utilized robotic tendon technology with a sin-
gle DOF resulting in ankle rotation in the sagittal plane.
All participants in that study showed some positive
changes in their key gait variables and these improve-
ments were more dramatic while harnessed and using
a treadmill. A portable powered ankle-foot orthosis
(PPAFO) was proposed in [81] to provide untethered assist-
ance during gait. The PPAFO provided both plantarflexor
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and dorsiflexor torque assistance by way of a bidirectional
pneumatic rotary actuator. Healthy volunteers and a par-
ticipant with a diagnosis of cauda equine syndrome par-
ticipated in this research. Data from healthy walkers
demonstrated functionality, and data from an impaired
walker demonstrated the ability to provide functional
plantarflexor assistance. Significant evidence exists to sup-
port the use of AFOs and however the therapeutic differ-
ences among them should be further investigated.
Two studies [72,89] assessed the effects of robotic-

assisted locomotor training on spasticity and volitional
control of the spastic ankle in persons with incomplete
Spinal Cord Injury (SCI). The results showed this train-
ing was effective in reducing spasticity and improving
volitional control for patients with SCI. Another study
[74] collected data from both inpatients and outpatient
patients with mobility problems secondary to an ac-
quired brain injury, before and after robotic-assisted
locomotor training from September 2008 to May 2009.
It showed significant improvement in ankle dorsiflexion.

Control strategies
Several categories of strategies have been reported, includ-
ing, assistive, challenge-based, haptic simulation, and
coaching for robotic movement training following neuro-
logic injuries [100]. There were several studies that have
examined the effects of various control strategies for
robot-assisted ankle rehabilitation by unimpaired subjects.
Sixteen studies [22-37] were referred for more informa-
tion. All selected studies with clinical evidence showed
positive therapeutic effects for patients with ankle disabil-
ity. Studies like [64,76,77,82,83,90] took challenge-based
robotic therapy control algorithms by providing resistance
to the injured ankle during exercise and haptic simulation
strategies by haptic interfaces for interacting withVR simu-
lation. In [64], an upgrade Rutgers Ankle created a more
powerful reaction force and more accurate direct kinemat-
ics, added inverse kinematics for passive training at the
ankle. Three recent studies [65,66,85] proposed assistance
as needed by a control mechanism applied based on the
error between the target location and the proximity of the
subject’s ankle, as well as the robotic torsional stiffness and
damping [33]. While many studies have demonstrated that
training with different robotic control strategies reduces
motor impairment as assessed with various outcome mea-
sures, only a few studies have found differential benefits of
particular robotic control strategies with respect to other
control strategies. However, which control strategy is more
effective for a certain ankle disability has not been clearly
addressed yet and should be further investigated.

Safety and reliability
Not much attention has been paid to the technologies of
human robot symbiosis to date because almost all robots
have been designed and constructed on the assumption
that the robots are physically separated from humans
[101]. In particular, safety and reliability are the underlying
evaluation criteria for mechanical design, actuation, and
control architectures [102]. Among all selected studies,
eleven studies [63,64,68,69,72,75,76,78,81,89] involved the
safety issue when ankle rehabilitation was conducted on
patients. To ensure user safety during operation, [81] used
an equipment within the manufacturer’s published specifi-
cations. In [76], the interaction between the platform stiff-
ness and the vibrations imposed safety limitations on the
system. ASME device mentioned in [67] was non-invasive
and the relatively small amplitudes of tendon vibration
and movement make it safe to use. In [69], the given
ROM was smaller than the subject’s actual ROM and the
speed was set slow enough to avoid induction of spasticity
for safety reasons. Appropriate procedure of emergency
stop should be further examined since sudden stop may
induce injury of foot. [64] proposed a snowboard foot
binding on the top platform of the robot to allow safe and
easy attachment to the patient’s foot. Two studies [72,89]
involved locomotor training ensured subject safety by an
accessible panic switch and monitored by therapists.
Three other studies [68,75,78] applied velocity control for
the purpose of safety. Specifically, stretching velocity
slowed gradually down with increasing resistance torque
or at the joint extreme positions. Zhang, 2002 [78] also
mentioned the safety screws used as mechanical stop to
restrict the motor ROM and a digital signal processor con-
troller for position limit. However, few studies were
conducted in terms of safety and reliability assessment.
There are only two studies [75,80] whose outcome mea-
sures contained the subjective evaluation of the subjects.
Subjects in [75] showed very postive subjective evaluation
in terms of the comfort of stretching. Participants in [80]
responded favorably to the use of the device and stated
that they would enjoy having this device complementing
their current rehabilitation programs.

Optimal ankle therapy
There is no reason to believe that a “one-size-fits-all” opti-
mal treatment exists [10]. In other words, therapy should
be tailored to each patient’s needs and abilities. Robot-
assisted therapy can be delivered in a variety of ways to re-
duce motor impairment and enhance functional motor
outcomes. For instance, goal-directed therapeutic games
can be designed to address motor impairments including
poor coordination, impaired motor speed or accuracy, and
diminished strength, as well as addressing cognitive or
perceptual impairments [58,64,66,73,76,77,80,82,83,88,90].
Depending on the participant’s impairment, robotic-
assisted treatment can provide passive, active-assistive, ac-
tive, and active-resistive exercises [10]. As with [10], an
optimal therapy could be tailored to each stroke patient
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through a novel performance-based impedance control al-
gorithm. Further investigation is needed to assess its
therapeutic effects.
The question of what is the most appropriate robot-

assisted ankle rehabilitation is not evident. Hogan, 2006
[103] demonstrated the form of therapy may be more im-
portant than its intensity: muscle strengthening offers no
advantage over movement training. Experienced rehabilita-
tion therapists advocated “active assist exercise” or “assist-
ance as needed”, which refers to the principle of helping
the patient perform a movement with the minimal amount
of manual assistance possible [104]. Moreover, [105]
showed neither ankle joint nor the subtalar joints were act-
ing as ideal hinge joints with a fixed axis of rotation and
motion of the foot-shank complex in any direction is the
result of rotations at both the ankle and the subtalar joints.
In detail, the contribution of the ankle joint to dorsiflex-
ion/plantarflexion of the foot-shank complex is larger than
that of the subtalar joint, the contribution of the subtalar
joint to inversion/eversion is larger than that of the ankle
joint, and the ankle and the subtalar joints have an ap-
proximately equal contribution to internal/external rota-
tion movements of the foot-shank complex. Therefore,
robotic movement assistance as needed given in different
rotational directions should base on different joints/axes,
which can be defined as “effective movement assistance
as needed”.

Limitations of this review
An attempt was made to ensure that all studies related
with robot-assisted ankle rehabilitation with any grade of
ankle disability were reviewed. In this review we assumed
that all studies used different patients, but because some
studies were conducted at the same place and at the same
time, we cannot be certain whether only unrelated study
populations were used. However, other research may exist
in which robot or ankle was not identified as a key term
within the article. For instance, some articles about ankle
rehabilitation robots were probably described in terms of
devices and lower extremity/lower limb. Only articles after
1980 were included in this study as robot-assisted ankle
rehabilitation was very limited before then. We included
published conference papers and abstracts as well as full
peer-reviewed papers but did not include abstracts written
in languages other than English or unpublished data.
Some studies may therefore have been excluded on this
basis, leading to potential incomplete search.

Conclusion
Even though a range of robot-assisted ankle rehabilitation
devices and control strategies are available for individuals
with ankle disability, the most effective ankle rehabilitation
device and control algorithm is still vague. This is due to a
lack of universal evaluation criteria with effective outcome
measures. Although using RCTs to assess effects of robots
on ankle outcomes is expensive and time-consuming, so
too are the robots designed to assist.
In terms of control strategies, providing too much as-

sistance has negative consequences [100] and therefore
“effective movement assistance as needed” control strat-
egy is probably encouraging for ankle rehabilitation. Spe-
cifically, that means to assist the participant only as
much as needed according to real-time ankle perform-
ance or systematically reduce its assistance as recovery
progresses. This will be better if combined with VR
designed to be in dynamic accordance with ankle per-
formance. In other words, the VR system should be
updated online automatically as ankle rehabilitation pro-
gresses. However, to achieve dynamic and real-time
ankle rehabilitation level is extremely important for real-
izing “effective movement assistance as needed” control,
which could be realized through dynamically evaluating
ankle stiffness or based on patients’ task accuracy. The
technological challenge in integrating it into VR system
is significant as well.
Few studies have undergone rigorous experimental as-

sessment with high-level evidence. Therefore, higher
level trials like RCTs should be conducted aiming at
assessing the therapeutic effects of robot-assisted ankle
rehabilitation devices and control strategies. These trials
should base on rigorous comparison with each other,
and with simpler, non-robotic conventional therapy in
terms of devices and control strategies. It is also neces-
sary to set up universal evaluation criteria that should
contain systematic and comprehensive outcomes to
evaluate devices and control strategies, including the as-
sessment of end-user comfort, safety and training per-
formance. These evaluation criteria may improve the
consistency of results and facilitate comparisons among
ankle rehabilitation robots.
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