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Abstract 

Introduction: Structural brain imaging is paramount for the diagnosis of behavioral variant of 

frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis.  

Methods: A total of 515 subjects from two different bvFTD cohorts (training and independent 

validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions 

with significant differences between bvFTD and controls. A random forest classifier was used to 

individually predict bvFTD from deformation-based morphometry differences in isolation and 

together with semantic fluency. Ten-fold cross validation was used to assess the performance of 

the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD 

cases was used for additional validation. 

Results: Average ten-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) 

using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. 

In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% 

specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency 

scores. 

Conclusion: Our results show that structural MRI and semantic fluency can accurately predict 

bvFTD at the individual subject level within a completely independent validation cohort coming 

from a different and independent database.  

 

Keywords 

Frontotemporal dementia -Magnetic resonance -Deformation-based morphometry -

Classification- Machine learning 
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Abbreviations 

FTD: frontotemporal dementia 

GRN: progranulin 

MAPT: microtubule-associated protein tau 

C9orf72 : chromosome 9 open reading frame 72 

bvFTD: behavioural variant of frontotemporal dementia 

CNCs: cognitively normal controls 

DBM: deformation-based morphometry 

FTLDNI: frontotemporal lobar degeneration neuroimaging initiative  

FTLD: frontotemporal lobar degeneration  

T1w: T1 weighted 

GENFI: Genetic frontotemporal dementia initiative  

MMSE: Mini mental state examination  

MoCA: Montreal cognitive assessment  

FTLD-CDR: Frontotemporal lobar degeneration Clinical Dementia Rating score 

CGI: Clinical global impression  

FRS: Frontotemporal dementia rating scale  

FDR: False Discovery Rate 

PCA: Principal component analysis 

PCs: Principal components 

SF: Semantic fluency 

ROC: Receiver operating characteristic curves  

AUC: Area under the curve 

LR+: positive likelihood ratio 

LR-: negative likelihood ratio 
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INTRODUCTION 

The heterogeneity of frontotemporal dementia (FTD) is a hallmark of the disease with significant 

variations in heritability, pathology and clinical presentations.1 First, although most cases of FTD 

are sporadic, 10-30% are caused by an autosomal dominant mutation (most commonly progranulin 

-GRN-, microtubule-associated protein Tau -MAPT- and chromosome 9 open reading frame 72 -

C9orf72-).2 3 Second, in terms of the underlying pathology, there are three main groups according 

to the major protein involved, all of which are characterized by selective degeneration of the frontal 

and temporal lobes: Tau, transactive response DNA-binding protein of 43 kDa -TDP-43-, and the 

tumor associated protein fused in sarcoma -FUS-.4 5 In the absence of molecular biomarkers, and 

when combined with the syndromic overlap with other neurodegenerative disorders and 

psychiatric disorders, a confirmed behavioral variant frontotemporal dementia (bvFTD) diagnosis 

is often difficult to achieve and heavily relies on brain imaging. 6 

 

While the presence of fronto-temporal atrophy on MRI increases the level of diagnostic confidence 

and has high specificity, it lacks sensitivity particularly in the initial stages of the disease, leading 

to erroneous or late diagnosis.7 8 It is therefore necessary to extract MRI features that have better 

discriminatory power to aid in diagnosis. Recently, machine learning techniques have been applied 

to distinguish between bvFTD and Cognitively Normal Subjects (CNCs), Alzheimer Disease or 

other psychiatric and neurologic disorders on an individual level using MRI-based features.9-17 

These studies vary greatly on their population and methodology. In general, they achieved 

moderate to high accuracy distinguishing bvFTD. However, sample sizes were small, training and 

test cohorts did not come from the independent datasets and, therefore, the clinical applicability 

remains to be determined.18 Further, it is uncertain if these classifiers would work in a clinical 
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population including genetic bvFTD cases in which the MRI patterns of atrophy share similarities 

with sporadic cases, but also have distinctive features for each mutation.19-21  

 

In the present study, we developed a Random Forest classifier 22 using features derived from 

Deformation Based Morphometry (DBM) maps to identify bvFTD subjects from CNCs. To ensure 

the generalizability of the results, the machine learning model was trained on a mainly sporadic 

cohort and tested in a held-out population of genetic bvFTD, therefore relying on one of the gold 

standards for diagnosis (i.e., definite bvFTD). 7 

 

MATERIALS AND METHODS 

Participants 

A total of 515 subjects were examined in this study. The first cohort was used only for training 

(the ‘training cohort’). The training cohort included bvFTD patients and CNCs from the 

Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) database who had T1-

weighted (T1w) MRI scans matching with each clinical visit.  The inclusion criteria for bvFTD 

patients was a diagnosis of possible or probable bvFTD according to the FTD consortium criteria 

7, resulting in 70 patients with bvFTD and 123 CNCs in our study.  

 

The primary goals of the FTLDNI, funded through the National Institute of Aging, are to identify 

neuroimaging modalities and methods of analysis for tracking frontotemporal lobar degeneration 

(FTLD) and to assess the value of imaging versus other biomarkers in diagnostic roles. For up-to-

date information on participation and protocol, please visit: http://4rtni-ftldni.ini.usc.edu/ . 

 

http://4rtni-ftldni.ini.usc.edu/
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The second cohort was completely independent from the first and used only for validation (the 

‘validation cohort’) of the model created with the training cohort. The validation cohort included 

bvFTD patients and CNCs from the third data freeze (12/2017) of the Genetic Frontotemporal 

Dementia Initiative 2 (GENFI2- http://genfi.org.uk/),23 which includes 23 centres in the UK, 

Europe and Canada. GENFI2 participants included known symptomatic carriers of a pathogenic 

mutation in C9orf72, GRN or MAPT and their first-degree relatives who are at risk of carrying a 

mutation, but who did not show any symptoms (i.e., presymptomatic). Non-carriers were first-

degree relatives of symptomatic carriers who did not carry the mutation. The inclusion and 

exclusion criteria are described in detail elsewhere.23 Since the aim of the present study was to 

differentiate bvFTD patients from CNCs, presymptomatic carriers and symptomatic carriers 

whose clinical diagnosis was other than bvFTD were excluded. The CNC group consists of 

subjects who are first degree relatives of patients with FTD genetic mutations, but who are 

asymptomatic and were tested negatively for the mutation that is present in their family. This 

validation cohort contained 75 patients with bvFTD and 247 CNCs and was never used for feature 

selection, parameter identification or model tuning during the training phase. 

 

Clinical assessment 

All subjects were regularly assessed clinically yearly/every six-months by site investigators. 

Neuropsychological assessment included Mini Mental State Examination (MMSE), Montreal 

Cognitive Assessment (MoCA), FTLD clinical dementia rating (FTLD-CDR), Clinical Global 

Impression (CGI), verbal fluency, Frontotemporal dementia rating scale (FRS) amongst other 

cognitive and functional scores24-28.  
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Image acquisition and preprocessing 

For the FTLDNI training cohort, 3.0T MRIs were acquired at three sites (T1w MPRAGE, TR=2 

ms, TE=3 ms, IT=900 ms, flip angle 9, matrix 256x240, slice thickness 1mm, voxel size 1mm3).  

 

For the GENFI2 validation cohort, participants underwent volumetric T1w MPRAGE MRI at 

multiple centers, according to the GENFI imaging protocol using either Siemens Trio 3T, 

SiemensSkyra3T, Siemens1.5T, Phillips3T, General Electric (GE) 1.5T or GE 3T scanners. Scan 

protocols were designed at the outset of the study to ensure adequate matching between the 

scanners and image quality control. 

 

The T1w scans of the subjects were pre-processed through our longitudinal pipeline29 that included 

image denoising,30 intensity non-uniformity correction31, and image intensity normalization into 

range (0−100) using histogram matching. Each native T1w volume from each timepoint was 

linearly registered first to the subject-specific template which was then registered to the ICBM152 

template.32 All images were then non-linearly registered to the ICBM152 template using ANTs 

diffeomorphic registration pipeline.33 The images were visually assessed by two experienced raters 

to exclude cases with significant imaging artifacts (e.g. motion, incomplete field of view) or 

inaccurate linear/nonlinear registrations. This visual assessment was performed blind to diagnosis. 

Out of 1724 scans, only 43 (2.5%, 36 scans in GENFI2, and 7 in FTLDNI) did not pass this visual 

quality control. For the purpose of this study, scans from subjects other than bvFTD or CNCs, or 

those that did not have a matching clinical visit were excluded from this analysis. This resulted in 

a total of 515 subjects that were included in this study. 
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Deformation based morphometry 

DBM 34 35 analysis was performed using Montreal Neurological Institute (MNI) MINC tools. 29 

The local deformation obtained from the non-linear transformations was used as a measure of 

tissue expansion or atrophy by computing the determinant of the Jacobian at each voxel. Local 

contractions can be interpreted as shrinkage (e.g., tissue atrophy) and local expansions are often 

related to ventricular or sulci enlargement. DBM was used to assess both voxel-wise and atlas-

based cross-sectional group related volumetric differences.  

 

Classification bvFTD versus CNCs 

To obtain a region of interest map reflecting the patterns of difference between bvFTD and CNCs, 

a voxel-wise mixed effects model analysis was performed only within the training dataset. The 

mixed effects model included age as a continuous fixed variable and diagnosis and sex as fixed 

categorical variables. Subject was included as a categorical random variable. The variable of 

interest was diagnosis, reflecting the brain regions that were significantly different between bvFTD 

and CNCs, controlling for age and sex. The results were corrected for multiple comparisons using 

the False Discovery Rate (FDR) with a P value < 0.05 threshold. Figure 1 shows the resulting map 

reflecting areas of significant difference between bvFTD and CNCs.36 



 11 

 

Figure 1. Region of interest map reflecting the significant patterns of difference between bvFTD 

and CNCs, obtained based on the training data. 

 

A principal component analysis (PCA) was then performed on the DBM voxels within this region 

of interest. To avoid any leakage (i.e., double dipping), only the baseline information from the 

training data was used for this PCA. Two sets of features were then used to train a random forests 

classifier 22 with 500 trees: 1) the first five principal components (PCs, selected based on scree 

plots of the obtained eigenvalues) as well as age and sex, and 2) the first five PCs, age, sex, and a 

neuropsychological score. The Semantic Fluency score (SF) was used as the cognitive score 

feature since it is a reliable simple bedside test associated with executive and language deficits in 
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bvFTD37 and was available for most of the subjects in both training and validation datasets. 

Executive deficits are considered a core characteristic of FTD, though in themselves, are 

insufficient to establish a diagnosis and thus not used here. 38 39 Classifications were run using 

DBM in isolation and DBM + SF.  Ten-fold cross validation was used to assess the performance 

of the classifier within the training data.  To obtain a single ROI and consistent features across 

folds, the voxel-wise group comparison and PCA were performed outside of the cross-validation 

loop on the training dataset, since we use an independent dataset for validation. However, to 

demonstrate that this choice does not lead to leakage in the training set experiments, we also 

repeated the cross validation for the training set with the mixed effects model and PCA analyses 

performed inside the cross-validation loop and obtained similar results (see the supplementary 

materials for details). 

 

To perform classification on the held-out GENFI2 validation dataset, the coefficients calculated 

based on the PCA on the training dataset were used to calculate the first five PCs features for the 

subjects from the validation dataset. Using the random forest classifier trained on FTLDNI, we 

then classified all the subjects from the validation dataset as either bvFTD or CNCs (based on their 

baseline information). A probability score was also obtained from the random forest classifier, 

indicating the likelihood of each observation belonging to the bvFTD class. The mixed effects 

modelling, PCA, and random forest classification were carried out using MATLAB (version 

R2017b). 

 

Statistical analyses 
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All statistical analyses were conducted using MATLAB (version R2017b). Two-sample t-Tests 

were conducted to examine demographic and clinical variables at baseline. Categorical variables 

were analysed using chi-square analyses. Results are expressed as mean ± standard deviation and 

median [interquartile range] as appropriate. Receiver Operator Characteristics (ROC) analysis was 

used to define sensitivity and specificity at different cut-points within the validation cohort. The 

optimal cut-point was estimated by the use of Youden index (J= Sensitivity+Specificity-1). 

Positive and negative likelihood ratios were also estimated for different cut points. 

 

RESULTS 

Demographics  

Table 1 shows the demographic and cognitive testing performances in bvFTD and CNCs. There 

was no difference in age between bvFTD patients and CNCs (626 and 636 years respectively, 

p = 0.36), but there was a higher proportion of males in bvFTD patients than CNCs (67% vs 43%, 

p = 0.001). As expected, bvFTD subjects showed greater cognitive and functional impairment: 

significant differences were found between the two cohorts in MMSE, FTLD-CDR, MoCA, letter 

fluency Z-score and semantic fluency Z-score (all p < 0.001).  

 

Demographic differences and cognitive testing performances between patients and controls for the 

GENFI cohort are also shown in Table 1. Considering the CNCs from this dataset comes from 

non-carrier members of families at risk of genetic mutation related to FTD, they were, as expected, 

significantly younger than bvFTD subjects. The mean age was 4814 years for CNCs and 648 

years for bvFTD (p < .001). The median disease duration (age at visit – age of symptom onset) for 

the bvFTD group was 5.1[3.5-8.2] and the estimated years to onset (age at baseline – average age 
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of disease onset in the family) 5.25.7 years. Compared to non-carriers, bvFTD subjects showed 

greater cognitive and functional impairment. Significant differences were found between the two 

cohorts in MMSE, FTLD-CDR, MoCA, FRS, letter fluency Z-score and semantic fluency Z-score 

(p < .001). Regarding the mutated gene, half of the bvFTD subjects carried a C9orf72 mutation, 

while 22.7% and 25.3% belonged to the MAPT and GRN groups respectively.  
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Table 1. Demographic and clinical characteristics in bvFTD and healthy controls 

 

*CNCs in GENFI2 cohort correspond to non-carrier first degree relative of a family member with a documented 

genetic mutation related to FTD 

 

Values expressed as mean ± standard deviation, median [interquartile range]. Data available is specified for 

each clinical variable as N. N/A: data not available from the original databases.  

FTLD: frontotemporal lobar degeneration neuroimaging initiative; GENFI: genetic frontotemporal 

dementia initiative; bvFTD:  behavioural-variant frontotemporal dementia. CNCs: cognitively normal 

controls; MMSE: Mini Mental State Examination. FTLD-CDR: Frontotemporal lobar degeneration clinical 

dementia rating. MoCA: Montreal Cognitive Assessment. CGI: Clinical Global Impression. FRS: 

Frontotemporal dementia rating scale.  

 

Voxel-wise DBM group differences.  

Greater gray and white matter atrophy were found in the medial and inferior lateral portions of the 

frontal lobes as well as dorsolateral prefrontal cortex, insula, basal ganglia, medial and anterior 

 Training cohort (FTLDNI)  

N=193 

Validation cohort (GENFI)  

N=322 

CNCs 

N= 123 

bvFTD 

N=70 

P value CNCs* 

N=247 

bvFTD 

N=75 

P value 

 

Age, y 636 626 0.36 4814 648 < 0.001 

Male sex 53(43%) 47(67%) 0.001 106(43%) 41(55%) 0.07 

Education, y 17.51.9 15.63.4 < 0.001 13.93.5 11.84.03 < 0.001 

Estimated years of onset, y - N/A - - 5.25.7 - 

Disease duration, y     5.1[3.5-8.2] - 

MMSE score 29.40.8 23.64.9 < 0.001 29.41.1 21.97.2 < 0.001 

FTLD-CDR Score  0.040.2 6.33.3 < 0.001 0.210.7 9.71.4 < 0.001 

MoCA Score  23.611 16.88.3 < 0.001 N/A N/A  

FRS % N/A N/A  88.0128.7 33.526.6 < 0.001 

Letter Fluency Z-score 0.70.7 -0.90.6 < 0.001 -0.031 -1.31.4 < 0.001 

Semantic Fluency Z-score 0.60.6 -1.060.7 < 0.001 0.11 -2.21.02 < 0.001 

Genetic 

Group 

C9orf72 - -   39(52%)  

MAPT - -   17(22.7%)  

GRN - -   19(25.3%)  
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temporal regions bilaterally and regions of brainstem and cerebellum in bvFTD. Correspondingly, 

volume increase was shown in the ventricles and sulci, being more evident in frontal horns and 

lateral sulcus. 36 Supplementary material shows the high similarity (Dice similarity index (SI) of 

0.93 ± 0.01) between DBM maps when mixed effects model and PCA steps are included inside 

each loop of the 10-fold validation compared to the DBM map in Figure S1.  

 

Random forest classification 

Cross-validation results within the training cohort (FTLDNI) 

The accuracy achieved for discrimination between bvFTD and CNCs using solely morphometric 

MRI features (DBM) was 89%, with a sensitivity of 82% and specificity of 93%. When adding 

one cognitive score (i.e., DBM+SF) the classifier accuracy reached 94%, with 89% sensitivity and 

98% specificity. When mixed effects model and PCA steps are included inside each loop of the 

10-fold validation, the average accuracy is 89%  using DBM features and 93% when adding 

semantic fluency (details in supplementary material). 

 

Classification within the validation cohort (GENFI2) using solely DBM and DBM + SF 

The model resulted in an accuracy of 88% when discriminating bvFTD patients from CNCs when 

applied to the independent validation cohort. Sensitivity and specificity were 81% and 92%, 

respectively using a probability score with an optimal cut point of 0.4 as threshold. This led to a 

positive likelihood ratio (LR+) of 10.13 and negative likelihood ratio (LR-) of 0.21. 

The inclusion of semantic fluency in the classification model resulted in an accuracy of 91%, 

sensitivity of 79% and specificity of 96%; resulting in LR+ of 19.75 and LR- of 0.22. The ROC 
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for DBM and DBM + SF classifiers are shown in Figure 2. Figure 3 shows the true positive rates 

for bvFTD and CNCs according the probability score for DBM (panel A) and DBM+SF (panel  

B). Table 2 shows the corresponding accuracy, sensitivity, specificity and likelihood ratios for the 

two models (DBM and DBM+SF) using different thresholds on the probability scores (e.g., for 

probability scores > 0.4).  

 

 

Figure 2. Receiver operating characteristic curves (ROC) for DBM and DBM+SF classifiers.  

Abbreviations: DBM: deformation-based morphometry; SF: semantic fluency; AUC: area under 

the curve. 
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Figure 3. True positive rates for bvFTD and controls according to the probability score threshold 

for classification using DBM (panel A) or DBM + SF (panel B). 

Abbreviations: bvFTD:  behavioural-variant frontotemporal dementia. CNCs: cognitively normal 

controls. 
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Table 2. Classification performance using DBM and DBM + SF 
 

*Performances for each probability score threshold above which a subject is identified as bvFTD. Shaded 

rows correspond to the optimal cut-point estimated by Youden index.  

Abbreviations: DBM: deformation-based morphometry; SF: semantic fluency score; LR+: positive 

likelihood ratio; LR-: negative likelihood ratio.  

  

 Accuracy Sensitivity Specificity LR+ LR- 

DBM 

Probability score 

threshold* 

      

 0.60 0.90 0.53 0.98 26.50 0.48 

 0.55 0.91 0.64 0.97 21.33 0.37 

 0.50 0.90 0.71 0.96 17.75 0.30 

 0.45 0.89 0.77 0.93 11.00 0.25 

 0.40 0.88 0.81 0.92 10.13 0.21 

 0.35 0.86 0.81 0.91 9.00 0.21 

 0.30 0.84 0.83 0.88 6.92 0.19 

 0.25 0.81 0.87 0.87 6.69 0.15 

 0.20 0.78 0.89 0.83 5.24 0.13 

 0.15 0.70 0.91 0.74 3.50 0.12 

 0.10 0.60 0.95 0.64 2.64 0.08 

       

DBM + SF 

Probability score 

threshold* 

      

 0.60 0.92 0.71 0.98 35.50 0.30 

 0.55 0.92 0.73 0.98 36.50 0.28 

 0.50 0.92 0.77 0.98 38.50 0.23 

 0.45 0.91 0.77 0.96 19.25 0.24 

 0.40 0.91 0.79 0.96 19.75 0.22 

 0.35 0.91 0.80 0.96 20.00 0.21 

 0.30 0.90 0.80 0.95 16.00 0.21 

 0.25 0.88 0.81 0.93 11.57 0.20 

 0.20 0.83 0.87 0.87 6.69 0.15 

 0.15 0.78 0.91 0.92 11.38 0.10 

 0.10 0.65 0.93 0.68 2.91 0.10 
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False negative cases within the validation cohort (GENFI2) 

The classification using DBM resulted in 19% of false negatives. These subjects were significantly 

younger than the bvFTD subjects correctly classified (5710 vs. 667 years respectively, p < 

0.001) and the estimated time from onset was also shorter (27 years vs 65 years; p = 0.01). 

However, the disease duration was not significantly shorter than true positives (3.9[2.2-7.1] vs 

5.3[3.6 8.2] years, respectively; p=0.16). No significant differences were found in FTLD-CDR 

score between true positives and false negatives (p = 0.07). The distribution of the genetic 

mutations did not show significant differences either between the false negatives and true 

positives. GRN corresponded to 22.7 % of all false negatives and 25.4% of all true positives (p = 

0.7); for C9orf72 the distribution was 45.5% and 54.7% respectively (p = 0.5) while for MAPT it 

was 31.8% of the false negatives and 18.9% of the correctly classified bvFTD (p = 0.3) 

 

False positive cases within the validation cohort 

Only 10 out of 247 CNCs (4%) were erroneously classified as bvFTD. These subjects were 

significantly older than the subjects accurately classified as healthy subjects (7012 years vs. 

4713 years, respectively; P value < 0.001). No significant differences were found in the mean 

FTLD-CDR score (P value  = 0.9). Of note, subjects with false positives had slightly lower mean 

MMSE scores (28.272.2) compared to true negatives (29.41; P value  < 0.001).  

 

Defining strategic cut-points 

Three cut-offs for both DBM and DBM+SF were defined by giving consideration to the sensitivity, 

specificity, positive and negative likelihood ratios of different points of the ROC: 1) the optimal 

cut-point according to Youden index; 2) a sensitive (i.e., “rule-out”) cut-point; and 3) a specific 
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(i.e., “rule-in”) cut-point (Figure 4). The sensitivity, specificity, LR- and LR+ expressed in the 

Figure 4 were estimated for each of these defined cut-points (e.g., for probability score = 0.4) . 

 

Proposed thresholds for clinical decision-making for each classifier according to their likelihood 

ratios are proposed in Figure 4 (lower panels). A LR- <0.1 allows to reliably exclude (i.e., rule-

out) bvFTD when the probability score is below 0.2 and below 0.1 for DBM and DBM+SF, 

respectively. Probability scores over 0.4 for DBM and over 0.25 for DBM+SF enable confident 

diagnosis (i.e., rule-in) of bvFTD with a LR+ >10. Corresponding likelihood ratios for different 

thresholds are shown in Table 2.  
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Figure 4. Strategic ROC cut points. 4A, upper panel: Cut points for DBM classifier. 4A, lower 

panel: Thresholds for diagnosis using DBM classifier in relation to LR+ and LR-. 4B, upper 

panel: Cut points for DBM+SF classifier. 4B, lower panel: Thresholds for diagnosis using 

DBM+SF classifier in relation to LR+ and LR-.  

Abbreviations: DBM: deformation-based morphometry; SF: semantic fluency; J: Youden index; 

Sens: sensitivity; Spec: specificity; LR+: positive likelihood ratio; LR-: negative likelihood ratio. 

 

DISCUSSION 

In the present study we built a random forest classifier using morphometric T1w MRI features for 

the individual prediction of bvFTD. The main findings are: 1) our random forest algorithm yielded 

areas under the curve of 0.90 and 0.92 using DBM and DBM+SF, respectively, in the independent 

validation cohort of genetically confirmed bvFTD cases; 2) the inclusion of a simple cognitive 

score (SF) improved the accuracies and specificity regardless of the probability threshold chosen, 
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while reducing the false negative rate for probability scores > 0.5; 3) we provide three cut-off 

values (a “statistically optimal” cut-point, a sensitive (“rule-out”) cut-point and a specific (“rule-

in”) cut-point) for both DBM and DBM+SF classifiers; and 4) our results show good positive and 

negative likelihood ratios proving its reliability in ruling in and out the disease.  

 

The likelihood ratio is the percentage of patients with a given test result divided by the percentage 

of controls with the same results. Meaning that ill people should be more likely to have an 

abnormal result of a given test than healthy individuals. 40 41 For the DBM-only classifier in the 

independent GENFI2 validation cohort, the optimal threshold yielded an area under the curve 

(AUC) of 0.9 with 81% sensitivity and 92% specificity leading to a positive LR+ of 10.13 and 

negative LR- of 0.21. Whereas, the AUC, sensitivity and specificity using the DBM+SF model 

were 0.92, 79% and 96%, respectively. These values result in LR+ of 19.75 and LR- of 0.22. To 

keep in mind, a test is moderately good at ruling in disease when LR+ is greater than 2 and very 

good at doing it when LR+ is greater than 10.42 Furthermore, a test is moderately good at ruling 

out the disease with LR- below 0.5 and very good below 0.1. Hence, using the optimal thresholds, 

both models are very good at excluding non bvFTD subjects and moderately good at confirming 

the disease.  

 

Our results show that the proposed random forest classifier can accurately predict bvFTD in 

individual subjects in a completely independent validation cohort coming from a separate database. 

Furthermore, the GENFI2 validation cohort includes bvFTD patients with a definite diagnosis 

(positive genetic mutation). Of note, our algorithm was able to accurately classify patients with 

genetic bvFTD even though they tend to have more atypical atrophy patterns.21 The performance 



 24 

of our classifier is superior than the performance reported in several articles that have analyzed the 

standard diagnostic methods currently used in the clinical practice. Within a pathology-confirmed 

cohort, the sensitivity reported for the revised diagnostic criteria for bvFTD was 86% for possible 

diagnosis and 75% for probable bvFTD (with neuroimaging support).7 However, these criteria 

reported a sensitivity of 85% and specificity of 27% for possible bvFTD diagnosis in a clinically 

relevant cohort of patients with mixed behavioral changes, reaching 82% specificity when adding 

a compatible MRI scan.43 Within a cohort with late onset behavioral disorders, 70% sensitivity 

and 93% specificity have been reported for structural MRI alone for bvFTD assessed by an 

experienced neuroradiologist.8 The latter results have comparable positive and negative likelihood 

ratios to ours, even though our method does not rely on the expertise of the radiological observer.  

 

Previous studies classified bvFTD from a control group.9-13 The best AUC was reported by 

Raamana et al 13(AUC 0.938, 100% sensitivity and 88% specificity). However, an important 

limitation is that they trained and tested on the same cohort which often results in an overestimate 

of the real rates when generalized to other populations. We addressed this particular issue using 

by using an independent dataset for validation. In addition, bvFTD diagnosis from the testing 

cohort was based on clinical criteria. Contrarily, the bvFTD subjects from our validation cohort 

have definite bvFTD diagnosis.  

 

The performance of the classifier was tested on a held-out database which included multi-center 

and multi-scanner data from different scanner models of both 1.5T and 3T field strengths. This 

further reinforces the generalizability (i.e., external validity) of our results and ensures their 

applicability in a clinical scenario with different scanners, even with different magnetic field 



 25 

strengths.  This certainly constitutes one of the two main strengths of this study. The second 

strength is that our performance was estimated using one of the gold standards for FTD diagnosis 

supported by the presence of a pathogenic mutation. Remarkably, our algorithm is based on 

standard structural T1w MRI and a simple cognitive test routinely acquired in the clinic, making 

for strong translational potential. On the other hand, the main limitation is that these results are yet 

to be validated prospectively in a clinically representative cohort including patients with diverse 

primary psychiatric disorders (a common differential diagnosis from bvFTD).44 The classification 

accuracy also remains to be demonstrated in cohorts with other types of dementias and 

cardiovascular comorbidities, as these were uncommon in our dataset and could have influenced 

our very high specificity. Finally, in our results the false negatives/positives were significantly 

younger/older than the subjects that were correctly classified. This is likely due to the fact that the 

age range for the validation dataset (GENFI: minimum age: 39y, maximum age:79y) was larger 

than the training set (FTLDNI, minimum age 46y, maximum age 75y). Subjects that were outside 

the operating range of the classifier were therefore more likely to be misclassified. Adding subjects 

with similar ages to the training dataset will likely improve the results. In addition, specifically for 

the false negative cases, although the difference did not reach statistical significance (p=0.07), the 

false negatives had lower FTLD-CDR scores than the true positive cases, implying an earlier stage 

of the disease. It is plausible that such subjects with milder symptoms were not as well represented 

in FTLDNI given the difficulty of diagnosing bvFTD in the very mild stages when there is no 

known genetic mutation.  

 

To conclude, we propose an automatic method using structural MRI alone (already available and 

routinely used in the clinic) and including a simple cognitive test that could be administered by 
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any physician in few minutes for reliable individual prediction of bvFTD at the individual subject 

level. The main contributions of the method are its high accuracy along with its generalizability 

due to the use of a validation cohort coming from a different and independent database with multi-

center and multi-scanner data. In addition, using a cohort with diagnosis of definite bvFTD adds 

reliability to the results. If validated in a prospective study, this algorithm has the potential to 

improve diagnostic accuracy, particularly in setting without access to specialized FTD care. 
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