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Computer-aided characterization of early cancer in Barrett’s
esophagus on i-scan magnification imaging: a multicenter
international study
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GRAPHICAL ABSTRACT
Background and aims: We aimed to develop a computer-aided characterization system that could support the

diagnosis of dysplasia in Barrett’s esophagus (BE) on magnification endoscopy.

Methods: Videos were collected in high-definition magnification white-light and virtual chromoendoscopy with i-
scan (Pentax Hoya, Japan) imaging in patients with dysplastic and nondysplastic BE (NDBE) from 4 centers. We
trained a neural network with a Resnet101 architecture to classify frames as dysplastic or nondysplastic. The
network was tested on 3 different scenarios: high-quality still images, all available video frames, and a selected
sequence within each video.

Results: Fifty-seven patients, each with videos of magnification areas of BE (34 dysplasia, 23 NDBE), were
included. Performance was evaluated by a leave-1-patient-out cross-validation method. In all, 60,174 (39,347
dysplasia, 20,827 NDBE) magnification video frames were used to train the network. The testing set included
49,726 i-scan-3/optical enhancement magnification frames. On 350 high-quality still images, the network achieved
a sensitivity of 94%, specificity of 86%, and area under the receiver operator curve (AUROC) of 96%. On all 49,726
available video frames, the network achieved a sensitivity of 92%, specificity of 82%, and AUROC of 95%. On a
selected sequence of frames per case (total of 11,471 frames), we used an exponentially weighted moving average
of classifications on consecutive frames to characterize dysplasia. The network achieved a sensitivity of 92%, spec-
ificity of 84%, and AUROC of 96%. The mean assessment speed per frame was 0.0135 seconds (SD � 0.006).

Conclusion: Our network can characterize BE dysplasia with high accuracy and speed on high-quality magni-
fication images and sequence of video frames, moving it toward real-time automated diagnosis. (Gastrointest
Endosc 2023;97:646-54.)
(footnotes appear on last page of article)
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There is a global rise in the incidence of esophageal
adenocarcinoma (EAC) affecting 0.7 per 100,000 person-
years, predominantly in Western countries.1 Barrett’s esoph-
agus (BE) is associated with an increased risk of progression
from nondysplastic BE (NDBE) to low-grade dysplasia
(LGD) to high-grade dysplasia (HGD) to EAC.2

Despite advances in endoscopic technology, EAC in BE
is still underdiagnosed.3 A multicenter study showed an
overall missed esophageal cancer rate of 6.4%.4 One factor
associated with a missed diagnosis is endoscopist’s experi-
ence. Computer-aided diagnosis (CAD) and characteriza-
tion can potentially help offset some of these factors.

The endoscopic evaluation of BE dysplasia is a 2-step
process whereby the BE segment is initially assessed in
overview in high-definition white-light imaging modes. A
more detailed inspection is then performed with chro-
moendoscopy and magnification imaging when a lesion
is identified, which provides improved visualization of
the mucosal architecture and vasculature.5 This is particu-
larly useful in assessing resection margins, allowing for a
complete resection (R0). Assessment on magnification im-
aging may be difficult for nonexpert endoscopists even
though classification systems are available.6-12

The i-scan optical enhancement (OE) system (Pentax,
Hoya, Japan) uses preprocessing and postprocessing tech-
niques to allow surface enhancement of the superficial
mucosal vascular structures. Using an optical filter, OE de-
livers specific wavelengths of light that correspond to the
main absorption spectrum of human hemoglobin, which
allows enhancement of the microvasculature within the
most superficial layers of the mucosa (Fig. 1). The use of
magnification endoscopy combined with OE allows closer
inspection (��136 resolution) of the mucosal structures
and vasculature.13

Lipman et al12 validated the use of previous i-scan sys-
tems for the characterization of dysplasia in BE using a sim-
ple classification system based on mucosal and vascular
patterns. Using this classification system, Everson et al13

showed that the accuracy of neoplasia detection was signif-
icantly higher when experts used OE versus high-definition
white-light (HD-WL) magnification (84% vs 77%).

Struyvenberg et al5 developed a CAD system with prom-
ising diagnostic accuracy in predicting the presence of
dysplasia in BE on narrow-band imaging (NBI) zoom
videos using the Olympus system. As far as we are aware,
that was the only published study to develop a neural
network for characterization on magnification imaging in
BE. To our knowledge, no studies have developed a CAD
system for magnification imaging on the Pentax OE/i-scan
3 imaging system. A computer-aided detection system
will help detect areas of dysplasia in BE in overview assess-
ments of the esophagus. A CAD system would supplement
a computer-aided detection system to further confirm and
classify the pathologic features of an area of BE and
confirm clear resection margins.
www.giejournal.org
The primary aim of this international multicenter study
was to develop a novel CAD system that could characterize
and diagnose BE dysplasia on OE/i-scan3 magnification
endoscopic imaging on 3 levels by assessing the sensitivity,
specificity, and accuracy of the model on (1) high-quality
still images, (2) short sequence of frames, and (3) real
time on whole videos.

The secondary aims were to assess the speed of the net-
works in characterizing dysplasia.
METHODS

Patient recruitment
Patients attending for BE assessment at 4 expert Euro-

pean centers were recruited. All cases were collected
prospectively, including cases collected prospectively as
part of a previous BE imaging study.13 Patients with
esophageal strictures, varices, and ulceration were
excluded from recruitment. The study was approved by
the Cambridge central research ethics committee (REC
Reference No. 18/EE/0148) for UK sites. European cen-
ters received ethical approval from local committees
for the use of images for this and other imaging-based
research projects.

Endoscopic procedures and video collection
Videos were collected by 4 expert endoscopists (R.J.H.,

R.B., J.M., M.H.). All those endoscopists had >10 years’
experience in the assessment of BE, performed BE endo-
therapy weekly, and had access to zoom endoscopes in
their units to perform magnification endoscopy.

Magnification videos were prospectively collected by
use of the Pentax endoscopy system. Mucus lining the
esophagus was removed with a simethicone and water
solution. Endoscopists performed a pull-through, which
involved slow withdrawal of the endoscope from the
gastroesophageal junction to the maximal extent of BE
in high-definition white-light (HD-WL) imaging. If a
lesion was identified, it was assessed with a �136 zoom
by use of HD-WL, i-scan1, and i-scan3/OE. If there was
no lesion or dysplasia, the endoscopist selected 1 normal
area and assessed it with zoom imaging, which was
recorded.

Tissue acquisition and histologic analysis
Areas suggestive of dysplasia and assessed with magnifica-

tion imaging underwent a target biopsy or EMR. The EMR
samples were affixed to a cork board with pins and needles
and then embedded in paraffin in the histopathology labora-
tory. Areas of BE with no suspicion of dysplasia on magnifi-
cation imaging underwent target biopsy. The results of
histologic examination showing dysplasia were reviewed by
2 histopathologists with expertise in BE and >10 years of
experience in each center.
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Figure 1. Before and after application of the i-scan optical enhancement (OE) technology during assessment of an area of Barrett’s esophagus on magni-
fication imaging. Image courtesy of Everson et al, 2019.13

TABLE 1. Breakdown of the data set based on location and histopathologic features

Location Histopathologic feature

United Kingdom Belgium Spain Austria HGD IMC NDBE

Number of patients 30 17 6 4 19 15 23

HGD, High-grade dysplasia; IMC, intramucosal adenocarcinoma; NDBE, nondysplastic Barrett’s esophagus.
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Annotation strategy
A computer vision annotation tool (Odin vision, Lon-

don, UK) was used to annotate a sequence of magnifica-
tion video frames as dysplasia/no dysplasia. The area of
annotation was matched with the resection or biopsy
areas. Annotations were done on a frame level for the
presence or absence of dysplasia based on the mucosal
pit pattern and vasculature. The criterion standard was
determined by the results of the histological analysis of
the biopsy specimen or EMR specimen. The frames
were used to train and validate a convolutional neural
network (CNN) to characterize dysplasia on magnifica-
tion imaging.

Model data set
In all, 57 patients were included (23 NDBE patients, 34

dysplastic patients). To train the network, 60,174 (39,347
dysplasia, 20,827 NDBE) magnification video frames were
used. These images included white light, i-scan1, and
i-scan3/OE images. Performance was evaluated by a leave-1-
patient-out crossvalidation methodology with a test set that
included all the i-scan3/OE frames only, reflecting a real-
world scenario whereby assessment on zoom is done with
chromoendoscopic imaging. This means that 57 different
models or folds were generated. Each model was trained
with all procedures except 1, which became the test case.
Therefore, the AI system was tested on all the cases. The
testing set included all 49,726 i-scan3/OE magnification
frames (35,262 dysplastic frames, 14,464 nondysplastic
frames). Table 1 shows a breakdown of the data set based
on site location and histologic features of the lesions.

Three levels of test data sets were created to allow 3
different levels of results, which can be interpreted differ-
ently depending on the tailored requirements of the artifi-
cial intelligence (AI) system: (1) high-quality still images,
(2) short continuous sequence of frames within a video,
and (3) all available video frames.
648 GASTROINTESTINAL ENDOSCOPY Volume 97, No. 4 : 2023
Test set 1: high-quality still images. Between 5 and
16 high-quality still OE/i-scan3 images were randomly
selected from each patient. There was a total of 350 images
(212 dysplastic, 138 nondysplastic) in this test set. This re-
flects a possible scenario whereby the endoscopist would
first capture a high-quality magnification image on a freeze
frame on which an assessment is then made (Fig. 2).

Test set 2: sequence of frames. A short continuous
sequence of frames was annotated for the presence or
absence of dysplasia. A random part of each video was
selected. There was a total of 11,471 i-scan3/OE frames in
this test set. The average length of each sequence was 8
seconds per patient. In reality, experts would spend a short
time assessing an area of interest on magnification imag-
ing. This provides an experiment that reflects the real-
world scenario in how an assessment is made on zoom
imaging. In the same way experts make better decisions
by inspecting the lesion in several frames, this test
set allows us to evaluate the AI system while allowing for
a temporally informed decision (Fig. 2).

Test set 3: all video frames. All available 49,726 i-
scan3/OE frames were included. No frames were excluded,
even lower-quality images. The average length of each case
recording was 35 seconds (872 frames) per patient (Fig. 2).

Classification convolutional neural network
Preprocessing and augmentation. A CNN was

trained with a ResNet101 architecture to characterize BE
video frames as dysplastic or nondysplastic by use of a
leave-1-patient-out cross-validation methodology. We
trained 57 models on all the procedures except 1, which be-
comes the test procedure for that fold. Each fold was tested
on the same epoch to ensure generalization across the data.

Data augmentation was performed randomly to reduce
overfitting, including color transformations (brightness,
contrast, saturation, and hue) and affine transformations
(rotation, translation, and scaling). A validation set was
www.giejournal.org
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Figure 2. Breakdown of the data set and potential importance of each level of testing data set in the computer-aided diagnosis (CAD) system output.
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used after each training iteration on 5000 images to spot
for divergence in the validation loss. The training parame-
ters were kept the same for each fold. Minibatch training
was done whereby a training iteration is performed with
different minibatches of 5000 images. Images were crop-
ped (removing the black borders) and then resized to
448 � 448 pixels, and then the pixel values were normal-
ized. Data leakage was prevented by ensuring that all im-
ages from each patient were always in the same set
(training or testing) on each iteration.

Hyperparameters and training. The network was
pretrained on ImageNet and then fine-tuned on our data.
Learning rate: 1e-4, fine-tuned for 6 epochs, minibatch
size 32. The pretrained model was trained with Pytorch,
the same as our model. The ImageNet weights are pro-
vided in the Pytorch platform.

Postprocessing. The model was trained to classify
over 2 classes: dysplastic and nondysplastic. The output
of the model was the probability of dysplasia for each
frame, a number between 0 and 1 that was then thresh-
olded. On the prediction on the sequence of frames (test
set 2), an exponentially weighted average of the consecu-
tive frames was used to make a diagnosis of dysplasia.
The same threshold of .65 was used on each testing set.
www.giejournal.org
The processing speed of the model was measured on an
NVIDIA GeForce RTX 3090 graphics processing unit.

Statistical analysis
Descriptive statistics consisted of the mean (� stan-

dard deviation). The performance of the CAD system on
a per-frame and per-patient level was calculated in terms
of accuracy, area under the curve (AUC), specificity, and
sensitivity. A 57-fold leave-1-patient-out cross-validation
methodology was used to train and assess the perfor-
mance of the CNN.
RESULTS

Test set 1: high-quality still images
The CAD system was tested on 350 high-quality i-scan3/

OE still images, resulting in a per frame accuracy of 91%,
sensitivity of 94%, specificity of 86%, and AUC of 96% in
characterizing dysplasia (Fig. 3).

Test set 2: sequence of frames
The CAD system was tested on a total of 11,471 frames by

using an exponentially weighted moving average, achieving
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Figure 3. Area under the receiver operating characteristic (ROC) curve performance of the computer-aided diagnosis system on (A) 350 still images, (B)
consecutive sequence of frames per case, and (C) 49,726 i-scan3/optical enhancement (all available) frames.
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an accuracy of 90%, sensitivity of 92%, specificity of 84%, and
AUC of 96% (Fig. 3).

Figure 4 shows an automated video analysis of a dysplastic
and a nondysplastic case on magnification endoscopy. It
shows the likelihood of a correct prediction of dysplasia/non-
dysplastic by the CAD system per frame and compares the
performance with the endoscopists’ predictions. Temporal
filtering was then used to make a per-case prediction.

Test set 3: all video frames
The CAD system was tested on all 49,726 i-scan3/OE

frames, achieving a per-frame accuracy of 89%, sensitivity
of 92%, specificity of 82%, and AUC of 95% (Fig. 3).

CNN performance per patient
Test set 2: sequence of frames. In a per-patient anal-

ysis based on the sequence of frames, the CAD system had
a sensitivity of 91% and specificity of 78% in characterizing
dysplasia (based on a threshold of >80% of frames in each
video being predicted correctly).

Three different scenarios for per-patient prediction
were generated based on different correct prediction
thresholds. These can be adjusted in an endoscopic sys-
tem. The optimal scenario would be number 3 (Table 2).
650 GASTROINTESTINAL ENDOSCOPY Volume 97, No. 4 : 2023
In this situation, in 97% of the videos, >70% of the frames
were correctly predicted as dysplasia.

Test set 3: all video frames. On a per-patient anal-
ysis of all available frames, the CAD system achieved a
sensitivity of 91% and specificity of 70% (based on a
threshold of >70% of frames in each video being pre-
dicted correctly).

CNN performance based on histologic features
Test set 2: sequence of frames. Out of the 34 cases

of dysplastia, 19 were HGD and 15 were intramucosal
adenocarcinoma (IMC) on histologic analysis. Based on
the sequence of frames per case analysis, the CAD system
had a sensitivity of 88% in characterizing HGD (3933
frames out of 4485 correctly predicted) and 99% in charac-
terizing IMC (3287 frames out of 3337 correctly predicted).
The CNN achieved a per-frame specificity of 84% in the 23
patients with no dysplasia on magnification imaging.

Test set 3: all available frames. The CAD system had
a sensitivity of 92% in characterizing IMC (12,613 out of
13,722 frames correctly predicted as dysplastic) and a sensi-
tivity of 92% in characterizing HGD (19,924 out of 21,540
frames correctly predicted as dysplastic). The CNN achieved
a per-frame specificity of 82% on the nondysplastic cases.
www.giejournal.org
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Figure 4. Using an exponentially weighted moving average, the computer-aided diagnosis (CAD) system predicts the likelihood of neoplasia on i-scan3/
optical enhancement magnification imaging over a consecutive sequence of frames. A, The CAD system correctly predicts the likelihood of neoplasia
(blue line) on each frame. This overlaps with the prediction of the endoscopist (green line) and the criterion standard (histologic analysis). B, The
CAD system correctly predicts a 0% likelihood of neoplasia in this case of nondyplastic Barrett’s esophagus.

TABLE 2. Different scenarios for a per-patient prediction based on the proportion of frames in a sequence that correctly predict dysplasia

Scenario Proportion of frames in a sequence that correctly predict dysplasia Per-patient sensitivity

1 >90% 85%

2 >80% 91%

3 >70% 97%

Hussein et al Early cancer in Barrett’s esophagus
Speed of characterization of dysplasia in BE
The mean assessment speed per frame was 0.0135 sec-

onds (SD �0.006) or 74 frames per second. Figure 5 shows
an example of the system being used to correctly predict a
diagnosis of dysplasia on a particular frame in OE.
DISCUSSION

This study demonstrates a CAD system for the diagnosis
and characterization of dysplasia on magnification chro-
moendoscopy imaging with high sensitivity and specificity,
both on high-quality images and on a high number of suc-
cessive frames. The results suggest that this algorithm may
work effectively in real time in the live endoscopy setting.

To the best of our knowledge, this is the first study to
demonstrate the performance of an AI algorithm on Pentax
(i-scan3/OE) magnification imaging. The only other study
to develop a CAD algorithm for diagnosis on magnification
imaging was developed using NBI. That study reported
promising diagnostic accuracy; on 30,021 NBI magnifica-
tion video frames, the CAD demonstrated a sensitivity
and specificity of 85% and 83%, respectively.5 On our study,
on 49,726 OEmagnification frames the AI system achieved a
www.giejournal.org
sensitivity and specificity of 92% and 82%, respectively, in
characterizing dysplasia. It is difficult to make a direct com-
parison between the 2 networks because they were devel-
oped by the use of 2 different imaging systems. Further
studies are required to develop a network that is able to
generalize across all endoscopic platforms.

Several studies have developed classification systems for
the characterization of BE, and they are all based on magni-
fication endoscopy.6-8 Magnification imaging allows for a
clearer distinction of the pit pattern and vascular abnormal-
ities, which would allow a clear differentiation of dysplasia
versus no dysplasia to be made. However, these classifica-
tion systems have complex criteria, meaning that there is
not a large uptake by nonexpert endoscopists.14 An AI sys-
tem for characterization will help make this process much
easier in nonexpert hands by aiding these predictions to be
made on magnification imaging.

Our group recently published an article describing an AI
system that is able to detect and localize BE dysplasia with tar-
geted biopsies on overview images.15 Other groups have also
published promising results for the detection of dysplasia in
BE.16-19 These detection systems would be more relevant to
the general endoscopist in improving detection rates because
they do not require specialist equipment or classification
Volume 97, No. 4 : 2023 GASTROINTESTINAL ENDOSCOPY 651
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Figure 5. The artificial intelligence system correctly predicts an area of
dysplasia on optical enhancement magnification.
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criteria. By contrast, these magnification AI systems would be
very useful to experts, in particular helping to delineate lesion
margins and achieve an R0 resection and therefore mini-
mizing the risks of recurrence. The 2 features of an AI system
with detection and characterization can work together as part
of a 2-stage algorithm to help achieve optimal outcomes for
patients.

We developed 3 different iterations of test sets to show
the ability of the CAD system to tailor to different scenarios
and to test its performance across different conditions to di-
agnose dysplasia. We tested performance on high-quality
still images (n Z 350 images), sequence of frames within
each case, and all the available magnification frames in the
videos, including lower-quality images. One can argue that
the most clinically relevant factor is the performance on
high-quality still images. When an endoscopist performs an
assessment on magnification imaging, areas of interest are
capturedwith a freeze frame and visually assessed in thismo-
dality. The AI system can seamlesslymake a prediction at the
same time as an endoscopist’s assessment on this freeze
frame image. The continuous sequence of frames within
each case reflects the real-world scenario whereby an endo-
scopist assesses a specific part of the esophagus on magnifi-
cation imaging. In the same way experts make better
decisions by inspecting the lesion in several frames, this
test set allows us to evaluate the AI system while allowing
for a temporally informed decision. The AI system had a
high performance on these frame sequences (92% sensi-
tivity, 84% specificity). Prospective randomized control trials
are required to test these findings.

The system was trained on multiple video frames to
maximize the ability of the CNN to work in different envi-
ronments. This is why we developed 3 iterations of testing
data sets to allow us to test the performance of the model
in different scenarios. A leave-1-out cross-validation meth-
odology was used. Owing to the subtlety of the lesions
and the limited data set, models trained with different
train/test/validate splits generate results that vary greatly
and could imply statistical uncertainty about the estimated
652 GASTROINTESTINAL ENDOSCOPY Volume 97, No. 4 : 2023
performance. If an experiment yields low results, it is hard
to know whether the model did not learn a good-enough
representation. Therefore, we decided to use leave-1-out
cross-validation, so all the patients can be evaluated sepa-
rately by use of a model as close as possible to training
with the whole data set. This methodology allows seeing
the potential of the model with limited data.20

The system was able to diagnose dysplasia on magnifica-
tion imaging with a speed of 0.0135 seconds per frame. In
the only other similar study, the processing speed of the AI
system was 0.026 seconds per frame.5 To fairly compare
the speed of different systems, the systems would need
to be benchmarked on the same machine. The results
show that the system would be able to work in real time
to support the decision making of endoscopists on assess-
ments on magnification imaging.

A particular strength of the study was in the inclusion of
several different centers and the various histologic fea-
tures. The CAD system was able to perform well on
HGD, intramucosal adenocarcinoma, and NDBE. These
strengths potentially will provide more favorable results
with the system if tested in different countries and settings.
This is something that can be tested with a prospective
trial.

This CAD system would fit in as part of a 2-stage algo-
rithm. The first step would be detection of suggestive areas
during a pull-though assessment of the esophagus on
white light/i-scan1 images. Our group recently published
a study of this problem, whereby the detection algorithm
would identify an area of abnormality for a targeted bi-
opsy.15 This would be relevant to all hospitals that perform
assessment of BE. The second step of the algorithm would
be the step discussed in this study to characterize and di-
agnose the area of abnormality once identified. This would
help confirm further an area of dysplasia and would also
help with delineation of the resection margins to ensure
an R0 resection of the lesion, offering curative endoscopic
therapy to patients. This second step would be particularly
relevant to experts in tertiary referral centers and also to
district general hospitals that have zoom endoscopes in
helping to confirm an area of dysplasia (Fig. 6).

There are limitations to this study. We developed a CAD
system using videos from a single endoscopic system. In
future studies we plan to develop a system based on imag-
ing from multiple platforms so it can be generalized across
all systems. Another limitation is that the AI system was not
benchmarked against endoscopists. We plan to do this in
future studies and to test the performance of the system
against expert and nonexpert endoscopists using an
external data set. We believe that this model will have
different roles depending on the expertise of endoscopists
with the use of zoom imaging in the assessment of BE. For
nonexperts it will be helpful in confirming the diagnosis of
dysplasia, whereas for experts it will help with delineating
the resection margins for EMR, helping ensure an R0
www.giejournal.org
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Figure 6. A 2-stage algorithm for detection of dysplasia on overview pull-through assessment of the esophagus on white-light/i-scan1 imaging followed by
characterization on i-scan3/optical enhancement (OE) magnification imaging. BE, Barrett’s esophagus.
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resection. Another limitation is that we included lower-
quality images in the training set. The CAD might have
been more robust if we had included only a high-quality
sequence of frames, given that realistically, on magnifica-
tion imaging, endoscopists make their assessments on
these high-quality images. We included the lower-quality
images to potentially maximize the ability of the model
to work in the real-world endoscopy setting. A limitation
of this study is that there was no final test from an external
data set of images. This would help strengthen our results,
and we plan to do this in future studies. This could be
potentially done as part of a clinical trial that would test
the real-time applicability of this model. In terms of histo-
logic features, no LGD was included in this phase of the
study. This is something we plan to include in future
studies because these cases are more difficult to charac-
terize and would provide further value to this model. We
would require training a model with a large volume of
LGD dysplasia cases to be able to then characterize them.

We present a CAD system that is able to diagnose and
characterize dysplasia on magnification imaging with high
accuracy on both a per-frame and a per-patient level.
This would allow the potential reduction of unnecessary bi-
opsies and more accurate EMR results, minimizing the risk
of recurrence. The system would need to be validated in a
prospective multicenter randomized control trial in a real-
time endoscopic setting.
www.giejournal.org
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