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Abstract—Accurate predicting the remaining range of 

electric motorcycles (EMs) is important to help optimizing the 

energy consumption and improving the utilization of remaining 

energy in the batteries and therefore extending their life. In this 

paper, a range estimation strategy is developed to estimate the 

elapsed travel distance of the motorbike application and hence, 

the remaining range can be predicted. Then, daily riding cycles 

of the EM are identified and classified through machine learning 

technique based on the training and testing dataset of various 

standard ride cycles, which are combined with the proposed 

range estimation strategy to estimate the remaining travel 

distance of the motorcycle as the baseline to underpin and 

support the energy management system of the electric vehicle 

applications. The developed complete model is finally evaluated 

on a mixed daily riding cycles showing the effectiveness of the 

approach.  

Keywords—Ride Cycle Classification, Remaining Range 

Estimation, Electric Motorcycles 

I. INTRODUCTION 

Throughout the last decades, electric and hybrid vehicles 
(EV/HEVs) have been significantly received attentions as a 
smart choice and friendly environment transportation due to 
their energy efficiency and low carbon emission. With the 
compact size, mobility, economical affordability and energy 
efficiency, electric motorcycles (EMs) have also gained 
boosting actions by vehicle manufacturers and policy makers 
to replace the conventional motorcycles in the market [1, 2]. 

In electric transportation systems, how far the vehicles can 
travel with their current remaining energy is directly related to 
the remained power and current battery state-of-charge (SoC) 
[3]. Literature shows that the manufacturers employ 
Environmental Protection Agency (EPA) standards and 
various deterministic approaches for range estimation based 
on the pre-calibrated or measured data from previous driving 
cycles. However, these methods do not always give accurate 
prediction because they ignore the effects of system dynamics 
and uncertainty loads. To improve the utilisation of the energy 
in the battery pack and maximise the performance of the 
optimal energy management system, development of the 
advanced control frameworks for EVs have become 
increasing research topic in recent years [4] besides the 2-
wheelers EMs have not been yet investigated intensively due 
to their limited battery capacities and low travel ranges.  

Advanced range estimation strategies for EVs including 
EMs are usually built based on one of the two approaches: i) 
historical knowledge-based approach and ii) model-based 
approach [3, 5]. The first category considers the past driving 
characteristics and the historical battery consumption rate. 
This approach is straightforward as it does not include the 

model while it uses the travel information for the estimation 
hence the accuracy is usually quite low and is sensitive to 
riding behaviours and operational conditions. In contrast, the 
model-based approach not only considers the past driving 
characteristics and the historical battery consumption rate, but 
also includes the mathematical models of vehicle subsystems 
to create a hybrid structure with historical parameters and 
physical system model.   

In this study, a linear range estimation strategy is 
developed as the baseline approach for optimal remaining 
range estimation and is suitable for real-time applications. By 
integrating the proposed range estimation model with a simple 
but feasible ride cycle classification-based machine learning 
approach, the obtained complete EM model can accurately 
estimate the elapsed travel distance and predict the remaining 
range of a 2-wheelers motorcycle application. The developed 
classifier is based on a collection of features that are solely 
dependent on riding speed information. The outputs of the 
developed models can help to support the development of 
optimised energy management systems.  

The remainder of the paper consists of the baseline range 
estimation strategy which is presented in Section II, the ride 
cycle classification strategy approach and the dataset for 
training and testing are explained and established in Section 
III, simulation results and discussion are depicted in Section 
IV while Section V finally remarks the conclusion.  

II. BASELINE RANGE ESTIMATION STRATEGY 

Accurate estimation of the energy consumption of the EMs 
is critical in order to predict the remaining range of such 
motorcycles. This task can help to develop the optimised 
energy management system for EMs. However, due to the 
transient dynamics of the driving profiles and operational 
conditions, it is difficult to estimate the remaining range 
accurately. In this study, a linear range estimation approach is 
employed to estimate the elapsed travel distance based on the 
calculated energy consumption rate in real-time and therefore 
the remaining range can be predicted. This approach can be 
used as the baseline for future remaining range estimation 
development. The approach consists of two estimation steps: 

1. During the initial linear distance (Lin.Range), the 
remaining range is estimated based on the remaining 
battery SoC and the pre-calibrated consumption rate 
(ConR0). This is an open-loop interpolation process, 
therefore, within this period the remaining range is linearly 
interpolated disregarding the rider behaviours and 
operating conditions.  

2. After the linear distance period, the consumption rate is 
recalculated based on the estimated distance error (ErrF) 



between the actual elapsed distance and the estimated 
travel distance. The calculated consumption rate is defined 
as follows: 

����. ��� = 

max (�0, ���� − max ��1, min �����
�� , �3�� . �. ����)     (1) 

where, ConR.cal is the calculated consumption rate, ConR 
is the pre-calibrated consumption rate, ki (i = 0 – 3) are the 
constants, φ is the consumption rate coefficient. 

Similarly, the remaining range is estimated based on the 
remaining battery SoC and the re-calculated consumption rate. 
Figure 1 depicts the flow diagram of the developed range 
estimation approach. 
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Figure 1: Linear range estimation approach. 

III. RIDE CYLCE CLASSIFICATION STRATEGY 

Identifying the riding cycles of EMs is not straightforward 
due to their highly transient dynamics, which are dependent 
on driver behaviours and operating conditions. To the best of 
the authors’ knowledge, there is very limited research on 
riding cycles classification for EMs, especially for the range 
estimation related purposes. As an attempt to fill the missing 
gap, this section focuses on the development and evaluation 
of a simple but feasible and effective ride cycle classification 
strategy for high performance EMs. In this study, support 
vector machine (SVM) is employed as the classification 
algorithm with linear polynomial kernel function to maximise 
the accuracy of the classifier. The major advantage of this 
approach is that the definition of model features is solely 
based the speed profiles information of the riding cycles.    

A. Support Vector Machine 

To build the riding cycle classification model, SVM is 
selected and deployed. SVM is one of the most robustness and 
powerful classification black-box technique. This algorithm 
proposes a set of hyperplanes to separate the selected set of 
data in a high dimensional space. The defined hyperplanes 
have the largest distance to the nearest training data points of 

various classes. This approach minimises the classification 
error and reduces the misclassification probabilities [6, 7].  

The SVM algorithms maps the n-dimensional input vector 
X ∈ ℝn into the richer (high dimensional) feature space ℌ by 
Φ and constructs an optimal separating hyperplane in this 
space.  

!(") = #$%(&) + (           (2) 

where, f is the decision surface (classifier) in space ℌ, Φ is 
the ℝn → ℌ projection, W is the normal vector to hyperplane 
and b is the bias term. 

 The classifier in (2) can be rewritten as follows: 

 !(") = ∑ *+,+�("+ , &) + (-
+./         (3) 

where, the coefficients αi are obtained by maximising the 
following functional: 
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� ∑ *+*0,+

-
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w.r.t the constraints: 

 ∑ *+,+
-
+./ = 0  ��1  0 ≤ *+ ≤ �  ,   3 = 1, … , 5      (5) 

 Coefficient αi defines maximal margin hyperplane in high 
dimensional feature space where the data mapped through a 
non-linear function Φ such that Φ(xi).Φ(xj)=k(xi,xj). C is the 
penalising constant where the data points cross the boundary. 
Details of the SVM model derivation can be found in [8]. 

B. Development of Ride Cycle Classification 

This section presents the details of ride cycle classification 
strategy. Riding cycles are constructed by number of data 
points over time, to support the classifier, it is necessary to 
reduce their dimension. In this case, characteristics of the ride 
cycles must be extracted, and the obtained characteristics are 
called features from now on. As mentioned in the previous 
section, only speed profile information is utilised to define the 
ride cycle features as depicted in Table I.  

Table I: Feature extraction for cycle classification 

No. Feature Description Unit 

1 MeanV Average velocity over time interval m/s 

2 MaxV Maximum velocity over time interval m/s 

3 MinV Minimum velocity over time interval m/s 

4 StartV Start velocity of such time interval m/s 

5 EndV End velocity of such time interval m/s 

6 MeanA Average acceleration over time interval m/s2 

7 MaxA Maximum acceleration over time interval m/s2 

8 MinA Minimum acceleration over time interval m/s2 

9 StartA Start acceleration of such time interval m/s2 

10 EndA End acceleration of such time interval m/s2 

Then, the SVM technique is applied to construct the 
classification model taken the following steps: 

1. Select ride cycles for training and extract the features 
of each ride cycles based on pre-defined time interval. 

2. For each C, split the whole feature dataset randomly 
into train and test data 

3. Train the SVM model and store the success rate 
4. For cross-validation, the selected training data will be 

splitted randomly into 5 folds. Four of them are in turn 
to be the training data set while the remaining one is 
the validation set. Then, average the success rates 

5. Update C value and restart step 2 for optimisation. 



In this study, a linear polynomial kernel function is chosen 
and used due to the complexity of the selected cycling profiles 
and the ability of deploying the model in real-time 
applications. The time interval of 20 sample lengths is used, 
which shows the trade-off between the calculation complexity 
and the amount of cycle information. The time interval for 
feature extraction and SVM model training/testing diagrams 
are depicted in Figure 2 and 3, respectively, while Figure 4 
shows the selected riding cycles for the study. 

Update interval: 20 samples

80% picked randomly for Training 

(Randomly splitted into 5 folds for Cross-Validation)

10 features extracted 

in each time interval

Randomly 20% remained for 

Testing  

Figure 2: Time interval definition for feature extraction 
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Figure 3: SVM model training and testing 

 

Figure 4: Selected ride cycles of EMs  

 

Figure 5: Remaining distance profiles of the selected ride cycles 

IV. RESULTS AND DISCUSSION 

The implementation of the developed range estimation 
strategy is deployed using the selected ride cycles in order to 
pre-estimate the total remaining range of the EM. The tests are 
carried out when the battery is fully charged. The results of 
this process can be used as the baseline for the future 
remaining range estimation. Figure 5 represents the estimated 

remaining distance when running the with such riding cycles. 
The results show that the proposed range estimation strategy 
can estimate the elapsed distance quite well. There is still a 
large error at the beginning of self-calculated consumption 
rate period, however, the process is quite smooth after that. 

The SVM classification model is trained, cross-validation 
and finally testing using the defined features dataset. Figure 6 
presents the confusion matrix which shows the testing results 
of the model. It can be seen that the average accuracy of the 
developed model can reach to 94.7% over 188 observations 
where the WLTP profile can be identified with 100% of 
accuracy, which is significant and can be employed for 
remaining range estimation. 

 

Figure 6: SVM model training result 

The optimised model of the developed SVM classification 
strategy is finally integrated into the EM 1D model in order to 
evaluate the performance and implementation ability to 
operate in real-time simulation environment. Figure 7 depicts 
the implementation of the optimised SVM model. A mixed 
ride cycle representing a daily operational profile is finally 
designed and utilised for testing the integrated complete 
model. Simulation results show that the proposed SVM model 
can classify the ride cycle correctly. The predicted profile 
label matches well with the actual profile. Figure 8 shows the 
simulation results of the integrated complete model. 

By employing the optimised SVM model and the 
developed remaining range estimation algorithm, the 
complete model can firstly classify and identify correct riding 
cycle label and is capable to predict the elapsed travel distance 
and therefore potential predict remaining range of any daily 
operational profiles. Nevertheless, it is essential to develop an 
optimal strategy to effectively utilise the outputs of the 
developed classification model for developing energy 
management systems for the EM applications. 

V. CONCLUSIONS 

This paper presents a SVM machine learning approach for 
the ride cycles classification of EMs for remaining range 
estimation strategy purposes. The validation and simulation 
results of the integrated classification-based linear range 
estimation strategy underpin the implementation of the 
developed model in real-time environment. Although the 
proposed linear range estimation strategy can perform well in 
most of the cases, it might cause heavy load for the control 
hardware, especially when the algorithm working during the 
correction portion due to the integration loop. However, it can 
be considered as the baseline for further development and 
comparison and is the premier to build optimised energy and 
battery management systems for EMs to maximise the travel 
distance and improve the battery life, which will be under 
investigation by the authors. 
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Figure 7: Implementation of proposed SVM model

 

Figure 8: Simulation results of the complete model 
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