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Abstract Salt rock is a polycrystalline material of interest for geostorage
because of its low permeability and because of its potential to self-heal by
pressure solution at favorable stress and temperature conditions. It is often
assumed that micro-crack propagation and healing lead to isotropic stiffness
changes. The goal of this study is to check this assumption and to gain a
fundamental understanding of the mechanisms that control the accumulation
of damage and irreversible deformation. Cyclic axial loading tests are per-
formed under a confining pressure of 1 MPa on synthetic salt rock generated
by thermal consolidation. The stress-strain curves and the microstructure im-
ages taken at key stages of the cycles reveal the formation of a complex system
of sliding and wing micro-cracks, the orientation of which is loading dependent.
We interpret the mechanisms that control the coupled evolution of crack fam-
ilies by a discrete wing crack elastoplastic damage (DWCPD) model. Crack
propagation is controlled by Mode I and Mode II fracture mechanics crite-
ria. Sliding “main” cracks grow if a cohesive frictional criterion is met, while
the wing cracks propagate in tension. Displacement jumps at crack faces are
related to the deformation of the rock Representative Elementary Volume
(REV). The DWCPD model can capture the nonlinear stress-strain relation-
ship and the degradation of stiffness during the loading cycles. Simulations
show that micro-cracks occur following two stages: (i) Wing cracks initiate
and main cracks do not propagate; (ii) Wing cracks and main cracks then
propagate simultaneously. Higher friction at the crack faces leads to higher
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strength. With a larger cohesion, salt rock strength increases, damage devel-
opment is delayed and exhibits a stick-slip evolution. At higher confinement,
the initiation of wing cracks is delayed, which results in an increase of strength.
The damage rate is higher in specimens that are damaged prior to compression
than in the ones that are not. The proposed DWCPD model can be extended
to any polycrystalline semi-brittle material, and can be applied to understand
the formation of crack patterns in geostorage facilities.

Keywords Salt rock · cyclic loading · micro-mechanics · wing cracks ·
elastoplactic damage model

List of Symbols
Ψ∗
s Helmholtz free energy of the REV
G∗ Gibbs energy of the REV
−→n ,
−→
l Direction normal to a main crack plane and a wing crack plane

σ, ε Microscopic stress and strain tensors of a Representative Elementary Volume (REV)
σm,σw Stress fields that are applied at main crack faces and wing crack faces
σmn ,σ

m
t Normal stress and the tensor of tangential stress that apply on the faces of the main crack

σml Net tangential stress that applies on the faces of the main crack in the direction l
σwn Normal stress that applies on the faces of the main crack
εm, εw Strain fields on main cracks and wing cracks
εe Elastic strain of the matrix
εed Recoverable strain induced by the loss of stiffness
εE , εp Elastic strain and plastic strain of the REV
tm Traction on a main crack plane
µ, c friction coefficient and cohesion of main cracks
Nm, Bm Normal and frictional indexes of a main crack
βm,γm Volume fraction of the normal displacement jumps and shear displacement jumps of main cracks
so, s1 Normal and shear elastic compliance of cracks−→
T Shear force applies at the faces of the main crack
VREV Actual volume of the REV
Mi Number of cracks in family i
am, aw Crack lengths of main cracks and wing cracks
ρm, ρw Crack densities of main cracks and wing cracks
βw Volume fraction of the normal displacement jumps of wing cracks
Co Elastic stiffness of the matrix
Q Number of main crack families
Nijkl,Tijkl Fourth order tensor operators
fI , fII Crack propagation criteria for Mode I and Mode II
KIc,KIIc Crack toughness for Mode I and Mode II
Ko, σc Constitutive parameters for toughness
Ω Macroscopic damage variable of the REV
Ωm,Ωw Macroscopic damage variable of main cracks and wing cracks
d Trace of Macroscopic damage variable of the REV
fp Plastic yield surface function
g Plastic potential function
q, p, θ Deviatoric stress, mean stress, and Lode’s angle
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J2, J3 The second and third stress invariants
e Cohesion constant of the rock
αp Plastic hardening function
mθ The parameter controlling the effect of Lode’s angle
χ The parameter controlling the effect of damage
η The parameter controlling the boundary of the compressive dilation zone
R The parameter controlling plastic hardening rate
λ, ω Plastic multiplier and the plastic hardening variable
αop, α

m
p The plastic yielding threshold and the maximum of the hardening function

1 Introduction

Salt rock is an attractive host material for geological storage (e.g., CO2 se-
questration, waste isolation, and Compressed air energy storage), due to its
favorable creep properties, low gas permeability, and low porosity (Cosenza
et al., 1999; Kwon and Wilson, 1999; Chan et al., 2001; Zhu and Arson, 2015).
Under typical geotechnical stress conditions, rock energy is dissipated pre-
dominantly by the nucleation and propagation of microscopic cracks. At the
macroscopic scale of a typical salt rock specimen, the occurrence of these mi-
croscopic defects leads to a nonlinear stress-strain relationship, a degradation
of stiffness and a decrease of strength. Continuum Damage Mechanics (CDM)
provides a solid theoretical framework to model the effects microstructure on
the mechanical behavior of a Representative Elementary Volume (REV) (Yuan
and Harrison, 2006; Krajcinovic and Fanella, 1986).

In phenomenological CDM, damage is a macroscopic internal state vari-
able that is introduced in the expression of the free energy and thus influences
the energy dissipation function at the REV scale.The expression of the free
energy of the REV is postulated in such a way that the stress/strain rela-
tionship that derives from it is representative of the behavior of the damaged
material, and also to ensure the symmetry and positivity of the damaged stiff-
ness tensor. When damage increases, it is expected that both stiffness and
strength decrease (Lemaitre and Desmorat, 2005; Chaboche, 1981; Simo and
Ju, 1987). The evolution of damage is controlled by phenomenological driving
forces derived from the thermodynamic potential, often expressed in terms of
stresses and strains, e.g. Mises-equivalent stresses and strains or tensile stresses
and strains (Cicekli et al., 2007; Arson and Gatmiri, 2011). When coupled to
an elasto-plastic framework, CDM can be used to predict the behavior of
semi-brittle materials, including rocks that exhibit a transition from brittle
to ductile behavior (crystal-plastic in the case of salt rock) (Chiarelli et al.,
2003; Hayakawa and Murakami, 1997; Salari et al., 2004). Damage can be a
scalar equivalent to a crack volume fraction, a second-order tensor equivalent
to a crack density tensor, or a higher-order tensor for more complex fabrics. If
cracks do not interact, it is sufficient to formulate the model with the second-
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order crack density tensor to capture stress-induced anisotropy (Kachanov,
1992; Zhu and Arson, 2015; Halm and Dragon, 1996).

In micromechanical CDM, the displacement jumps (opening and sliding)
at crack faces are internal variables that each affect the loss of elastic potential
energy of the REV. Stiffness is obtained by deriving the damaged elastic energy
potential, which yields a direct relationship between micro-crack distributions,
the stiffness tensor and inelastic deformation. Crack closure is automatically
accounted for, which allows one to predict unilateral effects of damage on
stiffness (Budiansky and O’connell, 1976; Pensée et al., 2002). The effect of
microscopic cracks that propagate in Mode I or Mode II in a homogeneous
medium was studied by Gambarotta and Lagomarsino (1993). The develop-
ment of micro-cracks in mixed-mode (e.g. wing cracks) was discussed based
on fracture mechanics principles (Germanovich et al., 1994; Jin and Arson,
2017b).

The effects of pre-existing small cracks on the propagation of a brittle frac-
ture in a solid under compression was first discussed by Griffith (1924), who
indicated that the magnitude of tensile stress increases and opening mode
cracks initiate at the edges of pre-existing small cracks under axial compres-
sion. Following Griffith’s work, wing cracks were then defined as the tensile
cracks that initiate at the tips of defects present in the rock matrix (Bobet
and Einstein, 1998; Lehner and Kachanov, 1996). The evolution of wing cracks
in solids under compression was studied theoretically (Dyskin and Salganik,
1987), experimentally (Bobet, 1998; Germanovich et al., 1994), and numeri-
cally (Scholtès and Donzé, 2012).

In this paper, we couple a micromechanical CDM model and an elasto-
plastic model to explain the formation of complex patterns of pre-existing
cracks and wing cracks that develop in salt upon confined cyclic axial loading,
and to understand the implication of anisotropic damage on stiffness, strength
and deformation. In the following, damage is defined as a crack density tensor,
i.e. as a tensor that represents the volume fraction of cracks in each direction
of space in the REV. Pre-existing cracks are referred to as main cracks. Main
cracks are assumed to be penny-shaped and to propagate in Mode I and Mode
II. Wing cracks are tensile cracks that initiate at the tips of the main cracks.
Typical crack patterns observed in the experiments discussed below are shown
in Figure 1.

In Section 2, we summarize the main observations made during an exten-
sive experimental campaign that consisted in subjecting synthetic salt rock
specimens obtained by thermal consolidation to confined cyclic axial loading,
and in acquiring microstructure images at key stages of the stress path. In
Section 3, we formulate a new model, called discrete wing crack elastoplastic
damage (DWCPD) model, to explain the crack patterns observed. A microme-
chanical approach is proposed to capture the inelastic deformation induced by
microscopic cracks. We explain the expression of the Gibbs free energy, dam-
age criteria and flow rules, for both the main cracks and the wing cracks.
Then, a plastic damage model is introduced to capture the accumulation of
irreversible deformation. In Section 4, the cyclic loading tests are simulated
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with the DWCPD model, and the model is calibrated against the experimental
results. The evolution of damage calculated by the model is commented on in
detail. In Section 5, we discuss the influence of the friction and cohesion param-
eters, the confinement pressure, and the initial damage on the accumulation
of damage and on the stress-strain relationship of salt rock.

2 Confined axial loading tests and microstructure observations

A complete description of the materials, methods, results and interpretations
of the tests conducted on salt rock is provided in Ding et al. (2016, 2017).
Here, we summarize the main results of the experimental campaign in order
to present what we aim to explain by the model presented in the following.

2.1 Materials and methods

The synthetic salt rock specimens used in this study were fabricated through
uniaxial consolidation of reagent grade granular halite at the following con-
ditions: grain size ranges between 0.3-0.355 mm; consolidation temperature
of 150°C; maximum axial stress of 75 MPa; displacement rate of 0.034 mm/s.
After consolidation, the specimen was a right-circular cylinder with a diameter
of 19.75 mm and a length of 42.67 mm, and the bulk porosity of the specimen
was 5.6%. The specimen was kept dry throughout all stages of this study.

The synthetic salt-rock specimens were deformed at room temperature,
at a confining pressure of 1 MPa, and strain rate of 3 × 10−6 s−1 (Figure 2).
Axial and radial strains were measured by two rosette strain gauges of 6.35 mm
gauge length and 350 Ω resistance. Strain gauges were glued at opposing sides
of the specimen, and the two strain measurements were averaged to account
for specimen tilting during deformation tests. Differential force was measured
through an internal force gauge that was in direct contact with specimen
assembly and unaffected by the friction between the loading piston and the
sealing stack. A total of eight unloading-reloading cycles were employed, in
addition to initial loading and final unloading. One unloading-reloading cycle
was applied in the elastic deformation regime. In the subsequent load cycles,
the plastic yielding threshold was reached.

Using repeat experiments, synthetic salt rock specimens before, during, and
at the end of cyclic loading were epoxy-saturated, cut, and polished to make
petrographic sections. In Figure 3(a), the red triangles indicate each of the
loading stages at which a specimen was taken out for analysis. A small sam-
ple of each specimen was then cut out for microstructure observation. These
samples were chemically etched to allow observation of grain-scale features,
including grain boundaries and microcracks. The sectioning and etching pro-
cedures followed the techniques developed by Spiers et al. (1986) with only
minor modifications. Thin section images were taken from the center portion
of the specimen using 20x magnification, and stitched together to allow obser-
vation of more than 100 grains (Figure 2). On the stitched image, salt grain
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boundaries were traced and opening-mode microcracks were interpreted based
on the following two criteria: (i) There is clear separation between two salt
grain boundaries; (ii) The opposing sides of these two salt grain boundaries
match well geometrically, which indicates that they were previously in contact.

2.2 Summary of the results

At room temperature and 1 MPa confining pressure, synthetic salt rock ex-
hibits a ductile mechanical response. The first unloading-reloading cycle nearly
fully overlies the initial loading curve, which indicates dominant elastic behav-
ior, as shown in Figure 3(b). After yielding, the specimen deforms plastically
with slight work hardening. Each unloading cycle is taken to zero differen-
tial stress; subsequent reloading does not produce significant hysteresis. The
specimen behavior first shows slight compaction (positive volumetric strain),
followed by continuous dilation (negative volumetric strain). At the end of the
test, the specimen increases in volume by about 0.6%.

The synthetic salt rock produced from uniaxial consolidation at elevated
temperature shows minor intragranular microcracking. Almost all of these in-
tragranular microcracks are associated with fluid inclusions present in salt
grains. These fluid inclusions are thought to act as stress concentrators and to
promote microcracking. There is no evidence for separation at grain contacts
as all of them are tight, which results from crystal-plastic deformation of salt
grains (Ding et al., 2016). As shown in Figure 4, after cyclic triaxial loading
to an axial strain of 7.3%, grain-boundary cracking becomes the dominant
brittle deformation mechanism. These microcracks exhibit a preferred orien-
tation that is sub-parallel to the axial loading direction. With further cyclic
loading, dilatant grain-boundary microcracks increase in density as well as in
separation. These grain-boundary micro-cracks, represented in red in Figure
4, also display a clear tendency to link with neighboring cracks in the axial
(loading) direction, as can be seen from the red lines oriented vertically that
follow the boundaries of several neighboring grains.

2.3 Interpretation of the results

Below, we propose a model to explain the following observed phenomena:

(i) At room temperature and low confining pressure, grain-boundary micro-
cracking is the dominant brittle deformation mechanism;

(ii) Wing cracks linked to main cracks propagate along grain boundaries;
(iii) Grain-boundary microcracks initiate preferably in the loading direction

and tend to link with increasing deformation;
(iv) Cyclic loading leads to progressive lengthening of linked crack arrays;
(v) Stiffness degradation is related to microscropic intergranular cracks and

grain re-arrangement.
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3 Theoretical formulation of the discrete wing crack elastoplastic
damage (DWCPD) model

3.1 The evolution of main cracks

We consider a Representative Elementary Volume (REV) of salt rock made of a
homogeneous solid matrix that contains a dilute distribution of penny-shaped
cracks, at the tips of which wing cracks propagate. These penny-shaped cracks,
called main cracks in the following, can propagate in Mode I and Mode II. In
Mode II, we postulate that the slipping of a main crack can trigger the Mode
I initiation of wing cracks at its tips, perpendicular to the slipping main crack.
By definition of a dilute distribution, main cracks do not interact mechanically
with each other, i.e. the stress at the faces of a main crack only depends on the
macroscopic stress applied at the boundaries of the REV - not on the stress
at the faces of other main cracks.

We restrict our study to static conditions. Under the assumption that main
cracks do not interact, the traction tm on the faces of the main cracks is induced
by the macroscopic stress (noted σ) applied to the REV (Kachanov, 1982).
Hence, for each main crack (m), we get:

tm = −→n · σ (1)

σmn = σ : (−→n ⊗−→n ) (2)

σmt = σ · −→n − (−→n · σ · −→n ) −→n (3)

where −→n is the direction normal to the main crack plane, σmn is the normal
stress that is applied on the faces of the main crack (compression stress), and
σmt is the tensor of tangential stresses that is applied on the faces of the main
crack (shear stresses), as illustrated in Figure 5.

Here, we introduce a linear frictional crack model (with friction coeffi-
cient µ and cohesion c), in which the main cracks can be subjected to five
deformation mechanisms, listed in Table 1. Nm and Bm are the normal and
frictional indices, respectively. They are introduced in the expressions of the
crack displacements to distinguish the crack propagation micro-mechanisms,
as explained in the following.

In mechanism 1, the main crack opens in pure Mode I, without slipping. In
mechanism 2, the main crack does not propagate: it remains closed, and does
not slip. In mechanism 3, the main crack propagates both in Mode I (tensile
opening) and Mode II (slipping). In mechanisms 4 and 5, the main crack is
under compressive stress, and does not propagate in Mode I. In mechanism
4, past loading history or current large shear stress led to inter-crystal bond
breakage, and the main crack propagates in Mode II, producing frictional shear
strain. In mechanism 5, although inter-crystal bonds are broken, slipping does
not occur, due to the friction induced by the large normal stress on the crack
face. The main crack propagation mechanisms are summarized in Figure 6, in
which main cracks do not slip in the gray region, while slipping of main cracks
occurs in the blue region.
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The deformation induced by main crack development is due to the occur-
rence of displacement discontinuities (so-called jumps) in directions that are
either normal or tangential to the main crack planes. Main cracks of the same
orientation are gathered in families. Since the main cracks are assumed to not
interact, the mechanical behavior of the main cracks is that of cracks that are
embedded in an infinite elastic medium. In the ith family, it is assumed that
all main cracks have the same normal direction −→ni . Main cracks are assumed
to be penny-shaped with radius ami . The volume fraction of the normal dis-
placement jumps βmi and the volume fraction of shear displacement jumps γmi
of the main cracks family i are expressed as follows (Kachanov, 1992; Jin and
Arson, 2017b):

βmi = ρmi soN
m
i σ

m
ni (4)

γmi = ρmi s1B
m
i σ

m
ti (5)

where Nm
i is an index parameter used in the model to control the crack prop-

agation mechanism in the normal direction; Bmi is an index parameter that
controls the frictional mechanism in the tangential direction. Nm

i (respectively,
Bmi ) is zero when the main cracks do not propagate in Mode I (respectively,
do not propagate in Mode II), as explained in Table 1. The main crack density
ρmi is calculated as:

ρmi =
Mi (ami )

3

VREV
(6)

where VREV is the actual volume of the REV and Mi is the number of cracks
in family i. The expressions of elastic compliances so and s1 were established
by Kachanov (1992), as follows:

s0 =
16
(
1− ν2o

)
3Eo

(7)

s1 =
32
(
1− ν2o

)
3 (1− 2νo)Eo

(8)

where Eo and νo are the Young’s modulus and Poisson’s ratio of the infinite
elastic medium. The average strain induced by the displacement jumps of the
main cracks in family i can be then calculated as:

εmi = βmi
−→n i ⊗−→n i +

1

2
(γmi ⊗−→n i +−→n i ⊗ γmi ) (9)

3.2 The development of wing cracks

Based on the literature review presented in the introduction and based on
the observations reported in the previous section, we assume that tensile wing
cracks initiate at the tips of the main cracks that slip. The shear force that
acts on the faces of the main cracks is viewed as the force that drives the
propagation of wing cracks. Since salt rock is a polycrystalline material, and
salt crystals are typically rhomboids, wing cracks are assumed to initiate in
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the direction perpendicular to the main crack plane, as shown in Figure 5.
The net tangential stress that is applied on the faces of the main crack in the

direction
−→
l drives the tensile opening of wing crack planes perpendicular to−→

l .
The propagation of a wing crack is triggered by a tensile force, equal to

the shear force
−→
T i that is applied at the faces of the main crack. The norm of

the latter is calculated as:

Ti = (ami )2πBmi ‖ σmti ‖ (10)

where ami is radius of the main cracks of the ith family and σmti is tangential
stress at the faces of the main cracks of the ith family. Note that if Bmi is equal
to zero, the main crack does not slip, therefore Ti = 0. As illustrated in Figure
7, the normal stress that is applied on the faces of a wing crack of family i is
the sum of the projection of the macroscopic stress on the direction normal to

the wing crack (
−→
li ) and of the tensile stress induced by the main crack shear

force:

σwni =
Ti

awi
2π

+ σ :
(−→
li ⊗

−→
li

)
(11)

Substituting Eq.10 into Eq. 11, we have:

σwni =

(
ami
awi

)2

Bmi ‖ σmti ‖ +σ :
(−→
li ⊗

−→
li

)
(12)

Similar to main cracks, the volume fraction of the normal displacement jumps
of a wing crack is obtained as follows:

βwi = ρwi soσ
w
ni (13)

The strain of the wing cracks in family i is calculated as:

εwi = βwi
−→
l i ⊗

−→
l i (14)

3.3 Micromechanics-based Gibbs free energy

The Helmholtz free energy of the REV (noted Ψ∗
s ) is the sum of the elastic

deformation energy stored in the matrix and of the elastic deformation energy
stored in the displacement jumps of the main cracks and wing cracks. Ψ∗

s is
expressed as follows:

Ψ∗
s =

1

2
εe : Co : εe +

1

2
σm : εm +

1

2
σw : εw (15)

where εe is the elastic strain of the matrix; Co is the elastic stiffness of the
matrix; σm and σw are the stress fields that are applied at the main crack faces
and wing crack faces, respectively. Since the main cracks do not interact and
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the traction stress on the faces of the main crack is induced by the macroscopic
stress applied on the REV, we have:

σm · −→n = σ · −→n (16)

The Legendre transformation allows expressing the free energy in terms of
stress instead of elastic strain. Based on that transformation, the Gibbs free
energy (free enthalpy, G∗) is expressed as:

G∗ = σ : εE − Ψ∗
s (17)

where εE = εe + εw + εm is the REV total elastic strain. Substituting Eq. 9,
Eq. 15, and Eq. 16 into Eq. 17, we have (Jin and Arson, 2017a):

G∗ =
1

2
σ : So : σ +

1

2
σ : εm + σ : εw − 1

2
σw : εw (18)

Distributions of crack orientations appear in the expression of the free
energy by substituting Eq. 9 and Eq. 14 into Eq. 18. The Gibbs energy for Q
main micro-crack families of Q different orientations is obtained as follows:

G∗ =
1

2
σ : So : σ +

1

2

Q∑
i=1

wi{s0ρmi Nm
i (−→n i · σ · −→n i) (−→n i · σ · −→n i)

+ s1ρ
m
i B

m
i [(σ · σ) : −→n i ⊗−→n i − (−→n i · σ · −→n i) (−→n i · σ · −→n i)]

+ 2s0ρ
w
i σ : σwni

−→
l i ⊗

−→
l i − ρwi s0σwni

2} (19)

in which we used Baz̆ant’s discrete integration scheme, with a discrete set of
Q = 74 micro-crack families of 74 distinct crack orientations distributed on
the unit sphere (Bažant and Oh, 1986). The parameters wi are the weight
coefficients for that integration scheme. The total strain of the REV (noted ε)
can be decomposed into the elastic strain εE and the plastic strain εp induced
by the propagation of microscopic cracks, as follows:

ε = εE + εp = εe + εed + εp (20)

where the elastic strain εE is the partial derivative of Gibbs energy with re-
spect to the macroscopic stress applied on the REV:

εE =
∂G∗

∂σ
(21)

εe is the elastic strain of the matrix (which would exist in the absence of
cracks under the given stress), and is determined by the elastic modulus Eo
and Poisson ratio νo:

εe =
1 + νo
Eo

σ − νo
Eo

tr (σ) δ (22)
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εed is the additional recoverable strain induced by the loss of stiffness upon the
development of the micro-cracks. Based on Eq. 18, 20 and 21, εed is expressed
as:

εed =

Q∑
i=1

wiρ
m
i

(
s1B

m
i Ti : σ +

1

2
s1
∂Bmi
∂σ

σ : Ti : σ + s0N
m
i Ni : σ

)

+

Q∑
i=1

wiρ
w
i s0

∂
(
σ : σwni

−→
l i ⊗

−→
l i

)
∂σ

− σwni
∂σwni
∂σ

 (23)

In the equation above, the first term represents the recoverable strain induced
by the propagation of main cracks, while the second term represents the re-
coverable strain induced by the propagation of wing cracks. The fourth order
operators Nijkl and Tijkl are defined as:

Nijkl = ninjnknl (24)

Tijkl =
1

4
(ninkδjl + ninlδjk + njnlδik + njnkδil)− ninjnknl (25)

Nijkl can be thought of as a normal projection operator, and Tijkl, as a tan-
gential projection operator. According to Figure 6, when main cracks deform
under mechanism 4 (pure mode II), ∂Bmi /∂σ in Eq. 23 is calculated by Eq.
26 (below), otherwise, ∂Bmi /∂σ is equal to 0. We have:

∂Bmi
∂σ

=
µ

‖ σmti ‖
∂σmni
∂σ
− µσmni
‖ σmti ‖2

∂ ‖ σmti ‖
∂σ

(26)

in which the effect of friction is accounted for in the first term, and the effect
of cohesion is accounted for in the second term.

3.4 Damage criterion and flow rule

The main cracks propagate if the following criteria are satisfied:

fmIi = σmni
√
πami −KIc (27)

fmIIi = Bmi ‖ σmti ‖
√
πami −KIIc (28)

for Mode I and II, respectively. Kc represents the hardening of crack toughness
(Jin and Arson, 2017a), as shown in Figure 8; it is expressed as a hyperbolic
function, as follows:

Kc =
a3/2

1
Ko

+ a
σc

(29)

in which a is the crack radius (we omitted the indices i and m for clarity). Ko

and σc are constitutive parameters that respectively control the yield point
and the peak stress. The values of Ko and σc in Mode I differ from those in
Mode II.
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Wing cracks are assumed to propagate in Mode I only, according to the fol-
lowing criterion:

fwIi = σwni
√
πawi −KIc (30)

According to the consistency rule, when the damage criterion is reached, the
damage function f is equal to zero and remains equal to zero, i.e. f = 0, df =
0. The equation df = 0 is solved for the radius of cracks of family i, as follows:

dai =
∂f
σ dσ
∂f
∂ai

(31)

in which f is the damage function of the ith crack family. Several damage
mechanisms can be active at the same time for a single crack family, so that
f can denote any of the following criteria: fmIi (main cracks opening in mode
I), fmIIi (main cracks propagating in mode II), fwIi (wing cracks propagating
in mode I). Each crack family comprises one main crack and two wing cracks.
The radius of the main cracks (ami ) is calculated from Equation 31, in which
f = fmIi if the main cracks of the ith family propagate in mode I and f = fmIIi if
they propagate in mode II. The radius of the wing cracks (awi ) is also obtained
from Equation 31, in which f = fwIi. For each crack family, we calculate the
main crack density and the wing crack density by using the following equation:

dρi =
3Mia

2
i

VREV
dai (32)

in which ai = ami for the main crack density and ai = awi for the wing crack
density. The initial radius of the main cracks (amo) is set equal to 0.022 mm,
which is about one tenth of the mean grain size. Note that for each crack
family i, we calculate a main crack density (ρmi ) and a wing crack density
(ρwi ). The macroscopic damage variable of the REV (Ω) is defined as the sum
of the crack density tensors of all crack families, as follows:

Ω =

Q∑
i=1

ρmi
−→n i ⊗−→n i +

Q∑
i=1

ρwi
−→
l i ⊗

−→
l i (33)

3.5 Inelastic deformation

The plastic deformation in Eq. 20 (noted εp) is introduced to account for
the inelastic strain that results from the rearrangement of crystals. A non-
associated plastic flow rule is adopted. The plastic yield surface is a quadratic
function, adopted in former rock mechanics models (Shao et al., 2006):

fp(σ, d, ε
p) = q2h2(θ) + αp(p− e) (34)
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where q is the deviatoric stress; p is the mean stress; e is a constant describing
the cohesion of the rock; αp is the plastic hardening function; h(θ) is a func-
tion of Lode’s angle θ. The yield surface is shown in Figure 9. A simplified
expression of h(θ) can be given as (Van Eekelen, 1980):

h(θ) = 1−mθsin(θ) (35)

sin(θ) = −J3
2

(
3

J2

) 3
2

(36)

where J2 and J3 are the second and third stress invariants, respectively, and
mθ is a material parameter, controlling the effect of Lode’s angle. The plastic
function αp couples damage and plasticity, and depends both on the volumetric
part of the damage tensor (d=tr(Ω)) and on the plastic hardening variable
(noted ωp). The expression of αp is the following:

αp = (1− χd)

[
αop +

(
αmp − αop

) ωp
R+ ωp

]
(37)

in which χ is a scaling parameter which can take any value between 0 and 1:
if χ=0, there is no influence of damage on inelastic hardening; if χ is strictly
positive, inelastic hardening decreases as damage increases, which means that
the rate of inelastic deformation increases with the amount of damage accu-
mulated. αop is the plastic yielding threshold; αmp is the maximum value of the
hardening function; R determines the plastic hardening rate.

The plastic hardening variable ωp is defined as the generalized shear strain:

ω̇p =

√
2

3
ėp : ėp (38)

ep = εp − 1

3
(εp : δ) δ (39)

A damage coupled plastic potential is adopted, as follows (Shao et al., 2006):

g(σ, d) = qh(θ)− (1− χd)η(p− e) (40)

where η is a material parameter, controlling the boundary of the compressive
dilation zone. The increment of plastic strain is calculated as follows:

ε̇p = λ̇
∂g

∂σ
(41)

in which λ̇ is the plastic multiplier. According to the plasticity consistency
rule, λ̇ is a positive scalar, and λ̇fp(σ, d, ε

p) = 0. Substituting Eq. 41 into Eq.
38, we have:

ω̇p = λ̇

√
2

3

{
∂g

∂σ
:
∂g

∂σ
− 1

3

[
tr

(
∂g

∂σ

)]2}
(42)

When the plastic yield criterion is exceeded (fp > 0), the plastic function αp is
first updated by using the consistency rule applied to the plastic yield function
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fp, given in Eq. 34. Then, the plastic hardening variable ωp is obtained from

Eq. 37 using the updated αp. The plastic multiplier λ̇ is then calculated from

Eq. 40 and Eq. 42, with the updated ωp. Substituting λ̇ into Eq. 41, the plastic
strain εp is obtained for the current load step. The resolution algorithm of the
DWCPD model is presented in Figure 10.

4 DWCPD model calibration

We used the stress-strain curves obtained during the confined cyclic axial load-
ing tests presented in Section 2 to calibrate the proposed discrete wing crack
elasto-plastic damage (DWCPD) model. Reloading was done after unloading,
when the differential stress was reduced to 0 MPa. The same confined cyclic
loading tests were performed more than 10 times, and the repeatability of the
test was confirmed. Figure 11 shows the obtained stress-strain curves.

When the differential stress is less than 35 MPa (yielding point), the spec-
imen deforms elastically. Hence, we first calibrated the elastic parameters Eo
and νo by using the linear portion of the first loading cycle, for stresses lower
than 35 MPa. Using data from all the subsequent cycles, we calibrated the
yield parameters (KIc, KIIc, α

o
p, e) and the friction parameters (µ and c) so

as to match the hardening portion of the stress-strain curve after the yield
point. Then, the parameters controlling the ultimate state (σIc, σIIc, and αmp )
were calibrated from the maximum stress in each cycle. The stiffness of the
specimen in each cycle was calculated from the damage parameters KIc, KIIc,
σIc, and σIIc, and compared to the stiffness measured from the unloading part
of the experimental curves, for verification. Lastly, we calibrated the plasticity
parameters χ and η by trial and error, to find the best fit with the residual
strain after each cycle and with the ratio between axial strain and lateral strain
in the experimental stress-strain curve. The calibrated model parameters are
given in Table 2.

According to Figure 11, the yielding, hardening, and stiffness degradation
of salt rock in the cyclic loading test are captured by the DWCPD model. Upon
loading or reloading, cracks propagate only after the differential stress reaches
the maximum differential stress ever reached in the loading history. During
unloading, the magnitude of the differential stress decreases, and the cracks
stop propagating (Eq. 27, Eq. 28, Eq. 30). Based on Eq. 23, the REV stiffness
depends on crack density, which does not evolve upon unloading, leading to
linear unloading paths shown in Figure 11, i.e. the hysteresis is not captured
by the DWCPD model.

The evolution of damage during the cyclic loading tests is shown in Figure
12. The damage tensor is projected on the three directions of space, in which
direction 3 is the loading axis and directions 1 and 2 are the lateral directions.
The axial damage component is noted Ω3: this is the damage that represents
an equivalent crack plane normal to the loading axis. Ω1 and Ω2 are the lateral
damage components, i.e., the equivalent crack planes that contain the loading
axis, as shown in Figure 13. Note that since the experiment is axisymmetric,
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the evolution curves of Ω1 and Ω2 overlap. The total damage Ω presented in
Figure 12(a) is the sum of the main crack damage Ωm (Figure 12(b)) and of
the wing crack damage Ωw (Figure 12(c)).

The evolutions of Ω1 and Ω3 differ, which implies that the specimen ex-
hibits an anisotropic behavior after damage initiation (damage-induced anisotropy).
Results shown in Figure 12 indicate that damage propagates in two phases,
as explained in Figure 14. In Stage 1, under low differential stress (i.e., under
10 MPa), the main crack damage components remain constant, which means
that the main cracks keep their initial radius amo. Main cracks cannot slip,
because of the cohesion and the friction at salt crystal faces. By contrast, wing
cracks start propagating in Mode I when the differential stress is only a few
MPa. This means that the shear stresses that accumulate at the faces of the
main crack leads to the accumulation of tensile stress at the faces of the wing
cracks and triggers the initiation of wing cracks. Since the REV is subjected
to a compression in direction 3, tensile wing crack propagation mostly leads
to lateral damage (Ωw1 and Ωw2). Note that Ωw3 is not zero, since it is cal-
culated as the projection of the 74 wing crack density tensors on direction 3.
In Stage 2, with the increase of differential stress, shear stresses at the faces
of the main cracks reach the Mode II crack propagation threshold. Main crack
tangential displacement jumps are noted. Main cracks start to propagate in
Mode II, and main crack planes with a normal vector close to the direction
perpendicular to the loading direction tend to propagate faster. Main crack
slipping induces additional wing crack tensile opening, predominantly in the
loading direction. As a result, in Stage 2, Ωm3 increases faster than Ωm1 and
Ωm2 and Ωw3 develops faster than Ωw1 and Ωw2 (see Figures 12(b) and 12(c)).
Tensile damage is not observed in main cracks.

5 Sensitivity analyses

5.1 Influence of the friction coefficient and of the cohesion at main crack faces

Main cracks only slip when the magnitude of the shear stress exceeds c+µσmn .
Here, we present a sensitivity analysis of the friction coefficient µ and of the
cohesion c, which both control the amplitude of the tangential displacement
jumps. Triaxial compression tests are simulated with the same confinement
pressure as in the calibration simulations (1 MPa). The elastic, damage, and
plastic parameters are those listed in Table 2. When the axial strain reaches
0.01, we start unloading until the differential stress reduces to 0 MPa.

For the calibrated cohesion c= 4 MPa, we perform simulations with µ equal
to 0, 0.2, and 0.4. Figure 15 shows that a larger friction coefficient leads to
larger specimen (REV) strength, because the friction on the faces of the main
cracks restricts the propagation of the main cracks. With a smaller friction
coefficient, main cracks undergo larger tangential displacement jumps, hence
larger plastic strain εp, which explains the larger residual strains at lower
friction. In specimens with non-zero friction coefficients, crack propagation
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mainly occurs on the main cracks with orientation close to the axial loading
axis (Eq. 3 and Eq. 28). Figure 16 shows that the damage rate is larger for both
main and wing cracks when the friction coefficient is smaller. As in Section
4, the evolution of damage presents two stages, independently of the value
of µ. In Stage 1, wing cracks propagate in Mode I because of the loading
applied at the external boundaries of the specimen, and main cracks do not
slip. Therefore, the evolution of damage is independent from the value of the
friction coefficient. In Stage 2, main cracks propagate in Mode II and wing
cracks rapidly propagate in Mode I. Stage 2 starts at a differential stress of 8
MPa for µ = 0, 12 MPa for µ = 0.2 and 15 MPa for µ = 0.4. Hence, a larger
friction coefficient delays the propagation of the main cracks, which results in
smaller total damage at the end of the unloading phase. For example, when the
axial strain reaches 0.01, the total axial damage of the specimen with µ = 0
is 0.71, while the axial damage of the specimen with µ = 0.4 is only 0.48.

As shown in Figure 16(b), the difference in final axial main crack damage
between the case µ = 0 (Ωm3 = 0.43) and the case µ = 0.2 (Ωm3 = 0.38)
is 0.05, and the difference in final axial main crack damage between the case
µ = 0.2 (Ωm3 = 0.38) and the case µ = 0.4 (Ωm3 = 0.30) is 0.08. With the
increase of µ, the effect of µ on Ωm3 increases. This is because the propagation
of the main cracks is controlled by both cohesion and friction, and therefore,
slipping is predominantly hindered by the cohesion parameter when the fric-
tion parameter is small. As a result, the final main crack damage is not very
sensitive to µ when µ is small.

For the calibrated friction parameter µ = 0.15, we perform simulations
with c equal to 0 MPa, 8 MPa, and 16 MPa (Figure 17). According to Figure
18, the higher the cohesion, the later the development of damage. This was
expected, because a higher cohesion requires a higher stress to break inter-
crystalline bonds. When cohesion is 0 MPa or 8 MPa, the evolution of damage
is smooth. With the increase of differential stress, the resistance to the tan-
gential displacement of the main cracks is only provided by friction, and the
damage curves start to overlay (i.e. the black line and the red line in Figure
18 overlap when the differential stress reaches 30 MPa). For a cohesion of 16
MPa, both main crack damage and wing crack damage accumulate by steps,
suggesting a stick-slip mechanism. This is because when the shear stress at
crack faces exceeds cohesion, inter-crystalline bonds are suddenly broken: a
sudden increase of main cracks’ length occurs, which leads to the rapid prop-
agation of wing cracks and a rapid increase of strain (Figure 17). With a high
cohesion (c= 16 MPa), main crack slipping is hindered and salt rock strength
is increased.

5.2 Influence of the confinement

We now investigate the sensitivity of deformation and damage to the confining
pressure. The constitutive parameters are those obtained after calibration,
as listed in Table 2. Triaxial loading-unloading cycles are simulated with a
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confinement pressure equal to 0 MPa, 5 MPa, and 10 MPa respectively. When
the axial strain of the rock reaches 0.01, unloading begins, until the differential
stress gets to 0. Results are presented in Figures 19 and 20.

According to Figure 19, under a confining pressure of 5 MPa, the stress of
the specimen at 0.01 axial strain is 42.5 MPa, versus 38 MPa without confine-
ment. The residual strain is almost insensitive to the confinement, although we
note that the lateral residual strains increase when the confinement decreases.
This was expected, since the lateral confinement restricts the lateral strains.
When the confinement is low, wing cracks initiate at lower differential stress,
and both wing cracks and main cracks exhibit a greater propagation rate after
initiation. For instance, damage initiates at a differential stress of 0 MPa if
the confining pressure is zero, 3 MPa if the confining pressure is 5 MPa and 9
MPa if the confining pressure is 10 MPa. The final wing crack damage in the
loading direction is 0.26 under no confinement, 0.21 at 5 MPa confinement,
0.19 under 10 MPa confinement. The main cracks start to propagate at a dif-
ferential stress of 10MPa if the confinement is 0 MPa. When the confinement
is 10 MPa, main cracks start propagating at a differential stress of 13 MPa.
At the same differential stress, the main crack damage in the loading direction
increases with the confining pressure. Visually, the damage evolution curve of
the axial damage in the absence of confinement remains on the left side of
the other damage evolution curves. Wing cracks propagate in mode I, which
means that wing cracks propagate if tensile stress develops at their faces. In
the lateral direction, the second term of Equation 11 is negative and increases
in magnitude with the confining pressure. As a result, under high confinement,
the lateral component of the forces that are applied in the direction normal to
the wing cracks decreases. Because the tensile forces normal to the wing cracks
decrease, fewer wing cracks propagate in Mode I under high confinement. In
other words, a high confinement impedes the initiation of wing cracks. As ex-
pected, simulation results indicate that in Stage 1, the initiation of wing cracks
is sensitive to the confinement, with a delayed occurrence of damage at high
confinement. Here, the highest differential stress increases with the confining
pressure. Under high confinement, the initiation of wing cracks is delayed. The
accumulation rate of damage decreases with the confining pressure in the simu-
lated tests. In Stage 2, a high confinement prevents main cracks from slipping.
Thus, under low confinement, main cracks propagate earlier and faster, which
accelerates the propagation of connected wing cracks. A larger confinement
stress induces more slipping and less opening of the main cracks. In all cases,
the main crack damage exceeds the wing crack damage when the axial strain
reaches 0.01.

5.3 Damage evolution with different initial crack distributions

We now study the effect of the initial crack distribution in the specimen on the
response of the specimen to the loading-unloading cycles. Constitutive param-
eters are those listed in Table 2. We first simulate a triaxial extension test, in
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which the axial tensile stress is incrementally increased up to 3 MPa (in direc-
tion 3). Then, we simulate the unloading path from a 3 MPa axial stress to a
0 MPa axial stress. Finally, we simulate a uniaxial compression test by incre-
mentally applying a 0.01 axial strain. The loading path is presented in Figure
21 and the stress vs. strain curve is shown in Figure 22 (O-A-B-C-D). Dur-
ing the triaxial extension (OA), damage accumulates in the specimen. Elastic
unloading is represented by A-B. The response to the subsequent compressive
loading (B-C-D) is compared to the response of a specimen that is not sub-
jected to triaxial extension prior to the compression (O-C’-D’). As expected,
the total accumulated damage obtained in the pre-damaged (deformed) spec-
imen is larger than that in the undeformed specimen, and this difference is
due to the larger main crack density developed in the pre-damaged specimen.
The strength of the pre-damaged specimen is also lower than that of the unde-
formed specimen, which is consistent with observations and models reported
in (Hoek et al., 1966; Hawkes and Mellor, 1970).

During the triaxial extension phase (O-A), main cracks propagate in Mode
I, predominantly in the loading direction (direction 3). Slight slipping is ob-
served in the main cracks close to the lateral direction. During the uniaxial
unloading phase (A-B), cracks do not propagate. During the uniaxial com-
pression phase (B-C), main cracks only propagate in Mode II. Main cracks are
now longer than the initial main cracks of the undeformed specimen.

With the increase of compressive axial stress, main cracks propagate in
both the undeformed and the pre-damaged specimen, and at the end of the
test, the average main crack length is larger in the pre-damaged specimen.
The difference between B-C and O-C’ in Figure 23(b) is in fact due to the
formation of Mode I main crack planes orthogonal to the loading axis during
the triaxial extension loading phase (OA), applied to create “pre-damage”. In
the pre-damaged specimen, very large compressive axial stress is needed to
generate a tangential stress component large enough to trigger the slipping
of the main crack planes that are nearly orthogonal to the loading direction
3. This is because the toughness of the main cracks increases with the main
crack radius (Eq. 29). The growth rate of the radius of the main cracks in
the pre-damaged specimen is slower than that in the undeformed specimen.
As a result, when compressive axial stress increases, O-C’ gets closer to B-C
in Figure 23(b), but the main crack damage in the pre-damaged specimen is
always larger than that in the undeformed specimen. Since the development of
wing cracks is controlled by the main cracks, the propagation of wing cracks
is delayed whenever main crack propagation is delayed.

During phase O-A-B, only tensile cracks propagate. Wing cracks do not
propagate. Stage 1 starts after point B is reached. During stage 1, main cracks
do not propagate and wing cracks propagate. We observe that wing cracks
propagate faster in pre-damaged specimens (Figure 23(c)). This is because
main cracks are longer in the pre-damaged specimens (Eq. 10, Eq.11, and Eq.
30). In Stage 2, the propagation of wing cracks is dominated by the propagation
of main cracks, and the difference of wing cracks radius between the pre-
damaged and undeformed specimens decreases.
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6 Conclusion

Cyclic axial loading tests were performed under a confining pressure of 1 MPa
on synthetic salt rock generated by thermal consolidation. The stress-strain
curves and the microstructure images taken at key stages of the cycles revealed
the formation of a complex system of main and wing micro-cracks, the orien-
tation of which was loading dependent. We formulated a discrete wing crack
elastoplastic damage (DWCPD) model to interpret the mechanisms that con-
trol the coupled evolution of crack families in salt rock under confined cyclic
loading. The macroscopic stress-strain relationship is coupled to the evolu-
tion law of damage accumulated by main micro-cracks and associated wing
cracks. Wing cracks propagate in Mode I due to shear stress that accumulates
at the faces of main cracks. The expression of the REV Gibbs free energy is
given as a function of the displacement jumps of the main cracks and of the
wing cracks. A plastic potential, coupled to the damage induced by the micro-
cracks, is introduced to account for the development of irreversible strains.
A frictional cohesive model is proposed for the main cracks, which propagate
in both Mode I and Mode II. We calibrated the proposed model against the
stress-strain curves of the cyclic loading-unloading cycles performed in the
laboratory, and we showed that the DWCPD model can successfully capture
stiffness degradation, strength reduction and irreversible strain accumulation.

Sensitivity analyses indicate that rock strength decreases when the friction
coefficient or the cohesion of the faces of the main cracks decreases, when the
confining pressure decreases or when the specimen contains a greater volume
fraction of cracks prior to loading. Larger inelastic deformation is observed
for lower friction or lower confinement. With a larger cohesion, damage de-
velopment is delayed and exhibits a stick-slip evolution. In the example case
treated in this paper, initial cracks did not seem to influence the final irre-
versible strains accumulated, because the initial cracks that had developed
in triaxial extension had closed under the compression loading phase. Dam-
age accumulated at a higher rate in specimens that were damaged prior to
compression than in the ones that were not.

Interestingly, the simulations showed that micro-cracks occur following two
stages: (i) Wing cracks initiate and main cracks do not propagate; (ii) Wing
cracks and main cracks then propagate simultaneously. Higher friction at the
crack faces leads to higher strength. At higher confinement, the initiation of
wing cracks is delayed, which results in an increase of strength. Another im-
portant outcome of this research work is the demonstration that salt rock
develops damage-induced anisotropy. This is an important finding, because
the majority of the constitutive models of salt rock used in geotechnical engi-
neering and in the mining industry assume that micro-crack propagation and
healing lead to isotropic stiffness changes.
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Table 1 Deformation modes of main cracks.

Mechanism σmn ‖ σmt ‖ Nm Bm

1 ≥ 0 < c and has never exceeded c during the loading history 1 0
2 < 0 < c and has never exceeded c during the loading history 0 0
3 ≥ 0 ≥ c or has exceeded c during the loading history 1 1
4 < 0 ≥ c or has exceeded c during the loading history; ‖ σmt ‖ +µσmn > 0 0 1 + µσmn / ‖ σmti ‖
5 < 0 ≥ c or has exceeded c during the loading history; ‖ σmt ‖ +µσmn < 0 0 0
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Table 2 DWCPD model parameters, calibrated against the cyclic triaxial test.

Elasticity Plasticity
Eo νo e χ R αop αmp mθ η
GPa − MPa − − MPa MPa − −
21 0.32 4 0.5 3.07× 10−3 20.25 490 0 −0.79

Friction Damage
c µ KIc KIIc σIc σIIc
MPa − MPa/mm MPa/mm MPa MPa
4 0.15 80 344 100 319
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List of Figures
Figure 1 Simplified crack patterns for main cracks and wing cracks.
Figure 2 Schematic diagram of the cyclic loading tests (adapted after Ding
(2019)). The diameter of the cylinder specimen was 19.75 mm, and its length
was 42.67 mm. The bulk porosity of the specimen was 5.6%. The specimen
was deformed at room temperature, at a confining pressure of 1 MPa, and was
kept dry during the cyclic loading tests. The axial strain rate was 3 × 10−6

s−1. Drawing not to scale.
Figure 3 Stress-strain curve obtained during the confined cyclic triaxial tests.
Eight cycles were performed in the triaxial tests. The microscopic images were
acquired at the end of each cycle, noted as red triangles. The first loading-
unloading cycle nearly fully overlies.
Figure 4 Microstructure of experimentally-deformed, granular salt rock after
7.3% axial strain (adapted after Ding et al. (2017)). The red color indicates
the presence of boundary cracks.
Figure 5 Schematic of the mechanisms of the main crack and the wing cracks.
σmn is the normal stress that is applied on the faces of the main crack (com-
pression stress), and σmt is the tensor of tangential stresses that apply on the
faces of the main crack (shear stresses). σml is the net tangential stress that
is applied on the faces of the main crack in the direction l. Note: the sketch
gives a 2D view, but the proposed model is in 3D.
Figure 6 The mechanisms of main crack propagation. Gray region: no slip-
ping. Blue region: slipping. Mechanism 1: pure Mode I. Mechanism 3: modes
I and II. Mechanism 4: pure Mode II. Mechanisms 2 and 5: no propagation. µ
is the friction coefficient and c is the cohesion of the main crack faces.
Figure 7 Schematic of the mechanisms of the the wing cracks. T is the tensile
force that trigger the opening of the wing crack. σ is the macroscopic stress.
The projection of the macroscopic stress on the direction normal to the wing

crack can be determined as σ :
(−→
l ⊗
−→
l
)

.

Figure 8 The hyperbolic hardening of the crack toughness used in the DWCPD
model.
Figure 9 Yield surface presented in p−q−αp space. The cohesion is set to be
4 MPa, and the material parameter mθ is 0. αp increases with the development
of plasticity.
Figure 10 Resolution algorithm of DWCPD model.
Figure 11 Stress-strain curve obtained during the confined cyclic triaxial
tests: experimental results vs. DWCPD model predictions.
Figure 12 Evolution of damage during the triaxial cyclic tests (calibration of
the DWCPD model).
Figure 13 Components of the damage tensor in the three directions. All crack
families are projected onto three orthogonal directions of space.
Figure 14 Damage propagation process: (1) Wing crack tensile opening; (2)
Main crack slipping, inducing additional wing crack opening. The blue arrows
indicate the loading direction.
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Figure 15 Stress-strain curves showing the influence of the friction coefficient
µ at main crack faces under a confinement pressure 1 MPa, for a cohesion of
4 MPa (calibrated value). A larger friction coefficient µ enhances the strength
of specimen.
Figure 16 Damage evolution curves showing the influence of the friction co-
efficient µ at main crack faces under a confinement pressure 1 MPa, for a
cohesion of 4 MPa (calibrated value). The decrease of friction coefficient ac-
celerates the propagation of both main cracks and wing cracks.
Figure 17 Stress-strain curves showing the influence of the cohesion c at main
crack faces under a confinement pressure 1 MPa, for a friction coefficient of
0.15 (calibrated value). When the cohesion is larger than 8 MPa, the strength
of the specimen is enhanced by cohesion.
Figure 18 Damage evolution curves showing the influence of the cohesion c
at main crack faces under a confinement pressure 1 MPa, for a friction coef-
ficient of 0.15 (calibrated value). Larger cohesion decelerates the propagation
of main cracks and postone the initiation of wing cracks. When the cohesion
is small (i.e. less than 8 MPa), the propagation microcracks is less sensitive to
cohesion.
Figure 19 Stress-strain curves showing the influence of the confinement p, for
a cohesion of 4 MPa and a friction coefficient of 0.15 (calibrated value). Larger
confinement enhances the strength of specimen.
Figure 20 Damage evolution curves showing the influence of the confinement
p, for a cohesion of 4 MPa and a friction coefficient of 0.15 (calibrated value).
The increase of confinement decelerates the propagation of both main cracks
and wing cracks. The propagation of wing cracks is more sensitive to the con-
finement of specimen than that of main cracks.
Figure 21 Stress paths simulated to study the influence of size of pre-existing
cracks. The compression stress is noted as positive stress. The initial condition
O is the isotropic compression. OA presents the triaxial extension phase with
maximum tensile stress 3 MPa. AB is the unloading phase. BC is the triax-
ial compression phase with maximum axial strain 0.01. CD it the unloading
phase.
Figure 22 Stress-strain curve - pre-damaged (deformed) vs. undeformed (non-
pre-damaged) salt rock. The strength of the pre-damaged specimen is lower
than that of the undeformed specimen.
Figure 23 Damage evolution - pre-damaged (deformed) vs. undeformed (non-
pre-damaged) salt rock. Main cracks propagate in main cracks propagate dur-
ing the triaxial extension phase (O-A). In stage 1, the wing cracks in pre-
damaged specimen propagate faster. In stage 2, the difference of wing cracks
radius in pre-damaged specimen and undeformed specimen decreases.
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(a) Realistic crack pattern. (b) Schematic crack pattern.

Fig. 1 Simplified crack patterns for main cracks and wing cracks.
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Fig. 2 Schematic diagram of the cyclic loading tests (adapted after Ding (2019)). The
diameter of the cylinder specimen was 19.75 mm, and its length was 42.67 mm. The bulk
porosity of the specimen was 5.6%. The specimen was deformed at room temperature, at
a confining pressure of 1 MPa, and was kept dry during the cyclic loading tests. The axial
strain rate was 3× 10−6 s−1. Drawing not to scale.
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(a) The confined cyclic triaxial tests.
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Fig. 3 Stress-strain curve obtained during the confined cyclic triaxial tests. Eight cycles
were performed in the triaxial tests. The microscopic images were acquired at the end of
each cycle, noted as red triangles. In the first cycle, the loading and unloading curves nearly
fully overly.
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Fig. 4 Microstructure of experimentally-deformed, granular salt rock after 7.3% axial strain
(adapted after Ding et al. (2017)). The red color indicates the presence of boundary cracks.
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Fig. 5 Schematic of the mechanisms of the main crack and the wing cracks. σmn is the
normal stress that is applied on the faces of the main crack (compression stress), and σmt
is the tensor of tangential stresses that are applied on the faces of the main crack (shear
stresses). σml is the net tangential stress that is applied on the faces of the main crack in
the direction l. Note: the sketch gives a 2D view, but the proposed model is in 3D.
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Fig. 6 The mechanisms of main crack propagation. Gray region: no slipping. Blue region:
slipping. Mechanism 1: pure Mode I. Mechanism 3: modes I and II. Mechanism 4: pure Mode
II. Mechanisms 2 and 5: no propagation. µ is the friction coefficient and c is the cohesion of
the main crack faces.
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Fig. 7 Schematic of the mechanisms at the faces of the wing cracks. T is the tensile force
that triggers the opening of the wing crack. σ is the macroscopic stress. The projection of the

macroscopic stress on the direction normal to the wing crack is calculated as σ :
(−→
l ⊗
−→
l
)

.
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Fig. 8 The hyperbolic hardening model of crack toughness used in the DWCPD model.
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Fig. 9 Yield surface represented in p − q − αp space. In this plot, the cohesion is set to 4
MPa, and the material parameter mθ is 0. αp increases with the development of plasticity.
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Fig. 10 Resolution algorithm of the DWCPD model.
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Fig. 11 Stress-strain curve obtained during the confined cyclic triaxial tests: experimental
results vs. DWCPD model predictions (calibration simulations).
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Fig. 12 Evolution of damage during the triaxial cyclic tests (calibration of the DWCPD
model).
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(a) Cracks in unit sphere (b) Damage variable in unit sphere

Fig. 13 Visual definition of the damage tensor. All crack families are projected onto the
three orthogonal directions of space, direction 3 being the loading direction. The components
of the damage tensor can be understood as three equivalent crack planes orthogonal to the
three directions of space.



Mechanisms of anisotropy in salt rock upon micro-crack propagation 41

(a) Stage one (b) Stage two

Fig. 14 Damage propagation process: (1) Wing crack tensile opening; (2) Main crack slip-
ping, inducing additional wing crack opening. The blue arrows indicate the loading direction.
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Fig. 15 Stress-strain curves showing the influence of the friction coefficient µ at main crack
faces under a confinement pressure 1 MPa, for a cohesion of 4 MPa (calibrated value). A
larger friction coefficient µ enhances the strength of specimen.
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Fig. 16 Damage evolution curves showing the influence of the friction coefficient µ at main
crack faces under a confinement pressure 1 MPa, for a cohesion of 4 MPa (calibrated value).
The decrease of friction coefficient enhances the increasing rate of damage induced by both
main cracks and wing cracks.
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Fig. 17 Stress-strain curves showing the influence of the cohesion c at main crack faces
under a confinement pressure 1 MPa, for a friction coefficient of 0.15 (calibrated value).
When the cohesion is larger than 8 MPa, the strength of the specimen is enhanced by
cohesion.



Mechanisms of anisotropy in salt rock upon micro-crack propagation 45

0 10 20 30 40 50 60

Differential stress (MPa)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3
c=0 MPa

c=8 MPa

c=16 MPa

(a) Total damage

0 10 20 30 40 50 60

Differential stress (MPa)

0

0.1

0.2

0.3

0.4

0.5

m
3

c=0 MPa

c=8 MPa

c=16 MPa

(b) Main crack damage

0 10 20 30 40 50 60

Differential stress (MPa)

0

0.1

0.2

0.3

0.4

0.5

w
3

c=0 MPa

c=8 MPa

c=16 MPa

(c) Wing crack damage

Fig. 18 Damage evolution curves showing the influence of the cohesion c at main crack
faces under a confinement pressure 1 MPa, for a friction coefficient of 0.15 (calibrated value).
Larger cohesion reduces the increasing rate of damage induced by main cracks and post-
pones the initiation of wing cracks. When the cohesion is small (i.e. less than 8 MPa), the
propagation microcracks is less sensitive to cohesion.
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Fig. 19 Stress-strain curves showing the influence of the confinement p, for a cohesion of
4 MPa and a friction coefficient of 0.15 (calibrated value). Larger confinement enhances the
strength of specimen.
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Fig. 20 Damage evolution curves showing the influence of the confinement p, for a cohesion
of 4 MPa and a friction coefficient of 0.15 (calibrated value). The increase of confinement
reduces the increasing rate of damage induced by both main cracks and wing cracks. The
propagation of wing cracks is more sensitive to the confinement of the specimen than the
propagation of main cracks.
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(a) Initial isotropic compres-
sion (O)

(b) Triaxial extension (OA) (c) Unloading (AB)

(d) Uniaxial compression
(BC)

(e) Unloading (CD)

Fig. 21 Stress paths simulated to study the influence of pre-existing cracks. Compression
stress is counted positive. The initial condition O is the isotropic compression (zero differ-
ential stress in the loading direction). OA represents the triaxial extension phase with a
maximum tensile differential stress of 3 MPa. AB is the unloading phase. BC is the triaxial
compression phase with a maximum axial strain of 0.01. CD is the unloading phase.
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Fig. 22 Stress-strain curve - pre-damaged (deformed) vs. undeformed (non-pre-damaged)
salt rock. The strength of the pre-damaged specimen is lower than that of the undeformed
specimen.
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(a) Total damage

(b) Main crack damage (c) Wing crack damage

Fig. 23 Damage evolution - pre-damaged (deformed) vs. undeformed (non-pre-damaged)
salt rock. Main cracks propagate during the triaxial extension phase (O-A). In stage 1, the
wing cracks in pre-damaged specimen propagate faster. In stage 2, the difference of wing
cracks radius in pre-damaged specimen and undeformed specimen decreases.


