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A B S T R A C T

Prostate biopsy and image-guided treatment procedures are often performed under the
guidance of ultrasound fused with magnetic resonance images (MRI). Accurate im-
age fusion relies on accurate segmentation of the prostate on ultrasound images. Yet,
the reduced signal-to-noise ratio and artifacts (e.g., speckle and shadowing) in ultra-
sound images limit the performance of automated prostate segmentation techniques
and generalizing these methods to new image domains is inherently difficult. In this
study, we address these challenges by introducing a novel 2.5D deep neural network for
prostate segmentation on ultrasound images. Our approach addresses the limitations
of transfer learning and finetuning methods (i.e., drop in performance on the original
training data when the model weights are updated) by combining a supervised domain
adaptation technique and a knowledge distillation loss. The knowledge distillation loss
allows the preservation of previously learned knowledge and reduces the performance
drop after model finetuning on new datasets. Furthermore, our approach relies on an
attention module that considers model feature positioning information to improve the
segmentation accuracy. We trained our model on 764 subjects from one institution and
finetuned our model using only ten subjects from subsequent institutions. We analyzed
the performance of our method on three large datasets encompassing 2067 subjects from
three different institutions. Our method achieved an average Dice Similarity Coefficient
(Dice) of 94.0± 0.03 and Hausdorff Distance (HD95) of 2.28 𝑚𝑚 in an independent set
of subjects from the first institution. Moreover, our model generalized well in the studies
from the other two institutions (Dice: 91.0±0.03; HD95: 3.7𝑚𝑚 and Dice: 82.0±0.03;
HD95: 7.1 𝑚𝑚). We introduced an approach that successfully segmented the prostate
on ultrasound images in a multi-center study, suggesting its clinical potential to facilitate
the accurate fusion of ultrasound and MRI images to drive biopsy and image-guided
treatments.
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1. Introduction

Prostate cancer is the third most common cancer diagnosed globally and the fifth leading cause of cancer-related mortality
and morbidity in men (Sung et al., 2021). Transrectal ultrasound-guided (TRUS) biopsy procedures are used to diagnose prostate
cancer (Michalski et al., 2016; Sarkar and Das, 2016). TRUS images show the prostate in real-time, allowing urologists to guide the
biopsy needle during the procedure. Yet, these images have a low signal-to-noise ratio and artifacts (e.g., speckle and shadowing),
which reduce the ability of clinicians to reliably distinguish cancerous from normal regions. Therefore, TRUS-guided biopsy
procedures usually involve blind sampling of 12 regions throughout the prostate (Harvey et al., 2012). Such blinded systematic
biopsy procedures sample <1% of the prostate, missing 52% clinically significant cancer (Williams et al., 2022; Schimmöller et al.,
2016).

To address the inability of TRUS images to reliably show cancer, approaches have been developed to fuse magnetic resonance
images (MRI) with TRUS images to project suspicious lesions from MRI onto TRUS images and target them during biopsy (Tătaru
et al., 2021; Liau et al., 2019). Fusion requires the registration of MRI and TRUS images which is typically done by aligning
the prostate boundary. The prostate boundaries are usually manually outlined on both MRI and TRUS images by clinical experts,
usually radiologists for MRI and urologists for TRUS (Tătaru et al., 2021). Prostate segmentation on TRUS images could also be
useful for other applications, including computer-aided diagnosis and targeting cancers using ultrasound images alone.. Accurate
manual segmentation of the prostate on TRUS images is a tedious, time-consuming task that suffers from inter- and intra-observer
variability due to the reduced quality of the images. Moreover, it is common for the prostate to require segmentation multiple times
throughout the biopsy procedure to account for motion and tissue changes (Wang et al., 2019).

Methods for automated prostate segmentation on TRUS images hold the potential to improve accuracy, reduce inter-reader
variability and reduce the time required for manual prostate segmentation during clinical procedures. Numerous automated and
semi-automated algorithms have been presented for prostate segmentation on TRUS images. Some approaches used shape statistics
as prior knowledge (Li et al., 2016; Ghose et al., 2012), yet required the intervention of an expert user. Other approaches extracted
textural features from TRUS images and combined them with traditional machine learning methods to formulate a classification
task (Zhan and Shen, 2006; Yang et al., 2016). These methods used hand-crafted features for segmentation, which are inadequate
for capturing high-level semantic information and failed to deliver accurate segmentation for complex prostate cases.

Deep learning-based methods have achieved high accuracy in medical image segmentation tasks compared to non-learning
methods (Liu et al., 2020; Azizi et al., 2018; Aldoj et al., 2020; Vesal et al., 2021), and have already been used for prostate
segmentation on TRUS images (Anas et al., 2017; Ghavami et al., 2018; van Sloun et al., 2021; Jaouen et al., 2019; Girum et al.,
2020; Wang et al., 2019; Orlando et al., 2020; Lei et al., 2019; Xu et al., 2021). Most deep learning-based segmentation methods
rely on supervised encoder-decoder architectures. Some studies incorporated prior shape information as statistical shape models
to improve the segmentation of challenging regions, e.g., apex and base (Zeng et al., 2018; Karimi et al., 2019; Yang et al., 2017).
Other studies explored temporal information of TRUS scans using recurrent neural networks (RNNs) (Anas et al., 2018), attention
mechanism (Wang et al., 2019) or shadow augmentation (Xu et al., 2021) to improve segmentation quality. However, most studies
evaluated their methods on a small set of patients with data from a single institution and a single manufacturer, thus providing
limited evidence about generalization across data from other institutions and different imaging devices, vendors, and data acquisition
parameters (end-firing and side-firing probes).A recent study (van Sloun et al., 2021) investigated the use of deep learning models
for multi-center prostate gland segmentation on TRUS images. The author employed a standard UNet architecture to segment the
prostate gland. The model was trained and tested on a small number of patients from three different institutions (a total of 436 TRUS
images from 181 men), acquired using only end-fire probes. The reduced training population size and homogeneous data possibly
limit the generalizability of their approach, particularly in ultrasound images acquired with a different type of probe or at a different
institution.

Deep learning models often require large amounts of data during training to achieve robust and consistent performance across
data from multiple institutions. Transfer learning or finetuning (Weiss et al., 2016) is one method for improving the generalization
of segmentation models on new data. The main drawback of classical finetuning approach is that it forgets previous knowledge
since the model’s weights are being updated (Michieli and Zanuttigh, 2019; Cermelli et al., 2020). As a result, the performance
deteriorates when the newly trained model is tested on the previous data (Michieli and Zanuttigh, 2019). Knowledge distillation
techniques (Wang and Yoon, 2022) have been widely used to preserve the high performance of a model when applied to new tasks. It
was originally used to retain the performance of a complex model when adopting to a smaller network for more efficient deployment
(Hinton et al., 2015).

Several studies attempted to apply the knowledge distillation technique for a variety of objectives in the computer vision and
medical domains, including cross-modality learning (Tian et al., 2020) (transfer knowledge from one modality to another modality
without the need of any additional annotations), metric learning (Park et al., 2019; Kim et al., 2021) (map the input feature
representations to an embedding space), and network regularization (Yun et al., 2020) (enhance the generalization performance of
deep neural networks using regularization losses). Similarly, approaches based on knowledge distillation have been developed for
domain adaptation (Meng et al., 2018; Zhou et al., 2020). The domain adaptation techniques aim to reduce the gap between two
domains, which is similar to the domain generalization technique. Moreover, the standard knowledge distillation approaches are
based on a teacher-student training scheme, where a teacher model first learns the task and distills the knowledge to a student model,
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Fig. 1: Example of prostate outlines (red) on ultrasound images acquired at three different institutions. Note the large variations in prostate shape, contrast, field of
view, and the presence of artifacts (e.g., inhomogeneous intensity distributions). Moreover, the prostate boundary is not always clearly visible or easily distinguishable
from the neighboring structures (orange arrows).

which is more compact with less trainable parameters. Several studies (Meng et al., 2018; Feng et al., 2021; Liang et al., 2022)
attempted to train many teachers models in the source domains and ensemble them to distill knowledge into the student approach.
However, because these techniques use several pretrained teacher models, they are computationally expensive to train. Recently, the
knowledge distillation technique was further adopted for continual learning tasks to keep the network’s responses on the previous
tasks unchanged while updating it with new training samples (Cermelli et al., 2020). As a result, this helped to reduce the effect of
catastrophic forgetting after each round of finetuning on a new task and improve the performance.

In this paper, we present an end-to-end deep learning-based segmentation model for prostate gland segmentation on TRUS images.
We introduce an approach for model generalization that utilizes a knowledge distillation loss (Michieli and Zanuttigh, 2019) to
mitigate “catastrophic forgetting” while applying the model to images from multiple institutions. We first train a segmentation model
on our large cohort of in-house TRUS images (cohort C1, n=764), then finetune the model on subjects from two other institutions
(cohorts C2, C3) with relatively few annotated examples by transferring information from the first model to the subsequent models
(Fig. 1).

Our study has three main contributions:

• We introduce a deep learning framework for accurate prostate gland segmentation in TRUS images, with the presence of
considerable variation in intensity and image acquisition parameters. We improve the generalization capabilities of our model
across data from three institutions.

• To limit the effect of catastrophic forgetting during transfer learning, we adapted a training scheme that utilizes knowledge
distillation loss during the finetuning process on new data.

• Extensive experiments on multi-center data with different ultrasound probes demonstrate the proposed approach brings
substantial gains over existing approaches.

2. Methodology

2.1. Data and cohort description
To develop and validate our prostate gland segmentation algorithm, our study included patients from three different institutions.

This retrospective chart review study was approved by the Institutional Review Board (IRB) of Stanford University. As a chart
review of previously collected data, patient consent was waived. The device and clinical characteristics of these data cohorts are
listed in Table 1. Examples of TRUS images are shown in Fig. 1.

Cohort C1 included 954 men who underwent TRUS-MRI targeted biopsy utilizing the Artemis biopsy system (Eigen, Grass
Valley, CA) at Stanford. Ultrasound scans were carried out using the Hitachi Hi-Vision 5500 7.5 MHz or the Noblus C41V 2-10 MHz
end-fire ultrasound probe. The 3D scans were obtained by rotating the end-fire probe 200 degrees around its axis and interpolating
to resample the volume to isotropic resolution. The prostate gland was segmented by an expert urologist during the TRUS-MRI
targeted biopsy procedures.

Cohort C2 included 1,161 men who underwent biopsy at the University of California Los Angeles (Natarajan et al., 2020; Sonn
et al., 2013; Clark et al., 2013). Hitachi Hi-Vision 5500 7.5 MHz end-fire ultrasound probes were used for ultrasound scanning. The
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volume was resampled with an isotropic resolution by rotating the end-fire probe 200 degrees about its axis and interpolating. This
cohort is similar to cohort C1 in terms of the ultrasound image reconstruction method.

Cohort C3: included TRUS scans acquired from 106 men as part of the SmartTarget Biopsy Trial (Ghavami et al., 2018)
who underwent targeted transperineal biopsy. For each patient, a continuous rotational 3D acquisition was used to acquire 50-120
sagittal slices to cover the whole prostate. These images were acquired using side-fire ultrasound probes. Three trained biomedical
engineering experts segmented the prostate in all images where the prostate gland was visible (Ghavami et al., 2018).

Table 1: Scanner specifications and demographic breakdown of the data included in our study.

Cohort C1 C2 C3
Source In house Public External
Number of Patients 764 (training), 190 (testing) 10 (training), 1,151 (testing) 10 (training), 96 (testing)
Number of Images 802 (training), 220 (testing) 10 (training), 1,751 (testing) 10 (training), 96 (testing)
Manufacturer Eigen Inc. Eigen Inc. Hitachi
Scanner Artemis Artemis HI VISION Preirus
Probe Hitachi/Noblus/Hitachi C41V Hitachi/Noblus/Hitachi C41V Hitachi C41L47RP
Probe Type End-fire End-fire Side-fire
Transmit Frequency (MHz) 7.5 7.5, 10 3.5
Frame Rate (Hz) 9 9 9
Average Pixel Spacing (mm) [0.11, 0.52] [0.21, 0.55] [0.25]
Slice Thickness (mm) [0.11, 0.52] [0.21, 0.55] [0.25]
Matrix Size (range) 290×290 - 496×496 342×342 - 452×452 303× 495
Number of Frames (range) 210 - 291 226 - 290 50 - 120

2.2. Data Preprocessing
Multiple preprocessing steps were applied to the TRUS images. Bi-linear interpolation was used to resample the images to

the same spacing (0.25𝑚𝑚 × 0.25𝑚𝑚) and to resize to 128 × 160 pixels, while maintaining the aspect ratio. No resampling was
performed on the 𝑧-axis, and all slices were included in the training. For all studies in the three cohorts, the original TRUS pixel
intensities (ranging between [0, 255]) were mapped to the 0-1 range using a min-max normalization. No cropping was applied
as our models seek to both localize and segment the prostate. To improve the contrast of the TRUS images, the contrast limited
adaptive histogram equalization (Pizer et al., 1990) method was used with a default window size of 4 × 4 pixels.

Train-test splits: For cohort C1, 764 patients (n=802 TRUS scans) were used for training and validation of the models and 190
patients (n=220 TRUS scans) for testing. Of the 1,151 patients (n=1,761 TRUS scans) in cohort C2, ten patients (n=10 TRUS scans)
were randomly chosen for finetuning the model, and the rest of the subjects were used for model testing. Similarly, for cohort C3
(n= 109 TRUS scans), only ten scans were used to finetune the model, as detailed in Table 1. Some patients in cohorts C1 and C2
had multiple TRUS studies.

2.2.1. Segmentation Network Architecture
Leveraging multi-scale information and boundary region guidance can help the segmentation model extract more discriminative

features for robust prostate segmentation, especially given the large variation in the field of view and natural variation in prostate
shapes. Thereby, we constructed a 2.5D convolutional network architecture called Coordination Dilated Residual-UNet (CoordDR-
UNet) (Fig. 2) inspired by (Vesal et al., 2021). The segmentation model G has encoder and decoder paths that are connected by a
bottleneck block. Every block in the encoder and decoder paths has two 2D convolution layers followed by a Rectified Linear Unit
(ReLU), batch-normalization, and a 2D max-pooling layer to reduce the dimensionality of the feature maps. A residual connection
was introduced to each encoder block to optimize the flow of gradients and force the encoder to extract more discriminative features
(He et al., 2016). A softmax activation function was used in the model’s last layer to generate the probability segmentation map
of the prostate and background. The bottleneck convolution layers of UNet are replaced by dilated convolutions. This allows the
model to collect both global and local contextual information by expanding the receptive field (Wang and Ji, 2018; Vesal et al.,
2021). Therefore, we constructed a block of stacked dilated convolutions, the outputs of which are summed. To address the issue of
gridding artifacts, each subsequent layer has complete access to earlier features learned using different dilation rates. In our model
configuration, we employed four dilated convolutions in the model bottleneck with a dilation rate of 1 − 8.

Moreover, our approach relies on attention mechanisms to force the deep learning model to pay more attention to the uncertain
regions during model back-propagation(Schlemper et al., 2019; Hu et al., 2018; Roy et al., 2019), specifically caused by the absence
of clear boundaries between the prostate and the surrounding tissue. We attached a coordinate attention block (CAB) (Hou et al.,
2021) to our 2.5D DR-UNet to assist the model in improving the expressive power of the learned features. The coordinate attention
block takes the output of each encoder block as the input X𝜃 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ] ∈ Rℎ×𝑤×𝑛 and outputs a transformed tensor with
augmented representations, i.e., feature maps, Y𝜃 = [𝑦1, 𝑦2, ..., 𝑦𝑁 ]. Here 𝑛 denotes the number of feature maps for each encoder
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Fig. 2: Flowchart of the dilated Residual UNet with coordination attention block and 2.5D input (128×160 of three neighboring slices used to provide spatial context).
The output of the model is the probability map of the prostate segmented in the central slice. The attention blocks assist the model in reducing uncertainty in prostate
borders, which are well known to be challenging to segment due to a lack of distinct borders. I𝑠 is the input data. 𝐸 and 𝐷 refers to encoder and decoder blocks. Ŷ
is the predicted segmentation output.

block. There are two 1D global average pooling layers of 𝑥𝜃 and 𝑦𝜃 to encode each channel along with the horizontal and vertical
coordinates. Each average pooling concentrates on one coordinate direction and combines information from two spatial directions,
providing a pair of feature maps that are direction-aware (Hu et al., 2018).

2.3. Continual Prostate Gland Segmentation
In supervised domain adaptation or finetuning for semantic segmentation, we are given a set of source TRUS images (e.g.,

from Cohort C1) and their corresponding mask labels in the source domain D𝑠 = (I𝑖𝑠 ,Y𝑖𝑠)
𝑚𝑠

𝑖=1, where I𝑠 ∈ R𝑤×ℎ×3 is the stack of
three consecutive slices in the TRUS exam, Y𝑠 ∈ R𝑤×ℎ×𝑐 is the prostate segmentation corresponding to I𝑠 , 𝑚𝑠 is the number of
source images and 𝑐 = 2 is the number of labels, i.e., prostate and background. In the target site, we are given few labelled images
D𝑡 = (I𝑖𝑡 )

𝑚𝑡

𝑖=1, where 𝑚𝑡 is the number of target images. Our goal is to train a supervised model on D𝑠 and transfer information from
D𝑠 to reduce the gap between two domains, and improve segmentation the accuracy on D𝑡 .

We were motivated by the work of (Michieli and Zanuttigh, 2019) to develop a pipeline that not only produced good segmentation
accuracy for the prostate gland but also reduced the impact of model weight changes during the supervised domain adaptation process.
Our approach has three steps.

• First, we trained in a supervised fashion the segmentation model M𝑠 that segments the prostate in TRUS images using the
training data from cohort C1, also referred here as D𝑠 (Fig. 3). The input to the model M𝑠 is I𝑠 , which includes a TRUS slice
and two neighboring slices from the 3D TRUS volume to construct a three-channel input. The model is trained in a supervised
fashion with a multi-class loss function. After training, we saved the obtained model weights as M𝑠 .

• Second, we trained a new model M𝑡1 based on M𝑠 that takes as the input the TRUS images from cohort C2 (10 annotated
cases) for finetuning. Here, the input images were fed to both models M𝑡1 and M𝑠 while the weights for M𝑠 were frozen. Our
goal was to distill knowledge from the learned model M𝑠 to M𝑡2 by enforcing the consistency of the latent feature space. This
was achieved by minimizing the distance between 𝑧 and 𝑧′ using knowledge distillation loss function as a regularization term
along with a supervised segmentation loss function.

• For the third step, we repeated step two by creating a new model M𝑡2 based on trained model M𝑡1 , which takes as the input the
TRUS images from cohort C3 (10 annotated cases). In this step, we distill knowledge from learned model M𝑡1 to M𝑡2 similar
to step two by minimizing the distance between the latent feature space.

2.3.1. Loss functions
Segmentation Loss: The segmentation model is trained with a soft-Dice loss. To segment a TRUS image I𝑠 ∈ Rℎ×𝑤×3 the output
of Softmax layer is two probability maps for classes 𝑘 = 0, 1 (background and prostate) where for each pixel

∑
𝑐 Y𝑛,𝑘 = 1. Given

the ground-truth label Y𝑛,𝑘 for that identical pixel, the soft Dice loss is computed as follows:

L𝑠𝑒𝑔 (Y, Ŷ) = 1 − 1
𝐾
(
∑︁
𝑘

2
∑
𝑛 Y𝑛𝑘Ŷ𝑛𝑘∑

𝑛 Y𝑛𝑘 +
∑
𝑛 Ŷ𝑛𝑘

) (1)
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Fig. 3: The overall pipeline for continual prostate gland segmentation. The segmentation model M𝑠 is trained on cohort C1 in the first step, then the model is
finetuned on cohorts C2 and C3. During optimization, the consistency of the features latent space of M𝑠 and M𝑡1 is maintained by including the L2 norm loss (eq.
2). The same steps are repeated for finetuning the model trained on M𝑠 and M𝑡1 for M𝑡2 model. E1, E2,D1,D2 are the encoders and decoders and 𝑧 and 𝑧′ are the
latent space features for the source and target models. Y is the ground-truth and Ŷ is the predicted segmentation output.

Feature-Space Knowledge Distillation Loss: Knowledge distillation (Hinton et al., 2015) is an efficient technique for transferring
knowledge from a well-trained model to a model with limited annotated data. It also has been widely used in continual learning
frameworks (Michieli and Zanuttigh, 2019) when a trained model is updated on a new task that interferes with the learned
representations on the previous task. We hypothesize that the same catastrophic forgetting problem exists for domain generalization
across multi-institutional data. The M𝑠 model (global model) is updated on a small set of randomly sampled data for each cohort at
each round, while the cohorts have different distributions from the previous round. Therefore, to reduce the impact of model weight
changes in the latent feature space of M𝑡1 and M𝑡2 during finetuning, an L2-norm was applied as a knowledge distillation loss. This
regularization loss enforced the model to preserve the previous knowledge and keep the latent features space of M𝑡𝑛 the same, where
n is the number of available cohorts.

L𝐾𝐷𝐿 =
| |E1 (𝑧) − E2 (𝑧

′) | |22
|D𝑡 |

(2)

where 𝑧 and 𝑧′ denotes the latent features computed by model encoder E1 and E2 when a TRUS image from cohort C2 or C3 is
fed.

The overall loss function for training the whole pipeline is defined as:

L𝑆 = L𝑠𝑒𝑔 + 𝜆L𝐾𝐷𝐿 (3)

where 𝜆 is the weight that controls the impact of knowledge distillation term during optimization.

2.4. Implementation details
The prostate gland segmentation framework was trained in an end-to-end fashion using the Adam optimizer with an initial

learning rate of 𝜂 = 10−3 and exponential weight decay 𝛼 = 0.01 for 500 epochs, with a batch size of 64. The momentum parameters
for the Adam optimizer were set to 𝛽1 = 0.9 and 𝛽2 = 0.999. The learning rate was reduced on the plateau if the validation loss did
not improve after every 30 epochs. We used early stopping if no reduction in validation loss was seen for 50 epochs. During training,
we utilized an online data augmentation library (imgAug Jung et al. (2020)) and employed a set of random data augmentation for
each input image I𝑠 ∈ Rℎ×𝑤×3. The augmentation includes horizontal/vertical axis flipping, image scaling with a factor of [0.8, 1.2],
Gaussian noise with 𝜎 ∈ [0.0, 0.3], elastic deformation with the displacement field strength of 𝛼 ∈ [0.5, 0.35] and a displacement
field smoothness of 𝜎 = 0.25. To evaluate our method, we compared the resulting segmentations with the ground-truth masks using
several metrics namely Dice similarity coefficient (Dice), Hausdorff Distances (HD), and sensitivity. We used the 95th percentile
of the Hausdorff distances (HD95) between model prediction Y and ground-truth mask Ŷ to eliminate the impact of outliers. The
paired Student’s t-test was used to assess the statistical significance of Dice differences when comparing multiple methods (Nadeau
and Bengio, 2003).

We used PyTorch 1.7 (Paszke et al., 2019) to develop and train all models. Training took around 24 hours on an NVIDIA RTX
A6000 GPU with 32GB memory. The code is available online at: https://github.com/pimed/TRUSGlandSegmentation
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3. Results

Several experiments were carried out to 1) determine the best segmentation model on cohort C1-test and 2) identify the best
strategy for knowledge transfer during finetuning on data from other institutions.

3.1. Prostate Gland Segmentation
We compared CoordDR-UNet with several well-known segmentation approaches, including UNet, Attention-UNet, Nested-

UNet, Dilated-residual UNet, and Deep Attentive Features Network (DAFNet) (Wang et al., 2019) which is a new approach for 3D
segmentation of TRUS. All five approaches were trained using their public implementations, and their training parameters were
adjusted to obtain the best segmentation results. Fig. 4 shows four slices of a test set patient in cohort C1 from apex to base
(column (a)). It also shows comparative performance among the UNet (column (b)), Attention-UNet (column (c)), Nested-UNet
(column (d)), DAFNet (column (e)) and CoordDR-UNet (column (f)). CoordDR-UNet segmented the prostate successfully, with
better prediction at the apex and the base of the prostate (rows 1,4). Furthermore, for mid-gland slices (row 2-3), CoordDR-UNet
produced very accurate prostate gland mask predictions compared to other state-of-the-art methods.

Table 2 summarizes the results for cohort C1-test for all models using several segmentation metrics. To speed up volumetric
segmentation while minimizing memory requirements and incorporating contextual and temporal information for the model, all
models were trained with a 2.5D input. As seen in Table 2, the 2.5D UNet outperformed the 2D and 3D UNet with a Dice score
of 0.91 ± 0.07. The surface distance metric, HD95, was also reduced, i.e., 3.0 𝑚𝑚 for 2.5D UNet vs 4.03 𝑚𝑚 for 2D UNet.
The performance of Attention-UNet and Nested-UNet was similar to that of UNet. DAFNet, which is a recent model specifically
designed for prostate gland segmentation in 3D TRUS achieved a Dice score of 0.92 ± 0.03 and HD95 value of 2.87 𝑚𝑚. Our
proposed CoordDR-UNet approach, which incorporates coordinate attention blocks and dilated convolutions, outperformed other
models, with a Dice score of 0.94 ± 0.03 and the lowest HD95 score of 2.29 𝑚𝑚 compared with the other approaches. We will
refer to this model as the model M𝑠 . Figure S2 in the supplementary material shows the impact of training data size with respect to
segmentation accuracy.

Table 2: Quantitative comparison results (𝑚𝑒𝑎𝑛(±𝑠𝑡𝑑)) between the proposed method and other segmentation methods for cohort C1-test dataset. The best results
are highlighted in bold. Paired Student’s t-tests showed statistical significance (P ≤ 0.05) when comparing the methods with the baseline method 2D UNet. DAFNet:
Deep Attentive Features Network, DR-UNet: Dilated-Residual UNet, CoordDR-UNet: Coordination Dilated-Residual UNet, HD95: 95th percentile of the Hausdorff
distances.

Evaluation on cohort C1-test (n=220)

Methods Input Dice HD95 [𝑚𝑚] Sensitivity

UNet (Ronneberger et al., 2015) 2D 0.90 (±0.03) 4.03 (±3.52) 0.94 (±0.04)

CoordDR-UNet (proposed) 0.92 (±0.03) 3.29 (±1.45) 0.92 (±0.05)

UNet (Ronneberger et al., 2015)
3D

0.90 (±0.03) 5.21 (±3.52) 0.92 (±0.01)

DAFNet (Wang et al., 2019) 0.92 (±0.03) 2.87 (±1.27) 0.90 (±0.04)

CoordDR-UNet (proposed) 0.92 (±0.04) 3.00 (±1.46) 0.92 (±0.07)

UNet (Ronneberger et al., 2015)

2.5D

0.91 (±0.07) 3.00 (±1.30) 0.91 (±0.08)
Att-UNet (Schlemper et al., 2019) 0.92 (±0.02) 2.75 (±1.16) 0.93 (±0.04)
Nested-Unet (Zhou et al., 2018) 0.91 (±0.04) 3.44 (±1.55) 0.93 (±0.06)
DR-UNet (Vesal et al., 2021) 0.93 (±0.02) 2.34 (±0.92) 0.94 (±0.03)
CoordDR-UNet (proposed) 0.94 (±0.03) 2.29 (±1.45) 0.94 (±0.05)

To show the benefit of the 2.5D input representations, we also trained the CoordDR-UNet model with 2D and 3D data
representations as input. For the 3D model, the standard architecture of CoordDR-UNet was changed by replacing all 2D operations
with 3D operations, including convolution, batch normalization, max-pooling, and upsampling layers. Moreover, the 3D TRUS
images were downsampled to a fixed size (80 × 160 × 128) similar to (Wang et al., 2019). The quantitative results (Table 2) show
that CoordDR-UNet 2.5D outperformed the models trained with 2D and 3D input representations, suggesting the benefit of the
2.5D representation. CoordDR-UNet with 2D input achieved a Dice score of 0.92 ± 0.03 and HD95 value of 3.29 𝑚𝑚 while
CoordDR-UNet with 3D input obtained a Dice score of 0.92 ± 0.04 and HD95 value of 3.00 𝑚𝑚. Furthermore, Fig. 5 shows
visual comparison between CoordDR-UNet models trained with 2D, 2.5D and 3D input representations. One limitation of the 2D
segmentation approaches for prostate gland segmentation is inconsistency across adjacent slices. The difference between CoordDR-
UNet 2.5D and CoordDR-UNet with 2D and 3D input representations is shown in Fig. 6. The 2.5D representation achieved a more
accurate segmentation and reduced inconsistencies across adjacent slices. The 3D segmentation approach has smoother boundaries,
but the output is less accurate when compared to the ground-truth masks. These results highlight the benefit of 2.5D representations,
which not only produced highly accurate prostate gland segmentation but also consistent segmentation across adjacent slices.

For the error analysis, we computed the surface error between model predictions and their corresponding ground truth. Fig. 7
shows the 3D visualization of the surface distance between the ground-truth and segmentation output by different methods for two
test cases from the cohort C1-test. Our method consistently achieved accurate and robust segmentation covering the whole prostate,
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Table 3: Quantitative comparison results (𝑚𝑒𝑎𝑛(±𝑠𝑡𝑑)) for different finetuning strategies shown for cohort C2-test and C3-test. The best results are highlighted
in bold. Paired Student’s t-tests showed statistical significance (P ≤ 0.05) when comparing the CoordDR-UNet + KDL with no pretraining and direct prediction
models. Bolded entries represent the best metric in each test set.

Methods Dice HD95 [𝑚𝑚] Sensitivity

Evaluation on cohort C2-test (n=1,751)

CoordDR-UNet exp1 0.89 (±0.03) 4.03 (±1.62) 0.84 (±0.06)

CoordDR-UNet + w/o pretrained exp2 0.71 (±0.09) 14.8 (±4.60) 0.77 (±0.12)

CoordDR-UNet + Finetuning exp3 0.90 (±0.03) 3.80 (±1.60) 0.87 (±0.05)

CoordDR-UNet + KDL exp4 0.91 (±0.03) 3.69 (±1.49) 0.88 (±0.05)
Evaluation on cohort C3-test (n=96)

CoordDR-UNet exp1 0.24 (±0.29) 14.14 (±11.83) 0.18 (±0.25)

CoordDR-UNet + w/o pretrained exp2 0.78 (±0.14) 10.23 (±6.59) 0.76 (±0.18)

CoordDR-UNet + Finetuning exp3 0.80 (±0.19) 7.30 (±6.21) 0.73 (±0.10)

CoordDR-UNet + KDL exp4 0.82 (±0.16) 7.13 (±6.25) 0.76 (±0.19)

including challenging regions such as the apex and base. CoordDR-UNet 2.5D had the lowest average HD95 surface distance (2.29
𝑚𝑚) compared to other approaches for cohort C1-test data. DAFNet produced a more smooth segmentation output because it was
trained with 3D input representations. However, it had a higher surface distance error (2.87 𝑚𝑚) because the segmentation output
is less accurate in comparison to ground truth.

3.2. Model performance on independent data
To assess model generalizability, we evaluated our framework on TRUS images from cohorts C2 and C3 (Table 3). We considered

four different scenarios to demonstrate the performance of CoordDR-UNet 2.5D with knowledge distillation. In the first scenario,
we directly tested the model M1 (trained with data from Cohort C1) on cohorts C2 and C3 without domain adaptation or finetuning.
The model achieved good results on cohort C2 (Table 3, 3rd row) with a Dice score of 0.89 ± 0.03 (P≤0.05) and HD95 of 4.03
𝑚𝑚. This relatively high performance is due to the similar data acquisition and vendor for the TRUS images in cohorts C1 and C2.
However, the performance of our model M1 on cohort C3 was poor (Dice score = 0.24± 0.29 (P≤0.05)). This reduced performance
is likely caused by the differences in acquisition, field of view, ultrasound manufacturer, and ultrasound probes (side-fire) between
cohorts C1 and C2 versus C3 (Fig. 10).

In the second scenario, we obtained ultrasound scans and ground truth from the prostate segmentation from ten random subjects
in each cohort (C2 and C3). The CoordDR-UNet model was trained from scratch (without pretraining) to investigate how the model
performs with limited annotated data. On cohort C2-test data, this model (Table 3, 4th row) obtained a Dice score of 0.71±0.09 and
HD95 value of 14.8 𝑚𝑚, which demonstrates a substantial performance drop in comparison to the CoordDR-UNet trained on cohort
C1 data. This is because a model with only ten training samples cannot capture all of the variations in the test data since prostate
volumes and image quality vary significantly between patients. We observed similar results when we utilized only ten examples
from cohort C3 to train CoordDR-UNet from scratch. Furthermore, the model without pretraining (Table 3, 8th row) achieved a
Dice score of 0.78±0.14 (P≤0.05) and surface distance of 10.23 𝑚𝑚 (HD95) on cohort C3-test. Training with only ten TRUS scans
from cohort C3 assisted the model to somewhat capture the overall prostate shape and geometry compared to only using the model
M𝑠 which had not seen any data from Cohort C3.

In the third scenario, we performed standard finetuning on CoordDR-UNet with a pretrained model and without distillation loss.
All the layers in CoordDR-UNet were frozen except the last layer (Weiss et al., 2016). On cohort C2-test data, this model obtained
a Dice score of 0.90 ± 0.03 (P≤0.05) and HD95 value of 3.80 𝑚𝑚 (Table 3, 5th row). On cohort C3-test data, this model achieved
a Dice score of 0.80 ± 0.03 (P≤0.05) and HD95 value of 7.30 𝑚𝑚 (Table 3, 10th row).

In the fourth scenario, we tested CoordDR-UNet with a pretrained model and knowledge distillation loss (Table 3). In the studies
from cohort C2-test, the model obtained a Dice score of 0.91±0.03 and HD95 value of 3.69 𝑚𝑚 (Table 3, 6th row), showing similar
results with studies on cohort C1-test data. We refer to this model as model M𝑡1 . Moreover, CoordDR-UNet + KDL improved
the prostate gland segmentation for studies in cohort C3-test, achieving a Dice score of 0.82 ± 0.16 (P≤0.05), and HD95 value of
7.13 𝑚𝑚. We refer to this model as model M𝑡2 . The quantitative evaluation showed that the CoordDR-UNet + KDL approach
achieved a significantly higher (P≤0.05) Dice score compared to the CoordDR-UNet without pretraining and the CoordDR-UNet
direct prediction for both cohorts (Fig. 8).

Figs. 9-10 display segmentation outputs for the best, average, and worst performing cases in cohorts C2-test and C3-test using
the different generalization approaches we considered. In data from both cohorts, CoordDR-UNet + KDL obtained the most accurate
segmentation among different training strategies. Fig. 11 shows 3D segmentation results for CoordDR-UNet on TRUS images
from the three cohorts, as well as the corresponding surface distance between segmented surfaces and ground truth volumes. These
results highlight that the proposed method obtained accurate and smooth segmentation surfaces covering the whole prostate region
for cohorts C1-C2 (columns a-b), but the surface distances are high for the test cases in cohort C3 (column c).
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Fig. 4: Visual comparison of prostate segmentation results produced by different methods for a sample patient in cohort C1-test. From left to right are the input
TRUS slices (column (a)), the UNet 2.5D predictions (column (b)), Attention-UNet 2.5D (column c), Nested-UNet 2.5D (column (d)), DAFNet (Wang et al., 2019)
(column (e)) and our proposed CoordDR-UNet 2.5D (column (f) for different slices from the apex (top row) to base (bottom row). The blue contours show the
ground-truth segmentation outlined by an expert urologist.

3.3. Model performance after finetuning
To evaluate the performance of our method after all iterations of finetuning on cohorts C1, C2, and C3. Table S1 in the

Supplementary material shows the quantitative results for the following three models:

• M𝑠: model trained using the training data from cohort C1

• M𝑡1 : model M𝑠 , finetuned using 10 TRUS images from cohort C2 using CoorDR-UNet and Knowledge Distillation Loss

• M𝑡2 : model M𝑡1 , finetuned using 10 TRUS images from cohort C3 using CoorDR-UNet and Knowledge Distillation Loss

When training M𝑡1 by finetuning M𝑠with knowledge distillation loss in the 10 cases from cohort C2, we tested the model M𝑡1

on the studies in cohort C2-test and C3-test, but as well in studies in cohort C1-test to assess whether the model suffered from
catastrophic forgetting. Based on the results, the final model (M𝑡2 ), even though had a small drop of performance on the test studies
in cohorts C1 and C2, achieved the overall best performance across all three data cohorts with a Dice score of 0.91, 0.88 and 0.82
for the test studies in cohorts C1, C2 and C3 (Fig. 12).

3.4. Ablation Study
Impact of Input Data: We conducted an ablation study and trained the CoordDR-UNet 2.5D with a different number of slices

𝑐 ∈ [1, 3, 5, 7] as the input to determine the optimal number of neighboring slices. Fig. 13a shows the Dice score on cohort C1-test
data for the different values of 𝑐. The model trained with a single (2D) slice as input and no neighboring slices obtained a Dice score
of 0.92. However, with three slices as input data, the CoordDR-UNet 2.5 achieved a Dice score of 0.94. Furthermore, increasing the
number of neighboring slices in the CoordDR-UNet 2.5 model did not improve the segmentation accuracy and slightly decreased
the Dice score. Therefore, we trained all 2.5D models with three slices as input data. Also, previous work on prostate gland
segmentation in MRI (Soerensen et al., 2021) showed that having a 2.5D model with three adjacent slices is successful in generating
accurate segmentation on prostate MRI.
Impact of Finetuning Cases: To evaluate the impact of training data size for model finetuning and its influence on domain
generalization across cohort C2 and C3 test data, we conducted experiments by finetuning CoordDR-UNet+KDL with the various
number of cases 𝐼 ∈ [0, 2, 4, 6, 8, 10, 12, 14]. Fig. 13b shows the segmentation Dice coefficient score of CoordDR-UNet+KDL for
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Fig. 5: Visual comparison of CoordDR-UNet segmentation output with 2D, 3D, and 2.5D as the input. Each row shows apex, mid-gland, and base slices from
different subjects from the cohort C1-test dataset.

Fig. 6: 3D visualization of the segmentation results in a TRUS volume. CoordDR-UNet output with (a) 2D, (b) 2.5D and (c) 3D representations. The ground-truth
mask is shown on a blue surface.

cohort C2-test and C3-test. The model finetuned with two subjects achieved a Dice score of 0.90, and adding more cases, only
slightly improved the segmentation performance (increase to 0.91). However, finetuning with 10, 12, and 14 subjects have a similar
Dice score of 0.91. These results imply that when TRUS images from a new institution are acquired using a similar ultrasound
vendor and probe to training data, just a few instances are required to achieve satisfactory prostate gland segmentation. For cohort
C3-test data, finetuning with more data showed a significant improvement in Dice score. Since the TRUS images in this cohort are
significantly different and acquired using a side-fire probe. The model without any finetuning subject achieved a Dice score of 0.43,
however, with adding more cases, the Dice score increased. For instance, the model finetuned with 12 subjects achieved a Dice
score of 0.84.
Impact of Lambda: To control the influence of knowledge distillation loss during finetuning, we used 𝜆 as a weight factor. If we set
𝜆 = 0, then the model is trained using the classical finetuning scenario with no knowledge distillation. To find out the impact of 𝜆,
we finetuned CoordDR-UNet+KDL model on cohort C2 training data (10 cases) with various 𝜆 values. Fig. 13c shows the line-plot
and the computed Dice value for a range of 𝜆 values [0 − 1.0]. The value of 𝜆 = 0.2 achieved the best Dice value on the test data
and increasing the 𝜆 resulted in a reduction in segmentation accuracy. Therefore, we set the 𝜆 = 0.2 for the rest of the experiments.

4. Discussion

In this study, we introduced a deep learning model for prostate gland segmentation in 3D TRUS scans called Coordination
Dilated-Residual UNet (CoordDR-UNet), as well as a strategy for domain generalization which was tested using TRUS images
from three different institutions. Our experiments demonstrated that the proposed method accurately localized and segmented the
prostate gland in the presence of variations in image acquisition parameters and generalized well on data from multiple institutions.
These encouraging results are attributable to the addition of a coordination attention block in our model that increased segmentation
accuracy in ambiguous regions (e.g., prostate borders at the apex). Moreover, we introduced a model generalization approach
for prostate gland segmentation in 3D TRUS based on distilling knowledge from previously trained models. The primary goal of
using the knowledge distillation strategy during finetuning was to reduce the impact of catastrophic forgetting, which manifests as
a performance loss after each finetuning cycle on data from a new center. The experiment results showed (Table 3) that when the
CoordDR-UNet was finetuned on cohort C3 using the classical finetuning approach, it obtained a Dice score of 0.80±0.03 (P≤0.05)
and HD95 value of 7.30 𝑚𝑚, whereas the CoordDR-UNet+KDL approach increased the Dice score by 2.0% (0.82± 0.16. p≤0.05).
Similarly, for cohort C2, the CoordDR-UNet+KDL outperformed the classical finetuning approach.

Furthermore, we compared our method with existing segmentation methods. While a direct comparison with published results
from prior studies was not feasible due to a lack of data availability, we trained the prior algorithms on our cohort and designed
fair comparative experiments. Our proposed model outperformed other models in several evaluation metrics (e.g., the boundary
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Fig. 7: 3D visualization of the surface distance (in voxel) between segmented surface and ground truth. Each row shows one subject. Different colors represent
different surface distances. From left to right are (a) ground-truth, (b) UNet 2.5D, (c) Attention-UNet 2.5D, (d) Nested-UNet 2.5D, (e) DAFNet3D (Wang et al.,
2019) and (f) our proposed CoordDR-UNet 2.5D. Our method consistently performs well on the whole prostate surface.
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Fig. 8: Box plots of Dice measure for the CoordDR-UNet, CoordDR-UNet + W/o pretrained, CoordDR-UNet with standard finetuning, and CoordDR-UNet + KDL
segmentation approaches of cohort C2-test and C3-test. SS: statistically significant (P ≤ 0.05), NS: not significant (P > 0.05).

distance between the prediction and ground-truth for all cases in the test cohorts was on average only 4.37 𝑚𝑚 versus 7.9 𝑚𝑚 for
alternative approaches).

Our proposed generalization framework has both similarities and differences to federated learning approaches (Kairouz et al.,
2021; Liu et al., 2021). Similar to federated learning, we transferred our learned model weights and training code to an institution
without directly accessing their data. The model was then trained, finetuned, and tested locally, with the results being reported back.
Yet, unlike federated learning, we did not apply privacy-preserving techniques, and the weights aggregation was solely based on
retraining with new data. Further work will involve testing the model on data from additional institutions without data sharing.

Our study has four limitations. First, we only segmented the whole prostate gland without segmenting the distinct anatomic zones,
which have the potential for other tasks beyond TRUS-MRI fusion. Second, our study includes images from only two ultrasound
vendors. Future studies will expand this work to include TRUS scans from other ultrasound vendors. Third, while our proposed
method achieved encouraging results on the studies in cohort C3-test, there is still potential for further improvement. Adopting
additional data augmentation strategies might assist in addressing issues related to variations in field of view and ultrasound probes
such as side-fire and end-fire. Fourth, the number of samples chosen from C2 and C3 (10 patients) to finetune the models can be
ablated to find the optimal number of patients for better segmentation accuracy.

Our proposed approach for automated prostate segmentation on TRUS images can improve clinical workflow in four ways.
First, our approach aids in the diagnosis of prostate cancer by enabling a better biopsy procedure with more accurately registered
MRI-TRUS images and therefore possibly better needle targeting during biopsy (the registrations are driven by the segmentation
of the prostate provided by our approach). The MRI-TRUS fusion step during the targeted biopsy is prone to errors (Das et al.,
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Fig. 9: Visual comparison of segmentation results produced by different methods for three patients (best, average, worst) in cohort C2-test. From left to right are
the 2D TRUS slices (column (a)), CoordDR-UNet 2.5D prediction without finetuning (column (b)), CoordDR-UNet 2.5D trained on ten TRUS images without any
pretraining (column (c)), and our proposed CoordDR-UNet 2.5D finetuned on ten TRUS images with knowledge distillation loss (column (d)). Dice and HD95
scores are shown for each patient.

2020; Avola et al., 2021), and registration accuracy is affected by the quality of prostate gland segmentation on both TRUS and MR
images. Second, our generalizable approach is capable of producing high-quality segmentation for a wide range of probes, and it
can be integrated into TRUS scanners as an alternative method for prostate segmentation. Third, our approach provides objective,
reproducible, and fast estimates of prostate volume (run-time including pre- and post-processing steps: 12 seconds), which has been
reported to be operator-dependent, difficult to replicate, and less accurate (van Sloun et al., 2021). Fourth, our approach allows for
better planning of focal treatment to mark the prostate capsule while sparing the tissue beyond the prostate.

5. Conclusion

We have introduced an accurate and generalizable approach for prostate segmentation in 3D transrectal ultrasound images to
limit the need for manual segmentation of the prostate during targeted biopsy procedures. The proposed deep learning framework
outperformed state-of-the-art segmentation approaches in accuracy and generalization and was tested on data from three institutions.
In comparison to traditional approaches that require substantial user input and processing time, our pipeline delivered accurate
and efficient segmentation of the prostate without any user input. The ease of use and speed of our pipeline make it appealing for
practical deployment to allow direct segmentation of the prostate during biopsy or treatment procedures. In the future, we would
like to evaluate our method on other tasks and imaging modalities, e.g., prostate segmentation in MRI or CT.
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Fig. 10: Visual comparison of segmentation results produced by different methods for three patients (best, average, worst) in cohort C3-test. From left to right are
the 2D TRUS slices (column (a)), CoordDR-UNet 2.5D direct prediction without finetuning (column (b)), CoordDR-UNet 2.5D trained on ten TRUS images without
any pretraining (column (c)), and our proposed CoordDR-UNet 2.5D finetuned on ten TRUS images with knowledge distillation loss (column (d)). Dice and HD95
scores are also shown for each patient.
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Fig. 11: 3D visualization of the surface distance (in voxel) between segmented prostate and ground truth. Different colors represent different surface distances. The
top row shows the ground-truth surface masks for three different patients from cohort C1-test (a), C2-test (c), and C3-Test (b). The bottom row shows the computed
HD surface distance between CoordDR-UNet 2.5D predictions and ground-truth.

Fig. 12: Continual segmentation results for domain generalization. M𝑠 : model trained using the train data from cohort C1, M𝑡1 : model M𝑠 , finetuned using 10
TRUS images from cohort C2, and M𝑡2 : model M𝑡1 , finetuned using 10 TRUS images from cohort C3.
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Supplementary Material

Quantitative Evaluation
To evaluate the impact of training data size with respect to segmentation accuracy, we trained our 2.5D CoordDR-UNet model

with different percentages of training data. The model achieved a Dice score of 0.78 on 220 TRUS images from cohort C1-test using
only one percent of the training data (Fig. S1). The Dice score increased to 0.90 with only ten percent of training data (80 TRUS
images) and 0.94 with a hundred percent of the data. Noise in the annotations by the urologist in the training data prevented further
model convergence. Table S1 shows the quantitative results for different models after finetuning using the CoordDR-UNet + KDL
model. Overall, the model M3 achieved the best average Dice score across all three datasets.

Fig. S1: Boxplot of Dice scores achieved by CoordDR-UNet with different training sizes on cohort C1-test.

Table S1: Quantitative comparison results (𝑚𝑒𝑎𝑛(±𝑠𝑡𝑑)) for different models. M1: model trained on cohort C1, M2: model finetuned on cohort C2, and M3:
model finetuned on cohort C2 and then on cohort C3. Bolded values show the best results column-wise.

Models Cohort C1
(In-house)

Cohort C2
(Public)

Cohort C3
(External) Average

M1 0.94 (±0.03) 0.89 (±0.03) 0.43 (±0.31) 0.75 (±0.13)
M2 0.93 (±0.03) 0.91 (±0.03) 0.24 (±0.29) 0.69 (±0.12)
M3 0.91 (±0.04) 0.88 (±0.03) 0.82 (±0.16) 0.87 (±0.08)

Model hyperparemters
Table S2 shows the training hyperparameters used for all the 2D, 2.5D, and 3D models in this study including UNet, Attention-

UNet, Nested-UNet, Dilated-residual UNet, DAFNet, and CoordDR-UNet + LKD.

Table S2: Hyperparameters used for all models trained for prostate gland segmentation experiments.

Hyperparameter 2D Models 2.5D Models 3D Models
Input size 128 × 160 128 × 160 × 3 128 × 160 × 80
Optimizer Adam (𝛽1 = 0.9 and 𝛽2 = 0.999)
Weight decay (𝛼) 0.01 0.01 0.01
Loss function Soft-Dice loss Soft-Dice loss Soft-Dice loss
Learning rate (𝜂) 10−3 10−3 10−3

LR decay schedule StepLR StepLR StepLR
Train epochs 500 500 200
Batch size 64 64 1
Data augmentation Yes Yes Yes
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