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ABSTRACT
Curriculum learning needs example difficulty to proceed from easy
to hard. However, the credibility of image difficulty is rarely inves-
tigated, which can seriously affect the effectiveness of curricula. In
this work, we propose Angular Gap, a measure of difficulty based
on the difference in angular distance between feature embeddings
and class-weight embeddings built by hyperspherical learning. To
ascertain difficulty estimation, we introduce class-wise model cali-
bration, as a post-training technique, to the learnt hyperbolic space.
This bridges the gap between probabilistic model calibration and
angular distance estimation of hyperspherical learning. We show
the superiority of our calibrated Angular Gap over recent diffi-
culty metrics on CIFAR10-H and ImageNetV2. We further propose
Angular Gap based curriculum learning for unsupervised domain
adaptation that can translate from learning easy samples to mining
hard samples. We combine this curriculum with a state-of-the-art
self-training method, Cycle Self Training (CST). The proposed Cur-
ricular CST learns robust representations and outperforms recent
baselines on Office31 and VisDA 2017.
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1 INTRODUCTION
Ascertaining example difficulty is a critical problem to curriculum
learning and self-paced learning, in that curricula rank training
samples by difficulty and proceed from easy to hard. In the context
of image classification, a natural idea is to quantify such difficulty
with human selection frequency[34], i.e., the fraction of annotators
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Figure 1: An overview of our Angular Gap image difficulty
quantification framework. In the training stage, deep neural
networks learn image vectors and class vectors in an angu-
lar space with label information, and output raw difficulty
scores based on angles. Difficulty scores are then calibrated
on a hold-out validation set. In the test stage, the proposed
framework can output example difficulty for downstream
tasks.

selecting a sample for its target class. However, human labelling
effort is not scalable to get fine-grained image difficulty. To measure
the difficulty of 10,000 CIFAR10 images, CIFAR10-H[2] recruits 2570
annotators to perform 511,400 trials, with an average of 51 human
decisions per image, not including a considerable amount of prac-
tice and attention checks. Hence, automating difficulty estimation
is crucial to applying curriculum learning to large scale datasets.
Probabilistic models are particularly compelling for this automatic
estimation demand because of their consistency towards noisy
image contents and uncertain labels regularly presented in large
scale datasets. Early works have characterized image difficulty with
maximum confidence or classification margin, the difference be-
tween the predicting probability of the correct class and the largest
among others. However, difficulty measurers based on modern neu-
ral networks have a reputation of being poorly calibrated. Extensive
research have shown that the negative log-likelihood can easily
overfit training samples, pushing average predicting probability
away from accuracy[13, 21]. This suggests considerable uncertainty
of softmax probabilities, and imprecise difficulty measurement un-
dermines the performance of curriculum learning. While proba-
bility estimation deteriorates, final classification results actually
improve[13]. Very recently, deep ensemble methods [1, 18] measure
example difficulty with agreement either from last layers’ predic-
tions or from intermediate layers’ predictions. Reducing estimation
uncertainty with ensembling requires selected treatments and con-
trols such as architectures, number of submodels, and number of
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data splits. In this work, we show faithful image difficulty can be
efficiently estimated by deep metric learning.
Hyperspherical learning[26], a weakly supervised learning frame-
work, groups instances of the same concept together and pushes
instances of different concepts apart by enforcing angular discrim-
ination during training. The framework allows for more robust
similarity estimation and has improved representation learning in
both computer vision[7] and natural language understanding[8].
Specifically, samples and classes are projected as vectors with con-
stant norms in a hyperbolic space. The normalization operation
creates "radial" feature distributions, and the corresponding co-
sine similarity has been proved to be robust for many downstream
tasks[6]. The benevolent properties of hyperspherical similarity es-
timation give us motivation for difficulty estimation. Angular visual
hardness (AVH)[5] initially defines difficulty as the angular distance
to its label class normalized by the sum of angular distances to all
classes. However, a limitation of this difficulty is that significant
angular information can be flushed away by the accumulation of
imprecise angular distances. For instance, if an image shows a tabby
cat, the distance to its class vector is washed out by distances to
unrelated classes, e.g., goldfish or sailboat, resulting in example
difficulty with high variance. Based on the assumption that more
probable predictions are better calibrated[21], we propose a new
difficulty defined as the difference between angular distances of
the label class and the smallest of other classes as illustrated in Fig-
ure 1. Additionally, we introduce a multi-level calibration method
to reduce estimation uncertainty through post-training calibration.
In summary, our contributions and findings are summarized below:
1. )We propose Angular Gap to measure example difficulty for de-
signing a curriculum learning scheme. 2. ) We develop multilevel
calibration techniques with global and class-wise calibration to
produce accurate uncertainty for Angular Gap. 3.) We propose a
smooth transfer learning curriculum and integrate CST with cali-
brated Angular Gap for the unsupervised domain adaptation task 4.
)We extensively validate calibrated Angular Gap on several SOTA
methods and datasets of unsupervised domain adaption and the
results suggest the superior performance.

2 RELATEDWORKS
Image difficulty. A wide range of researchs show images possess
different amounts of difficulty. It takes tremendous efforts to quan-
tify human perceptual image difficulty. Recently, a line of works
model difficulty with the "learning dynamics" of labelling functions.
Forgetting events[39] relate example difficulty to catastrophic for-
getting [9] by measuring the occurrence of a sample being forgotten
during training. The measurement is generalized from discrete do-
mains to continuous domain by averaging the results of ensembles.
C-score [18] designs a Monte Carlo method to estimate difficulty
w.r.t the probability of correct generalization. Prediction depth [1]
employs an ensemble of k-NN classifiers to output intermediate pre-
dictions, and defines difficulty as the earliest layerwhere subsequent
intermediate predictions converge. However, difficulty measured
by deep ensembles rely on selected treatments and controls such
as architectures, data splits and ensembling strategies. Recently,
Angular Visual Hardness [5] initially tries to model image difficulty

Code available at https://github.com/pengbohua/AngularGap.

with angular distance predicted by a single neural network. In this
work, we reinforce this idea with hyperspherical learning[26] that
emphasizes angular discrimination and ascertain difficulty with
model calibration.
Uncertainty estimation. The shared goal of uncertainty esti-
mation and model calibration is to provide trustworthy model
confidence for decision making. Expected calibration error (ECE)
and reliability diagrams are standard metrics to measure model
calibration[33]. Recently, deep ensembles[18, 23] become popular
methods for visual uncertainty estimation due to less correlation
between individual models. The major drawback is their heavy
computational overheads. To ascertain the model confidence of
a single model, another line of research focuses on post-training
calibration. Platt scaling[33] is a test-by-time parametric approach
that rescales output logits with an extra linear layer trained on a
hold-out validation set. Temperature Scaling (TS)[13] simplifies this
approach with a single learnable parameter. Most recently, variants
of Platt scaling[21] and class-wise TS [16] present better calibration
performance over vanilla TS. However, Dirichlet Calibration[21]
claims that Temperature Scaling mainly focuses on the maximum
probability instead of predictions of all classes, which aligns with
[30]. In this work, we opt to revisit model calibration and predict
plausible similarity in a hyperbolic space.
Curriculum learning. Curriculum learning[3] is a paradigm that
favors learning along a curriculum of examples from easy to hard.
Starting from this general idea, self-paced learning [22] imple-
ments an automatic curriculum that considers examples with small
loss as representative examples. With recurrent neural network,
MentorNet[17] combines the best of curriculum learning and self-
paced learning with a teacher-student architecture that supervises
the training of base networks by learning a data-driven curricu-
lum. In the context of supervised learning, deep neural networks
learn transferrable features from representative examples before
overfitting specific features[18]. We extend the above ideas to hy-
perspherical learning and propose curricula that prioritize large
Angular Gap.
Unsupervised domain adaptation. Unsupervised domain adap-
tation (UDA) presents a challenging transfer learning problem
where data from the source domain are labeled while data from
the target domain are unlabeled. A shared assumption between fea-
ture alignment methods[11, 45]and self-training algorithms[29, 46]
is that shared knowledge exists between domains, which allows
for the same labelling function. On the one hand, shared knowl-
edge exists as similar features between domains in the feature
adaptation literature[12, 27]. On the other hand, shared knowl-
edge is modelled by the parameters of feature extractors in the
self-training algorithms[25, 46, 47]. Using source models to label
target data, CBST[46] initially performs pseudo-label selection with
class-wise confidence thresholds, which is then improved by con-
fidence regularization as CRST[47]. To handle large domain dis-
crepancy, FixMatch[38] applies a pair of weak and strong data
augmentations to target image and enforce consistency regulariza-
tion when the weakly-augmented image prediction is confident.
FixBi[29] uses a fixed mixup ratio to train twin feature extractors
as "bridges" between domains. As an alternative, curriculum learn-
ing has been applied to domain adaptation from task-level[44] or
instance-level[36] using feature adaptation. We borrow these ideas

https://github.com/pengbohua/AngularGap
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Figure 2: An example of Angular Visual Hardness (AVH).
Three out of ten angles are shown for visual clarification.

and propose a transfer learning curriculum to create infinite bridges
that gradually decrease discrepancy between different domains. Dif-
ferent from existing works, our transfer learning curriculum does
not purely focus on easy samples, but choose the optimal from
searching.

3 PRELIMINARY
Angular Visual Hardness. Figure 2 shows an example of image
difficulty measured by Angular Visual Hardness (AVH). This metric
is automatically estimated by a neural network formed by a feature
extractor and a linear classifier. For an individual image, AVH is
defined as the angular distance between its feature vector and label
weight vector divided by the sum of angular distance between its
feature vector and all class weights.

AVH(x𝑖 ) =
A(x𝑖 ,w𝑦𝑖 )∑𝐶
𝑘=1 A(x,w𝑘 )

(1)

A(x𝑖 ,w𝑘 ) = arccos (
x𝑇
𝑖
w𝑘

∥x𝑖 ∥ ∥w𝑘 ∥
) (2)

where x𝑖 ∈ R𝑑 denotes the 𝑑 dimensional image feature extracted
by a backbone. The image is categorized into one of 𝐶 classes and
labeled as 𝑦. w𝑘 ∈ R𝑑 is the 𝑘−th column of the linear classifier’s
weightW.
Subdomain feature alignment. Deep Subdomain Adaptation
Network[45] performs fine-grained feature alignment by dynami-
cally weighing up samples from less representative classes. In their
method, local maximummean discrepancy (MMD) can be measured
as follows

𝑑H (𝑃,𝑄) ≜
𝐶∑︁
𝑘=1

𝑢𝑘

 1
|𝑋𝑆 |

∑︁
x𝑠 ∈S

𝜙 (x𝑠 ) −
1

|𝑋𝑇 |

∑︁
x𝑡 ∈T

𝜙 (x𝑡 )


H

(3)

where 𝑢𝑘 is the class ratio to characterize subdomains defined in
[45]. 𝑥𝑠 and 𝑦𝑠 are features and labels from the source domain S,
and𝑥𝑡 are unlabeled features from the target domainT .𝜙 are kernel
functions that measure the distance between source feature x𝑠 and
target feature x𝑡 on a Hilbert space. Deep features are optimized
with the classification loss and this transfer loss.
Cycle Self-Training. As a state-of-the-art single perspective UDA

method, Cycle Self-training (CST)[25] contains an inner loop and
an outer loop. Both loops share the same feature extractor but have
their own classifier. With input augmentations and consistency
regularization, the inner loop focuses on correctly predicting target
samples. The outer loop updates feature representations to reduce
the difference between source classifier and target classifier.

4 CALIBRATED ANGULAR GAP
In the context of image classification, we propose Calibrated Angu-
lar Gap to estimate example difficulty for curriculum learning. The
learnt difficulty metric is based on the angular distance between
the feature vectors and the class-weight vectors predicted by hy-
perspherical learning. In the standard curriculum learning[3], we
train the model with easier samples determined by Angular Gap,
and then gradually feed harder samples. For domain adaptation, we
propose a novel curriculum to work with Angular Gap, which pro-
vides a smooth transition between adapting easy samples and hard
sample mining. We combine this method with cycle self-training
(CST).

4.1 Angular Gap
Example difficulty can be considered as modelling "similarity" be-
tween examples and abstract concepts. The abstract concepts can
be class labels, prototypes, or even text descriptions. For simplicity,
we define a new difficulty, Angular Gap, measured as the difference
between the similarity to its label class and the largest similarity of
all classes. This definition is based on the assumption that larger
cosine similarities are more precisely estimated than smaller ones.
For example, when searching with an image of a tabby cat, one can
probably get many of its kind and some tiger cats because of their
common visual properties.
Definition1 Formally, we represent Angular Gap as

D(x, y) = 𝑠𝑖𝑚(x,w𝑦) − argmax
𝑘≠𝑦

𝑠𝑖𝑚(x,w𝑘 ) (4)

𝑠𝑖𝑚(x,w𝑘 ) = cos\𝑘 =
x𝑇
𝑖
w𝑘

∥x∥ ∥w𝑘 ∥
, (5)

where \𝑘 is the angle between x and w𝑘 .
Following common practice of image recognition[7, 41], we em-
phasize angular discrimination on the hyperbolic space with nor-
malized softmax loss (NSL) and feature norm rescaling represented
as

𝐿𝑁𝑆𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(𝑠 · cos\𝑦𝑖 )∑𝐶
𝑘=1 exp(𝑠 · cos\𝑘 )

(6)

𝑠 denotes the scaling factor that rescales feature norms to a constant.
Unlike [7] that inserts a geodesic margin between the sample and
its class center, here we remove the margin to achieve better gener-
alisation. Note that feature normalization has projected features to
a hypersphere with a radius of 𝑠 .

4.2 Multilevel model calibration
In our empirical study, feature norms increase continuously yet
slowly when training with NSL, indicating negative log-likelihood
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Figure 3: Geometric interpretation of model calibrations on a hyperbolic space. A neural network learns class weights𝑊 , fea-
tures 𝑥 and angles 𝛽 and \ during training. These angles are rectified by 𝛿 with post-training calibration. (a) Global calibration
adds a small angle 𝛿 to all samples simultaneously, hence increasing the angular range of class j from 𝛽 𝑗 to 𝛽 𝑗 +𝛿 . (b) Classwise
calibration learns a vector 𝒔𝑑 that adds 𝛿𝑘 to the angles of class k. (c) Model calibration rectifies an individual angle \𝑦𝑖 by 𝛿𝑖 .
(d) An angular gap is the difference between angle \𝑦𝑖 of the label class and the smallest angle \𝑘 among other classes. (e) We
visualize the image difficulty of CIFAR10 measured by Angular Gap D(𝑥𝑖 , 𝑦𝑖 ) on a 3D globe.

overfitting training data. This is partially because the cosine simi-
larity get minimized when feature norms increase. Although over-
fitting may increase test accuracy, uncertain similarities harm dif-
ficulty estimation. As shown in Figure 3, we handle this problem
with model calibration from a global level, a class-wise level and
an instance level. In general, our idea is to learn multiplicative
calibration functions that refine the angles on a hyperbolic space.

cos(𝜽 + 𝚫) = cos𝚫 cos𝜽 − sin𝚫 sin𝜽 (7)
≈ cos𝚫 cos𝜽 − 𝚫 sin𝜽 (8)
= 𝜑 (𝒙, 𝜽 ) cos𝜽 (9)

With small-angle approximation, the nonlinear calibration function
𝜑 (𝒙, 𝜽 ) adds or remove a small angle 𝛿 from the original prediction.
Global calibrationGlobal calibration expands or shrinks all angles
on the hyperbolic space simultaneously with a single learnable
parameter 𝑠𝑡 . This requires a validation dataset with samples 𝑥 𝑗 ∈ 𝜒

and labels 𝑦 𝑗 ∈ Y = {, ...𝐶}. The loss function for this calibration
method is

min
𝑠𝑡

𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(𝑠 · (𝑠𝑡 · cos\𝑦𝑖 ))∑𝐶
𝑘=1 exp(𝑠 · (𝑠𝑡 · cos\𝑘 ))

, (10)

cos b𝑘 = 𝑠𝑡 · cos\𝑘 , (11)

𝑠𝑡 is an additional parameter learnt during post-training calibration.
cos b𝑘𝑔 is the refined angular distance at global level.
Class-wise calibration A single parameter is not enough to give
us precise example difficulty calibration. To capture class-level
difficulty exhibited in behavioral datasets, we let the neural network

learn a vector s ∈ R𝐶 that equally rescales angles with another
calibration loss function defined as

𝐿𝑐𝑙𝑎𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(𝑠 · (𝑠𝑦𝑖 · cos\𝑦𝑖 ))∑𝐶
𝑘=1 exp(𝑠 · (𝑠𝑘 · cos\𝑘 ))

, (12)

cos b𝑘 = 𝑠𝑘 · cos\𝑘 , (13)

where 𝑠𝑘 is the 𝑘th entry of the vector s corresponds to class k.
𝑠𝑦𝑖 rescales the angular distance to the label class. cos b𝑘 is the
calibrated angular distance at class level.

D∗ (x, y) = cos b𝑦 − argmax
𝑘≠𝑦

cos b𝑘 (14)

Augmented image difficulty D∗ can be computed by replacing the
directly measured similarities cos\𝑘 with refined similarities cos b𝑘 ,
as done with global calibration and class-wise calibration. The pro-
posed calibration methods are natural extensions of Temperature
Scaling and Vector Scaling[13] in the hyperspherical setting.

4.3 Curricular Cycle Self-Training
With Angular Gap, we facilitate domain adpation by defining a
novel curriculum that prioritizes alignment on easy samples that
contain general necessary knowledge, and gradually focus on hard
samples that contain specific knowledge. Because alignment can
be measured by fixed kernel functions or neural classifiers, we
combine Angular Gap with DSAN[45] and CST[25], and propose
Curricular DSAN and Curricular CST respectively.
In Figure 4, we design a novel curriculum that control example
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Table 1: Accuracy (%) of standard curriculum learning guided by example difficulties on CIFAR10-H. Ourmethods outperform
AVH by 1% and are on par with C-score. Note that C-score was built with a deep ensemble with selected data splits, while we
train a single AngularGap model from scratch. Correlations with human selection frequency are measured with Spearman’s
rank andKendall’s Tau,with 𝑝 < 0.001 for all experiments. Calibration is empiricallymeasuredwith ECE(%). Global calibration,
Class-wise calibration and Temperature Scaling calibration is represented by Global, Class-wise and TS respectively.

.

Methods Spearman’s rank Kendall’s Tau ECE Top-5 acc. Top-1 acc.

Maximum Confidence 0.266±0.006 0.148±0.004 11.3±0.2 94.5±0.3 74.8±2.1
Maximum ConfidenceTS 0.273±0.004 0.145±0.004 9.1±0.2 94.5±0.3 75.3±2.1
Classfication Margin[39] 0.279±0.006 0.142±0.004 11.3±0.2 94.6±0.3 75.3±2.0
Classfication MarginTS 0.283±0.006 0.242±0.004 9.0±0.2 94.9±0.3 75.7±1.3
MC-Dropout[10] 0.256±0.007 0.176±0.006 9.4±0.4 95.7±0.3 77.0±0.5
AVH[5] 0.368±0.006 0.258±0.004 8.2±0.2 98.2±0.3 81.2±1.0
AVHGlobal 0.376±0.003 0.263±0.003 7.5±0.2 98.6±0.2 81.3±0.7
AVHClass−wise 0.377±0.003 0.265±0.002 7.4±0.2 98.6±0.2 81.4±0.6
Forgetting Events[39] 0.260±0.003 0.187±0.002 11.5±0.5 98.0±0.4 78.9±1.2
C-score[18] 0.316±0.001 0.243±0.001 9.8±0.3 99.0±0.1 82.4±0.4
Prediction Depth[1] 0.290±0.001 0.183±0.001 9.8±0.3 98.5±0.2 81.2±0.4
Angular Gap (Ours) 0.378±0.003 0.265±0.003 8.2±0.2 98.6±0.2 82.0±0.6
Angular GapGlobal 0.382±0.003 0.268±0.002 7.5±0.2 98.8±0.2 82.3±0.4
Angular GapClass−wise 0.384±0.002 0.269±0.002 7.4±0.2 98.9±0.2 82.4±0.4

weights according to pacing functions and example difficulty with
sigmoid functions. We choose sigmoid functions to work with An-
gular Gap A(𝑾 , 𝑥𝑠 , 𝑦𝑠 )) because this combination allows for effi-
ciently searching pacing functions _ in a symmetric space. More-
over, this curriculum can smoothly transfer between easy-to-hard
and hard sample mining.

𝑑𝑠 = 𝜎 (_ · D(𝑥𝑠 , 𝑦𝑠 )), (15)

_(𝑎,𝑏) (𝑡) = 𝑁
1 − 𝑏

𝑎𝑇
𝑡 + 𝑁𝑏. (16)

where 𝑑𝑠 is example weight ranged between 0 and 1. 𝑎 and 𝑏 denote
the parameters of pacing functions _. 𝑡 is the current time step and
𝑇 is the number of total iterations.
Curricular DSAN. We want to learn generalizable features by
prioritizing alignment of easy samples with the same class. We
augment the feature alignment process with a dynamic discrepancy
scoring function defined as

𝑑H (𝑃,𝑄) ≜
𝐶∑︁
𝑘=1

𝑢𝑘

 𝑑𝑠

|𝑋𝑆 |

∑︁
𝑥𝑠 ∈𝑆

𝜙 (𝑥𝑠 ) −
1

|𝑋𝑇 |

∑︁
𝑥𝑡 ∈𝑇

𝜙 (𝑥𝑡 )


H

. (17)

Curricular CST. We apply Angular Gap to CST to improve the
optimization of the outer loop. Our curriculum prioritizes model
updates for transferring and scoring the features of easy samples,
yielding more robust representations for pseudo-labels generation
of the inner loop. To this end, we add example weights to the reverse
step as follows,

𝐿𝑟𝑒𝑣 ≜
∑︁
𝑠∈𝑆

∑︁
𝑡 ∈𝑇

𝑑𝑠 ∥𝑠𝑖𝑚(𝑥𝑠 , 𝑥𝑡 )𝑦𝑡 − 𝑦𝑠 ∥2 . (18)

This term reduces cross-domain discrepancy by explicitly trans-
forming pseudo labels 𝑦 to the source domain, and updates deep
representations learnt by the mutual feature extractor.

5 EXPERIMENTS AND RESULTS
We have designed the experiments to evaluate our proposed meth-
ods by evaluating the following hypotheses:

• More credible example difficulty: We evaluate the credibility
of learnt Angular Gap by analyzing their correlations with
human selection frequency on CIFAR10-H and ImageNetV2.

• Better curriculum learning: We evaluate the performance of
networks when guided with Angular Gap under the standard
curriculum learning framework [3].

• More robust representations: We evaluate how the network
is able to learn better generalizable representations with the
proposed curriculum on the task of unsupervised domain
adaptation.

5.1 Datasets
CIFAR10[19] and ISLRVC 2012 (ImageNet) [20] are standard bench-
marks for image classification . For human evaluation, CIFAR10-
H[2] and ImageNetV2[34] are two recently popular behavioral
datasets that report human selection frequency. Human selection
frequency models instance-level difficulty with the faction of peo-
ple that correctly classify an image. CIFAR10-H is composed of
10,000 images from 10 classes with 511,400 decisions given by 2570
annotators. ImageNetV2 is composed of 10,000 large-scale images
from 1000 classes, where each image is labelled by more than 10
annotators.
For domain adaptation, we consider Office-31[35] andVisDA 2017[32]
as standard benchmarks. Office-31 consists of images of 31 classes
from three domains - Amazon (A), DSLR (D) andWebcam (W). Each
domain has 2, 817, 498 and 795 images respectively. We compare
our Curricular DSAN and Curricular CST with recent baselines
across all six transfer learning tasks. VisDA 2017 considers 152, 409
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Figure 4: Curricular cycle self-training. The pacing function _ schedules example weights as training proceeds. The optimal
transfer learning curriculum, shown as the purple line, decreases the importance of an easy sample (b) and increases the
importance of a hard sample (c) as training proceeds. Note that the purple curriculum enforces easy-to-hard at the beginning
and hard sample mining at the end. (d) and (e) compare model accuracy and the maximum mean discrepancy between CST
(red) and Curricular CST(blue) for all target data points.

Table 2: Correlations between difficulty and HSF on ImageNetV2.

Spearman’s rank Kendall’s Tau

𝜌 p-value 𝜏 p-value

Maximum Confidence 0.273 <0.001 0.201 <0.001
Classification margin 0.275 <0.001 0.204 <0.001
Forgetting Events[39] 0.260 0.048 0.187 0.054
Prediction Depth[1] 0.308 <0.001 0.192 <0.001
Classification margin (TS) 0.293 <0.001 0.242 <0.001
AVH (Global)[5] 0.377 <0.001 0.257 <0.001

Angular Gap (Global) 0.379 <0.001 0.269 <0.001
Angular Gap (Class) 0.382 <0.001 0.271 <0.001

labeled synthetic images as the source domain and 55, 400 unlabeled
real-world images as the target domain.

5.2 Implementation details
Image difficulty estimation. To measure image difficulty, we em-
ploy popular convolutional neural networks. We emphasize Angu-
lar discrimination with normalized softmax loss and a rescaling fac-
tor 𝑠 of 30. For data prepossessing, we follow PyTorch examples[31]
to generate random image crops. We train the models from scratch
on CIFAR datasets for 100 epochs with a batch size of 128. We set

the initial learning rate as 0.1 and a cosine learning rate anneal-
ing strategy. On ImageNet, we finetune pretrained ResNet50 with
SGD optimization and set hyperparameters as stated in PyTorch
examples[31].
Multilevel calibration. For calibration, we follow recent papers

[13][30] and set the initial weights of vector scaling as an identity
matrix. We randomly select 10% of training samples of CIFAR10
for post-training calibration. For ImageNet, we use the validation
datasets provided. We optimize the loss functions with LBFGS op-
timization for 10 epochs with the learning rate set as 0.01. For
all experiments, except ImageNet, we report the mean correlation
coefficient over 5 different seeds. For ImageNet, we report mean
experimental results over 3 different seeds.
Curriculum learning evaluation. Following the fixed easy-to-
hard data order as stated in [3], we use the paced learning (PL)
setup to fairly compare Angular Gap with other example difficulty
measurements. During data loading, we add a fraction of harder
examples at the tail of our training data sequence after the current
data loader is consumed. Following [42], we employ ResNet18, lin-
ear pacing functions and curriculum learning search grids. Note
that, for CIFAR10-H, we use the standard image augmentation and
weight decay regularization as stated in [31] instead of AugMix[15]
to ensure consistency. To amplify the effects of image difficulty,
we apply cosine learning rate annealing to SGD optmization. As
shown in Figure A.7, we have evaluated image difficulty metrics
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(b) (e)

(d)
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Figure 5: Comparison betweenAngular Gap andAVHbefore
and after class-wise calibration on CIFAR10-H. Shadows in
the plots denote the corresponding standard deviations. The
first column shows the training dynamics of uncalibrated
Angular Gap (a) and AVH (b) and calibration (c) of the hy-
perspherical model. The second column shows class-wise
calibrated Angular Gap (d) and AVH (e) and calibration (f).
Note that themagnitude of the average Angular Gap ismore
observable than the average AVH across different models.
Class-wise model calibration reduces uncertainty in image
difficulty estimation.

on standard curriculum learning with Weights and Biases[4] and
Google Cloud Platform. The results are summarized in Table 1.

5.3 Results
The results for ImageNetV2 are listed in Table 2 and the results for
CIFAR10-H are tabulated as the first columns in Table 1. Figure 5
shows that model calibration has reduced the uncertainty of image
difficulty. Our experiments show that simply scaling up models has
caused overfitting, and the corresponding image difficulty becomes
more uncertain.In Figure 3, we have projected the latent features to
a unit globe. Easy samples are closer to their class centers and have
larger Angular Gap, while difficult samples with negative Angular
Gap can be misclassified due to low-resoluted ambiguous content.
The 3d visualization reveals more complex angular information,
i.e., ambiguous samples related to multiple classes.
We analyze difficulty uncertainty andmodel capacity using ResNet18,
ResNet50 and ResNet101[14]. In general, Figure 5 shows that larger
CNNs are more poorly calibrated and have shown more uncertainty

in image difficulty estimation. Scaling up models will cause overfit-
ting, and the corresponding image difficulty will be less plausible.
We also analyze the effects of feature normalization by comparing
the training dynamics of AlexNet [20], VGG16 [37] and ResNet50 in
the supplementary material as shown Figure A.1 and A.2. The im-
provements on difficulty estimation may probably come from lower
feature norms. By emphasizing angular discrimination, feature nor-
malization and rescaling improve model calibration as shown by
the reliability diagrams in Figure A.5. Class-wise calibration further
improves the class-wise similarity estimation which is the model
confidence in the hyperspherical learning setting.
Regarding correlation with human predictions, measured by Spear-
man’s rank and Kendall’s Tau, calibrated Angular Gap significantly
outperforms other baselines except C-score which is an intensively
computational ensemblingmethod.We conclude there are twomain
reasons. Firstly, the Angular Gap regularizes its difficulty estimation
with hyperspherical learning. Secondly, the Angular Gap avoids the
hazard of uncertain angular distance by using the largest similarity
among other classes, which is powerful when the data point is near
the boundary of two classes. Interestingly, Figure A.3 shows that
class-wise calibration is similar to human judgements to the classes
of CIFAR10-H. Another noteworthy observation is that other dif-
ficulty measures show improvement after calibration, suggesting
that the standard curriculum learning benefits from better example
difficulty estimation. Our results also align with experiments of [21]
that show multiclass probabilities can be improved by fine-grained
calibration.

5.4 Domain Adaptation
We investigate Angular Gap on the domain adaptation tasks for
further insights. Following standard protocols of UDA, we use
ResNet50 as the backbone for image classification tasks on Office31
and ResNet101 for image classification tasks on VisDA2017. For all
methods mentioned above, we project latent features extracted by
the backbones to 256d embeddings for discrepancy estimation. For
Office31, we use mini-batch stochastic gradient descent (SGD) with
an initial learning rate of 0.001, a momentum of 0.9, a batch size
of 64, and a weight decay of 5e-4. The pacing function _ linearly
decreases from 4 to -2 for 100 epochs. For VisDA2017, we set the
initial learning rate as 0.0001, a momentum of 0.9, a batchsize of 64,
and a weight decay of 5e-4. The pacing function _ linearly decreases
from 32 to -8 for 100 epochs. For difficulty estimation, we use Adam
to finetune the Angular Gap with 80 percent of source data and
perform vector scaling calibration with LBFGS optimization on the
rest of source data. The search space is symmetric with 𝑎 and 𝑏 cho-
sen from {−32,−16, ... − 2,−1, 2, ...16, 32}. We speed up searching
with random search and Hyperband[24] algorithms.
Curricular cycle self-trainig. Table 3 shows the classification
accuracy of our curricular UDAmethods on Office31. Table 4 shows
results on VisDA-2017. Curricular CST significantly outperforms
state-of-the-art baselines with observable margins, indicating the
benefits of the proposed curriculum on domain adaptation tasks.
Curricular DSANhas also surpassed several feature alignmentmeth-
ods presented in the left part of the Table 4. The optimal curriculum
reported by grid search suggests aligning easy samples in the first
stage and then focusing on hard samples in the second stage. Note
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Table 3: Accuracy (%) on Office31. Our Curricular CST method outperforms baselines on six domain adaptation tasks. A→ W
denotes the transformation task from the Amazon domain to Webcam domain, and D→W denotes the transformation from
the Webcam domain to DSLR domain. The best accuracy is indicated in bold, and the second best is underlined.

Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet 68.44±0.4 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN[11] 84.5±0.4 96.35±0.2 99.5±0.1 80.93±0.5 69.03±0.4 68.98±0.5 83.2
CBST[46] 87.8±0.8 98.5±0.1 100.0±0.0 86.5±1.0 71.2±0.4 70.9±0.7 85.8
MSTN[43] 91.3±0.2 98.9±0.1 100.0±0.0 90.4±0.3 72.7±0.3 65.6±0.5 86.5
CRST[47] 89.4±0.7 98.9±0.4 100.0±0.0 88.7±0.8 72.6±0.7 70.9±0.5 86.8
DSAN[45] 93.0±0.4 97.8±0.2 100.0±0.0 89.3±0.7 73.5±0.5 74.3±0.4 88.0
CST[25] 95.6±0.3 98.4±0.2 100.0±0.0 95.1±0.3 77.8±0.7 78.9±0.2 91.0
FixBi[29] 96.1±0.2 99.3±0.2 100.0±0.0 95.0±0.4 78.7±0.5 79.4±0.3 91.4

Curricular DSAN 93.8±0.2 98.3±0.1 100.0±0.0 90.3±0.5 74.0±0.3 75.2±0.4 88.6
Curricular CST 96.0±0.1 99.5±0.2 100.0±0.0 94.9±0.2 78.9±0.5 80.4±0.1 91.6

Table 4: Accuracy (%) for sythetic-to-real on VisDA2017

Method Acc. Method Acc.

DANN[11] 55.3 CBST[46] 76.4
DAN[27] 61.1 CRST[47] 78.1
MSTN[43] 65.0 FixMatch[38] 76.7
JAN[28] 65.7 CST[25] 79.9
DSAN[45] 74.8 FixBi[29] 87.2

Curricular DSAN 75.4 Curricular CST 88.1

that Curricular CST does not need manually tuning confidence
threshold for pseudo-label generation as done with CBST, CRST
and FixBi.
Curricular domain discrepancy. Figure 4 shows the dynamics
of accuracy (%) and discrepancy measured by MMD. Curricular
CST is able to achieve better training dynamics and final accuracy.
There is a noticable flunctuation between 20 to 40 epoch, although
sigmoid-shape curriculum provides "smooth" transitions. This in-
dicates the model is able to transit from aligning easy samples to
hard sample mining. This aligns with the finding that mining more
"informative" samples close to the boundary contributes to better
classification results. CST methods have larger MMD than DSAN,
but better final performance. We claim that this occurs because
neural classifiers can measure discrepancy as logits which is an
nonlinear measurement.
Feature visualization. On the task 𝐴 → 𝑊 , we visualize the
image embeddings with t-SNE[40] in Figure 6. For CST, both the
source and target domain features have formed clusters, but many
target samples fall out from their class clusters as outliers. For Cur-
ricular CST, although the alignment between source cluster centers
and target cluster centers is weaker than CST, target embeddings
have successfully formed more compact clusters. As a result, there
are less outliers than the baseline.
Limitations. The proposed methods have potential limitations.

Source
Target

(a) Baseline (CST) (b) Curricular (CST)

Source
Target

Figure 6: Visualization of features on
A(source) → W(target).

Measuring difficulty with Angular Gap inevitably generates compu-
tational overheads before curriculum learning. Using hyperspher-
ical learning, Angular Gap based curriculum learning improves
model generalization with additional complexity according to [7].

6 CONCLUSIONS
In this paper, we propose Angular Gap to address the uncertain
image difficulty estimation on a hyperbolic space. We further pro-
pose multilevel calibration methods to improve the credibility of
the learnt angular metric and look at the calibration problem from
hyperspherical learning with geometric interpretations. A curricu-
lar cycle self-training method is boosted by the Angular Gap and
a curriculum that provides smooth transitions between aligning
easy sample and hard sample mining. In our experiments, we show
that calibrated Angular Gap is highly correlated with human judg-
ments. On the standard curriculum learning task, the results of
Angular Gap are comparable with deep ensembles. We observe
the uncertainty of difficulty estimation reduces after calibration.
The proposed curriculum results in better optimization of feature
discrepancy and significantly improves baselines on the domain
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adaptation task. Future work can generalize this framework for stan-
dard classification tasks and delve into validating model robustness
on synthetic data shift with corruption and perturbation.
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Angular Gap: reducing the uncertainty of image difficulty
through model calibration
Supplementary material

A CALIBRATED ANGULAR GAP
In this section, we give additional information for Angular Gap and
multilevel calibration. First, we clarify the difference between con-
fidence and Angular Gap. Then we show some examples of feature
norm plots, class-wise calibration maps and reliability diagrams
that can help to understand calibrated Angular Gap.

A.1 Model confidence and Angular Gap
In the supervised multi-class classification with neural networks,
model confidence refers to the outputs from the softmax layer.
Given a class prediction 𝑦𝑖 of softmax probabilities y𝑖 ∈ R𝐶 , the
confidence can often be computed as follows

P(𝑦𝑖 |x𝑖 ,W, b) =
exp(w𝑇

�̂�𝑖
x𝑖 + 𝑏�̂�𝑖 )∑𝐶

𝑘=1 exp(w
𝑇
𝑘
x𝑖 + 𝑏𝑘 )

. (A.1)

By contrast, Angular Gap, defined in Equation 4, uses the cosine
similarities between feature vectors and class vectors before the
softmax operation. Although the similarity can be considered as a
nonlinear version of confidence, we focus on ascertaining the values
of these similarities for individual samples during hyperspherical
learning. These generalized similarities are enforced by feature
normalization and removing bias from the classification layer. To
connect Angular Gap with confidence, we write the normalized
softmax loss as

min
W,xi

𝐿𝑁𝑆𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

logP(𝑦𝑖 |x𝑖 ,W, 𝑠), (A.2)

= − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(𝑠 · (w𝑇

𝑦𝑖
x𝑖/∥w𝑘 ∥ ∥x𝑖 ∥))∑𝐶

𝑘=1 exp(𝑠 · (w
𝑇
𝑘
x𝑖/∥w𝑘 ∥ ∥x𝑖 ∥))

.

(A.3)

(c) (d) 

(a) (b)

Figure A.1: Feature norm ∥𝑥 ∥ on CIFAR10-H with shadows
represent the standard deviation. (a) Training with cross-
entropy loss. (b) Training with normalized softmax loss
(NSL). Uncertainty increases as model capacity increases.

(a) (b)

Figure A.2: Feature norm ∥𝑥 ∥ on ILVRC 2012. (a) Training
with cross-entropy loss. (b) Training with NSL.

A.2 Feature norm
Figure A.1 and Figure A.2 show the dynamics of feature norm
trained on CIFAR10with cross-entropy loss and normalized softmax
loss (NSL) respectively. For CIFAR10-H, the mean and standard de-
viation are reported over five random seeds, while for ImageNetV2
the statistics are computed over three random seeds. The feature
norms slowly diverge as the negative log likelihood minimizes. This
indicates the necessity of model calibration when using the proba-
bilities output by a single neural classifier. Although training with
NSL makes feature norm smaller, the magnitude of uncertainty
cannot be ignored. This can add a double-edged effect on the learnt
representations. On the one hand, representations may become
more robust because small perturbations to x cannot easily affect
classification results. On the other hand, Angular Gap is more likely
to fall into local optimum because it takes more effort to update
cosine similarities when feature norms are large. Therefore, in this
work we propose global calibration and class-wise calibration to
directly refine cosine similarities in the post-training.

A.3 Calibration map
Figure A.3 (a) shows the confusion matrix of human classifiers
reported by CIFAR10-H. The class level image difficulty can be
represented by the precision of each class. Figure A.3 (b) shows
that class-wise calibration is able to capture class level difficulty in
which the diagonal entries are learnt during the post-training and
others are forced to be zeros.

A.4 Reliability diagrams
As visual representations of model calibration, reliability diagrams
plot sample accuracy as a function of confidence. Figure A.5 shows
reliability diagrams on the original difficulty estimators (a), and re-
sults of applying temperature scaling (b), feature normalization (c),
global calibration (d) and class-wise calibration (e). These diagrams
also explain the uncertainty of Angular Gap in the sense that Angu-
lar Gap can be nonlinearly mapped as confidence in hyperspherical
learning. The first column shows the calibration results of the most
probable softmax predictions, while the remaining columns show
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Figure A.3: Comparision of human predicted confusion ma-
trix (a) and a class-wise calibration map (b).

the calibration results of class-wise softmax predictions. The red
bars visualize the gaps between expected accura With sample accu-
racy less than expected, the original model shows overconfidence to
its predictions. After temperature scaling, the max output probabili-
ties are calibrated but the gaps of the class-wise reliability diagrams
are still obvious, which indicates considerable uncertainty exists in
the sample confidence of less possible classes. Compared with the
previous models trained with cross-entropy shown, models (c), (d)
and (e) show less over-confidence, indicating feature normalization
is able to reduce the uncertainty of example difficulty of CIFAR10-H
samples. With a single learnable parameter, global calibration (d) is
not enough to give well-calibrated confidence. Figure A.5 (e) shows
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Figure A.4: Linear pacing functions for curriculum learning

that class-wise calibration is able to better calibrate sample confi-
dence on all classes. Figure A.6 (a) shows the calibration results of
early stopping applied when the negative log likelihood stagnates.
The model has become underconfident. Figure A.6 ( b) shows the
results of label smoothing (0.1), and class-wise reliability diagrams
reveal its instability.

B STANDARD CURRICULUM LEARNING
In this section, we give more details about the standard curriculum
learning evaluation that compares image difficulty metrics head-
to-head mentioned in Section 5.2. Standard curriculum learning,
or Paced learning, designs a simple yet flexible curriculum with
precomputed difficulty scores. This curriculum learning scheme
contains two main steps. In the first step, data samples are sorted
with precomputed difficulty scores in a fixed order. In the second
step, a pacing function loads in a scheduled proportion of hard
samples every epoch. We opt to use fixed training orders and lin-
ear pacing functions to simplify the evaluation. The linear pacing
functions can be formally written as,

𝑔(𝑎,𝑏) (𝑡) = 𝑁
1 − 𝑏

𝑎𝑇
𝑡 + 𝑁𝑏, (A.4)

where the pacing functions start with 𝑏 percentage of training data
and gradually add in samples until 𝑎 percentage of total iterations
when the entire training set is fed, before the training continuing to
the end. Figure A.4 shows some examples of linear pacing functions
for CIFAR10-H. For example, when 𝑎 is 0.2 and 𝑏 is 0.8, the linear
pacing function corresponds to the olive line on the upper left.
The results for standard curriculum learning evaluation are shown
in Figure A.7. Angular Gap outperforms other image difficulty
baselines of single-perspective methods, and is on par with the
best performing ensemble method, C-score. The error rates of the
upper left part of the heat-maps are generally lower than others.
This shows that, in order to perform well, the model needs complex
enough training materials during the early stage of training.
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(a) Uncalibrated w/o FN

(b) Temperature scaling w/o FN

(c) Uncalibrated with FN

(d) Global calibration with FN
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(e) Class-wise calibration with FN

Figure A.5: General reliability diagrams in the first column and class-wise reliability diagrams in the remaining columns.
The diagrams visualize the calibration of ResNet18 models by comparing predictive confidence with observed accuracy of
CIFAR10-H samples. Red bars indicate the gaps between expected accuracy (dash lines) and observed accuracy (blue bars) of
the current confidence bin. (a) and (b) are pre-trained with cross-entropy loss and without feature normalization(FN). (b) uses
temperature scaling to calibrate confidence. (c), (d) and (e) are trained with NSL. (d) and (e) applies the proposed global and
class-wise calibration during the post-training respectively. Three out of ten classes are shown for visual clarification.
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(a) Early stopping
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(b) Label smoothing

Figure A.6: Additional reliability diagrams of ResNet18 models trained with early stopping (a) and label smoothing (b). The
first column shows the calibration results of the most probable softmax predictions, while the remaining columns show the
calibration results of class-wise softmax predictions.
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Figure A.7: Test errot rate (%) of different difficulty metrics applied to standard curriculum learning on CIFAR10-H. Each diffi-
cultymetric corresponds to a heat-map for the parameter 𝑎 ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 1.0} and the parameter 𝑏 ∈ {0.0, 0.2, 0.4, 0.6, 0.8}.
In each heat-map, a cell represents the median accuracy over five runs. Results in the first row show accuracy of image diffi-
culty predicted by ensemble methods: (a) Forgetting events, (b) Prediction depth, (c) C-score, (d) HSF. The second row reports
accuracy of image difficulty predicted by single-perspective methods: (e) MC-dropoout, (f) Classification margin, (g) AVH, (h)
Angular Gap.
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