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Abstract 

Biological systems have adapted to environmental constraints and limited resource availability. 
In the present study, we evaluate the algorithm underlying leaf venation (LV) deployment using 
graph theory. We compare the traffic balance, travel and cost efficiency of simply-connected 
LV networks to those of the fan tree and of the spanning tree. We use a Pareto front to show 
that the total length of leaf venations is close to optimal. Then we apply the LV algorithm to 
design transportation networks in the city of Atlanta. Results show that leaf-inspired models 
can perform similarly or better than computer-intensive optimization algorithms in terms of 
network cost and service performance, which could facilitate the design of engineering 
transportation networks. 
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1. Introduction 

 
The seemingly simple problem of connecting a central node 

to a set of spatially scattered points is common to many natural 
and artificial systems of all scales and levels of complexity. 
Despite the differences in the mechanisms that drive network 
deployment, optimality is always sought as the maximum of 
objective functions under environmental constraints. 
Performance metrics are defined a priori by the modeler. A 
complex system can be optimized locally or globally, and 
optima may vary over time due to environmental constraints 
or internal changes such as ageing, growth and demand and 
supply. Complex optimization problems have been addressed 
by nature for millions of years by means of evolution; external 
stimuli trigger adaptation of organisms (and their organs) to 
their environment (constraints) and the competition for 
resources results in increasingly efficient organs, organisms, 
communities and ecosystems over subsequent generations (1–
4).  

In closed environments with a limited availability of 
resources, biological networks constantly adapt to improve 
their efficiency, robustness or flexibility. Principles of 
thermodynamics impose some trade-offs: increased efficiency 
towards a specific function decreases the performance of the 
network in some other manner. In the case of fully connected 
graphs, minimization of the total network length results in a 
simply connected graph, having exactly one unique path 
between every pair of nodes (5). Conversely, dynamic 
environments promote the development of robust and resilient 
networks, capable of overcoming accidents and errors and that 
have a better evolvability, at the expense of an increased 
network cost (6–10). 
 
Organs and tissues develop strategies to optimize flow, 
energy, cost, connectivity and any other characteristic 
pertinent to their function. For instance, circulatory vessels are 
shaped to ensure efficiency and resilience (11); neural arbors 
deploy with minimum distance between cell bodies and 
synaptic partners and minimum network cost (12); plants 
optimize flow from roots to leaves while minimizing the total 
energy cost of their growth (13); root systems follow high 
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hydraulic gradients (3,4,14) and uptake water as they grow, 
which makes the soil-root dynamics highly coupled and non-
linear (15–17). Remarkable optimization strategies were also 
noted in relatively low complexity organisms, including 
fungus (18) and slime mold, a unicellular organism capable of 
achieving continuous optimization of its foraging path 
(19,20). Computational algorithms inspired by slime molds 
were used to aid solving NP-complete problems, such as 
finding Steiner trees (19,21), and to assist the design of 
transportation networks (22–24). Communities have been 
studied extensively through ant colonies, which minimize the 
local cost of their networks (25) to the expense of reduced 
robustness (26). Related research focuses on colony 
organization (27,28), robustness versus efficiency (29) and 
computational optimization algorithms (30). Other animals 
exhibit intrinsic optimization strategies (31,32) in their travel 
and exploration dynamics. 

 
Bio inspiration has been adopted in many disciplines as a 

vector of innovation. For instance, doctors practice surgeries 
with a mosquito-inspired needle (33); cod glycoproteins are 
used in the industry for their antifreeze properties (32); wind 
turbines were optimized by taking inspiration from the 
flippers of humpback whales (34) and mussels inspired the 
fabrication of novel adhesive compounds (35). Engineering 
and natural networks present similarities both in their global 
and local optimization objectives. For instance, water 
networks were designed by solving an NP-complete problem 
using particle-swarm optimization, with a bird-flock inspired 
algorithm (36). Internet networks were optimized with an 
algorithm inspired by slime molds (37). Bus routes were 
calculated based on ants behavior (38).  

 
In this study, we evaluate a leaf venation (LV) algorithm 

for designing bio-inspired infrastructure networks. In Section 
2, we describe an algorithm that models the mechanisms that 
drive LV deployment and we present two reference algorithms 
for benchmarking. In Section 3, we compare the LV algorithm 
to the two reference models by means of a set of topological 
indexes and a Pareto optimality front. In Section 4, we apply 
the LV algorithm to design a transportation network in the 
metropolitan area of the city of Atlanta (GA) and to expand 
the current metropolitan network towards an adjacent 
suburban county. Section 5 presents our conclusions regarding 
the potential of using LV algorithms for infrastructure design. 

 

2. Network algorithms 

 
LVs connect the stem to points distributed on the blade of 

a leaf with minimum length to transport fluids under 
environmental constraints. Similarly, transportation networks 
connect areas with high population or high economic activity 

and are designed to minimize cost and maximize efficiency 
during construction and service life. Based on this analogy, we 
propose to apply an LV algorithm to design a transport 
infrastructure network under the following assumptions: (i) 
The existence of a single source/sink point connected to an 
arbitrary number of attraction/service points; (ii) The absence 
of healing mechanisms that can overcome possible 
disconnections; (iii) The possibility of discretizing the domain 
into nodes that need to be connected (called attraction points 
from now on). In this section, we present leaf venations as 
simply connected networks embedded in a homogeneous 
space at steady state and we compare the performance of the 
LV algorithm to that of two benchmark network algorithms. 

2.1 Leaf venation (LV) 

Plant leaves grow a vascular system of interconnected 
veins, which ensure evapotranspiration and mechanical 
stability (4,39). Leaf venation systems form hierarchical 
networks, usually starting with a main single vein that grows 
from the petiole, followed by secondary branches that start 
from the main vein, and are connected at the same time to 
smaller veins. The latter, called tertiary veins, create paths that 
connect every single stoma to primary and secondary veins 
and therefore permit flow from/to the petiole to the whole leaf 
blade (40). Additionally, tertiary veins form loops in the 
network, adding redundancy to the system so that in case a 
vein is cut, flow paths still exist to reach the entirety of the leaf 
blade; the existence of loops in the network increases its 
overall cost (41). Here, we study cost minimization and thus 
focus on primary and secondary veins. We do not study the 
mechanical stability of the leaf and focus on the mass transport 
function of the LV. 

 
Vein development (42) influences the shape and growth of 

the leaves (43,44). Leaf blade shapes are either simple (with a 
single unit) or compound (with two or more leaflets). Simple 
leaves can be entire, if they have a smooth or slightly toothed 
edge, or lobed, if they have significant indentations that make 
the contour highly non-convex (44). Marginal growth 
characterizes leaves that develop outside of the current blade 
contour whereas diffuse growth refers to blades that stretch 
themselves to increase area (42). In our study, we focus on 
simple, entire leaves that experience no growth; thus, we study 
the case of a relatively unconstrained geometric domain that 
grows outwards (no stretching of existing veins). This 
scenario is congruent with transportation infrastructure 
networks, which are constructed progressively, extending 
from the previous step of the network. 

 
The most accepted algorithm for modelling vein patterns 

formation is based on the canalization hypothesis (45), which 
states that the growth and branching of new veins are 
controlled by the spatial distribution of a signal distributed 
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along the leaf blade. This signal is in large part attributed to a 
growth hormone called auxin. Physical evidence shows that 
auxin sources can be viewed as attraction points discretely 
distributed throughout the blade (46) and numerical LV 
algorithms based on that assumption were validated against 
biological experiments (44). The diameter of the veins obeys 
Murrays law, a power law with exponents that depend on plant 
species (47). 
 

In the present study , we adopt the algorithm proposed by 
Runions (44). The algorithm is described in Figure 1. In this 
implementation, the domain and auxin points (attraction 
points) are fixed at the start of the algorithm, and no new auxin 
point is added over time. Rectangular domains were used, and 
the kill distance was set as 0.5% of the largest dimension of 
the domain. After the LV architecture is obtained, it is 
transformed into an undirected graph, preserving the source, 
branching and attraction points and their connectivity, 
therefore making the edges between nodes straight lines. 

2.2 Benchmark networks 

In the following, let Tl be the network that minimizes each 
objective function. We benchmark the LV algorithm against a 
local optimization algorithm (fan tree), for which Tl is defined 
as the sum of the minimum source-attraction point distances, 
and a global optimization algorithm (Steiner tree), for which 
Tl is the minimum total length of the edges in the network. The 
fan and Steiner trees are constructed to connect a given set of 
points regardless of whether they are source or attraction 
points. The fan tree and the Steiner tree results are then used 
to construct a Pareto optimality front (48). 

2.2.1 Fan Network 

The total length of a network that minimizes each travel 
distance from the source node to an attraction point can be 
expressed as: 

 

𝑇" =$𝑑&

'

&

 

Where 𝑑& represents the distance along the edges from the 
source point to the ith attraction point,		𝑖	 ∈ {1,… , 𝑛}. 

 
The network that minimizes Tl is a fan network (FN), i.e. a 

collection of straight lines from the source to each sink. The 
FN represents a local optimum for each travel distance from 
the source. The nodes of the FN are only the source and the 
attraction point, i.e. there is no branching node. 

2.2.2 Steiner Tree 

A Steiner tree (ST) is a network that connects a set of points 
with the minimum total network length (49–51). Additional 
branching nodes (called Steiner points) can be introduced in 
the system. The global optimization criterion for STs can be 
expressed as: 

 

𝑇" = min4$𝑒&

6

&
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Where 𝑒& represents the length of edge		𝑖	 ∈ {1,… ,𝑚}. Note 

that m designates the number of node-to-node segments in the 
Steiner tree, which comprises nodes other than the source or 
the attraction points (Steiner points). 

 
The basic Euclidean ST problem is in an unconstrained 

domain without obstacles (51). Subsequent advanced 
algorithms that proposed to include obstacles and other 
geometries (54–57) are NP-complete problems, i.e., the 
running time of the algorithm grows exponentially with the 
number of nodes (52,53). In order to circumvent the 
exponential increase of the runtime with the number of nodes, 
heuristics and alternative algorithms have been developed to 

Figure 1. Leaf Venation (LV) pseudo-algorithm, after Runions (44). 
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approximate the solution and/or obtain an initial guess of the 
solution; some of these approaches have taken inspiration 
from bio-inspired systems such as slime mold growth 
algorithms (19,21). In the current implementation, we follow 
the algorithm proposed by Fonseca and collaborators (58) to 
find the Steiner trees, which are then transformed into 
undirected graphs for analysis. 

2.3 Pareto Efficiency 

We analyze the optimality of networks to satisfy: (i) A local 
criterion, to minimize the sum of the travel distances from the 
source/sink point to each attraction point along the edges of 
the network; (ii) A global criterion, to minimize the total 
network length. The Pareto optimality front (48) is an 
optimality line that indicates the smallest sum of individual 
distances that can be obtained for a given total network length.  

 
In order to generate the Pareto front, we create solutions 

that follow a joint optimization objective, which is a linear 
combination between the two optimization criteria evaluated. 
The combination of the objectives is controlled by a parameter 
0 £ a £ 1 ;  when a = 0, the objective reduces to the local 
criterion (Fan Network), while when a = 1, the objective 
reduces to the global criterion (Steiner Tree). 

 
To do so, we use the available plant-inspired greedy 

algorithm developed and implemented by Conn and 
collaborators (13), which constructs near-optimal 
architectures as shown in (12,13,59). The algorithm starts 
from a stem protruding from the source node towards the 
centroid of the attraction points. From there, new branching 
points (and branches) are iteratively tested, choosing the 
branch that minimally increases the value of the objective (a 
function of a). 
 

A network is considered Pareto optimal for the criteria 
tested if it lies along the Pareto front. We hypothesize that LV 
networks optimize one of the optimization criteria tested or a 
combination of both (along the Pareto front). Nevertheless, 
LVs are not only optimized for travel distances and cost, but 
also for other criteria not studied here (13,48) related to 
mechanical stability, genetics, heat transfer among others. 

 

3. Evaluation of optimality 

3.1 Arbitrary networks evaluation 

In order to analyze the underlying optimization 
mechanisms of leaf-inspired algorithms, we generated 
networks that connect a source to randomly distributed sets of 
attraction points in a 2D rectangular domain. The source node 
(petiole of the leaf) was placed at the bottom center of the 

domain (coordinates [0,0]). We tested 50 replicates of 10 
attraction points (auxin points), and 50 replicates of 15 
attraction points. The coordinates of the attraction points were 
uniformly distributed, in the range [-50 50] along the X-axis, 
and in the range [30 200] along the Y-axis. The Y range was 
set to start from 30, to create a distance between the source 
node ([0,0]) and the rest of the nodes, and therefore, enhance 
the tree-like structure of the resulting networks. The networks 
obtained are characterized as undirected graphs, in which the 
nodes correspond to the input points plus the set of branching 
points generated by each one of the algorithms. Figure 2 
shows an example of the obtained networks for a set of 10 
attraction points. 

 

 
Figure 2. Example network topologies: Fan Network (FN), Leaf 
Venation (LV) and Steiner Tree (ST). Results for a set of 10 
random attraction points. 

3.2 Pareto Optimality 

For each of the 100 sets of attraction points (called 
replicates in the following), we generate the LV, the FN, and 
the ST. For each network, the sum of individual travel 
distances from the source to each attraction point along the 
edges of the graph (local index) and the total network length 
(global index) are calculated. To aid visualization, we 
normalize the indexes according to the optimal bounds. The 
FN exhibits the lowest sum of individual travel distances and 
therefore its local index is mapped 0 and its global index set 
as 1; conversely, the ST exhibits the lowest total network 
length and therefore its global index is mapped to 0 and its 
local index set to 1. Then, the indexes of the LV are mapped 
based on the global and local bounds. Figure 3 shows the 
results. The shaded region encloses the Pareto fronts of all the 
replicates, which are also normalized. Contiguous boxplots 
show the variability of the sum of the individual travel 
distances and of the total network length among the 100 LV 
networks. 
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The total network length of the LV networks is close to the 
theoretical minimum (median value of 0.04) with a small 
variability (maximum value 0.11 and minimum value of 0.01). 
On the other hand, the sum of travel distances from the source 
shows high variability, ranging from 0.51 to 2.31 with a 
median of 1.27. This result suggests that the LV algorithm 
seeks to minimize the global network length but does not 
optimize the sum of individual distances to the source. 

 

 
Figure 3.  Normalized Pareto front, for 100 replicates of randomly 
distributed attraction points. Scattered dots correspond to the results 
obtained with the LV algorithm. Adjacent boxplots illustrate the 
variability of the local and global network indexes. 

3.2 Service life performance 

The optimization criteria used to plot the Pareto front are 
related to the initial design of the network. In addition to cost, 
travel path efficiency and load (traffic) balance are also 
important performance metrics of a transport network during 
its service life. In the following section we study the service 
life performance assuming that the capacity (proportional to 
the width of the edges) is homogeneous and fixed for all the 
edges of the graphs. 

3.2.1 Load Balance: Edge congestion 
 
Load or traffic balance is a common measure of service 

performance that has attracted a lot of attention in the field of 
graphs theory (5,60). Depending on the context, the 
interpretation of load distribution has different meanings:  

Congestion:  if the capacity or width of the nodes or edges 
of the network are fixed and/or homogeneous, the system may 
suffer from bottleneck congestion, where the transport 
efficiency is controlled by the most congested link; therefore 
a uniform load distribution is optimal – like in parallel 
computing (61). 

Centrality: if the capacity of the elements of the network is 
not a limitation, the distribution of the traffic load is a measure 

of the node/edge importance inside the network; therefore an 
irregular distribution of load is desired in order to classify or 
identify components in the network – like in social media 
networks (62,63). 

 
A common metric to find the load distribution in a graph is 

the node betweenness centrality (62); it is defined as the 
number of times a given node is part of the shortest path 
between two other nodes of the network, normalized by the 
number of nodes in the graph. In the current analysis, we use 
a slightly modified metric of load balance: we compute the 
load in the edges rather than the nodes, and we consider the 
traffic between every pairwise combination from the set of 
source and attraction nodes (excluding the branching/Steiner 
points). That way, the load balance only stems from the set of 
nodes that is common to all networks. For each of the 
algorithms evaluated in the benchmark, we plot the mean 
value of load balance and the interquartile range (IQR), a 
measure of dispersion that corresponds to the difference 
between the 25th and 75th percentiles of the data. Results are 
shown in Figure 4.  

 
Figure 4. Edge congestion distribution. Vertical values show the 
mean edge congestion for the different networks while the horizontal 
axis shows its variability, in terms of the interquartile range. 

For the current assumption of homogeneous and fixed edge 
capacity, we find that the LV and ST solutions have similar 
values of edge congestion, with median mean values of 0.31 
and 0.37 respectively. Nevertheless, the traffic load is more 
evenly distributed in LVs than in STs: the IQR medians are 
0.24 and 0.33 for LV and ST, respectively. On the other hand, 
the FNs outperform the STs and LVs, with a smaller median 
mean load (0.25) and a perfect load balance (IQR=0) - since 
all the edges are used the same number of times. 
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These results suggest that longer networks are more likely 
to balance traffic, since resources are not limited. But as the 
total network length decreases, the load is concentrated in 
certain edges, causing increased edge congestion. 

3.2.2 Travel path efficiency  
 
Besides load balance, the efficiency of traffic or flow 

during service life depends on the travel distance between 
pairs of nodes. We define travel path efficiency as the ratio 
between the travel distance between two nodes in a network 
and their Euclidean distance in the 2D domain.  

We first evaluate the paths from the source node to each 
attraction point, as shown in Figure 5. We then analyze the 
path efficiency between every pair of nodes (excluding 
branching points), as shown in Figure 6. 

 

 
Figure 5. Travel path efficiency, paths from the source node to the 
attraction points. 

 
Figure 6. Travel path efficiency, paths joining pairs of attraction 
points. 

By definition, the FN algorithm exhibits perfect path 
efficiency from the source, where every path has an efficiency 
of 1 (no dispersion). The LV algorithm outperforms ST both 
in terms of mean value and dispersion: LV median mean 
efficiency and IQR are 1.15 and 0.12, against 1.27 and 0.21 
for the STs. Path efficiency among pairs of nodes cannot be 
optimal for simply connected graphs because edges are used 
in multiple paths. Not surprisingly, FNs have the lowest 
performance in this index, with median mean values from 3.38 
to 10.34, because the load has to travel through the source to 
reach the destination node. The ST algorithm outperforms LV: 
the median mean value is 1.59 for LVs and 1.34 for STs, and 
the median IQR is 0.59 for LVs and 0.29 for STs.  

4.  Proof of concept: transportation networks in 
Atlanta, GA 

Urban transportation networks are designed at minimum 
length (or cost) for optimal path efficiency and traffic balance, 
under land use and budget constraints. Here, we compare the 
performance of the LV algorithm to that of the ST for 
designing transportation networks in the city of Atlanta (GA), 
for which the population density map is available from the 
census of 2010 (60). 

4.1 Atlanta metropolitan area 

 
We start by studying the five most populated counties of 

the metropolitan area of the city (Fulton, Gwinnett, Cobb, 
DeKalb and Clayton), and we compare LV and ST networks 
with a uniform-fixed edge capacity. The metropolitan area of 
Atlanta spans radially from an economic and geographic 
center. The natural center of the city (and the most densely 
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populated area) is downtown, which also concentrates a large 
amount of venues of interest including auditoriums, stadiums, 
touristic sites and business and commercial operations. 
Therefore, we set the source node of the network as the 
location of the actual hub on the railway lines: Five Points 
station in the heart of downtown. 
 The attractions points are population centroids. We 
use a weighted k-means algorithm (61) to calculate the 
position of fifteen attraction points. Each attraction point is the 
weighted centroid of the region that contains the population 
that lives closer to that attraction point than to any other 
attraction point. Figure 7 shows the distribution of the density 
of population by census tract, shown as shaded regions, and 
the attraction points. For context, we also show the actual 
metro system of the city: the MARTA railway. The LV and 
ST networks are shown in Figure 8 and Figure 9, respectively. 
The FN was computed as well to calculate the Pareto 
optimality line.  

 

 
Figure 7. Density of population of the metropolitan area of the city 
of Atlanta (shaded background) and the corresponding fifteen 
population centroids (red dots). MARTA railways network shown in 
red solid lines. 

 
Figure 8. Leaf Venation (LV) network connecting the 15 discrete 
density of population centroids in Metro Atlanta. 

 

Figure 9. Steiner tree, resulting network connecting the 15 discrete 
density of population centroids in Metro Atlanta. 

4.1.1 Pareto optimality 
 
Following the same strategy as that described in Section 

3.2, we build the Pareto front that spans between the FN and 
the ST as shown in Figure 10. 
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Figure 10. Pareto front and LV network for the transportation system 
built in the metropolitan area of Atlanta. 

Results before normalization show that the FN and LV 
networks are respectively 106.7% and 10.53% longer than the 
Steiner tree. The sum of distances from the source is 14.86% 
larger in the LV than in the FN and 25.10% larger in the ST 
than in the FN. The LV thus outperforms the ST for individual 
travel distances. The LV algorithm proves to be close to 
optimal, at a small distance from the Pareto front, with a high 
performance with respect to individual travel distances at the 
expense of network slightly longer than optimal. 

4.1.2 Load balance and travel path efficiency 
 

We measure the load balance following the method explained 
in Section 3.2.1, except that the travel path between every pair 
of nodes is weighted according to the population associated to 
the nodes connected. Every edge that is a part of a travel path 
is assigned half of the total population represented by the two 
nodes that it connects. The total assigned population of an 
edge is the sum of the population assigned to that edge for all 
the paths that the edge is part of. The source node is assigned 
a weight of zero. Once the total congestion is calculated, the 
values are normalized by the total population. Figure 11 shows 
the load balance of the networks. The LV network shows a 
lower mean and interquartile range compared to the ST, 
suggesting that the edge load is slightly more homogeneous in 
the LV.  

 
Figure 11. Load Balance as edge congestion. Edge thickness and 
color are proportional to edge congestion. 

 
The travel path efficiency is evaluated as explained in 

Section 3.2.2. Figure 12 shows the boxplots with the 
distribution of the path efficiency of the networks for both 
conditions. Additionally, Table 1 summarizes the mean and 
IQR values. The distribution of the path efficiency from the 
source shows a small difference between the networks, with 
the LV exhibiting a better travel efficiency than the ST.  On 
the other hand, the distributions of path ratio from all the 
centroids (attraction points and source) are similar for both 
networks, the LV performing slightly better than the ST. 
 

 
Figure 12. Path efficiency for the LV and ST networks in the 
metropolitan area of Atlanta. 

Table 1. Path efficiency distribution, networks in metropolitan area 
of Atlanta. 

Path Ratio 
From Source All Centroids 

Mean IQR Mean IQR 

Leaf Venation 1.16 0.20 1.43 0.38 

Steiner Tree 1.32 0.26 1.45 0.40 
 

4.1.3 Population Served: Buffer method. 
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We now assess the networks in terms of the population that 

they serve. We use the Geographic Information System (GIS) 
to calculate the total number of inhabitants (based on census 
tracts) that are within a distance of 2 km (walking distance) 
from the networks. The area bounded by the offset distance 
from the network is known as the buffer region. The buffer 
method is commonly used to evaluate transportation and 
service networks (64,65).  

 
Figure 13 presents the total population inside the buffer, the 

buffer area and the networks length. The three buffer variables 
exhibit similar trends: the FN reaches the largest population, 
covers the largest area and has the highest network length. The 
LV is in second place and the ST is last. Interestingly, the 
values for the LV metrics are consistently about 10% higher 
than the ones of the ST. Figure 14 shows similar indexes, this 
time normalized by network length or buffer area. The 
population served per unit length shows that the most efficient 
networks are the ST (5,317 hab/km) followed closely by the 
LV (5,248 hab/km – 1.3% difference); the FN reached 3,687 
hab/km – 30.7% difference. The area of the domain served by 
unit length of network is 4.03 km2/m for the ST, 3.99 km2/m 
for the LV (1% difference) and 2.82 km2/m for the FN (30.1% 
difference). 
 

 

 
Figure 13. Indexes of population and area served by deployed 
networks. Metropolitan area of Atlanta. 

 
Figure 14. Normalized indexes of population and area served by 
deployed networks. Metropolitan area of Atlanta. 

Lastly, the population density inside the buffer areas was 
very uniform along the networks, with an average of 1,313 
hab/ km2 and less than 1% difference among networks.  These 
results suggest that even though the resource concentration of 
the domain is the same for all the networks, the ST and the LV 
cover it more efficiently, both in term of area covered and 
population served. The LV reached 10% more area and 
population than the ST, at the price of an increase in network 
length of 10%. 

4.2 Gwinnett County 

Gwinnett county is the second most populated county of the 
metropolitan area of Atlanta and is still not served by any 
railway to this date.  We model the expansion of the MARTA 
railway network with the LV and the ST algorithms. By 
contrast with the modelling exercise presented for the whole 
Atlanta metropolitan area, the network expansion spans from 
a source node that may have a considerable effect on the 
overall urban network. Additionally, the edge capacity is not 
fixed or uniform. 

We first discretize the population map of Gwinnett county 
by calculating the position of five weighted population 
centroids with a weighted k-means algorithm. The source 
node is represented by the current MARTA station that is the 
closest to Gwinnett county. The resulting LV and ST networks 
are shown in Figure 15 and Figure 16, respectively. 
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Figure 15. LV network deployed from the MARTA railway to five 
population centroids in Gwinnett county. 

 
Figure 16. ST network deployed from the MARTA railway to five 
population centroids in Gwinnett County. 

The total length of the LV is 6.1% higher than that of the 
ST (LV: 50.05 km; ST: 47.18 km). Regarding the population 
served, the LV reaches 10% more inhabitants than the ST (LV: 
254,594 hab; ST: 231,496 hab). The area covered by the LV 
is 4.23% higher than the ST. Table 2 summarizes the 
normalized indexes of population/area. We observe that even 
though both networks cover a similar area per unit length of 
network, the LV is more efficient, both in terms of population 
per unit length of network and in terms of total population 
reached. This is because the LV passes through regions with 
an increased density of population. 
 

Table 2. Population and area reached by the LV and ST networks in 
Gwinnett County 

Network 
Population per 

unit length 
[hab/km] 

Area per unit 
length 

[km2/m] 

Population 
Density 

[hab/km2] 
ST 4906.1 4.22 1160 
LV 5086.6 4.15 1225 

  
By contrast with the cases simulated in Subsection 3.2.1 

and 4.1.2, in which networks have edges of homogeneous 
capacity, we now consider that edge capacity is a design 
variable, and that, according to Section 3.2.1, edge capacity 
should be proportional to its traffic load. We assume that the 
cost of each edge of the network is proportional to the product 
of its length by the load going through it (e.g. number of lanes 
multiplied by the length of the road). The total cost of the 
network is calculated as: 

 

𝐶𝑜𝑠𝑡 = 	$𝐶& ∙ 𝐿&

'?

&

 

 
Where Ci is the traffic through the edge (i.e. the edge load, 

calculated as explained in Subsection 4.1.2), Li the segment 
length and nE is the number of network edges. We study the 
change in traffic distribution and network cost as a function of 
the weight (population) of the source node (W0). The influence 
of the source node on the network is proportional to its weight. 
We vary the weight of the source node from zero (similar to 
section 4.1.2) to a maximum value corresponding to the 
population of the four adjacent counties to Gwinnett. The 
population of the adjacent counties is 2,749,889, about 3.1 
times the population of Gwinnett County (889,954).  Figure 
17 shows the traffic distribution for three different W0 values: 
zero, Gwinnet’s population, and the population of the adjacent 
counties. Networks are relatively independent from the rest of 
the railway system for homogeneous traffic loads, while for a 
concentrated load, the traffic is routed to a main vein in the 
neighborhood of the source node.  
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Figure 17. Traffic distribution as a function of source node weight for 
Gwinnett County. Edge thickness and intensity are proportional to 
their load. 

Figure 18 shows the evolution of the total network cost and 
of the cost per unit length of network, as a function of the 
source node weight (W0) normalized by the population of the 
county. Results show that, for networks with low dependency 
on a source node, STs are more cost efficient than LV 
networks. Nevertheless, as networks become more dependent 
on a source node, LV networks outperform STs, yielding a 
lower total cost even though the total network length is always 
higher than the ST. In the current example, both networks have 
the same cost when the weight of the source point corresponds 
to 0.64 times the county’s population. Lastly, it is important to 
mention that regardless of the source node weight, the 
normalized cost per unit length of network is always lower for 
LV networks, and the difference increases with the 
dependency from the source node. 
 

 
Figure 18. Total and unitary network cost as a function of source node 
weight - Gwinnett County. 

5. Conclusion 

Our simulation results show that the total length of LV 
networks is in average 10% larger than that of the minimum 
spanning tree (ST). Traffic distribution is slightly better in 
LVs than in STs, arguably because of LVs have a larger total 
network length. Additionally, LVs exhibit higher efficiency 
building paths from the petiole (source node) to auxin points 
(attraction points) than between pairs of auxin points, which 

is consistent with the natural transport function of a leaf. These 
improvements on traffic distribution and path efficiency are 
achieved at the expense of an increase in total network length. 
This evolutionary trade-off can be studied using Pareto 
optimality in future studies. 

 
The length of LV networks of uniform edge traffic capacity 

spanning from the center of the city of Atlanta towards a set 
of 15 population centroids around its metropolitan area was 
10% higher than the theoretical minimum, with travel 
distances in average 16% higher than the Euclidean distance 
for paths connecting the source node to the attraction points 
(vs 32% for the ST). Distances between attraction nodes were 
in average 43% higher than the Euclidean distance (vs 45% 
for the ST). LV networks thus outperform STs for 
transportation to and from a central node, while keeping the 
total network length and travel distances close to the optimal 
solution. Additionally, LV networks are as efficient as ST in 
terms of area and population reached per unit of network 
length. 

 
A simplified problem of railway expansion was solved 

with the LV and ST algorithms, in which the capacity of the 
edges was proportional to their construction cost. Both 
networks reached a similar population per unit of network 
length (3.5% more population with the LV than the ST). The 
relative weights of the population centroids highly influenced 
the distribution of edges thickness of the network. The traffic 
load was higher for edges adjacent to the source node at which 
the railroad expansion was initiated. The network cost per unit 
of network length was always lower for LVs than STs. The 
cost difference increased with the weight of the central 
(source) node. This means that even though LVs exhibit a 
higher network length, their total cost is lower than that of ST 
for centralized networks. This is an interesting result for the 
development of Atlanta, GA and for the enhancement of the 
transportation networks in many other cities in the world, like 
New-York (NY) or Paris (France). 

 
We conclude that leaf venation algorithms can efficiently 

assist the design of engineered transportation networks. 
Nevertheless, our study was restricted to transport 
optimization and actual engineering design must consider 
other constraints including interference with current 
infrastructure, construction methods and operation limitations. 
We propose that leaf venation - inspired networks can be used 
to establish an initial design that can be refined based on 
environmental and engineering constraints. The advantage of 
using LV algorithms is that they achieve polynomial runtime 
instead of ST algorithms which are NP-complete. LVs are thus 
particularly suitable for determining initial network guesses 
that can then be iteratively optimized. 
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Conclusions of this study can be extended to multiple-
connected networks in which secondary edges form loops. 
Network redundancy increases robustness at the expense of 
network cost. Additionally, LV algorithms can be used on 
continuous domains leveraging the assumption of discrete 
attraction points presented in this study. Lastly, there is an 
opportunity to expand LV algorithms to account for extra 
constraints; for instance, LV algorithms could be used to 
optimize routing or transport algorithms where the cost of the 
network is a complex function considering land cost, edge 
capacity and network tortuosity, rather than just a function of 
the network length. 
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