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Abstract

This thesis presents a novel approach for the construction of quantile processes, gov-

erning the stochastic dynamics of quantiles in continuous time. Two constructions are

proposed, one producing a function–valued quantile process and the second, a process

with random quantile levels. The latter method employs a distortion map composed

of a distribution function and a quantile function, similar to a transmutation map,

applied to each marginal of a ‘driving’ process with càdlàg paths. A multidimensional

extension that utilises a copula is also presented. As a result, we obtain a one–step

approach to constructing widely flexible classes of stochastic models, accommodating

extensive ranges of higher–order moment behaviours (e.g., tail behaviours in the finite

dimensional distributions, and asymmetry). Such features are parameterised in the

composite map and are thus interpretable with respect to the driving process. Sub–

classes of quantile processes are explored, with emphasis placed on the Tukey family

of models whereby skewness and kurtosis are directly parameterised and thus the com-

posite map is explicable with regard to such statistical behaviours. It is also shown

that the quantile processes induce a distorted probability measure that is interpretable

in its properties (which may be intentionally constructed), leading to the central appli-

cation developed in this thesis. We propose a general, time–consistent, and dynamic

risk valuation principle under the induced measures of quantile processes, allowing for

pricing in incomplete markets and thus having application in insurance pricing. Here,

the distorted measures are considered ‘subjective’ and are constructed in such a way

to account for external market characteristics and investor risk attitudes, leading to

a parametric system of risk–sensitive probability measures, indexed by such factors.

The properties of the valuation principle based on the quantile process distortion mea-

sures are discussed with regard to stochastic ordering and risk–loadings, and a case

study is presented where insurance instruments linked to greenhouse gas emissions are

considered.
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Impact Statement

The main research contribution presented in this thesis is the development of a

novel class of stochastic processes that models the dynamic evolution of quantiles in

continuous time. The properties of this class of stochastic models are designed within a

systematic and intuitive framework, consisting of a composite map applied marginally

to some driving base process. The resulting class of quantile processes is highly flexible

and statistically rich in its higher–order, finite–dimensional properties and tail be-

haviours. Interpretation is provided as to how each component of the parameterisation

(composite map) determines the properties of the output quantile process, motivating

the use of such processes in various applications across multiple areas within industry

where a precise model specification is required, which we discuss as follows.

The use of quantiles is critical in the assessment of risk. For example, the specifi-

cation of quantile–based risk measures, such as VaR or expected shortfall, are crucial

in financial risk management, regulatory control or policy making, and capital require-

ments, e.g., those imposed under Solvency II regulations in EU insurance markets and

those arising in Basel III for banking firms. In this work we are able to demonstrate how

to consistently and rigorously transform a process to a quantile process in continuous

time that serves the purpose of producing a measure flow of distorted quantiles, which

will consequently be interpretable in its properties. As base processes, we consider dif-

fusions such as geometric Brownian motion and Ornstein–Uhlenbeck processes which

are widely adopted in finance, physics, and many other fields. The distortion that is

applied allows one to ‘update’ the model in such a way to better capture the properties

and features of data sets, e.g., stylised characteristics of financial asset returns, such as

leptokurtosis and skewness. We focus on the Tukey family of models, as the g–and–h

family spans a much larger area of the skew–kurtosis plane than many other skewed

and heavy–tailed distributions. Control of such distributional features is direct.

The generality of the proposed framework presented means that its scope of ap-
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plication is by no means limited to financial mathematics, however. We emphasize

that such a methodology can be adopted for a variety of applications including dy-

namic risk measures in econometrics, behavioural economics and dynamic consumer

preference models, operations research and dynamic decision making, signal processing

in information theory, as well as to more general applications requiring dynamic risk

measures such as disaster monitoring (earthquake hazard, flood hazard, increasing fre-

quency of extreme temperatures and other natural disasters). We also draw attention

to dynamic risk analysis in climate and environmental science where the risk mea-

sure is not a monetary quantity, necessarily, and the complexities of many modelling

challenges within this realm motivates the use of highly parameterised models.

The key application in this thesis considers the pricing of insurance instruments

linked to greenhouse gas emissions. The quantile process construction induces a para-

metric system of risk–sensitive distorted measures characterising the pricing principle,

which leads to a well–defined mechanism for producing relativised prices. For example,

beyond the stylised higher-order features of risk processes, one may also characterise

investor risk preferences in the choice of the composite map. It is not novel to consider

distributional distortions in the quantification of preferences, but we present the frame-

work in this thesis as a flexible and unrestricted alternative to existing distortion–based

pricing techniques, that are widely adopted for many types of risks, both in practice

and in academic studies.

In summary, this thesis provides a mathematically rigorous theoretical framework

for the construction of a class of quantile processes that, by the nature and generality

of the framework, is widely applicable across various disciplines. Upon the completion

of this PhD, the developed framework shows great potential and range of applications,

and it is exciting to envisage the mathematical modelling challenges it may enhance

going forward.
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Chapter 1

Introduction and summary

When posed with mathematical challenges in the realm of statistical modelling, ex-

ploratory data analysis and various applications therein, literature that tackles such

problems through the description of probability distribution functions is dense. The

research addresses both static and dynamic problems, namely the distributional specifi-

cation of random variables and stochastic processes. Alternatively, what if one chooses

to describe statistical distributions through their quantile function? Although both

functions convey largely the same information about the underlying random variable,

can one exploit the properties of quantile functions—particularly those not shared

by distribution functions—to the advantage of the mathematical problem at hand?

For example, the sum of two quantile functions, or an increasing transformation of a

quantile function, remains a quantile function, and so algebraic manipulations become

‘easier’, yet models remain tractable in light of the alteration of statistical properties

and, perhaps, introduction of model complexity. This is not yet to mention the many

distributions for which a distribution function does not (analytically) exist, and so the

quantile function becomes the descriptive attribute of interest. In what follows, we

exploit useful properties of quantile functions to build families of highly flexible, statis-

tically rich and curiosity–evoking stochastic models, termed ‘quantile processes’. We

start with something familiar, namely a general, continuous–time stochastic process

with càdlàg paths, as an input, and construct a mechanism to produce an output that

lies under a new class of continuous–time processes. The mechanism employed allows

the output model to accommodate a wide range of higher–order moment and tail be-

haviours in its finite–dimensional distributions, all of which are directly interpretable
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with regard to the constructive parameterisation. In other words, we address questions

of the following type: “Can we add fluidity to the properties exhibited by existing

models, regardless of how descriptive they may be, to alter or enhance, their modelling

capability?”, “Is there a one–step, constructive and interpretable approach so that

the magnitude to which the process is altered is at the discretion of the modeller?”

and, accordingly, “What applications does the statistical versatility and richness of the

approach inspire the study of in the context of such quantile processes?”.

The principal approach pursued in this thesis is based on a composite map, consist-

ing of a distribution function and a quantile function, that maps each marginal of an

input process to those of an output process that determines the evolution of quantiles

in continuous time. We describe the effect of the map on the input process as a ‘dis-

tortion’. The construction allows for the base process to be distorted in such a way to

better satisfy some target model or objective. As such, this work pertains to the study

of how the finite–dimensional laws of stochastic processes behave, and a characterisa-

tion of their dynamics, under a distortion of the described type, relative to the law of

some base process. Additionally, the class of distortion maps we employ belong to a

class of ‘quantile–preserving maps’, so that quantiles of the input process are mapped

to quantiles of the output process at any given quantile level u ∈ [0, 1]. An outline of

such maps is given in Section 2.1, and the quantile process construction, characterised

by a composite map transformation, is defined in Section 3.1, and adapted from the re-

search paper by Brannelly et al. (2021b). The univariate case is predominantly focused

on, however in Section 3.4 an extension to the random–level construction, in which a

multivariate driving process is considered, is provided. This requires the introduction

of a copula function in the composite map for the construction of quantile processes.

The focus with respect to the class of quantile functions considered in the composite

map is the Tukey family of distributions, as introduced by Tukey (1977) and discussed

in Section 3.3, but this is not to say that one should not consider distributions beyond

this family when exploring the class of models presented herein. We consider this fam-

ily of models for the reason that they are expressed in terms of their quantile functions,

and that skewness and kurtosis have direct parameterisation, thus providing a useful

starting point for interpretability of the statistical behaviours of the resulting quantile

process models.

The use of distortion maps as a means of altering probability distributions is ex-
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plored extensively in works by Azzalini (2005, 2008), Azzalini and Capitanio (2003),

Fischer and Klein (2004), Genton (2005), Haynes et al. (1997), Hoaglin (1985), Klein

and Fischer (2002), MacGillivray (1981, 1992), Shaw and Buckley (2009, 2007), Tukey

(1977), Wang (1995, 2000), Yan and Genton (2019), and many others. Additionally,

distortions applied on the density space are ubiquitous in statistical science under the

topics of measure and density approximation. In such settings, density distortions are

used to expand, modify or tilt a base distribution such that the distortion alters the

moments or cumulants of the distribution relative to the base distribution in such a

fashion that the resulting distorted distribution may better satisfy a target objective,

which is often expressed in terms of moments or cumulants, thereby producing an im-

proved approximation. Common examples include the saddle point, Edgeworth and

generalised Esscher transformations. Such approaches have enjoyed widespread use to

produce transformations applied to a family of base densities in order to distort the

moment or tail behaviour characteristics of the resulting distribution, relative to the

base distribution, for some analytic purpose. For an overview of this large family of

methods see, e.g., Barndorff-Nielsen and Cox (1979), Bickel (1974), Daniels (1954) and

Wand et al. (1991). In this thesis we characterise a class of distortions directly in the

quantile space, one reason being (other than the aforementioned useful properties of

quantile functions) that many risk management problems are expressed in terms of

quantile functions rather than a density. Additionally, we remark that the consider-

ation of distributional distortions in the literature is significantly less present in the

context of continuous–time stochastic models. In this regard, we see significant novelty

in the proposed approach.

Whilst the focus of this thesis is the class of quantile process models discussed

above, which we call ‘random–level’ quantile processes, a second approach is also con-

sidered whereby the class of quantile processes constructed are ‘function–valued’. Here,

we choose to model the vector of parameters of a quantile function by a multivari-

ate stochastic process, to produce a continuous–time, function–valued process in the

space of quantile functions. In other words, we map from realisations of this param-

eter process to function–valued realisations of the quantile process, allowing one to

dynamically model the entire quantile function at any instance in time. Again, we

may employ quantile–preserving maps to enable the construction of statistically richer

quantile functions from simpler quantile functions, as the starting point for these mod-
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els. Function–valued quantile processes are defined in Section 3.2, and a comparison

is made between these models and the random–level quantile processes defined in Sec-

tion 3.1. We emphasise, however, that the focal point of this thesis is the construction

of random–level quantile processes, as the discussion that can be had on its theoret-

ical underpinnings and application is plenteous. Nevertheless, this is not to say that

the function–valued quantile process construction does not accommodate interesting

mathematical investigations going forward.

The notion of addressing statistical studies through the exploration of quantiles

dates back to work by polymath Sir Francis Galton, see Galton (1875, 1882, 1883), in

which the idea of dividing ranges of values into groups of equal size—‘equi-postiles’,

‘quartiles’, ‘octiles’, ‘deciles’ and ‘percentiles’—was established. This was followed by

the introduction of the more general term ‘quantile’ by Kendall (1940), and subse-

quently the introduction of the quantile function as a tool for statistical modelling and

data analysis by Tukey (1977) and Parzen (1979a,b)—see also Parzen (1993, 2004).

More recently, quantile processes and dynamical quantile functions have been explored

in the stochastic process literature, the statistical regression and time series economet-

rics literature, the risk management and insurance literature, as well as the mathe-

matical statistical literature within the study of empirical processes. As a result, there

are numerous meanings attributed to the terminology ‘quantile process’ or ‘quantile

dynamics’ based on the definitions developed in earlier works. A comprehensive dis-

cussion on the use of quantile functions in discrete, time series based statistical mod-

elling and data analysis is given by Gilchrist (2000), Koenker and Bassett Jr (1978),

Koenker and Hallock (2001), Koenker and Xiao (2006), a review by Koenker (2017),

and a tutorial review by Peters (2018). This tutorial review also draws a connection

between quantile processes and quantile–preserving maps, following which a discrete–

time, function–valued quantile process model is introduced by Chen et al. (2022). It

is with this work that one may directly relate the class of function–valued quantile

processes introduced in this thesis as the continuous–time analogue of such models.

Distinct from these statistical time series modelling frameworks, there have also been

developments of what are termed ‘quantile processes’ for empirical processes in math-

ematical statistics and probability literature—see for instance the sequence of works

by Csörgő (1983), Csörgő and Révész (1978) and Csörgő et al. (1986). The litera-

ture on quantile processes in continuous time is less dense, however one may consider
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the works of Akahori (1995), Dassios (1995), Embrechts et al. (1995) and Yor (1995)

whereby—building on ideas in Miura (1992)—a Brownian process is considered and, at

each instance in time, the distribution of a random variable, defined by the α–quantile

of the diffusion at this time, is studied. From a financial mathematics perspective,

Miura (1992) motivated such a consideration by introducing the ‘α–percentile option’

whereby the underlying is given by the α–percentile of the price process over the life of

the option, e.g., the median if α = 0.5. Comparatively to work where the focus is the

distributional behaviour of the quantiles of a continuous time process, our random–level

approach focuses on constructing a model for the dynamic quantiles, directly. It is less

transpicuous as to where the random–level quantile processes presented in this thesis

overlaps with existing quantile process models, and thus we see the utility of quantile

dynamics in this regard as under–explored and, to our knowledge, not yet proposed.

As with any new framework comes breadth to explore its potential in regard to

statistical behaviours, sensitivities to model inputs, and scope of application. It is

natural as a financial mathematician, particularly when considering quantiles, for ones

mind to wonder to the realm of risk in its many facets: quantification, management,

and modelling of it, as well as risk profiles, preferences and how to characterise them.

As such, the key application explored in this thesis is the development of a general,

time-consistent and dynamic approach for the valuation of risks: the ‘quantile process–

based valuation principle’. In this setting, we see it natural to consider random–level

quantile processes from the perspective of their induced probability measures and how

such measures inherit the (intentionally constructed, highly flexible and directly pa-

rameterised) statistical properties of the quantile process. The manner in which we

construct probability distortions is a flexible and unrestricted alternative to commonly

used distortion–based pricing techniques such as those produced using distortion op-

erators, see, e.g., Godin et al. (2012, 2019), Wang (1996, 2000, 2002), or a weighting/

exponential tilting, see, e.g., Cruz et al. (2015), Esscher (1932), Furman and Zitikis

(2008) and references therein. Unlike these existing methods, the approach developed

in this work facilitates the direct parameterisation of higher–order features in the choice

of composite map used in the quantile process construction, which thereby allows one to

incorporate knowledge of asymmetries or tail risk, for example, and to directly quantify

their impact (through the distorted probability measure) on the resultant valuations.

Of key importance in this work is the explication of how the choice of the composite
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map affects the behaviour of prices obtained under the stochastic valuation principle.

We consider markets where arbitrage pricing may fall short due to the (possible) in-

completeness of markets, such as insurance markets. The quantile process–induced

‘distorted’ probability measures are considered subjective, and to incorporate investor

risk preferences, as well as external factors such as financial market risk, and char-

acteristics associated with the underlying risk source that may not be accounted for

when considering historical losses (e.g., technological advancements, changes in cli-

mate, geopolitical turmoil). The first of these factors is emphasised throughout, and as

such, when the Radon–Nikodym derivative between the real–world and the distorted

probability measure is derived and the connection with the pricing kernel is made,

this is equivalent to the risk preferences of each market participant corresponding to a

different, and not necessarily unique, pricing kernel. This is of course consistent with

the assumption of market incompleteness. In the insurance setting, the framework

presents a fairly general class of axiomatically justified premium principles with high

levels of flexibility. These premium principles allow one to capture skewness and lep-

tokurtosis that is commonly observed in markets, and they can be used to explicitly

incorporate more structure into subjective assignments of elicitable information regard-

ing an investor’s risk preferences. This is captured through the induced characteristics

of the quantile process. When multidimensional quantile processes are considered to

induce the probability measure that characterises the valuation principle, the copula

used in the composite map for their construction presents another new element in the

risk quantification and modelling framework based on probability measure distortions

induced by quantile processes. In the context of the stochastic valuation principle,

this allows for (auxiliary) risk factors, e.g., other highly correlated risks or external

macroeconomic/ systemic risks, to also be considered. The idea is that the incorpo-

ration of such external risks in the construction of the distorted probability measure

brings additional sources of risk drivers into the valuation principle. Here, one or more

marginals of the multivariate driving process are the underlying risks on which the

financial or insurance contract is written, and the remaining marginals of the driving

process model the external risks that are accounted for in the valuation problem. The

model is presented in the context of pricing insurance layer and stop–loss contracts. We

envisage applications of this model to include, e.g., the pricing of insurance contracts

written on some loss process where external risks related to climate change are likely
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to impact. While the external risk sources may trigger the payout of an insurance

contract, such risks are not regarded as the directly insurable loss, nor is their impact

prevalent in the historical loss data of the risk being insured. As the realised impact

of climate change is on the rise, it becomes more important for insurers to factor such

risks into their pricing models. Here, the climate risk processes are taken as marginals

of the multivariate driver used in the construction of the quantile process that induces

the distorted probability measure. The composite map (consisting of a quantile func-

tion and a copula) can also be utilised to produce excess skewness or kurtosis that the

insurer deems reasonable to factor into the model, but is not captured in historical loss

data, or the risk preferences of the agent buying the insurance contract. It may be

at the discretion of the insurer to determine the appropriate composite map used in

the construction of the quantile process. A theoretically similar idea is formalised by

Zhu et al. (2019), where a premium principle for agricultural losses is constructed by

incorporating a re–weighting of the historical losses with systemic risk factors—here,

the insurer may select the appropriate weighting function.

We build up to the valuation principle systematically in this thesis—the content of

Chapters 4, 5 and 6 is adapted from the research paper by Brannelly et al. (2021a)—

with an introduction to the distorted measures induced by random–level quantile pro-

cesses given in Chapter 4. A connection with the Radon–Nikodym derivative is made.

Following this, in Chapter 5, we derive necessary and sufficient conditions under which

the quantile processes satisfy first– and second–order pathwise stochastic dominance,

with respect to the choice of composite maps used in their construction. These re-

sults allow one to derive useful properties of the valuation framework, for instance the

setting in which the valuation principle induces a consistent risk–loading and thus is

axiomatically sound in the context of insurance prices. The stochastic ordering results

also lead to ordered parametric families of prices or premiums related to some given

base risk.

In Chapter 6, the general and time–consistent stochastic valuation principle is de-

fined and the connection with dynamic, convex risk measures, see e.g., Acciaio and

Penner (2011), Bion-Nadal (2006, 2008, 2009) and Detlefsen and Scandolo (2005), is

made. The developed general framework is shown to incorporate well–known pricing

frameworks built by concave distortion operators, see above references, and a large

number of premium calculation principles (PCPs), see Laeven et al. (2008) for a de-
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tailed survey on PCPs. A special case of the stochastic valuation principle is then

specified, employing a conditional expectation under the distorted probability measure

induced by the quantile process, thus automatically ensuring time–consistency. We

emphasise that the choice of the probability measure, determined by the choice of the

quantile distortion map, determines the behaviour of the output price process for any

given input risk. For example, if the input risk process becomes more heavy–tailed or

skewed, or both, under the distortion map, then the valuation principle induces a risk-

loading; this may coincide with risk aversion of the considered market participant. In

the context of risk profiles and preferences, connections are also made with the decision

theory literature, where it is well–established to consider a market agent’s preferences

through a utility function. Again, we emphasise the advantage in the flexibility of

the quantile process construction and thus ability to capture a somewhat unrestricted

compass of risk profiles through the precise model specification.

The work in this thesis is presented as the origin of a theoretical framework in

which a new class of continuous–time stochastic processes, modelling the dynamics

of quantiles with statistically rich and purposefully constructed properties, is defined.

We present this work as a steppingstone to the wider picture of what, under further

mathematical study, such processes may achieve in applications across a variety of

mathematical and statistical subdisciplines.



Chapter 2

Quantile transforms and modelling

The use of quantile functions in characterising distributions to describe data dates

back to work by Galton (1902) and, in subsequent years, various aspects of quantile

methods appeared in both theoretical and practical works, see e.g., Parzen (1979a,b)

and Tukey (1977). In his book Statistical Modelling with Quantile Functions, Gilchrist

(2000) both unified and developed such ideas to provide an extensive discussion on

the use of quantile methods in statistical modelling procedures. The focus was to

provide an additional perspective on existing ideas by re–expressing them in terms of

quantile functions, and to emphasise the advantages of doing so. The purpose of this

chapter is to present some background material in, and motivate, the theory of quantile

transformation maps and quantile processes; the understanding of both concepts is

principal to the construction of the quantile processes developed in this thesis.

We first provide the definition of a quantile function for a random variable, that

shall be referred to throughout this thesis. This definition utilises the generalised

inverse discussed by Embrechts and Hofert (2013), allowing one to consider instances

where the corresponding distribution function may not be real–valued, continuous and

strictly monotone, and hence the ordinary definition of the inverse it possesses on its

range does not apply.

Definition 2.0.1. For an increasing function F : R → R with F (−∞) = limx↓−∞ F (x)

and F (∞) = limx↑∞ F (x), the generalised inverse Q := F− : R → R := [−∞,∞] of F

is defined by Q(y) = inf{x ∈ R : F (x) ≥ y} for y ∈ R and with the convention that

inf ∅ = ∞.

We denote the distribution, quantile, and density functions of a random variable
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by F,Q, and f , respectively, where an argument in the subscript of such functions will

denote the random variable to which they correspond. When included in notation,

parameters will follow a semicolon in the arguments of these functions.

Definition 2.0.2. Let X be a real–valued random variable with distribution function

FX : R → [0, 1]. The quantile function of X is QX = F−
X : [0, 1] → R.

2.1 Quantile transformation maps

It is common in statistical modelling practices to express quantile functions as the

inverse of cumulative distribution functions (CDFs), as illustrated by Definition 2.0.2.

In the case of more complex CDFs however, these inverses may be intractable, leading

to the need for numerical methods when working with quantile functions directly.

Alternatively, what if one were to consider transformations of simple quantile functions

to build complex distributional, and more specifically, tractable, models? This idea was

formalised by Gilchrist (2000) where, in Section 3.2 of his book, a set of construction

rules obeyed by quantile functions is presented, and in Section 6 a discussion is given

on transformation methods for building new models. Here, the requirement for model

complexity is motivated by the properties of the data that the models seek to describe.

In this section, we focus on two classes of the given transformations, p– and Q–

transformations, and their development into the notion of rank and sample transmu-

tation maps, respectively, as introduced by Shaw and Buckley (2007, 2009). We draw

comparisons with the elongation and reshaping maps of Tukey (1977) to further em-

phasise the power of simple transformations in the construction of statistically rich

quantile functions.

First, imagine the plot of a quantile function Q(u), where on the x–axis we have the

quantile level u ∈ [0, 1]. The purpose of p– and Q–transformations is to transform the

x– and the y–axis, respectively, whilst ensuring that the resulting plot remains that of

a valid quantile function. The transformations are simple yet powerful, and are defined

as follows.

Definition 2.1.1. Let Tp(u) : [0, 1] → [0, 1] be a non–decreasing function such that

Tp(0) = 0 and Tp(1) = 1. Then Tp(u) is a p–transformation and for any quantile

function Q(u), the function Q(Tp(u)) is also a quantile function with the same range

as Q(u).
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Whilst the requirement that p–transformations be non–decreasing functions on [0, 1]

limits the breadth of available transformations, a wide range of distributions may still

be produced. For example, the Power p–transformation, T P
p (u) := uα for α ∈ R+,

transforms the quantile level of the Weibull distribution, with quantile function Q(u) =

(− log(1 − u))β for β ∈ R+, and produces the quantile function of the generalised

exponentiated Weibull distribution, Q(u) = (− log(1− uα))β.

Before defining Q–transformations, we first give the definition of a general quantile–

preserving map.

Definition 2.1.2. A map T : R → R is a quantile–preserving map if for any quantile

function Q(u), the function QT (u) := T (Q(u)) is a quantile function for u ∈ [0, 1].

To illustrate the above definition, let Y be a real–valued random variable with

distribution function FY , and η ∈ R be such that F ′′
Y (y) exists and is bounded in the

neighbourhood of η, and that F ′
Y (η) = fY (η) > 0. Let FY (η) = u for u ∈ (0, 1),

then η is the unique u–quantile of FY , see Bahadur (1966). A direct consequence of

Definition 2.1.2 is that for a quantile–preserving map T and the real–valued random

variable Z := T (Y ) with distribution function FZ , η is such that ηZ := T (η) is the

unique u–quantile of FZ . Another general example of quantile–preserving maps is the

class of Q–transformations, defined as follows.

Definition 2.1.3. Let TQ(x) : R → R be a non–decreasing function. Then TQ(x) is a

Q–transformation and is a quantile–preserving map.

The practical value of many quantile functions obtained under Q–transformations

has lead to the naming of such distributions. For example, the lognormal quantile

function is obtained by applying T e
Q(x) := exp(x) to the normal quantile function

QN(u) = µ + σ
√
2erf−(2u − 1) for µ ∈ R, σ ∈ R+. Considering the uniform quan-

tile function QU(u) = u, one can construct the quantile function of power law using

T P
Q (QU(u)) := QU(u)

α, the quantile function of the reflected exponential distribu-

tion using TL
Q(QU(u)) := log(QU(u)) and that of the reciprocal uniform distribution

using TR
Q (QU(u)) := 1/QU(1 − u). Since the composition of two non–decreasing

functions is also non–decreasing, the Pareto distribution can be constructed using

T PR
Q (x) := T P

Q (TR
Q (x)) and the exponential distribution by using TLR

Q (x) := TL
Q(T

R
Q (x)),

again applied to the uniform quantile function x = QU(u) = u. Further examples of
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well–known distributions constructed in such a manner are given by Gilchrist (2000)

in Section 6.5, and by Klugman et al. (2012).

Analogous to p– and Q–transformations are rank and sample transmutation maps

(RTMs and STMs), respectively, as introduced by Shaw and Buckley (2007, 2009),

where the rather expository term ‘distributional alchemy’ is coined in the introduction

of transmutation maps, capturing the transformational power of such mechanisms.

The focus of these maps is the discovery of distributional families by modifying some

base distribution in such a way that higher order moments, e.g., skewness and kur-

tosis, are introduced in a universal and relative manner to the resulting transformed

quantile function. The maps are expressed as the composite of the CDF of one dis-

tribution, and the quantile function of another. Tractability of the base distribution

is preserved in the production of richer parametric families of valid quantile functions,

an example being skew–kurtotic variations of the base distribution. We note that the

asymptotic analogue to transmutation maps, i.e., approximating one distribution in

terms of another, is long–established and well documented under the realm of Edge-

worth, or Gram–Charlier expansions, see Bickel (1974), Charlier (1905) and Edgeworth

(1907), and Cornish–Fisher expansions, see Cornish and Fisher (1938). Here, skewness

and kurtosis are implemented to a base distribution, notably normal or lognormal,

by multiplying the base density, or sample (at a given quantile level), respectively,

by an asymptotic series consisting of special functions based on the base distribution

multiplied by coefficients, up to various orders, involving the output cumulants. The

limitations of the practicality of such methods is outlined by Shaw and Buckley (2009),

and one may refer to, e.g., Abramowitz and Stegun (1964) and Wallace (1958) for fur-

ther documentation of these ideas. Henceforth, this thesis will focus on analytical

classes of quantile transformation maps, that is, outside of the asymptotic domain. We

refer to Shaw and Buckley (2007, 2009) for the following material.

Definition 2.1.4. Consider two distribution functions F1 and F2 with a common sam-

ple space. A pair of general RTMs is given by

GR12(u) = F2(F
−
1 (u)), GR21(u) = F1(F

−
2 (u)), (2.1.1)

where GRij
(u) : [0, 1] → [0, 1], and GRij

(0) = 0 and GRij
(1) = 1, for i, j = 1, 2 and

i ̸= j. Under suitable assumptions, GR12(u) and GR21(u) are mutual inverses.
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An additional assumption that the RTMs be continuously differentiable is made

in order to ensure that the densities of the mapped random variables are continuous,

and one may also assume that they be monotone so that the distribution and quantile

functions involved are well–defined. Intuitively, the map GRij
(u) maps the ranks of the

distribution Fi to those of the distribution Fj, thus introducing skewness or kurtosis in

a universal way. We see that RTMs fall under the class of p–transformations given in

Definition 2.1.1 in that they map a rank, or quantile level u ∈ [0, 1], to a transformed

rank, or quantile level, so that for Q(u) any quantile function, Q(GRij
(u)) is a quantile

function for i, j = 1, 2 and i ̸= j.

Of particular interest is the quadratic RTM (QRTM), where the effect of the map

is an introduction of skewness to the base distribution. The QRTM has the form

GR12(u) = u+ λu(1− u) (2.1.2)

for |λ| < 1. It follows that F2(x) = (1 + λ)F1(x) − λF1(x)
2, and the transmuted

CDF, F2, will represent some skewed version of the base CDF, F1. As an example,

consider base distributions belonging to the standard uniform, standard normal and

exponential (with parameter β > 0) distributions, given by FU(x) = x, FN(x) =

Φ(x) = 0.5(1 + erf(x/
√
2)) and FE(x) = 1 − exp(−βx), respectively, on the relevant

supports. Figure 2.1 shows the transmuted standard uniform, standard normal and

exponential distributions under the QRTM for a range of values λ ∈ [−1, 1], including

λ = 0, i.e., the case of no transmutation to the base distribution. We observe the

introduction of greater levels of positive (resp. negative) skewness, relative to the base

distribution, the larger the absolute value of the positive (resp. negative) parameter λ.
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Figure 2.1: Cumulative distribution functions (CDFs) of the transmuted standard
uniform, standard normal and exponential CDFs under a quadratic RTM for a range
of parameter values λ ∈ {−1,−0.6,−0.2, 0, 0.2, 0.6, 1}.

We also note alternative existing literature in the context of modulating distri-

butions to introduce skewness, see, e.g., Arellano-Valle et al. (2006), Azzalini (2005,

2008), Azzalini and Capitanio (2003), Genton (2005) and Vicari and Kotz (2005), and

the references cited therein. An advantage of quantile transformation maps over mod-

els of the types given in these papers lies in the ability to introduce relative skewness to

some base distribution, as opposed to an absolute amount of skewness, thus providing

substantial practical flexibility and interpretation in the context of model assessment
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and comparison. Additionally, RTMs may be generalised to treat the introduction of

kurtosis by defining the general RTM

GR12(u) = u+ u(1− u)P (u) (2.1.3)

where P is a polynomial with various parameters. The simplest type of such RTM is

the symmetric cubic RTM, obtained by choosing P (u) = γ(u − 0.5) for γ ∈ R. This

transmutation preserves symmetry and allows for the introduction of kurtosis.

We now draw our attention to STMs, which fall under the class ofQ–transformations,

given by Definition 2.1.3, in that they transform the entire distribution by converting

samples from the inner distribution F1 to those from F2.

Definition 2.1.5. Consider two distribution functions F1 and F2 with sample spaces

D1 ⊆ R and D2 ⊆ R, respectively. A general STM GS12(z) : D1 → D2 is given by

GS12(z) = F−
2 (F1(z)) and is a quantile–preserving map.

Applications of STMs include the recycling of samples, e.g., Monte Carlo samples,

from one distribution to those from another. We highlight this aspect of the STM

mechanism, rather than the fact that for many choices of distribution function F2, its

inverse might be intractable and awkward. Instead, in this thesis, we advocate for the

use of quantile transformation maps to produce complex quantile functions, rather than

attempting to approximate inverses of CDFs. In case of interest, one may refer to Shaw

et al. (2011) and Steinbrecher and Shaw (2008) for a detailed approach on obtaining a

direct route to GS12(u), given a choice of F1 and F2, using differential equations, where

the only requirement is that one can calculate the logarithmic derivatives of the two

corresponding densities f1 and f2.

We now introduce the classes of elongation and reshaping transformations, which

allow for the introduction of relative skewness and kurtosis to a transformed quantile

function. We refer to Hoaglin (1985) and Klein and Fischer (2002) for the following two

definitions. First, we note that, when applied to some random variable, the notion of

elongation pertains to the tail properties of the distribution of the output random vari-

able being relative to those of the input random variable under such transformations.

We consider transformations around the mode of the base distribution, under the as-

sumption that this distribution is unimodal, which in the symmetric case coincides with

the distribution median and mean. Considering a transformation around the median
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of the base distribution in the case where such distribution is non–symmetric provides

a relative measure of central tendency in regard to a fixed quantile level u = 0.5. This

transformation, however, does not pertain to the standard interpretation of relative

skew—this is further discussed in Section 3.3.

Definition 2.1.6. Let X be a symmetric real–valued random variable, and TE(x) :

R → R be such that TE(x) ≈ x + O(x2) for x around the mode of X. The function

TE(x) is called an elongation transformation if, for x > 0, it is a strictly monotonically

increasing, convex function satisfying T ′
E(x) > 0, T ′′

E(x) > 0, and TE(x) = −TE(−x).

The properties of the elongation transformation TE(x) given in Definition 2.1.6 en-

sure that, when the transformation map is applied to a random variable X, symmetry

of the random variable is preserved, deformation of the random variable around the

mode is controlled, and increased heaviness of the tails of the transformed random

variable, relative to X, is ensured. When applied to a quantile function, the elonga-

tion map must satisfy the modal property in Definition 2.1.6 around the mode of the

random variable of which the quantile function is transformed. Since TE(x) is strictly

monotonically increasing for x > 0 and TE(x) = −TE(−x), the elongation transforma-

tion map is a quantile–preserving map and it follows that the quantile function of the

random variable ζ := TE(X) is given by Qζ(u) = TE(QX(u)) for all u ∈ [0, 1].

There exist several families of elongation transformations to produce flexible, rel-

ative tail distortions in a controlled manner through the choice of parameters. We

emphasise that the maps may be applied to some base random variable directly, to

produce an output random variable with the desired properties, or to a quantile func-

tion to produce an output quantile function of some random variable with the desired

properties. In the case of the introduction of relative skewness instead, a reshaping

transformation is employed, and defined so to affect positive values of the input differ-

ently to negative ones.

Definition 2.1.7. Let X be real–valued random variable and TR(x) := R → R be such

that TR(x) ≈ x + O(x2) for x around the mode of X. The function TR(x) is called a

reshaping transformation if it is a strictly increasing function, with continuous second

derivative, satisfying TR(x) ̸= −TR(−x) for all x ̸= 0.

If TR(x) is convex, i.e., T
′′
R(x) > 0, the base distribution (ofX) is skewed to the right

(increased positive skewness), and if TR(x) is concave, i.e., T
′′
R(x) < 0, the base distri-
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bution is skewed to the left (increased negative skewness). Since TR(x) is strictly mono-

tonically increasing for x ∈ R, the reshaping transformation is a quantile–preserving

map and it follows that the quantile function of the random variable ζ := TR(X) is

given by Qζ(u) = TR(QX(u)) for all u ∈ [0, 1].

In this thesis, we focus on the class of Tukey transformations, proposed by Tukey

(1977) and further explored by Hoaglin (1985), Jorge and Boris (1984) and MacGillivray

(1981, 1992), among others in more recent years. A multivariate extension is detailed

by Field and Genton (2006). The family of models allows for the construction of

skewed and leptokurtic distributions, covering very flexible ranges of these properties,

through the transformation of some base distribution which is often taken to be Gaus-

sian, however can be generalised to a non–Gaussian symmetric random variable, see

e.g., Jiménez et al. (2015), Jiménez and Arunachalam (2016) and Klein and Fischer

(2002). In the case of introducing heavy–tailedness, the Tukey transformation is an

elongation map, as given by Definition 2.1.6, and in the case of introducing skewness,

the Tukey transformation satisfies the properties of the reshaping transformation given

in Definition 2.1.7. Each subfamily of the Tukey transformation is characterised by a

parameterisation T . The subfamilies that have received the most attention are the

g–and–h and the g–and–k, which have been explored in various practical contexts by

Cruz et al. (2015), Degen et al. (2007), Jiménez and Arunachalam (2011), Peters and

Sisson (2006), Peters et al. (2016) and by Haynes et al. (1997) and Hossain and Hossain

(2009), respectively. The g–and–h family has gained significant attention due to its

ability to adequately approximate a large range of distributions, including the expo-

nential, Student–t, Cauchy and Weibull distributions. In this thesis we focus on the

g–and–h family, however replacing the transformation of the type h with that of the

type k allows one to obtain the g–and–k family, see Rayner and MacGillivray (2002).

Similarly, the g–and–j family is given by Fischer and Klein (2004) where the h trans-

formation is replaced with that of the type j. A detailed overview of the class of models

and their extensions, in the context of loss distributions for non–life insurance mod-

elling, is given by Peters et al. (2016), along with a robust procedure for estimating

the model parameters. The generic specification of the Tukey transformation is given

as follows.

Definition 2.1.8. Consider a real–valued random variable X with quantile function



2.1 Quantile transformation maps 32

QX(u) for u ∈ [0, 1]. The function

r(x) := A+BxT (x)Θ (2.1.4)

is a Tukey transformation with parameter Θ ∈ R, location and scale parameters A ∈
R, B ∈ R+, and where T (x) : R → R characterises the type of Tukey transformation.

The transformed random variable ζ := r(X) is Tukey–distributed with quantile function

Qζ(u) = r(QX(u)) for u ∈ [0, 1].

The choice of function T and parameter Θ in Eq. (2.1.4) determines the statistical

properties of the random variable ζ and thus of the quantile function Qζ(u). For the

introduction of relative kurtosis or skewness to the base random variable X, the pa-

rameterisation T must ensure the Tukey transformation map given by Eq. (2.1.4) is

an elongation map, or a reshaping transformation, respectively, when A = 0, B = 1.

These location and scale parameters may then be applied to shift or re–scale the trans-

formed random variable. As such, restrictions on the distribution of X are required to

ensure the maps are well–defined around the distributional mode. Most generally, X

is considered a standardised, symmetric random variable, i.e., with probability density

function that is symmetric around the origin. Then the mean, median and mode of X

lie at zero.

A series of kurtosis transformations that have been proposed in the literature are

the h, k and j types, where the parameterisation T in Eq. (2.1.4) is given by

Th(x) := exp

(
hx2

2

)
, (2.1.5)

Tk(x) :=
(
1 + x2

)k
, (2.1.6)

Tj(x) :=

[
exp(w) + exp(−w)

2

]j
, (2.1.7)

respectively, for h, j ∈ R, k > 0.5 and Θ = 1. If the base distribution is Gaussian,

setting Θ ≥ 0 allows for the tails to be made heavier under the transformation. We note

that special treatment of the elongation map for the Tukey–h transform is required for

h < 0 since rh(x) := A+BxTh(x) is no longer monotonically increasing for x2 > −1/h,

see Hoaglin (1985). To introduce skewness, one may consider a transformation of the
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g type, where the parameterisation T is given by

Tg(x) :=
exp(gx)− 1

gx
(2.1.8)

for g ∈ R \ 0 and Θ = 1. We remark that Tg(x) = T−g(−x) and so the sign of g

determines the direction of skewness. Additionally, considering the series expansion of

Tg(x), that is,

Tg(x) ≈ 1 +
gx

2!
+
g2x2

3!
+O(x3), (2.1.9)

it holds that Tg(x) ≈ 1 for x ≈ 0, and so the transformation scales a standardised,

symmetric base distribution differently on either size of its mode (at the origin) via the

parameter g, thus producing skewness.

One may introduce both skewness and kurtosis by considering the third transfor-

mation in the g–and–h family, the Tukey–gh distributional family, where the param-

eterisation T is given by the product of the g–and–h type transformations, that is

Tgh(x) := Tg(x)Th(x), and Θ = 1. We have

rgh(x) = A+Bx

(
exp(gx)− 1

gx

)
exp

(
hx2

2

)
(2.1.10)

for x ∈ R, g ∈ R \ 0 and h ∈ R+
0 . As g → 0 the Tukey–gh family coincides with the

Tukey–h family, and for h = 0 with the Tukey–g family. The random variable X is

usually (and thus henceforth in this thesis) assumed to be a standard Gaussian random

variable so that the quantile function of the Tukey–gh distribution function is given by

QTgh
(u;A,B, g, h) = A+

B

g

[
exp

(
g
√
2erf−(2u− 1)

)
− 1
]
exp

(
h
(
erf−(2u− 1)

)2)
(2.1.11)

for u ∈ [0, 1]. Figure 2.2 shows the Tukey–gh quantile function for a range of skewness

and kurtosis parameters, relative to the standard normal quantile function.
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Figure 2.2: Quantile functions of the Tukey–gh distribution for a range of g–and–h
parameters, relative to the standard normal quantile function.

2.2 Characterisation of quantile processes

We now introduce some widely adopted definitions of quantile processes with the inten-

tion of differentiating these definitions from the use of this terminology in our construc-

tions. We emphasise the connection between quantile processes and quantile transfor-

mation maps, illustrated in the context of constructing parametric quantile time series

models by Peters (2018).
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In much of the literature, the formulation adopted by Csörgő and Révész (1978)

is invoked when one refers to a quantile process, and it is based on the univariate,

empirical quantile process, defined as follows.

Definition 2.2.1. Let Y1, Y2, . . . , Yn be a sequence of i.i.d. random variables with a

continuous distribution function FY , and let Y(1,n) ≤ Y(2,n) ≤ . . . ≤ Y(n,n) denote the

order statistics of the random sample Y1, Y2, . . . , Yn. Define the empirical distribution

function Fn(y) and the quantile function Qn(u) as follows:

Fn(y) =


0 if Y(1,n) > y

k
n

if Y(k,n) ≤ y < Y(k+1,m), k = 1, 2, . . . , n− 1

1 if Y(n,n) ≤ y,

Qn(u) = Y(k,n) if
k − 1

n
< u ≤ k

n
, k = 1, 2, . . . , n.

For u ∈ (0, 1), the empirical quantile process is defined by qn(u) = n1/2
(
Qn(u)− F−

Y (u)
)
.

This definition relates to the convergence of the law of the order statistics of an

empirical process, which is observed as a sequence of independent and identically dis-

tributed (i.i.d.) random variables from a fixed distribution FY . The new class of

quantile processes presented in this thesis is a constructive, parametric approach to

modelling quantiles and so we highlight the distinction from Definition 2.2.1, and pro-

vide the definition to emphasise this. Similarly, we note another important definition

associated to the term ‘quantile process’, being the α–quantile of a continuous–time

stochastic process, introduced for a Brownian motion with drift by Dassios (1995), Em-

brechts et al. (1995) and Yor (1995), and in the context of a process with stationary

and independent increments by Dassios (1996).

Definition 2.2.2. Let (Ω,F , (Ft)t∈[0,∞),P) be a filtered probability space and (Wt)t∈[0,∞)

and (Ft)–adapted, one–dimensional, standard Brownian motion on the probability space.

Define the process (Yt)t∈[0,∞) by Yt := µt+Wt for µ ∈ R and let Ft = σ((Ys)0≤s≤t) for

all t ∈ [0,∞). For α ∈ [0, 1], and t ∈ [0,∞), the α–quantile process of (Ys)0≤s≤t is

given by the process (Mα
t )t∈[0,∞), defined by

Mα
t (ω) := inf

{
y :

∫ t

0

1 {Ys(ω) ≤ y} ds > αt

}
(2.2.1)
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for all ω ∈ Ω. For fixed ω ∈ Ω, Mα
t (ω) is the α–quantile of the function s 7→ Ys(ω) for

s ≤ t.

The development of this definition was motivated by the problem in financial math-

ematics involving the pricing of ‘α–percentile options’, see Akahori (1995) and Miura

(1992). For each sample path of the underlying process, the definition produces the

quantile at level α ∈ [0, 1] of the path (i.e., a function of time) up to some time

t ∈ [0,∞). Whilst the quantile process models constructed in this thesis are also in

the context of continuous–time stochastic processes, with a focus on diffusions, the

approach is motivated by the ability to develop stochastic processes that model quan-

tiles with specific statistical properties, rather than as a study of the quantiles of the

paths of some given process through time. Henceforth, we denote the quantile level by

u ∈ [0, 1].

We now consider a somewhat discrete–time analogue to the quantile processes de-

veloped in this thesis. The notion of sample quantiles was generalised to quantile

regression models by Buchinsky (1998) and Koenker and Bassett Jr (1978), and fur-

ther developed by Koenker and Hallock (2001) and Koenker (2004), allowing one to

estimate conditional quantile functions at any quantile level u ∈ [0, 1]. Quantile time

series models were then developed by Koenker and Xiao (2006) for the class of quantile

autoregressive (QAR) models, allowing for a representation of the model in which the

autoregressive (AR) parameters vary with the quantile level, defined as follows.

Definition 2.2.3. Consider a univariate time series {Y1, . . . , Yt, . . .} for t ∈ N and

let Ft = σ(Y0, Y1, . . . , Yt) denote the natural σ–algebra of the observed time series. Let

{Ut} be a sequence of i.i.d. standard uniform random variables for all t ∈ N, and

αi(u) : [0, 1] → R be monotone increasing functions, for i = 0, . . . , p. A scalar (vector)

on function QAR(p) model with random coefficients is defined by

Yt = α0(Ut) +

p∑
i=1

αi(Ut)Yt−1. (2.2.2)

The corresponding QAR(p) model for the conditional quantile function of the random

variable Yt, conditioned on the observations of the time series until time t− 1 is char-

acterised by

QYt(u|Ft−1) = α0(u) +

p∑
i=1

αi(u)Yt−i, (2.2.3)
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for all u ∈ [0, 1].

The transition from Eq. (2.2.2) to Eq. (2.2.3) follows from the fact that for a

standard uniform random variable U with quantile function QU(u) = u, and g(u) any

monotone increasing function, we have Qg(U)(u) = g(QU(u)) = g(u) for all u ∈ [0, 1].

Properties of the QAR models, such as quantile correlation (QACF) and quantile

partial correlation (QPACF) are defined by Li et al. (2015). Further quantile time

series regressions are outlined by Peters (2018) and the references cited therein. There,

one finds a presentation of popular classes of quantile time series models that have

been developed in the literature, followed by an extensive tutorial on the construction

of such models from the perspective of the different model components. The general

class of linear or nonlinear conditional quantile time series models is defined by the

relation

QYt (u|Ft−1,Gt;θ) = T (Ft,Gt, Qϵ(u;γ)) (2.2.4)

where T is a quantile–preserving map given by Definition 2.1.2. The filtration Gt =

σ(X0, . . . ,Xt) is generated by the series {X0, . . . ,Xt}, Xt ∈ Rd, of observed exogenous

covariates, θ ∈ Rd′ is a static vector of model parameters, Qϵ(u;γ) is a quantile error

function of some white noise sequence ϵt with static vector of parameters γ ∈ Rd′′ ,

and the remaining notation is as per Definition 2.2.3. The focus of parametric models

of the type given in Eq. (2.2.4) lies in the modelling choice of Qϵ(u;γ) and the map

T , which may either be applied to the quantile error function to obtain more flexible

families (as discussed in Section 2.1) or to the quantile time series relationship to

produce nonlinear quantile time series models. The most common choice of quantile–

preserving maps are the classes of linear additive maps, nonlinear multiplicative maps,

or Q–transformations, as given by Definition 2.1.3. As such, here lies the connection

between quantile transformation maps and the construction of flexible discrete–time

quantile time series models.

As an example, an extension of the linear QAR model in Eq. (2.2.2), with quantile

error function Qϵ(u;γ) and some choice of map T , is given by

QYt (u|Ft−1,Gt;θ) =

p∑
i=1

αi(u)Yt−1 +
d∑

j=1

k∑
i=1

βj,iXj,t−i + T (Qϵ(u;γ)) (2.2.5)

for θ = (β, γ) and β = (β0, . . . ,βd) for βi ∈ Rk and i = 1, . . . , k. Here, we assume the
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map T is applied to the quantile error function directly, allowing for greater flexibility

in its properties whilst preserving the linearity of the model. An example of a nonlinear

quantile time series model of the class given by Eq. (2.2.4) is the dynamic quantile

function model (DQM) introduced by Chen et al. (2022). Here, a parametric example

is given in which T is considered to be a Tukey–gh transformation map, outlined as

follows.

Definition 2.2.4. Let (Ω,F ,P) be a probability space and X(u, ω) : [0, 1] × Ω → R
be such that if u ∈ [0, 1] is fixed, X(u, ·) is a real–valued random variable on the

probability space, and if ω ∈ Ω is fixed, X(·, ω) is a real–valued quantile function.

Here, X is called a quantile function–valued (QF–valued) random variable. Let {Xt}
denote the set of QF–valued random variables indexed by t ∈ Z and define the p–

dimensional vector ξt = M (Xt) for a mapping M such that M : X(·, ω) → Rp for

fixed ω ∈ Ω. Define the conditional distribution Fζ,t on Rp such that ξt|Ft−1 ∼ Fξ,t

where Ft−1 = σ({ξs : s ≤ t − 1}). The QF–valued one–step–ahead forecast is defined

by

X̃t(u) := M− (E [ξt|Ft−1]) (2.2.6)

for all t ∈ Z.

Under the assumption that Xt(u) is the quantile function of a Tukey–gh distribu-

tion, so that

Xt(u) =

At +Bt

exp
(
gt
√
2erf−(2u− 1)

)
− 1

gt
exp

(
ht
(
erf−(2u− 1)

)2)
, gt ̸= 0

At +Bt

√
2erf−(2u− 1)exp

(
ht
(
erf−(2u− 1)

)2)
, gt = 0,

(2.2.7)

for At ∈ R, Bt ∈ R+, gt ∈ R and ht ∈ R+
0 , the parameterisation M is chosen to be

ξt = (At, log(Bt), gt, ht). The quantile process in Eq. (2.2.7) is a nonlinear quantile

function–valued time series model based on the Tukey–gh transformation map. In

Section 3.2 we define a class of ‘function–valued’ quantile processes that could be

viewed as a continuous–time analogue to those given by Chen et al. (2022), above.



Chapter 3

Construction of Stochastic Quantile

Processes

Numerous classes of discrete– and continuous–time quantile processes have been ex-

plored in existing literature, as discussed in Section 2.2. The purpose of this chapter is

to introduce the novel class of continuous–time stochastic quantile processes that consti-

tutes the backbone of the work presented in this thesis. We develop two constructions

of such processes, one based on a ‘process–driven’ (or ‘random–level’) construction,

which produces a scalar–valued process, and the second based on a ‘parameter–driven’

(or ‘function–valued’) construction, which produces a function–valued process in the

space of quantile functions. In this thesis, we focus largely on the first of these con-

structions. Here, quantile processes are developed by distorting each (time) marginal

of a given univariate stochastic process under a composite map consisting of a distri-

bution function and a quantile function, which in turn produces the marginals of the

resulting quantile process. The family of quantile (distortion) processes will be char-

acterised by the parametric form of the selected transformation composite map and

the underlying base process; connections to the quantile transformation maps given in

Section 2.1 are made. As such, we emphasise the wide class of models with directly

interpretable statistical characteristics that arise from such a transformation.

In the function–valued construction, we model the parameters of a well–defined

quantile function by a multivariate stochastic process, and hence map from realisations

of each of these parameter processes to function–valued realisations of the quantile pro-

cess. Each sample path of the multivariate parameter process will drive the resulting
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function–valued quantile process, allowing one to dynamically model the entire quan-

tile function at any instance in time, much like the discrete–time QAR process given

by Eq. (2.2.3). The choice of parametric quantile function determines the statisti-

cal properties, e.g., asymmetry and tail–heaviness, that can be accommodated in the

quantile function–valued output process.

We lay the mathematical foundations for these frameworks to be rigorously defined

in the following two sections. The notation and definitions used in this thesis include

the formulation of the relevant probability spaces. Let (Ω,F , (Ft)t∈[0,∞),P) denote a

filtered probability space with filtration (Ft) and (Wt)t∈[0,∞) an (Ft)–adapted, one–

dimensional, standard Brownian motion. Unless stated otherwise, when we refer to

the probability space on which a process is defined, we mean (Ω,F , (Ft)t∈[0,∞),P).

3.1 Random–level quantile processes

The first type of quantile processes is constructed by a composite map (which we refer

to as the ‘composite map’ or ‘distortion map’ throughout) applied marginally to a

continuous–time stochastic process, which in principle could be multivariate, but the

univariate case is considered prior to Section 3.4. This auxiliary process (which we refer

to as the ‘driving process’ or ‘base process’ throughout) produces the stochasticity of the

output quantile process, which characterises a law with relative statistical properties

determined by the functions in the map. By the choice of its functional form, the map

is a quantile preserving map, as given by Definition 2.1.2, which ensures that for every

quantile level u ∈ [0, 1], well–defined quantiles of the driving process are mapped to

well–defined quantiles of the output process at all times t ∈ (0,∞)—hence, ‘quantile

process’. The result is a wide class of models with appropriately chosen attributes,

from a modelling perspective, both marginally and serially. Since the composite map

is a quantile preserving map, if the serial dependence is captured by a copula, see

Nelsen (2007), on the transition distribution of each (continuous) process, the serial

dependence structure of the driving process is the same as that of the output quantile

process. That is, the copula of the process is invariant under the proposed procedure.

This follows from the fact that a quantile preserving map is increasing, and by Sklar’s

theorem, see Sklar (1959), the copula of continuous random variables is invariant under

a monotonic transformation of those random variables.
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The class of base processes with càdlàg paths is considered, thus including Lévy

processes as stochastic drivers, for example. As such, the composite map can be used

to obtain quantile processes with either continuous or discrete (discontinuous) paths.

We present the continuous random–level quantile process construction as follows. Here,

the notation ‘
d
=’ means equal in distribution.

Definition 3.1.1. Let Qζ(u; ξ) be the quantile function of some real–valued, continuous

random variable ζ, where u ∈ [0, 1] is the quantile level and ξ ∈ Rd is a d–dimensional

vector of parameters, for d ∈ N. For t ∈ (0,∞), let F (t, y;θ) : R+ × R → [0, 1] be a

continuous, time–dependent distribution function, where θ ∈ Rd′ is a d′–dimensional

vector of parameters, d′ ∈ N. Consider a real–valued process (Yt)t∈[0,∞) with continuous

paths and Y0 = y0 ∈ R. At each time t ∈ [t0,∞), t0 > 0, the continuous random–level

quantile process is defined by

Zt
d
= Qζ (F (t, Yt;θ); ξ) , (3.1.1)

that is, Z(t, ω) = Qζ(F (t, Y (t, ω);θ); ξ) : [t0,∞)× ([t0,∞)×Ω) → [−∞,∞]. The map

t 7→ Z(t, ω) for each ω ∈ Ω and all t ∈ [t0,∞) is Ft–measurable. Here, the random

variable ζ characterises the family of quantile processes to which (Zt) belongs.

The process (Zt) is well–defined for any choice of initial time t0 := 0 + ϵ, ϵ > 0,

by continuity of the marginal distribution F (t, y;θ) for any t > 0. In principle, one

could also set Z0 = z0 ∈ R and extend the time interval, on which (Zt) is defined, to

t ∈ [0,∞). Throughout this thesis, we consider the time domain on which a quantile

process is defined to be [t0,∞) where t0 = 0 + ϵ for ϵ > 0 arbitrarily small, and so we

write t0 > 0. Additionally, we may consider the ranges of the random variables ζ and

Yt, for each t ∈ (0,∞), as well as the domain of the distribution function F , to be some

subset of the real line. Denote the range of Yt for each t ∈ (0,∞) by ran(Yt) and the

domain of the distribution function F by dom(F ). Here, we restrict the quantile process

construction, given by Definition 3.1.1, to the case that maxt∈(0,∞) ran(Yt) = dom(F ),

so that each stage of the composite map is well–defined. It follows that ran(Zt) = ran(ζ)

for all t ∈ [t0,∞).

Now, consider Definition 3.1.1 and assume the process (Yt) is governed by the

finite–dimensional distribution function FY (t, y;ϑ) : R+×R → [0, 1] for t ∈ (0,∞) and

ϑ ∈ Rk a k–dimensional vector of parameters, for k ∈ N. Then the marginals of the
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process given by Ut
d
= FY (t, Yt;ϑ) at any time t ∈ [t0,∞) are uniformly distributed on

[0, 1]. If F = FY in Eq. (3.1.1), we may associate the value of the process (Ut), at any

time, as the quantile level that each marginal of the quantile process (Zt) corresponds

to at that given time. This concept motivates the name ‘random–level’ in the above

quantile process construction. Additionally, when (Yt) is a diffusion, the process (Ut)

is referred to as a ‘uniformized diffusion process’ by Bibbona et al. (2016), and its

dynamics are derived. It is also stated that the same (Ut) may be constructed from

different driving processes and their marginal distributions, however this is equivalent

to the driving processes having the same serial dependence as characterised by a unique

copula, see Nelsen (2007), on the Fokker–Planck transition distribution. Also, we note

that at t = 0, the probability mass of FY is concentrated on Y0 = y0 ∈ R, i.e.,

FY (t, y;ϑ) depends on y0 ∈ R (as a parameter), so for each y0 we obtain a different

quantile process (Zt).

Otherwise, in the general case that F ̸= FY , the process given by Ũt
d
= F (t, Yt;θ)

at any time t ∈ [t0,∞) is non–uniformly distributed on [0, 1]. We may also write

Ũt
d
= F (t, Yt;θ)

d
= F (t, QY (t, Ut;ϑ);θ) for (Ut) a process that is uniformly distributed

at each t ∈ [t0,∞) and where QY = F−
Y . It then follows that the value of the process

(Ut), at any time, is considered to be the quantile level that the process (Zt) corresponds

to at that given time. In either case, the quantile process (Zt) models well–defined

quantiles for all quantile levels in [0, 1].

As previously discussed, of particular interest and importance in the random–level

quantile process construction, given by Definition 3.1.1 is how (Zt) behaves relative

to (Yt), in regard to the statistical properties of its finite–dimensional distributions.

Since the composite map employed in the construction of the quantile process, i.e.,

that in Eq. (3.1.1), is a quantile–preserving map, as given by Definition 2.1.2, at each

t ∈ [t0,∞), the quantile function of the output process is given by

QZ

(
t, u; ξ̃

)
= Qζ (F (t, QY (t, u;ϑ);θ) ; ξ) (3.1.2)

for u ∈ [0, 1] and where ξ̃ := (ξ,θ,ϑ). We note that throughout this thesis, we

consider unimodal distributions with finite moments of the considered order, unless

stated otherwise. This simplifies the idea of considering the distortions produced by

the composite map to be relative to some measure of centrality, which is often assumed
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to be the mode of the base driving process. In the case of multimodal distributions,

one may rederive the following results.

To determine whether the quantile process is more (positively or negatively) skewed,

or has heavier tails, than the driving process, marginally, we may consider the skewness

and kurtosis orderings, respectively, introduced by van Zwet (1964). Such results

are reformulated in the context of random–level quantile processes in the following

propositions. We note that by ‘more positively skewed’ we mean a random variable

with density function that has longer right tails and shorter left tails—its mode is less

than its median which is less than its mean—than the density function of some other

random variable.

Proposition 3.1.1. Consider Definition 3.1.1 such that at each time t ∈ [t0,∞), the

quantile function of the output quantile process is given by Eq. (3.1.2). Let FY (t, y;ϑ)

be the marginal distribution function of the driving process, and define DY ⊆ R, such
that DY := {y : 0 < FY (t, y;ϑ) < 1}. Then for each t ∈ [t0,∞), the marginal of

the driving process is no more positively skewed than that of the quantile process if,

and only if, the map Qζ(F (t, y;θ); ξ) is convex on DY for all θ ∈ Rd′ and ξ ∈ Rd.

If Qζ(F (t, y;θ); ξ) is convex and nonlinear on DY , we say that the marginal of the

quantile process is more positively skewed than that of the driving process for each

t ∈ [t0,∞).

The proof is a direct consequence of the result proved by van Zwet (1964), given

that, considering Eq. (3.1.2) and the composite map in Eq. (3.1.1), we have

QZ

(
t, FY (t, y;ϑ) ; ξ̃

)
= Qζ(F (t, y;θ); ξ) (3.1.3)

for all t ∈ [t0,∞) and y ∈ DY .

To compare kurtosis (in the sense of heaviness of the tails) between distributions,

it is common that symmetric distributions are considered. The interplay between

kurtosis measures and orderings, and skewness are discussed in detail by Balanda and

MacGillivray (1990) and MacGillivray and Balanda (1988). We consider, however, the

kurtosis ordering of van Zwet (1964), for symmetric distributions, reformulated in the

context of random–level quantile processes in the following proposition. We note that

by ‘more kurtosis’ we mean a random variable with density function that has heavier

tails (and thus peakedness) than the density function of some other random variable.
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Proposition 3.1.2. Consider the setting in Proposition 3.1.1 and assume FY (t, y;ϑ)

and QZ(t, u; ξ̃) are symmetric for each t ∈ [t0,∞) and all ϑ ∈ Rk and ξ̃ ∈ Rk′. For

each t ∈ [t0,∞), denote the median of Yt by mY
t ∈ DY . Then for each t ∈ [t0,∞),

the marginal of the driving process has less kurtosis than that of the quantile process

if, and only if, the map Qζ(F (t, y;θ); ξ) is convex for all y > mY
t and all θ ∈ Rd′ and

ξ ∈ Rd.

The proof is analogous to that of Proposition 3.1.1, based on the result proved

by van Zwet (1964). We remark that, by the assumed symmetry of the distribution

functions, the composite map Qζ(F (t, y;θ); ξ) will be concave for y < mY
t . Since the

marginal distribution of the driving process is assumed to be symmetric, its median,

mean and mode will be equal, and kurtosis is introduced in the transformation relative

to these measures of centrality. Various alternative measures, or orderings, of skew-

ness and kurtosis that are largely based on those of van Zwet (1964) are explored by

MacGillivray (1986), MacGillivray and Balanda (1988), Oja (1981) and the references

cited therein. If one wishes to consider the non–symmetric case, instead of the studying

the convexity of the composite map, as given in Proposition 3.1.2, one may consider

the convexity of the composition of the ‘spread’ of the quantile process with the inverse

of that of the driving process, where for some random variable Y , its spread is defined

as SY (u) := QY (0.5 + u) − QY (0.5 − u) for u ∈ [0, 0.5). In other words, we replace

Qζ(F (t, y;θ); ξ)) with SZ(S
−
Y (y)) in Proposition 3.1.2, and require convexity for y ≥ 0

at each time. This is described in detail by Balanda and MacGillivray (1990), and

applied to the quantile process setting analogously to the above Propositions.

In Section 3.3, we observe how the two classes of reshaping and elongation maps,

given generally in Definitions 2.1.7 and 2.1.6, respectively, are defined with regard to

Propositions 3.1.1 and 3.1.2, respectively. We note that both types of such maps also

consider the distributional distortions relative to the mode of the base distribution.

We discuss further the case in which one may wish to define the deformation relative

to some measure of central tendency, next.

Depending on the modelling objective, one should consider each stage of the com-

posite map carefully in regard to how the quantiles of the driving process are mapped

to the quantiles of the output process at some given level; in other words, how each

input value is mapped to each output value. For example, first assume F = FY in the

composite map and the driving process has median 100 for all t ∈ (0,∞). If the ran-
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dom variable ζ is chosen such that its median is, e.g., zero (however the same argument

holds for any value significantly less than, or greater than, the median of the driving

process, marginally), then the composite map takes quantiles at level 0.5 that lie at

100 to those that lie at zero. Here, one may wish to adjust the parameters of Qζ(u; ξ),

i.e., the components of the vector ξ, so that the median of ζ, that is, Qζ(0.5, ξ), is

approximately the marginal median of Yt for t ∈ (0,∞). A similar argument can be

made in the case where F ̸= FY , and motivates the notion of defining the quantile

transformation in Eq. (3.1.1) relative to some measure of central tendancy, e.g., the

mode, mean or median of each marginal of the driving process may be preserved under

the composite map. This is discussed further in Section 3.3 for the flexible class of

Tukey models, and illustrated in the following example.

Example 3.1.1. Let (Yt) be a driving process with marginal distribution function

FY (t, y;ϑ) for all t ∈ (0,∞), and define mY
t := QY (t, 0.5;ϑ), that is the marginal me-

dian of the process. In the quantile process construction, choose F such that F (t,mY
t ) =

0.5 for all t ∈ (0,∞) and Qζ such that Qζ(0.5; ξ(t)) = mY
t for all t ∈ [t0,∞). The vec-

tor of parameters in the quantile function Qζ may be time–dependent, as shown here,

(or, in some cases, stochastic), to ensure this holds for all times. Then the composite

map is median–preserving.

Now, for the random–level quantile process (Zt) to have discrete paths, it suffices

that either the driving process (Yt) has discontinuous, càdlàg paths; the quantile func-

tion Qζ(u; ξ) is that of a discrete random variable ζ; or that the distribution function

F (t, y;θ) : R+ × D → U (resp. FY (t, y;ϑ) : R+ × D → U ) is a discrete distribution

function, where D and U denote the collections of all countable subsets of R and [0, 1],

respectively. Here, Zt(ω) = Z(t, ω) = Qζ(F (t, Yt(ω);θ); ξ) : R+× (R+×Ω) → D (resp.

Zt(ω) = Z(t, ω) = Qζ(FY (t, Yt(ω);ϑ); ξ) : R+×(R+×Ω) → D) at any time t ∈ [t0,∞).

In what follows, we wish to consider quantile processes with càdàg paths, characterised

by the following proposition.

Proposition 3.1.3. The quantile process (Zt) will have càdlàg paths if, and only if, the

map t 7→ F (t, y;θ) is càdlàg for all y ∈ R and θ ∈ Rd′, and Qζ(u; ξ) is a continuous

quantile function for all ξ ∈ Rd, that is, ζ is a continuous random variable.

Proof. In the following proof we drop notational dependence of distribution and quan-

tile functions on the parameters and assume the given statements hold for all values
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in each parameter space. Since (Yt) has càdlàg paths, for s ∈ (0,∞) and all ω ∈ Ω,

limt↓s Y (t, ω) = Y (s, ω) and the left limit, limt↑s Y (t, ω) exists. By the definition of

a distribution function, the map y 7→ F (t, y) will be càdlàg for all t ∈ (0,∞). By

Definition 2.0.1 of a generalised inverse, the quantile function Qζ(u) will be càglàd

when Fζ := Q−
ζ is càdlàg, and continuous when Fζ is continuous. If F (t, y) is a càdlàg

function in both arguments, and Qζ(u) is a continuous function for u ∈ [0, 1], it follows

that

lim
t↓s

Z(t, ω) = lim
t↓s

Qζ(F (t, Y (t, ω)) = Qζ(F (s, lim
t↓s

Y (t, ω)))

= Qζ(F (s, Y (s, ω))) = Z(s, ω),
(3.1.4)

and the limit

lim
t↑s

Z(t, ω) = lim
t↑s

Qζ(F (t, Y (t, ω)) = Qζ(F (s, lim
t↑s

Y (t, ω))) (3.1.5)

exists by the càdlàg property of the paths of (Yt), so Zt = Z(t, ω) has càdlàg paths for

all ω ∈ Ω. We loosen the restrictions of continuity and show, in turn, that if either

t 7→ F (t, y) is not càdlàg for all y ∈ R, or Qζ(u) is not continuous, (Zt) will not have

càdlàg paths and thus the proposition holds by contradiction.

First, assume Qζ(u) is continuous and t 7→ F (t, y) is not a càdlàg map. Then for

each ω ∈ Ω,

lim
t↓s

Z(t, ω) = lim
t↓s

Qζ (F (t, Y (t, ω))) = Qζ

(
lim
t↓s

F (t, Y (t, ω))

)
̸= Z(s, ω) (3.1.6)

as F (t, y) is not right–continuous and so

lim
t↓s

F (t, Y (t, ω)) ̸= F (s, lim
t↓s

Y (t, ω)) = F (s, Y (s, ω)). (3.1.7)

It follows that Zt = Z(t, ω) will not have right–continuous paths. Now, assume t 7→
F (t, y) is càdlàg and Qζ(u) is càglàd but not continuous. We have

lim
t↓s

Qζ (F (t, Y (t, ω))) ̸= Qζ

(
lim
t↓s

F (t, Y (t, ω))

)
= Qζ

(
F

(
s, lim

t↓s
Y (t, ω)

))
(3.1.8)

and so Zt = Z(t, ω) can not have right–continuous paths. It follows that the limit in
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Eq. (3.1.4) holds true, and that in Eq. (3.1.5) exists if, and only if, F (t, y) is càdlàg

in both arguments, and Qζ(u) is a continuous quantile function. We only specify that

t 7→ F (t, y) for all y ∈ R is càdlàg as y 7→ F (t, y) for all t ∈ (0,∞) will be càdlàg by

the definition of a distribution function.

We conclude this section by emphasising that the composite map takes the form

of a general STM, as given by Definition 2.1.5. In a sampling setting, samples of the

driving process (Yt), at some quantile level, are transformed via the map to samples

of the quantile process (Zt), at the same quantile level, from some target distribu-

tion which, when F = FY in Eq. (3.1.1), corresponds to that of the random variable

ζ. Whilst the outer part of the map involves a quantile function which, as discussed

in Section 2.1, is often intractable in the case of more statistically complex distribu-

tions, we will employ quantile–preserving maps (e.g., Q–transformations, elongation

maps and reshaping transformations), applied to simple quantile functions, to produce

richer and flexible families for the quantile function Qζ(u; ξ). As such, the construc-

tion in Definition 3.1.1 gives rise to a dynamic, continuous–time family of distortion

processes characterised by some parametric form of the selected transformation map

and some underlying base process. The utility of quantile dynamics in this context, to

our knowledge, has not yet been proposed or studied in the setting of continuous–time

càdlàg processes.

Further interpretation of random–level quantile processes is given by Figure 3.1,

where the plots of three sample paths of some quantile process (Zt) are shown. Con-

sidering three time points, 0 < t0 < t1 < t2 <∞, we observe the following:

(i) For each ωi ∈ Ω, the path Z(t, ωi) of the quantile process corresponds to a

sequence of quantiles at different levels U(t, ωi) for all t ∈ [t0,∞).

(ii) If n ∈ N paths of the quantile process are observed, at any time t ∈ [t0,∞) the

entire quantile function, that is over all quantile levels, is observed as n→ ∞.

Similarly, Figure 3.2 shows the plots of three sample paths of the intermediate process,

Ut
d
= F (t, Yt), defined on [0, 1]. If F = FY , when n ∈ N paths of the process are

observed then, at any time t ∈ [t0,∞), as n→ ∞ all values u ∈ [0, 1] will be observed.

This follows from the fact that, here, Ut is uniformly distributed on [0, 1].
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u ∈ [0, 1]

t0
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0.25

0.75

U(t0, ω1) = 0.5

U(t1, ω1) = 0.75

U(t2, ω1) = 0.9

U(t1, ω2) = 0.3 U(t2, ω2) = 0.35
U(t0, ω1) = 0.5

U(t1, ω1) = 0.75

U(t1, ω3) = 0.89

U(t2, ω3) = 0.75

U(t0, ω2) = 0.125

U(t0, ω3) = 0.88

u ∈ [0, 1]

t1

0.5

0.25

0.75

u ∈ [0, 1]

t2

0.5

0.25

0.75

Z(t, ω1)

Z(t, ω2)

Z(t, ω3)

Figure 3.1: Three random–level quantile process paths for ω1, ω2, ω3 ∈ Ω and the
corresponding realisations of the intermediate quantile level process (Ut) at times 0 <
t0 < t1 < t2 <∞. Here, Z(t, ω) = Qζ(U(t, ω)).
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t ∈ [t0,∞)

U(t, ω) ∈ [0, 1]

t1 t2 t3

0.28

0.24

0.43

0.71

0.57
0.54

0.85

0.52

0.08

U(t, ω1)

U(t, ω2)

U(t, ω2)

U(t1, ω) ∈ [0, 1]
U(t2, ω) ∈ [0, 1] U(t3, ω) ∈ [0, 1]

Z(t1, ω) = Qζ(U(t1, ω)) Z(t2, ω) = Qζ(U(t2, ω)) Z(t3, ω) = Qζ(U(t3, ω))

0.85 0.52 0.080.28 0.24 0.430.71 0.57 0.54

t1 t2 t3

Figure 3.2: Three sample paths of the process (Ut) for ω1, ω2, ω3 ∈ Ω, and the corre-
sponding values of the quantile process (Zt) at times t0 < t1 < t2 <∞.

3.1.1 Canonical random–level quantile processes

The construction–based Definition 3.1.1 of quantile processes gives rise to a very wide

class of dynamic, continuous–time distortion processes, characterised by the paramet-

ric form of the composite map and the base process. As such, it is useful to distinguish

certain sub–classes of random–level quantile processes where the motivations for such

constructions, from a model–based perspective, are clear. In this section, we introduce

the canonical random–level quantile processes with continuous and discrete paths, re-

spectively. We present the following definitions as the simplest form of random–level

quantile processes for which one may take to be a baseline when building complexity

into the random–level models. From a model selection perspective, it may be useful to
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explore the following canonical quantile processes as a starting point for some modelling

objective. The continuous canonical quantile process is defined as follows, and utilises

a standard, univariate Brownian motion driver.

Definition 3.1.2. Let (Wt) denote a one–dimensional, (Ft)–adapted standard Brown-

ian motion, and set Yt = Wt in Definition 3.1.1. For all t ∈ [t0,∞), the canonical quan-

tile process is given by Zt
d
= Qζ (FW (t,Wt); ξ), where FW (t, w) = [1 + erf(w/

√
2t)]/2.

In case that the range of the quantile function be restricted to some Dζ ⊂ R, then

Z(t, ω) = Qζ(FW (t,Wt(ω)); ξ) : [t0,∞) × Ω → Dζ. The canonical quantile process is

then defined on the state space (Dζ ,B(Dζ)).

We consider the following example of a canonical random–level quantile process,

where the quantile function considered is that of the logistic distribution. The shape

of the logistic distribution is similar to that of the normal distribution, however it

is leptokurtic (has positive excess kurtosis and thus heavier tails than the normal

distribution). As such, the following quantile process construction may be considered

when one wishes to transform a Brownian motion to a heavier tailed process with

finite–dimensional distributions that still resemble (in shape) the normal distribution.

Example 3.1.2. Consider Definition 3.1.2 and let ζ be a logistic–distributed random

variable with location and scale parameters µ ∈ R and σ ∈ R+, respectively. The

quantile function of ζ is given by Qζ(u;µ, σ) := QLg(u;µ, σ) = µ+ σ log(u/(1− u)) for

all u ∈ [0, 1]. It follows that the canonical–logistic quantile process is given by

Zt
d
= µ+ σ log

(
1 + erf

(
Wt/

√
2t
)

1− erf
(
Wt/

√
2t
)) (3.1.9)

for each t ∈ [t0,∞), t0 > 0, and where Zt0 = zt0 ∈ R. We may show, by differentiation,

that the function m(t, w) := µ+σ log((1+ erf(w/
√
2t)/(1− erf(w/

√
2t))) is convex for

w > 0 and so, referring to Proposition 3.1.2, the quantile process will have heavier tails

(in its finite–dimensional distributions) than the driving Brownian motion.

Whilst the logistic distribution is leptokurtic, the level of excess kurtosis in each

marginal distribution of the quantile process is fixed (and equal to 1.2), and not deter-

mined by the choice of parameters. As such, we also construct a canonical–Tukey–h

quantile process, in the following example. Here, one may control the excess kurtosis

through the parameter h.
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Example 3.1.3. Consider Definition 3.1.2 and let ζ be a Tukey–h distributed random

variable—see Definition 2.1.8 and Eq. (2.1.5)—with quantile function given by

QTh
(u;A,B, h) =

√
2erf− (2u− 1) exp

(
h
(
erf− (2u− 1)

)2)
(3.1.10)

for all u ∈ [0, 1] and A ∈ R, B ∈ R+, h ∈ R+
0 . Here, the parameter h controls the

level of excess kurtosis, i.e., kurtosis exceeding that of the normal distribution. The

canonical–Tukey–h quantile process is given by

Zt
d
= A+B

Wt√
t
exp

(
h
W 2

t

2t

)
(3.1.11)

for all t ∈ [t0,∞), t0 > 0 and where Zt0 = zt0 ∈ R. Again, we may show, by dif-

ferentiation, that the function m(t, y) := A + B(w/
√
2t)exp(hw2/2t) is convex for

w > 0 and so, referring to Proposition 3.1.2, the quantile process will have heavier

tails, marginally, than the driving Brownian motion. If we consider kurtosis in re-

gard to the fourth centralised, scaled moment, the kurtosis in the finite–dimensional

distribution of the (stationary) quantile process in Eq. (3.1.11), at t ∈ [t0,∞), is

given by µ̃4 = 3 (1− 2h3) /(1− 4h)5/2—see, e.g., Jorge and Boris (1984). It holds that

∂µ̃4/∂h = (12h3 − 18h+ 30)/(1− 4h)7/2 > 0 for all h > −1 and so the level of excess

kurtosis is increasing in the parameter h for h > −1.

In the discrete case, the driving process is considered to be a homogeneous Poisson

process, i.e., a counting, or pure birth Markov process. We define S := [0,∞) to be

a metric space with metric d : S × S → [0,∞), B the Borel σ–algebra B(S) and S

the collection of all countable subsets of S. We refer to Kingman (1993) and define a

one–dimensional, homogeneous Poisson process with state space S = [0,∞) and rate

λ ∈ R+ to be the map N : Ω → S satisfying:

(i) for each B ∈ B, N(B) = #{N ∩B} is a Poisson random variable with parameter

(or mean measure) µ(B) = λB, that is P(N(B) = n) = (λB)ne−λB/n! for any

n ∈ S with N(0) = 0,

(ii) for disjoint sets B1, B2, . . . , Bn ∈ B, N(B1), N(B2), . . . , N(Bn) are independent.

In this thesis, we refer to the homogeneous Poisson process N on the positive real

line with intensity parameter λ ∈ R+ by its associated Poisson random measure, Nt :=
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N([0, t)) = #{N ∩ [0, t)} for any t ∈ [0,∞) and where N0 = 0. In the discrete case,

it is less clear (than in the continuous case) what statistical properties the quantile

process will possess, due to the nature of the transformation. We leave the detailed

study of this class of processes as further work. Nonetheless, we present the following

example of a discrete canonical quantile process as follows.

Example 3.1.4. Let (Nt)t∈[0,∞) denote a one–dimensional, (Ft)–adapted homogeneous

Poisson process on [0,∞) with intensity parameter λ ∈ R+. Consider Definition 3.1.1

however where we allow the time–dependent distribution function F (t, y;ϑ) to be a

discrete distribution function. Set Yt = Nt so that for all t ∈ [t0,∞), the discrete

canonical quantile process is given by Zt
d
= Qζ (FN(t, Nt;λ); ξ) where FN(t, n;λ) =∑n

k=0[exp(−λt)(λt)k/k!], and Ũt := FN(t, Nt;λ) is non–uniformly distributed on [0, 1].

In the case that the range of the quantile function be restricted to some Dζ ⊂ R, then
Z(t, ω) = Qζ(FN(t, Nt(ω);λ); ξ) : [t0,∞)× Ω → D̃Z where

D̃Z :=

{
Qζ (0; ξ) , Qζ

(
e−λt; ξ

)
, Qζ

(
(λt)e−λt; ξ

)
, Qζ

(
2∑

k=1

(λt)ke−λt

k!
; ξ

)
,

Qζ

(
3∑

k=1

(λt)ke−λt

k!
; ξ

)
, . . . , Qζ

(
n∑

k=1

(λt)ke−λt

k!
; ξ

)
, . . . , Qζ (1; ξ)

}
(3.1.12)

is a discrete, countably infinite subset of Dζ for all t ∈ [t0,∞). For any i ∈ Z+, define

zi := Qζ

(∑i
k=0(λt)

ke−λt/k!; ξ
)
and we have P(Zt = zi) = P(Ut = ui) = P(Nt = i).

In the above example, we consider the (discrete) distribution function of the Poisson

process as the inner function in the composite map, so that Ũt := FN(t, Nt;λ) is

the non–uniformly distributed input into the quantile function, Qζ . Alternatively,

as a further study of this class of discrete quantile processes, one may consider the

transformation introduced by Rüschendorf and de Valk (1993) to obtain a uniform

random variable (by transforming the Poisson driving process) that will be input into

the quantile function, Qζ , in the construction of the discrete, canonical quantile process.

We consider Example 3.1.4, and present the following discrete canonical random–

level quantile process, where the quantile function considered is that of the Tukey–g

distribution, as given by Eq. (2.1.11) with kurtosis parameter h = 0. The parameter

g ∈ R\0 allows for the introduction of skewness to the finite–dimensional distributions
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of the process.

Example 3.1.5. Consider Example 3.1.4 and let ζ be a Tukey–g distributed random

variable—see Definition 2.1.8 and Eq. (2.1.8)—with time–dependent parameters, and

quantile function given by

QTg(u;A(t), B(t), g(t)) = A(t) +
B(t)

g(t)
exp

(
g(t)

√
2erf− (2u− 1)

)
(3.1.13)

for all u ∈ [0, 1], and A(t) ∈ R, B(t) ∈ R+ and g(t) ∈ R \ 0 for all t ∈ [0,∞).

The discrete canonical–Tukey–g quantile process with time–inhomogeneous parameters

is given by

Zt
d
= A(t) +

B(t)

g(t)

[
exp

(
g(t)

√
2erf−

(
2

Nt∑
k=0

(λt)ke−λt

k!
− 1

))
− 1

]
(3.1.14)

for all t ∈ [t0,∞), t0 > 0.

3.1.2 Pivotal random–level quantile processes

The second formulation of random–level quantile processes we present is the pivotal

subclass of models. The motivation behind this construction lies in increasing the

interpretability of the statistical properties of the quantile process, relative to the base

process, by standardising the driver. Whilst in the construction of quantile processes

given in Definition 3.1.1 the driving process influences the behaviour and properties

of the output quantile process, in many cases the relativity between the driving and

quantile process properties (e.g., higher order moments) may not be explicit in terms of

the model parameters. Hence, we introduce the pivotal quantile process construction.

First, we refer to Shao (2006) for a definition of a pivotal quantity.

Definition 3.1.3. Let X = (X1, . . . , Xn) be a sample from a population P ∈ P and

θ = θ(P ) denote a function from P to Θ ∈ Rk, k ∈ Z+. A known Borel function R of

(X, θ) is called a pivotal quantity for θ if, and only if, the distribution of R(X, θ) does

not depend on P .

Pivotal quantities are most commonly used in statistics for inference procedures and

for finding confidence intervals for one or more of the unknown population parameters.
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Here, we instead wish to produce pivotal quantities for the parameters of the marginal

distributions of the driving process in order to have a standardised, or normalised input

to the composite map used in producing the quantile process. The continuous pivotal

quantile process is defined as follows.

Definition 3.1.4. Consider Definition 3.1.1 where we allow the parameter vectors in

the distribution and quantile functions be time–dependent, i.e., Yt ∼ FY (t, y;θY (t))

where the parameter vector θY (t) ∈ Rd for t ∈ (0,∞). Consider another parameter

vector θ̃(t) ∈ Rd′, d′ ≤ d, and define the pivot process by Ỹt := R(Yt;θY (t)) where R
is a Borel function such that Ỹt ∼ FỸ (t, ỹ; θ̃(t)), and the ‘reference law’ FỸ does not

depend on θY (t) for all t ∈ (0,∞). At any time t ∈ [t0,∞), the continuous pivotal

quantile process formulation is given by

Zt
d
= Qζ

(
F
(
t, Ỹt;θ(t)

)
; ξ(t)

)
, (3.1.15)

where F (t, y;θ(t)) is a distribution belonging to the same family of distributions as

FỸ (t, y; θ̃(t)), with parameters θ(t) ∈ Rd′.

The pivot process (Ỹt) serves as a base or reference process with respect to which

the resulting quantile process is anchored, and relative properties between the two

processes will be made explicit in terms of the model parameters. We illustrate this in

the following example.

Example 3.1.6. Consider some process (Yt)t∈[0,∞) such that at each t ∈ (0,∞), the

process is normally distributed with some time–dependent mean and standard deviation

parameters µY (t) ∈ R and σY (t) ∈ R+, respectively. The process defined at each

time by Ỹt := (Yt − µY (t))/σY (t) will be distributed according to the standard normal

distribution, i.e., θ̃ = (0, 1), and so is a pivotal quantity for θY (t) = (µY (t), σY (t)). If

we consider a normal distribution function FN with m(t), v(t) the mean and variance

parameters, respectively, then the Gaussian pivotal random–level quantile process is

given by

Zt
d
= Qζ

(
FN

(
t, Ỹt

)
; ξ
)

d
= Qζ

(
1

2

[
1 + erf

(
Ỹt −m(t)√

2v(t)

)]
; ξ

)
(3.1.16)

for all t ∈ [t0,∞). Consider the quantile function of the Tukey–g distribution (see

Section 2.1 or Section 3.3) with time–dependent parameters ξ(t) = (A(t), B(t), g(t)),
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given by

QTg (u;A(t), B(t), g(t)) = A(t) +
B(t)

g(t)

[
exp

(
g(t)

√
2erf− (2u− 1)

)
− 1
]
, (3.1.17)

for all u ∈ [0, 1] and t ∈ (0,∞). Here, we have

Zt
d
= A(t) +

B(t)

g(t)

[
exp

(
g(t)

Ỹt −m(t)√
v(t)

)
− 1

]
d
= A∗(t) +

B∗(t)

g∗(t)
[exp (g∗(t)Yt)− 1]

(3.1.18)

for all t ∈ [t0,∞), t0 > 0, where

A∗(t) = A(t) +
B(t)

g(t)

[
exp

(
−g(t) (µY (t) + σY (t)m(t))

σY (t)
√
v(t)

)
− 1

]
(3.1.19)

B∗(t) =
B(t)

σY (t)
√
v(t)

exp

(
−g(t) (µY (t) + σY (t)m(t))

σY (t)
√
v(t)

)
(3.1.20)

g∗(t) =
g(t)

σY (t)
√
v(t)

. (3.1.21)

The quantile process in the second line of Eq. (3.1.18) has the form of a standard

Tukey–g transform with time–dependent parameters given by Eqs (3.1.19)–(3.1.21),

relative to the base (Yt). That is Zt
d
= A∗(t) + B∗(t)YtTg(Yt) for all t ∈ [t0,∞) and

where Tg(x) is given by Eq. (2.1.8). Thus, by definition of the Tukey–g transform, all

skewness introduced by the transform will be relative to the base process (Yt), giving the

parameters direct interpretability.

The first four standardised moments of Zt at each t ∈ [t0,∞) are given, in terms

of the parameters of the composite map, by

µZ = A(t) +
B(t)

g(t)

[
exp

(
−m(t)g(t)√

v(t)
+
g2(t)

2v(t)

)
− 1

]
,

σ2
Z =

B2(t)

g2(t)

(
exp

(
g2(t)

v(t)

)
− 1

)
exp

(
−2g(t)m(t)√

v(t)
+
g2(t)

v(t)

)

µ̃3,Z =

(
exp

(
g2(t)

v(t)

)
+ 2

)√
exp

(
g2(t)

v(t)

)
− 1
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µ̃4,Z = exp

(
4
g2(t)

v(t)

)
+ 2exp

(
3
g2(t)

v(t)

)
+ 3exp

(
2
g2(t)

v(t)

)
− 6.

where µ̃3,Z and µ̃4,Z and the third and fourth central moments, respectively. The skew-

ness and kurtosis of Zt are given by µ̃3,Z/σ
3
Z and µ̃4,Z/σ

4
Z, respectively.

In the discrete case, we define the discrete pivotal quantile process by use of the

Poisson mapping theorem, see Kingman (1993), which allows one to construct a ho-

mogeneous Poisson process pivotal quantity from an inhomogeneous Poisson process.

By an inhomogeneous Poisson process, we mean a Poisson process N on S = [0,∞)

with intensity function λ(t) : S → [0,∞) such that its mean measure is defined by

µ(B) =
∫
B
λ(x)dx for any B ∈ B where B is the Borel σ–algebra B(S). The Poisson

mapping theorem is given as follows, and outlines the preservation of the properties of

the process under a measurable mapping.

Definition 3.1.5. Let N be a Poisson process with state space S and σ–finite mean

measure µ, and ψ : S → S ′ be a measurable map where S ′ is some other locally compact,

separable metric space with Borel σ–algebra B′. If the measure µ′(·) := µ(ψ−(·)) is

non–atomic, then ψ(N ) := {ψ(ζ) : ζ ∈ N } is a Poisson process with state space S ′

and mean measure µ′.

The discrete pivotal quantile process is defined as follows.

Definition 3.1.6. Let Qζ(u; ξ) be a quantile function for u ∈ [0, 1] and where ξ ∈ Rd

is a vector of parameters. Let N be an inhomogeneous Poisson process on S = [0,∞)

with intensity function λ(t) : S → [0,∞), so that its mean measure is given by µ(B) =∫
B
λ(x)dx for any B ∈ B. Let S ′ be a locally compact, separable metric space with

Borel σ–algebra B′, and ψ : S → S ′ be a measurable map such that ψ−(x) = µ−(λ̃x)

for some λ̃ ∈ R+. Define by Ñ := ψ(N ) the Poisson process on state space S ′

with mean measure µ′(B) = µ(ψ−(B)) for any B ∈ B′. The process Ñ will be a

homogeneous Poisson process with intensity parameter λ̃, and so is a pivotal quantity

for λ(t). Consider a homogeneous Poisson distribution FN with intensity parameter

θ ∈ R+, θ ̸= λ̃, then the discrete pivotal quantile process formulation is given by

Zt
d
= Qζ

(
FN

(
Ñt; θ

)
; ξ
)
= Qζ

 Ñt∑
k=1

(θt)ke−θt

k!
; ξ

 (3.1.22)
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for all t ∈ [t0,∞) and where Ñt := Ñ([0, t)) = #{Ñ ∩ [0, t)}.

Remark 1. When θ = λ̃, we refer to the quantile process in Eq. (3.1.22) as the

discrete canonical quantile process, as given by Example 3.1.4.

3.1.3 SDEs satisfied by random–level quantile diffusions

The purpose of this section is to present the stochastic differential equations (SDEs)

satisfied by quantile diffusions, that is, quantile processes constructed as per Definition

3.1.1 with the driving process being a diffusion. The SDEs are useful for the simulation

of quantile processes, as well as to provide insight into the effect the distortion map has

on the drift and volatility coefficients of the quantile process, relative to the driving

diffusion. We introduce a generic diffusion process in continuous time as the stochastic

process (Yt), on the filtered probability space, satisfying

dYt = µ (t, Yt) dt+ σ (t, Yt) dWt (3.1.23)

for all t ∈ [0,∞) and where Y0 = y0 ∈ R is a specified initial condition, µ(t, y) : [0,∞)×
R → R is the drift function and σ(t, y) : [0,∞) × R → R+ is the volatility function.

Under conditions on the drift and volatility functions, see Ikeda and Watanabe (2014),

Karatzas and Shreve (2012) and Øksendal (2013), the SDE 3.1.23 admits a unique

solution Yt(ω) = Y (t, ω) : [0,∞)× Ω → R.
The following proposition and corollary guarantee that the quantile process (Zt),

given by Definition 3.1.1, is a diffusion whenever the driving process (Yt) is a diffusion.

The corresponding infinitesimal drift and volatility coefficients are derived herein. We

omit the dependence on the vectors of parameters in the notation for the following

distribution, quantile and density functions.

Proposition 3.1.4. Let (Zt)t∈[t0,∞) be a quantile process given by Definition 3.1.1

with driving process (Yt)t∈[0,∞) that satisfies the SDE 3.1.23. Assume the following

derivatives exist so that f(t, y) := ∂yF (t, y) and fζ(z) := ∂zFζ(z) are density functions.

The dynamics of (Zt) satisfy

dZt = α(t, Zt)dt+ σ̃(t, Zt)dWt (3.1.24)
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where

α(t, Zt) =
∂tF (t, x)|x=Q(t,Fζ(Zt))

fζ(Zt)
+ µ(t, Q(t, Fζ(Zt)))

f(t, Q(t, Fζ(Zt)))

fζ(Zt)

+
1

2
σ2(t, Q(t, Fζ(Zt)))

f ′(t, Q(t, Fζ(Zt)))fζ(Zt)
2 − f(t, Q(t, Fζ(Zt)))

2f ′
ζ(Zt)

fζ(Zt)3
,

(3.1.25)

σ̃(t, Zt) = σ(t, Q(t, Fζ(Zt)))
f(t, Q(t, Fζ(Zt)))

fζ(Zt)
, (3.1.26)

for t ∈ [t0,∞) and Zt0 = zt0 ∈ R. The short-hand notation f ′ denotes differentiation

with respect to the spatial variable.

Proof. The result follows from a straightforward application of Ito’s formula and since

∂Q(t, u)

∂u
=

1

f (t, Q(t, u))
, (3.1.27)

as given by Eq. (64) in the paper by Steinbrecher and Shaw (2008).

Corollary 3.1.1. Consider Proposition 3.1.4 and assume the distribution function in

the composite map of Eq. (3.1.1) is the distribution function that governs the driving

process, i.e., F = FY . The dynamics of (Zt) satisfy the SDE 3.1.24 where

α(t, Zt) =
σ2(t, QY (t, Fζ(Zt)))f

′
Y (t, QY (t, Fζ(Zt)))

fζ(Zt)

+
fY (t, QY (t, Fζ(Zt)))(σ

2(t, QY (t, Fζ(Zt))))
′

2fζ(Zt)

− 1

2
σ2(t, QY (t, Fζ(Zt)))

fY (t, QY (t, Fζ(Zt)))
2f ′

ζ(Zt)

fζ(Zt)3
,

(3.1.28)

and σ̃(t, Zt) is given by Eq. (3.1.26) for t ∈ [t0,∞) and Zt0 = zt0 ∈ R. Here, fY (t, y)

is the marginal density of the driving process (Yt) starting with y0 ∈ R.

Proof. Similarly to the proof of Proposition (3.1.4), we apply Ito’s formula to Zt =

Qζ(FY (t, Yt)). Since FY (t, x) is the law of the process (Yt), we can use the Fokker–Plank

equation to describe how the density of (Yt), that is fY (t, y), evolves with time. The

chain rule yields ∂tQζ(FY (t, y)) = ∂tFY (t, y)/fζ(Qζ(FY (t, y)) and by the fundamental
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theorem of calculus, we obtain

∂t

(∫ ϕ(t)

−∞
fY (t, x)dx

)
= fY (t, ϕ(t))∂tϕ(t) +

∫ ϕ(t)

−∞
∂tfY (t, x)dx.

Now, using the Fokker-Planck equation for the marginal density of (Yt), we have

∂tFY (t, y) =
∫ y

−∞ ∂tfY (t, x)dx = −µ(t, y)fY (t, y)+1
2
(σ2(t, y)f ′

Y (t, y) + fY (t, y)∂yσ
2(t, y)),

and therefore

∂t (Qζ (FY (t, y))) =
−µ(t, y)fY (t, y) + 1

2
(σ2(t, y)f ′

Y (t, y) + fY (t, y)∂yσ
2(t, y))

fζ(t, Qζ(t, FY (t, y)))
.

Noting that Yt = QY (t, Fζ(Zt)), the result stated in the corollary follows.

To compare the effect that different distortion or transformation maps have on

the drift and volatility coefficients of the quantile diffusion, we consider the following

example involving different skewness–inducing transformations.

Example 3.1.7. Let (Yt)t∈[0,∞) be a scaled Brownian motion, that is Yt = σWt for σ ∈
R+ and Y0 = y0 = 0. Consider the following quantile preserving transformation maps

that, when applied to each marginal of the driving diffusion, produce an output process

with increased relative skewness in its (lognormal) finite–dimensional distributions:

(i) The exponential Q–transformation, T e
Q(y) := exp(y)—see Definition 2.1.3.

(ii) The composite map QTg(F (t, y;θ); g) where QTg(u; g) is the quantile function of

the Tukey–g distribution, given by Eq. (2.1.11) with A, h = 0 and B = 1, and

F (t, y;θ) is the distribution function of a real–valued random variable—see Defi-

nition 3.1.1.

In case (i), for all t ∈ [0,∞) we have Zt
d
= exp(Yt)

d
= exp(σWt), satisfying the SDE

dZt =
1

2
σ2Ztdt+ σZtdWt (3.1.29)

with Z0 = z0 = 1. In case (ii), if we consider F to be the standard normal distribution

function, for all t ∈ [t0,∞), for t0 > 0, we have Zt
d
= [exp(gσWt)− 1]/g, satisfying the

SDE

dZt =
1

2
σ2g (gZt + 1) dt+ σ (gZt + 1) dWt (3.1.30)
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with Zt0 = zt0 ∈ [−1/g,∞) when g > 0 and zt0 ∈ (−∞, 1/g] when g < 0. If alter-

natively we consider F = FY to be the distribution function associated to the driving

process, for all t ∈ [t0,∞), we have Zt
d
= [exp(gWt/

√
t)− 1]/g, satisfying the SDE

dZt =

(
g

2t
− log (gZt + 1)

2gt

)
(gZt + 1) dt+

gZt + 1√
t

dWt (3.1.31)

with Zt0 = zt0 ∈ [−1/g,∞) when g > 0 and zt0 ∈ (−∞, 1/g] when g < 0. We

remark that the drift and volatility functions in Eq. (3.1.30) are similar to those in

Eq. (3.1.29), however the Zt component of each function is shifted and scaled. The

scaling parameter g allows for direct control of the amount of introduced skewness to

the base process Yt
d
= σWt in Eq. (3.1.30) and relative to the standardised Brownian

motion Yt
d
= Wt/

√
t in Eq. (3.1.31), thus providing greater model flexibility than the

exponential Q–transformation. We also note that the Tukey–g transformation allows

for negative skewness by setting g < 0, whereas the exponential Q–transformation (i.e.,

the lognormal distribution) does not. When F = FY is considered in case (ii) to give the

SDE 3.1.31, there is no dependence on driving process volatility parameter σ, there is a

time scaling of each coefficient, and an extra term involving a logarithm is introduced.

3.2 Function–valued quantile processes

In this section we present the second type of quantile process whereby the construction

produces a process that, at each time, models realisations of a quantile function over all

levels u ∈ [0, 1]. Here, the stochasticity is produced by considering continuous–time,

dynamic parameters of the chosen quantile function, and as such leads to quantile

processes with dynamic statistical properties. Such a construction is a continuous–time

generalisation of the class of dynamic quantile function models presented by Chen et al.

(2022) and given in Definition 2.2.4. The advantages of this model lie in the fact that

an entire parametric quantile function is considered as an observation of the output

process. Consequently, this allows one to dynamically model extreme quantiles, or

capture dynamic tail behaviour, more readily than by considering alternative types of

models where there may not be sufficient data available to model such extremes, e.g.,

in histogram–valued time series models. Additionally, one may consider very flexible

families of quantile functions with directly parameterised features, by considering the
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class of quantile preserving maps given in Definition 2.1.2, e.g., those in Definitions 2.1.3

and 2.1.8. We present the function–valued quantile process construction as follows.

Definition 3.2.1. Let ζ be a real–valued random variable with quantile function

Qζ(u; ξ) for u ∈ [0, 1] and ξ ∈ Rd a d–dimensional vector of parameters, for d ∈ N.
Consider a d–dimensional (Ft)-adapted process (ξt)t∈[0,∞) on the filtered probability

space, with càdlàg paths. Let Z(t, u, ω) : [0,∞) × [0, 1] × Ω → [−∞,∞] be a function

of three variables such that if t ∈ [0,∞) and ω ∈ Ω are fixed, u 7→ Z(t, u, ω) is a

well–defined quantile function. Then for all t ∈ [0,∞), the function–valued quantile

process (Zt(u))t∈[0,∞) is defined by

Zt(u) = Qζ (u; ξt) (3.2.1)

where u ∈ [0, 1] is the quantile level and such that, by the equality in Eq. (3.2.1), we

mean

P ({ω ∈ Ω : Zt(u)(ω) = Qζ (u; ξt(ω)) , ∀u ∈ [0, 1]& t ∈ [0,∞)}) = 1. (3.2.2)

We have, Zt(u)(ω) = Qζ(u; ξ(t, ω)) = Z(t, ω, u) : [0,∞) × Ω × [0, 1] → [−∞,∞].

We emphasise that the quantile process given by Definition 3.2.1 is function–valued,

that is for each time t ∈ [0,∞), the process is a well–defined quantile function, instead

of a random variable (representing some single quantile at a given level) as per the

random–level quantile processes given by Definition 3.1.1. We illustrate this in Figure

3.3. Here, a function–valued quantile process, given by Definition 3.2.1, with vector of

parameters ξt = (ξ
(1)
t , ξ

(2)
t ) ∈ R2 is considered. A single sample path of each parameter

process is shown, and the values taken at times t0 < t1 < t2 determine the shape of the

quantile function at that time. For ω ∈ Ω, we have ξ(1)(ti, ω) ∈ R, ξ(2)(ti, ω) ∈ R for

i = 0, 1, 2, and the quantile function is given by Zti(u) = Qζ(u; ξ
(1)(ti, ω), ξ

(2)(ti, ω)) for

all u ∈ [0, 1]. The function–valued quantile process models the time–evolution of this

quantile function. Figure 3.3 illustrates that, with the function–valued construction, we

observe the time evolution of the entire quantile function, with the observed quantile

functions at times t1, t2, t3 shown, based on the values of the sample paths of the

parameter process at those times.
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t ∈ [t0,∞)

ξ(t, ω)

t1 t2 t3

0.9

1.3

2.1

1.7

2.3

1.6

ξ(2)(t, ω)

ξ(1)(t, ω)

u ∈ [0, 1] u ∈ [0, 1] u ∈ [0, 1]

Zt1(u) = Qζ(u; 2.1, 0.9) Zt2(u) = Qζ(u; 1.7, 1.3) Zt3(u) = Qζ(u; 2.3, 1.6)

t1 t2 t3

Figure 3.3: One sample path of each parameter process in the function–valued quantile
process construction, and the corresponding quantile function at times t0 < t1 < t2 <
∞

We remark that, since the quantile process given by Definition 3.1.1 is function–

valued, a connection may be made between such a class of models and distributional

regression methods and symbolic data analysis (SDA). We leave this for future work,

and one may refer to, e.g., Beranger et al. (2018), Billard and Diday (2003), Billard

(2011) and the references cited therein.

Since the process takes support on a function space corresponding to quantile func-

tions, the sufficient statistical characterisation of such a process naturally points to

working with probability weighted moments which, when viewed in a quantile setting,

arise as L–moments. In the static case, L–moments, as introduced by Hosking (1990),

provide a unique characterisation of a distribution with finite mean, and are often

viewed as advantageous over conventional moments due to the fact that they will al-
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ways exist whenever the mean of the distribution of interest does. Additionally, they

may be expressed as a projection of the quantile function onto a sequence of orthogonal

polynomials that form a basis of L2, as an alternative to their characterisation as linear

combinations of order statistics. Let ζ be a random variable and Lk be the kth shifted

Legendre polynomial, see Legendre (1785). Then the kth L–moment of ζ is defined as

lk :=

∫ 1

0

Qζ(u)Lk−1(u)du. (3.2.3)

As such, we may construct a time–dependent sequence of L–moments for the function–

valued quantile process. Fix t ∈ [0,∞) and ω ∈ Ω so that ξt := ξ(t, ω) ∈ Rd is fixed.

Then the kth instantaneous L–moment of the function–valued quantile process (Zt(u)),

characterised by ζ, is given by

lk,t :=

∫ 1

0

Qζ

(
u; ξt

)
Lk−1(u)du =

∫ 1

0

Zt(u)Lk−1(u)du (3.2.4)

for all t ∈ [0,∞). The following proposition characterises when Eq. (3.2.4) is finite.

Proposition 3.2.1. Consider a function–valued quantile process (Zt(u))t∈[0,∞), given

by Definition 3.2.1. The kth instantaneous L–moment, given by Eq. (3.2.4), for the

parameter–driven quantile process is finite for all t ∈ [0,∞) and any k ∈ N, k > 0 if

the first moment of the random variable ζ with distribution function is finite.

Proof. Consider Eq. (3.2.4). Make the change of variable u := Fζ(z; ξt), where

Fζ(z; ξt) = Q−
ζ (z; ξt) for z ∈ R, so we may write

lk,t =

∫ ∞

−∞
zfζ
(
z; ξt

)
Lk−1

(
F
(
z; ξt

))
dz

=
k−1∑
j=0

(−1)k−j(k + j)!

(j)!(k − j)!

∫ ∞

−∞
zfζ
(
z; ξt

)
F j
ζ

(
z; ξt

)
dz

=
k−1∑
j=0

(−1)k−j(k + j)!

(j)!(k − j)!
E
[
ζF j

ζ (ζ; ξt)
]

(3.2.5)
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where fζ(z; ξt) = ∂zFζ(z; ξt) and since

Lk−1(u) =
k−1∑
j=0

(−1)k−j(k + j)!

(j)!(k − j)!
uj (3.2.6)

for u ∈ [0, 1]. Define the random variable A := ζF k
ζ (ζ; ξt), where A(ω) ≤ ζ(ω) for all

ω ∈ Ω, almost surely, since 0 ≤ F k
ζ (ζ; ξt) ≤ 1, k > 0. It follows that

E
[
ζF j

ζ (ζ; ξt)
]
= E [A] ≤ E [ζ] (3.2.7)

and so if E[ζ] is finite, lk,t will be finite, by Eq. (3.2.5), as required.

The first four instantanous L–moments of the Tukey–gh family, with quantile func-

tion given by Eq. (2.1.11), are given by Peters et al. (2016). We conclude this section by

drawing a comparison between random–level and function–valued quantile processes.

To obtain a quantile process given by Definition 3.2.1, that is similar to that in Def-

inition 3.1.1, one could construct a quantile process of this type and fix the quantile

level at some ū ∈ [0, 1]. We treat this special case, next. We consider the following

case in which we can construct a version of random–level quantile processes, given by

Definition 3.1.1, however now where the underlying driver is a stochastic vector of pa-

rameters (ξt), as in Definition 3.2.1, and we have control over the fixed quantile level

corresponding to the quantiles modelled by the output process.

Definition 3.2.2. Consider Definition 3.2.1 where (ξt) is the stochastic vector of

parameters and Qζ(u; ξt) is given in Eq. (3.2.1). Consider the special case of the

function–valued construction in Definition 3.2.1, whereby we fix the quantile level u =

ū ∈ [0, 1], and so the quantile process given by Eq. (3.2.1) becomes

Z ū
t :

d
= Zt(ū)

d
= Qζ (ū; ξt) , (3.2.8)

where Z ū
t (t, ω) = Qζ(ū; ξ(t, ω)) : [0,∞) × Ω → [−∞,∞]. This is distinct from the

usual case whereby the function–valued construction models the dynamics of the entire

quantile curve, and is equivalent to taking some fixed point on the quantile curve in the

function–valued construction.

Now, let the functions Qζ̃(u; ξ̃) and F (t, y;ϑ) be the quantile function and distri-

bution function, respectively, given in Definition 3.1.1. The process analogous to the
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random–level quantile process, however now at fixed level ū and with the stochastic

driver (ξt), is defined by

Zt
d
= Qζ̃

(
F (t, Z ū

t ;ϑ) ; ξ̃
)

(3.2.9)

for all t ∈ [t0,∞), t0 > 0, where Z ū
t is given by Eq. (3.2.8). Since Eq. (3.2.9) is

implicitly dependent on ū, this process takes well–defined quantile values at the level ū.

If one considers Definition 3.1.1 and chooses the functions Qζ and QY = F−
Y , where

FY is the law governing the driving process (Yt), such that QY (t, Ut)
d
= Z ū

t for each

t ∈ [t0,∞), one can ensure this quantile process matches that obtained by the usual

random–level construction given in Eq. (3.1.1).

Example 3.2.1. Consider a uniformly distributed random variable ζ ∼ U [a, b] where

−∞ < a < b < ∞. Take a = 0 and consider a process (bt)t∈[0,∞) such that bt > 0 for

all t ∈ [0,∞). Using Definition 3.2.1, we construct a uniformly–distributed function–

valued quantile diffusion by Zt(u) = Qζ(u; bt) = ubt for u ∈ [0, 1].

Fix u = ū ∈ [0, 1] and define the process Z ū
t

d
= ūbt. One obtains a special case of

a random–level quantile process with stochasticity driven by the process (bt), producing

output quantiles at level ū ∈ [0, 1], by considering Definition 3.1.1 with Yt
d
= Z ū

t for all

t ∈ [0,∞).

Example 3.2.2. Consider some random variable ζ2 ∼ Fζ2 that belongs to the location–

scale family with location parameter A ∈ R and scale parameter B ∈ R+, that is

ζ2
d
= A+ Bζ1 for any random variable ζ1 ∼ Fζ1. Take B = 1 and consider the process

(At)t∈[0,∞) with associated law FA(t, a)0<t<∞. Using Definition 3.2.1, we construct a

location–scale, function–valued quantile process by Zt(u) = Qζ1(u)+At for all t ∈ [0,∞)

and u ∈ [0, 1]. Fix u = ū ∈ [0, 1] and define the distribution function FY (t, y) =

FA(t, y − Qζ2(ū)) for all t ∈ (0,∞). For some choice of the functions Qζ and F in

Definition 3.1.1, one can produce equivalent quantile processes in the two following

ways:

1. Using the function–valued construction, taking Eq. (3.1.1) with QY the quantile

function corresponding to the distribution function FY (t, y) = FA(t, y −Qζ2(ū)).

2. By Zt
d
= Qζ(F (t, Z

ū
t )) where Z ū

t
d
= Qζ1(ū) + At for each t ∈ (0,∞). This is a

special case of a random–level quantile diffusion, where the driving process is the

location process (At) and (Zt) models quantiles at the chosen level ū.
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We emphasise that the above examples illustrate the special case of quantile pro-

cesses, that is not a new construction but instead an overlap between the random–level

and function–valued constructions. In general, however, these two constructions are

structurally distinct and will not be related.

3.3 Flexible families of Tukey quantile processes

In this section we employ Tukey transformation maps, as given by Definition 2.1.8,

to construct families of quantile processes in which skewness and kurtosis are param-

eterised directly. We focus on the g–and–h family, which is comprised of the one–

parameter Tukey–g and –h transformations, and the two–parameter Tukey–gh trans-

formation. Since these distributions are characterised by their quantile functions, we

consider each Tukey transformation applied to a standard normal quantile function to

produce the quantile function Qζ(u; ξ) used in each quantile process construction.

Consider Definitions 2.1.8 and 3.1.1. In the most general form, a Tukey random–

level quantile process is given by

Zt
d
= A+B

√
2erf− (2F (t, Yt;θ)− 1)T

(√
2erf− (2F (t, Yt;θ)− 1)

)Θ
(3.3.1)

for each t ∈ [t0,∞) and Θ ∈ R. We are interested in the conditions under which the

choice of parameterisation T ensures Eq. (3.3.1) is a well–defined reshaping function or

elongation map applied to each marginal of the driving process. Inherently, this ensures

that skewness and kurtosis, respectively, are introduced relative to each marginal of the

driving process under the quantile process construction. Additionally, by Definitions

2.1.6 and 2.1.7, the distortions are defined with respect to the mode of the driving

process.

We first consider the Tukey–g family, and set A = 0, B = 1 in the following

proposition, however the location and scale of the transformed random variable may

be considered by changing these parameters, respectively, after the reshaping trans-

formation. In what follows, we may drop any notational dependence on the vector

of parameters of the distribution and density functions. Additionally, we assume

F ̸= FY , where Yt ∼ FY (t, y) for all t ∈ [t0,∞), else the random variable defined

by Φt
d
=

√
2erf−(2FY (t, Yt)− 1) is standard normally distributed for all t ∈ [t0,∞) and
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we recover the usual Tukey–g transformation of a standard normal random variable.

In this case, if the mode of Yt lies at the origin for each t ∈ [t0,∞), the skewness

transformation occurs around the mode of the driving process and the composite map

is a well–defined reshaping transformation, as given by Definition 2.1.7. If the mode of

Yt does not lie at the origin for each t ∈ [t0,∞), we remark that the finite–dimensional

distributions of the quantile process may still have greater positive (resp. negative)

skewness than those of the driving process for g > 0 (resp. g < 0) by the convexity

(resp. concavity) of the composite map—see Proposition 3.1.1.

Next, we consider the Tukey–g quantile process, in the case where F ̸= FY in the

composite map from which it is constructed.

Proposition 3.3.1. Consider Definition 3.1.1 and let Qζ(u; ξ) = QTg(u;A,B, g) be

the quantile function of a Tukey–g distributed random variable, given by Eq. (2.1.11)

with h = 0, and for A ∈ R, B ∈ R+ and g ∈ R \ 0. Set A = 0, B = 1. Consider the

Tukey–g random–level quantile process, given by

Zt
d
=

1

g

[
exp

(
g
√
2erf− (2F (t, Yt;θ)− 1)

)
− 1
]

(3.3.2)

for each t ∈ [t0,∞) and where the vector of parameters θ does not include g. The

quantile process has the representation Zt
d
= TR(Yt) for all g ∈ R \ 0, where TR is a

reshaping transformation, given by Definition 2.1.7, if, and only if, for all t ∈ [t0,∞),

F (t, y;θ) has a continuous second derivative, the median of the random variable with

distribution function F (t, y;θ) is equal to the mode of Yt, where both lie at the ori-

gin, and ∂yF (t, y;θ) =: f(t, y;θ) ≈ 1/
√
2π for y ≈ 0. Here, ∂y denotes first–order

differentiation with respect to the spatial variable y.

Proof. First, assume for each t ∈ [t0,∞), the mode of Yt lies at some point y∗t ∈ R.
Then there exists some u∗t ∈ [0, 1] such that F (t, y∗t ) = u∗t for each t ∈ [t0,∞). Consider

the function

m(t, y) :=
1

g

[
exp

(
g
√
2erf− (2F (t, y)− 1)

)
− 1
]

(3.3.3)

for all t ∈ [t0,∞) and y ∈ R. In order for it to hold that m(t, y) ≈ y for y ≈ y∗t , we
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first require that m(t, y∗t ) = y∗t for all t ∈ [t0,∞), i.e.,

1

g

[
exp

(
g
√
2erf− (2F (t, y∗t )− 1)

)
− 1
]
=

1

g

[
exp

(
g
√
2erf− (2u∗t − 1)

)
− 1
]
= y∗t

(3.3.4)

for all g. The left hand side of Eq. (3.3.4) does not depend on g if, and only if, u∗t = 0.5,

in which case we must have y∗t = 0. Thus, for each t ∈ [t0,∞), the mode of Yt lies at

the origin and is equal to F (t, 0.5), that is, the median of the random variable with

distribution function F (t, y).

We now wish to study the behaviour of m(t, y) when y ≈ 0, at each t ∈ [t0,∞).

Considering the Taylor series expansion of the function exp(g
√
2erf−(2F (t, y) − 1))

around y = 0, we have

exp
(
g
√
2erf− (2F (t, y)− 1)

)
≈ exp

(
g
√
2erf− (2F (t, 0)− 1)

)
+ g

√
2πf(t, 0)exp

((
erf− (2F (t, 0)− 1)

)2
+ g

√
2erf− (2F (t, 0)− 1)

)
y

+

{
gπ√
2
f ′(t, 0)exp

((
erf− (2F (t, 0)− 1)

)2)
+gπ

√
2f(t, 0)2erf− (2F (t, 0)− 1) exp

(
3
(
erf− (2F (t, 0)− 1)

)2)
+g2πf(t, 0)2exp

(
2
(
erf− (2F (t, 0)− 1)

)2)}
× exp

(
g
√
2erf− (2F (t, 0)− 1)

)
y2 + . . . .

(3.3.5)

and so

m(t, y) ≈ 1

g

[
exp

(
g
√
2erf− (2F (t, 0)− 1)

)
− 1
]

+
√
2πf(t, 0)exp

((
erf− (2F (t, 0)− 1)

)2
+ g

√
2erf− (2F (t, 0)− 1)

)
y + O(y2)

(3.3.6)

for each t ∈ [t0,∞). We consider each term of the expansion in turn. First, we have

1

g

[
exp

(
g
√
2erf− (2F (t, 0)− 1)

)
− 1
]
= 0 (3.3.7)

if, and only if, F (t, 0) = 0.5, and so the median of the random variable with distribution
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function F (t, y) must equal 0. It follows that

√
2πf(t, 0)exp

((
erf− (2F (t, 0)− 1)

)2
+ g

√
2erf− (2F (t, 0)− 1)

)
=

√
2πf(t, 0) ≈ 1

(3.3.8)

if, and only if, f(t, 0) ≈ 1/
√
2π, as required. The continuity of the second derivative

of F (t, y) ensures the continuity of the second derivative of m(t, y).

Considering Eq. (3.3.2), if F is the distribution function of the standard normal

distribution at all t ∈ [t0,∞), then we may write Zt
d
= TR(Yt)

d
= rg(Yt) when Yt has

mode equal to zero for all t ∈ [t0,∞). This agrees with the result given in Proposition

3.3.1. Further examples of distribution functions one may consider are:

1. The Student–t distribution function with degrees of freedom parameter ν → ∞.

If we consider, e.g., ν = 15, we have f(t, 0) ≈ 1/
√
2π with a 1.65% error margin.

2. The Laplace distribution with location parameter µ = 0 and scale parameter

b =
√
π/2.

3. The Logistic distribution with location parameter µ = 0 and scale parameter

s =
√
π/(2

√
2).

4. The Gumbel distribution with location parameter µ = 0 and scale parameter

β =
√
2π/e.

The following corollary considers the case where the parameter g accounts for all

relative skewness introduced to the driving process, in the construction of the quantile

process. This allows one to control the skewness introduced to the driving process,

marginally, via the composite map transformation exclusively through the parameter g

in the Tukey transform. The inner part of the composite map, that is, the distribution

function F , does not alter the marginal skewness of the driving process under the

distortion used to produce the quantile process.

Corollary 3.3.1. Assume the quantile process given by Eq. (3.3.2) has the reshap-

ing transformation representation given in Proposition 3.3.1. The relative skewness

between the marginal distribution of Zt and that of Yt, for each t ∈ [t0,∞) is produced

exclusively via the parameter g if, and only if, F (t, y;θ) = −F (t,−y;θ) for all y ∈ R
and t ∈ [t0,∞).
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Proof. Consider Eq. (3.3.2). We have Zt
d
= rg(Φ

−(F (t, Yt))) where rg(x) = xTg(x) with

Tg(x) given by Eq. (2.1.8), and Φ is the CDF of the standard normal distribution. If

F = Φ for all t ∈ [t0,∞), then Zt
d
= rg(Yt) and all symmetry is introduced to the

distribution of Yt via the parameter g, by definition of the Tukey–g distribution. If

F ̸= Φ for all t ∈ [t0,∞), all symmetry is introduced in the Tukey–g transform part

of the composite map if, and only if, the inner part of the composite map preserves

symmetry, i.e., Φ−(F (t, y)) = −Φ−(F (t,−y)) for all t ∈ [t0,∞) and y ∈ R.
Note, that for any generic, symmetric random variable X with mean µ ∈ R, its

quantile function satisfies the relation QX(u) = 2µ − QX(1 − u) for all u ∈ [0, 1]. For

the standard normal distribution, µ = 0 and so for all u ∈ [0, 1], Φ−(u) = −Φ−(1− u).

It follows that for all t ∈ [t0,∞) and y ∈ R, Φ−(F (t, y)) = −Φ−(1 − F (t, y), and so

Φ−(F (t, y)) = −Φ−(F (t,−y)) if, and only if, F (t, y) = 1− F (t,−y). By the definition

and properties of a distribution function, F (t, y) = 1 − F (t,−y) if, and only if, F is

the CDF of a symmetric random variable for each t ∈ [t0,∞), as required.

Remark 2. One may still construct the class of Tukey–g quantile processes in the

instance where the conditions given in Proposition 3.3.1 are not met, however the in-

terpretability in regard to relative skewness between the driving process and the output

quantile process, marginally, must be carefully considered. For consistent interpretabil-

ity at each t ∈ [t0,∞), it is advantageous to consider the skewness distortion relative

to some fixed measure of centrality at all times, e.g., the mode as shown in Proposition

3.3.1. Else, the role of the composite map in introducing skewness to the marginal distri-

butions of the driving process is not explicit, as intended with the Tukey–g distributional

family, and one must check this case by case—see Proposition 3.1.1. Additionally, we

note that one may also consider alternative measures of centrality to the mode, e.g.,

one could choose the composite map such that at each t ∈ [t0,∞), the median of the

quantile process is equal to the median of the driving process. Here, quantiles at levels

u > 0.5 and u < 0.5 will be distorted through the composite map relative to the ‘anchor’

at u = 0.5—see Example 3.1.1.

In Proposition 3.3.1 and Corollary 3.3.1, we consider the one–parameter Tukey–g

family, however more flexibility can be introduced by allowing the skew parameter to

have a polynomial representation. Figure 3.4 shows the quantile function of the one–

parameter Tukey–g distribution, for different values of the parameter g, relative to the

quantile function of a standard normal random variable.
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Figure 3.4: Quantile functions of the Tukey–g distribution for g ∈ {0.3, 0.8, 1.5, 3} and
g ∈ {−0.3,−0.8,−1.5,−3}, relative to the standard normal quantile function.

We now present the following examples of Tukey–g quantile processes.

Example 3.3.1. Consider a geometric Brownian motion (GBM) driving process, Yt =

Y0exp((µ−0.5σ2)t+σWt), for all t ∈ [0,∞), with Y0 = y0 ∈ R+, µ ∈ R and σ ∈ R+. Let

F = FY in Definition 3.1.1 be the lognormal law associated with this process, so that the

quantile process construction is well–defined in regard to maxt∈[t0,∞) ran(Yt) = dom(F ).

The skewed–GBM quantile process is then given by

Zt
d
=

1

g

[
exp

(
g

σ
√
t

(
log(Yt)− log(y0)−

(
µ− 1

2
σ2

)
t

))
− 1

]
d
=

1

g

[
exp

(
gWt√
t

)
− 1

] (3.3.9)

and satisfies the SDE

dZt =

(
g

2t
− log (gZt + 1)

2gt

)
(gZt + 1) dt+

(gZt + 1)√
t

dWt (3.3.10)

for all t ∈ [t0,∞) with Zt0 = zt0 ∈ [−1/g,∞) when g > 0 and zt0 ∈ (−∞,−1/g]

when g < 0. Here, we take A = 0, B = 1 in Eq. (3.3.1). Because the driving

process is GBM, its mode at each t ∈ [t0,∞) does not lie at the origin and so the

result given in Proposition 3.3.1 is not applicable. Additionally, as F = FY is the
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lognormal law associated with the GBM driving process, used in the quantile process

composite map, all symmetry is not introduced exclusively via the parameter g—see

Corollary 3.3.1. Here, the role of FY in the inner part of the composite map is to

‘resymmetrise’ each marginal of the driving process, before the quantile function of the

Tukey–g distribution, i.e., outer part of the composite map, is applied. By Proposition

3.1.1, the finite–dimensional distributions of (Zt) are more positively skewed than those

of (Yt) at each t ∈ [t0,∞) if, and only if, g > σ
√
t. This follows from the convexity of

the composite map on DY = R+.

Figure 3.5 shows 30 sample paths of this quantile process for parameters µ =

0.1, σ = 0.05 and g ∈ {0.6, 2,−0.8}. The corresponding sample paths of the GBM

driving process and uniformly distributed process, Ut
d
= FY (t, Yt), are also given, to

visualise how the composite map distorts the paths of the process at each stage of trans-

formation.
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Figure 3.5: Sample paths of the GBM driving process with parameters µ = 0.1, σ =
0.05, the uniformly distributed process (Ut), and the Tukey–g quantile process with
parameter values g = {0.6, 2,−0.8}.
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We remark that the SDE 3.1.31—where a Tukey–g quantile function, composed

with the distribution function of a scaled Brownian motion, is applied to the scaled

Brownian driving process—is indistinct to the SDE 3.3.10. The random–level quantile

process construction is not unique and any two transformations may produce, in finite–

dimensional law, the same quantile process. In the case where the driving process is

a scaled Brownian motion, however, the composite map is interpretable with regard

to the result presented in Proposition 3.3.1, when σ ≈ 1, and Corollary 3.3.1 informs

that all skewness in the quantile process, relative to the scaled Brownian driver, is

introduced via the parameter g. We also note that, here, the composite map is convex

on R for each t ∈ [t0,∞) and all g > 0 so, by Proposition 3.1.1, the finite–dimensional

distributions of the quantile process are more positively skewed than those of the scaled

Brownian driving process.

Example 3.3.2. Consider the driving process (Yt) to be an Ornstein–Uhlenbeck (OU)

process with time inhomogeneous parameters, satisfying the SDE

dYt = θ(t) (µ(t)− Yt) dt+ σ(t)dWt (3.3.11)

for all t ∈ [0,∞) with y0, µ(t) ∈ R, σ(t) ∈ R+, and the mean–reversion parameter

θ(t) ∈ R+ for all t ∈ (0,∞). The marginal law of the driving process at each time

t ∈ (0,∞) is given by

FY (t, y;ϑ(t)) =
1

2

1 + erf

y − y0e
−

∫ t
0 θ(s)ds − e−

∫ t
0 θ(s)ds

∫ t

0
e
∫ s
0 θ(u)duθ(s)µ(s)ds

e−
∫ t
0 θ(s)ds

√
2
∫ t

0
exp

(
2
∫ s

0
θ(u)du

)
σ2(s)ds

 ,
(3.3.12)

where ϑ(t) = (θ(t), µ(t), σ(t)), and so the process Ut := FY (t, Yt;ϑ(t)) is given by

Ut
d
=

1

2

1 + erf

 ∫ t

0
exp

(∫ s

0
θ(u)du

)
σ(s)dWs√

2
∫ t

0
exp

(
2
∫ s

0
θ(u)du

)
σ2(s)ds

 , (3.3.13)

for t ∈ (0,∞). It follows that the skewed–OU random–level quantile process is given by

Zt
d
= A+

B

g

exp
 g

∫ t

0
exp

(∫ s

0
θ(u)du

)
σ(s)dWs√∫ t

0
exp

(
2
∫ s

0
θ(u)du

)
σ2(s)ds

− 1

 (3.3.14)
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for t ∈ [t0,∞) with Zt0 = zt0 ∈ [A − B/g,∞) when g > 0 and zt0 ∈ (−∞, A − B/g]

when g < 0. In the case where µ(t) = µ ∈ R, σ(t) = σ ∈ R+, and θ(t) = θ ∈ R+ for

all t ∈ (0,∞), the skewed–OU quantile process satisfies the SDE

dZt =

(
gθ

(1− exp (−2θt))
− θ log(gZt + 1)

g (1− exp (−2θt))

)
(gZt + 1) dt+

√
2θ (gZt + 1)√

1− exp (−2θt)
dWt

(3.3.15)

for all t ∈ [t0,∞), where we take A = 0, B = 1 without loss of generality, and with

Zt0 = zt0 ∈ [−1/g,∞) when g > 0 and zt0 ∈ (−∞,−1/g] when g < 0. We highlight

that both SDEs, (3.3.10) and (3.3.15), can be written in the form

dZt =
σ2 (gZt + 1)

2Var(Yt|Y0 = y0)

(
g − log(gZt + 1)

g

)
dt+

σ√
Var(Yt|Y0 = y0)

(gZt + 1)dWt

(3.3.16)

for all t ∈ [t0,∞).

We now consider the Tukey–h random–level quantile process, where the parameter

h ∈ R+
0 allows for flexible modelling of the heaviness of the tails of the distribution.

The quantile function of a Tukey–h distributed random variable is given by

Qζ(u; ξ) = QTh
(u;A,B, h) = A+B

√
2erf−(2u− 1)exp

(
h
(
erf−(2u− 1)

)2)
(3.3.17)

for u ∈ [0, 1], A ∈ R, B ∈ R+ and h ∈ R+
0 .

In the following proposition, we consider the Tukey–h quantile process, in the case

where F ̸= FY in the composite map from which it is constructed. The assumption

that F ̸= FY where Yt ∼ FY (t, y) for all t ∈ [t0,∞) is made for the same reasons

discussed prior to Proposition 3.3.1.

Proposition 3.3.2. Consider Definition 3.1.1 and let Qζ(u; ξ) = QTh
(u;A,B, g) for

u ∈ [0, 1]. Set A = 0, B = 1, and consider the Tukey–h random–level quantile process,

given by

Zt
d
=

√
2erf− (2F (t, Yt;θ)− 1) exp

(
h
(
erf− (2F (t, Yt;θ)− 1)

)2)
(3.3.18)

for each t ∈ [t0,∞) and where the vector of parameters θ does not include h. The

quantile process has the representation Zt
d
= TE(Yt) for all h ∈ R+

0 where TE is an

elongation map, given in Definition 2.1.6, if, and only if, for all t ∈ [t0,∞), it holds
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that: (1) the median of the random variable with distribution function F (t, y;θ) and

the mode of Yt are zero, and ∂yF (t, y;θ) =: f(t, y;θ) ≈ 1/
√
2π for y ≈ 0; (2) for all

y > 0,

(i) F (t, y;θ) = −F (t,−y;θ),

(ii) ∂y{
√
2erf−(2F (t, y)− 1)} > 0,

(iii) ∂2y{
√
2erf−(2F (t, y)− 1)} ≥ 0.

Proof. The first part of the proof is analogous to that of Proposition 3.3.1, however

where we now define the function

m(t, y) :=
√
2erf− (2F (t, y)− 1) exp

(
h
(
erf− (2F (t, y)− 1)

)2)
(3.3.19)

and consider its Taylor series expansion around y = 0, given by

m(t, y) ≈
√
2erf− (2F (t, 0)− 1) exp

(
h
(
erf− (2F (t, 0)− 1)

)2)
+
√
2πf(t, 0)

[
1 + 2h

(
erf− (2F (t, 0)− 1)

)2]
× exp

(
(h+ 1)

(
erf− (2F (t, y)− 1)

)2)
y +O(y2)

(3.3.20)

for each t ∈ [t0,∞). From here we derive the requirements that the mode of Yt lies at

the origin, F (t, 0.5) = 0 so that the median of the random variable with distribution

function F (t, y) must equal zero, and that f(t, 0) ≈ 1/
√
2π. To derive the remainder

of the proof, we recall Definition 2.1.6 of an elongation map and it remains to show

that for y > 0, (i)–(iii) hold, that is, m(t, y) is a symmetric and convex function for

each t ∈ [t0,∞).

We have m(t, y) = rh(Φ
−(F (t, y))) where rh(x) = xTh(x) with Th(x) given by Eq.

(2.1.5), and Φ is the CDF of the standard normal distribution. By the proof of Corollary

3.3.1, rh(Φ
−(F (t, y))) = −rh(Φ−(F (t,−y))) if, and only if, F (t, y) = −F (t,−y) for

each t ∈ [t0,∞).

Since, by the definition of an elongation map, rh(x) is a convex, increasing function

for x > 0. It follows that rh(Φ
−(F (t, y)) is convex for y > 0 if, and only if, Φ−(F (t, y))

is convex or linear—see Section 3.2.4 by Boyd and Vandenberghe (2004). This is

equivalent to the derivative conditions (ii)–(iii), which concludes the proof.
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Considering Eq. (3.3.18), if F is the distribution function of the standard normal

distribution at all t ∈ [t0,∞), then we may write Zt
d
= TE(Yt) = rh(Yt) when Yt has

mode equal to zero for all t ∈ [t0,∞). This agrees with the result given in Proposition

3.3.2. The requirement that the composite map be convex for y > 0 is equivalent to the

distribution function F (t, y) being convex for y > 0, which is uncommon. Instead, one

may wish to consider a (not necessarily standard) normal distribution function F (t, y),

to ensure that the map Φ−(F (t, y)) is linear, and thus the composite map used in the

quantile process construction is convex for y > 0.

Figure 3.6 shows the quantile function of the Tukey–h distribution for varying

values of the parameter h, with A = 0, B = 1, relative to the quantile function of a

standard normal random variable. The plot on the right shows that for negative values

of h beyond a certain threshold, the function QTh
(u;h) is no longer monotonically

increasing and hence we restrict to h ∈ R+
0 , i.e., we introduce more kurtosis to the

base random variable which, in the figure, and considered throughout this thesis, is a

standard normal random variable.
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Figure 3.6: Quantile functions of the Tukey–h distribution, relative to the standard
normal quantile function, for h ∈ {−0.05,−0.1, 0.05, 0.1, 0.6, 1}, and h-quantile trans-
forms for h ∈ {−0.6,−1}.

We present the following example of a Tukey–h quantile process.

Example 3.3.3. Consider Example 3.3.1, where we have a GBM driving process and
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let F = FY in Definition 3.1.1. Now consider the quantile function of the Tukey–h

distribution, given by Eq. (3.3.17), with A = 0, B = 1, so that the leptokurtic–GBM

quantile process is given by

Zt
d
=

(
1

σ
√
t
(log(Yt)− µ̃(t))

)
exp

(
h

2

(
1

σ
√
t
(log(Yt)− µ̃(t))

)2
)

d
=
Wt√
t
exp

(
h
W 2

t

2t

) (3.3.21)

for all t ∈ [t0,∞) and where µ̃(t) := log(y0)− (µ−0.5σ2)t. Because the driving process

is GBM, its mode at each t ∈ [t0,∞) does not lie at the origin, and its marginal

distribution functions are not symmetric, and so the result given in Proposition 3.3.2

is not applicable. Much like Example 3.3.1, the role of FY in the inner part of the

composite map is to ‘resymmetrise’ each marginal of the driving process, before the

quantile function of the Tukey–h distribution is applied, producing a quantile process

(Zt) that is marginally distributed according to the Tukey–h distribution.

We remark that the quantile process in Eq. (3.3.21) is indistinct (in distribution)

to that obtained by considering the canonical Tukey–h quantile process—see Definition

3.1.2. In this case, however, the composite map is symmetric and convex for y > 0,

and so we can ensure, by Proposition 3.1.2, that the finite–dimensional distributions of

the quantile process will have heavier tails than those of the driving Brownian motion,

due to the parameter h.

Figure 3.7 shows 30 sample paths of the quantile process, for the same driving

process parameters given in Example 3.3.1 and for h ∈ {0.02, 0.2}. Again, the corre-

sponding sample paths of the driving GBM are also give, to visualise the effect of the

quantile distortion on the paths.



3.3 Flexible families of Tukey quantile processes 79

Figure 3.7: Sample paths of the GBM driving process with parameters µ = 0.1, σ =
0.05, and the Tukey–h quantile process with parameter values h = {0.02, 0.2}.

We conclude this section by combining the above two Tukey families to consider

the more general, two–parameter Tukey–gh distribution, with quantile function given

by Eq. (2.1.11), that is,

QTgh
(u;A,B, g, h) = A+

B

g

[
exp

(
g
√
2erf−(2u− 1)

)
− 1
]
exp

(
h
(
erf−(2u− 1)

)2)
(3.3.22)

for u ∈ [0, 1]. Here, the parameters g ∈ R\0 and h ∈ R+
0 are responsible for controlling

the skewness and kurtosis of the distribution, respectively, relative to the standard
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normal distribution. It holds that QTgh
(u;A,B, g, h) : [0, 1] → R and for n ∈ N, the

nth moment of the distribution exists for h < 1/n—see, e.g., Klein and Fischer (2002).

Figure 2.2 shows the quantile function of the Tukey–gh distribution for varying values of

the skewness and kurtosis parameters, relative to the quantile function of a standard

normal random variable. We remark that this Tukey–gh class of quantile processes

allows one to capture any skew–kurtosis range. Such features are often advantageous

in loss modelling, e.g., in non–life insurance settings as discussed by Peters et al.

(2016). Since the Tukey–gh transformation involves multiplying the Tukey–g and –h

transformations, it holds that the distribution will be asymmetric whenever g ̸= 0.

When h = 0, we recover the Tukey–g distribution in which tail elongation occurs only

as a result of the introduced skewness, e.g., an elongated right (resp. left) tail when

g > 0 (resp. g < 0). The functional form of the Tukey–gh transform allows one to first

treat skewness and the tail elongation that comes with it (through the g–transform),

and then account for excess tail–heaviness (through multiplying by the h–transform).

In other words, the family provides a nice, practical way to treat both skewness and

kurtosis in a distributional transformation, but allow for a disentanglement of the two.

In regard to the quantile process construction, one may apply the results in Propositions

3.3.1 and 3.3.2, or Propositions 3.1.1 and 3.1.2 to each part of the transformation map

to analyse the effect of the composite map on the marginals driving process, when

producing marginals of the Tukey–gh quantile process.

As an example, we consider a univariate Gaussian process as the driving process, to

produce a skewed–leptokurtic–Gaussian quantile process, or what is referred to, more

simply, as a ‘Tukey process’ by Nagarajan et al. (2018). We first define a Gaussian

process, as follows.

Definition 3.3.1. The process (Yt)t∈[0,∞) is a Gaussian process if, and only if, for

every finite set of indices {t1, t2, . . . , tk} for 1 ≤ k < ∞ and where ti ∈ [0,∞) for all

i ∈ 1, . . . , k, the random vector Yt1,...,tk := (Yt1 , Yt2 , . . . , Ytk) is a multivariate Gaussian

(MVN ) random variable.

In what follows, if Yt1,...tk ∼ MVN (µ1:k,Σ1:k), we write Yt ∼ GP(µ1:k,Σ1:k) where

µ1:k := [E [Yt1 ] ,E [Yt2 ] , . . . ,E [Ytk ]]
⊤ =

[
µYt1

, µYt2
, . . . , µYtk

]⊤
, (3.3.23)
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Σ1:k :=



C(Yt1 , Yt1) C(Yt1 , Yt2) · · · C(Yt1 , Ytk)

C(Yt2 , Yt1) C(Yt2 , Yt2) . . . C(Yt2 , Ytk)
...

...
. . .

...

C(Ytk , Yt1) C(Ytk , Yt1) · · · C(Ytk , Ytk)


=



σ2
Yt1

σYt1 ,Yt2
· · · σYt1 ,Ytk

σYt2 ,Yt1
σ2
Yt2

. . . σYt2 ,Ytk

...
...

. . .
...

σYtk
,Yt1

σYtk
,Yt2

· · · σ2
Ytk


,

(3.3.24)

for C(·, ·) the covariance function, are the mean and covariance matrices, respectively.

In this example, we consider Definition 3.1.1 and take F (t, y;θ) to be the distribution

function of the normal distribution with mean parameter γ ∈ R and standardised

variance. We construct the shifted Tukey process as

Zt
d
= A+

B

g
(exp (g (Yt − γ))− 1) exp

(
h

2
(Yt − γ)2

)
(3.3.25)

for all t ∈ [t0,∞). Each finite–dimensional distribution of the quantile process in Eq.

(3.3.25) will belong to the Tukey–gh family. Similar processes, derived by applying a

Tukey–gh transform to a Gaussian process are discussed by Nagarajan et al. (2018),

Xu and Genton (2017) and Yan et al. (2020).

Lastly, we consider the class of function–valued quantile processes given in Sec-

tion 3.2, more specifically Definition 3.2.1. Let ζ = Tgh, and (ξt)t∈[0,∞) be the four–

dimensional stochastic process with continuous–time marginals (At, Bt, gt, ht) where

At ∈ R, Bt ∈ R+, gt ∈ R \ 0 and ht ∈ R+
0 for all t ∈ [0,∞). It follows that the

Tukey–gh function–valued quantile process is given by

Zt(u) =

At +Bt

exp
(
gt
√
2erf−(2u− 1)

)
− 1

gt
exp

(
ht
(
erf−(2u− 1)

)2)
, gt ̸= 0

At +Bt

√
2erf−(2u− 1)exp

(
ht
(
erf−(2u− 1)

)2)
, gt = 0,

(3.3.26)

for all u ∈ [0, 1] and t ∈ [0,∞). We note the relation between the quantile function–

valued processes given in Eqs (2.2.7) and (3.3.26), where the difference is that the

driving parameter processes are discrete– and continuous–time processes, respectively.
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3.4 Multidimensional and multivariate extension

We conclude this chapter on the construction of quantile processes by introducing mul-

tidimensional and multivariate extensions of Definition 3.1.1. We distinguish between

the notion of a multidimensional and a multivariate quantile process, where multidi-

mensional means a univariate quantile process driven by a multivariate risk process,

and multivariate means an n–dimensional process for n ≥ 2. As such, the class of

function–valued quantile processes given in Definition 3.2.1 produces a multidimen-

sional class of (function–valued) quantile processes for each u ∈ [0, 1] whenever the

dimension of the driving parameter process is d ≥ 2. The focus of this section will be

on multidimensional random–level quantile processes, as these processes will be used in

a data–driven example in Chapter 7, however we introduce multivariate random–level

quantile processes as well. We note the distinction between the terminology margin

and marginal: the margin of a n–dimensional multivariate process refers to one of

the i = 1, . . . , n univariate processes in each element of the vector process, and the

marginal of a process refers to the random variable associated to the process at each

point in time, t ∈ (0,∞). In what follows, we utilise a copula to capture the depen-

dence structure between any univariate stochastic processes—see Nelsen (2007), where

a d–dimensional copula C : [0, 1]d → [0, 1], for d ∈ N, is a multivariate CDF with

standard uniform margins. We may now define the multidimensional random–level

quantile process as follows.

Definition 3.4.1. Let Qζ(u; ξ) and Fj(t, y;θj) be continuous quantile and distribution

functions, respectively, as per Definition 3.1.1, for j = 1, . . . ,m and m > 1. For all

t ∈ (0,∞), let C(u1, . . . , um; t, θ̃) : R+ × [0, 1]m → [0, 1] be an m–dimensional, time–

inhomogeneous copula where θ̃ ∈ Rd′′ is a d′′–dimensional vector of parameters, for

d′′ ∈ N. Consider an Rm–valued càdlàg process (Yt)t∈[0,∞). At each time t ∈ [t0,∞),

for t0 > 0, the random–level, multidimensional quantile process is defined by

Zt
d
= Qζ

(
C
(
F1

(
t, Y

(1)
t ;θ1

)
, . . . , Fm

(
t, Y

(m)
t ;θm

)
; t, θ̃

)
; ξ
)
. (3.4.1)

That is,

Z(t, ω) = Qζ

(
C
(
F1(t, Y

(1)(t, ω);θ1), . . . , Fm(t, Y
(m)(t, ω);θm); t, θ̃

)
; ξ
)

: [t0,∞) ×
Ω → [−∞,∞], and the map t 7→ Z(t, ω) for each ω ∈ Ω and t ∈ [t0,∞) is Ft–

measurable.
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The output quantile process in Eq. (3.4.1) is a univariate quantile process, similar

to that in Definition 3.1.1, but driven by a multivariate base process. The dependence

between each margin of the driving process is described by the choice of copula and,

similarly to the univariate case, the choice of quantile function Qζ and distribution

functions Fj for j = 1, . . . ,m, are chosen to determine the statistical properties and

behaviour of the quantile process, e.g., skewness and kurtosis. It is less clear in the

multidimensional case than it is in the univariate case as to how the finite–dimensional

distributions between each driving process; the choice of distribution function, cop-

ula and quantile function in the composite map; and the resulting finite–dimensional

distributions of the quantile process relate to one another. To our knowledge, the

literature on distributional distortions in the multivariate case is less dense than the

univariate case, and there exists space in future work to explore the distortions of the

above type in more detail. We remark, however that when Fi = FY (i) in Eq. (3.4.1), for

i = 1, . . . ,m, and the copula C is that implied by the joint distribution of the driving

process marginals, then for t ∈ [t0,∞), the random variable defined by

Ũt := CY

(
FY (1)

(
t, Y

(2)
t ;θ1

)
, . . . , FY (m)

(
t, Y

(m)
t ;θm

)
; t, θ̃

)
(3.4.2)

is analogous to Kendall’s core, given in Definition 2 by Millossovich et al. (2021). Some

properties of Kendall’s core, related to the multivariate behaviour of the driving process

(Yt), are given therein.

As such, for the multidimensional quantile process construction to be more intuitive,

we may consider the case in which the marginal distribution functions of each driving

process are used in the construction so that the inputs to the m–dimensional copula

are uniformly distributed, and a direct connection to Kendall’s core may be made. We

consider this case, in addition to considering the copula implied by the joint distribution

of the driving process marginals, as follows.

Assume the joint law of the margins of the driving process, i.e., the processes

(Y
(i)
t ) for i = 1, . . . ,m, is given by FY (t, y1, . . . , ym;ϑ) : R+ × Rm → [0, 1] for all t ∈

(0,∞). By Sklar’s theorem, there exists a copula CY (u1, . . . , um; t, θ̃) : R+ × [0, 1]m →
[0, 1] such that FY (t, y1, . . . , ym;ϑ) = CY (FY (1)(t, y1;θ1), . . . , FY (m)(t, ym;θm); t, θ̃) for

all t ∈ (0,∞) and where FY (i)(t, yi;θi) is the law associated to the ith margin of (Yt).

When each FY (i)(t, yi;θi) is continuous for i = 1, . . . ,m, CY is unique. The copula
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itself may be static, but we consider a time–inhomogeneous copula for generality. If

C(u1, . . . , um; t, θ̃) = CY (u1, . . . , um; t, θ̃) and Fj(t, y;θj) = FY (j)(t, y;θj) for all j =

1, . . . ,m, then Zt
d
= Qζ(FY (t, Y

(1)
t , . . . , Y

(m)
t ;ϑ); ξ). Here, we say that C = CY is the

implicit copula, determined by the joint distribution of the multivariate driving process.

One may choose C ̸= CY to impose an alternative dependence structure between the

margins of the multivariate driving process.

The multivariate quantile process is defined as follows, where we also employ a

copula to describe the dependence structure between the quantile process margins.

Definition 3.4.2. Let Qζj(u; ξj) and Fj(t, y;θj) be continuous quantile and distribution

functions, respectively, as per Definition 3.1.1, for j = 1, . . . ,m. Consider an Rm–

valued càdlàg process (Yt)t∈[0,∞) where the joint law of the margins of the process is given

by FY (t, y1, . . . , ym;ϑ) = CY (u1, . . . , um; t, θ̃) for CY (u1, . . . , um; t, θ̃) : R+ × [0, 1]m →
[0, 1] a copula and where θ̃ ∈ Rd′′ is a d′′–dimensional vector of parameters. At each

time t ∈ [t0,∞), for t0 > 0, the random–level, multivariate quantile process is given by

the m–dimensional process (Zt)t∈[t0,∞) with each margin defined by

Z
(i)
t

d
= Qζi

(
Fi

(
t, Y

(i)
t ;θi

)
; ξi

)
(3.4.3)

for i = 1, . . . ,m. The joint law of the margins of the quantile process is given by

FZ(t, z1, . . . , zm) = CY (u1, . . . , um; t, θ̃) for any t ∈ [t0,∞).

The fact that the joint law of the margins of the quantile process is described by

the same copula that describes the joint law of the margins of the driving process

follows from the fact that copulas are invariant under increasing transformations, see

Nelsen (2007), and each margin transformation in Eq. (3.4.3) will be monotonically

increasing.

In the subsequent chapters of this thesis, we focus largely on the analysis and ap-

plication of univariate random–level quantile processes, with some attention placed

on multidimensional random–level quantile processes, as given by Definition 3.4.1.



Chapter 4

Measure distortions induced by

Quantile Processes

In this chapter, we define the distorted probability measures induced by random–level

quantile processes. The construction of this class of quantile processes is motivated

largely by the ability to flexibly build relative statistical properties into the process in

a controlled manner, and so of particular interest are the measures (induced by these

processes) that inherit such properties. For instance, if the composite map produces

a heavy–tailed quantile process (i.e., with excess kurtosis over the driving process),

then the distribution of some random variable or stochastic process under the induced

measure will be more heavy–tailed than under the original measure. The concept of

a probability distortion framework is well–explored in the literature, largely through

the use of distortion operators, see e.g., Godin et al. (2012, 2019), Wang (1996, 2000,

2002) and Section 6.1, and predominantly in the context of economic decision making.

The measure distortion framework we present in this chapter is distinct from that

produced under distortion operators, despite the distorted probabilities arising from

the application of nonlinear functions on the base measure in both cases. Additionally,

we note that the framework presented herein extends the static case to produce dynamic

distorted probability measures in continuous time, each characterised by the parametric

form of the selected composite map and the underlying base process.

Consider Definition 3.1.1 for a random–level quantile process (Zt)t∈[t0,∞) constructed

from some DY –valued driving process (Yt)t∈[0,∞), where DY ⊆ R and where F (t, y;θ) :

[0,∞)×DY → [0, 1] and Qζ(u; ξ) : [0, 1] → Dζ ⊆ DY . It follows that (Zt) is an (Ft)–
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adapted process on the measurable space (Dζ ,B(Dζ)) where B(Dζ) ⊆ F . We refer

to Section 3.6 by Bogachev and Ruas (2007) to introduce the pushforward measure

that defines the law of the quantile process, and subsequently its finite–dimensional

distributions, as follows.

Definition 4.0.1. Let D denote the collection of all càdlàg functions from [t0,∞) to

Dζ, that is, t 7→ Zt(ω) for all t ∈ [t0,∞) and each ω ∈ Ω. The quantile process (Zt)

induces a measurable function Z : Ω → D where (Z(ω))(t) = Zt(ω). The law of the

quantile process is defined to be the pushforward measure PZ(A) := P(Z−(A)) for all

A ∈ B(Dζ).

Definition 4.0.2. For n ≥ 1, t0 ≤ t1 < . . . < tn and all A ∈ B(Dn
ζ ), the finite–

dimensional distributions of the quantile process (Zt) are defined by the pushforward

measures

PZ
t1,...tn

(A) := P{(Zt1 , . . . , Ztn) ∈ A} =

∫
{ω∈Ω : (Zt1 (ω),...,Ztn (ω))∈A}

dP(ω). (4.0.1)

Thus, for all t ∈ [t0,∞), the ‘marginal distorted measure’ induced by the quantile

process (Zt) is given by Eq. (4.0.1) for n = 1, that is, PZ
t (B) for all B ∈ Ft. For

t0 ≤ s < t < ∞, the ‘conditional distorted measure’ is defined as the restriction of PZ
t

to the sub–σ–algebra Fs. That is,

PZ
t|s(B) := PZ

t (B|Fs) = P{Zt ∈ B|Fs} =

∫
{ω∈Ω :Zt(ω)∈B}

dP(ω|Fs) (4.0.2)

for all B ∈ Ft. It holds that PZ
t = PZ

t|t0. By construction, if B ∈ Ft but B ̸⊆ Dζ, then

PZ
t|s(B) = 0 for all t0 ≤ s < t <∞.

The existence of PZ follows from the fact that each marginal distribution function

induces a unique probability measure on the Borel σ–algebra B(Dζ). The mechanism

that changes measure from P to PZ is the quantile transformation (i.e., the composite

map). In other words, for all ω ∈ Ω and each t ∈ [t0,∞), we view the probabilities

associated to the distorted random variable Zt(ω) under P as those assigned to the

random variable Yt(ω) under PZ . The PZ–measure redistributes the probabilities in

(Ω,F) to account for properties, e.g., the skewness and kurtosis, we may factor in to

the quantile transformation.
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As an example, consider a driving process Yt = µt+Wt for µ ∈ R and Y0 = y0 ∈ R
and construct a Tukey–gh quantile process as per Definition 3.1.1 with Qζ = QTgh

given by Eq. (2.1.11) with A = 0, B = 1, and F (t, y;θ) = FY (t, y;µ) = Φ((y−µt)/
√
t)

for all t ∈ (0,∞). Figures 4.1 and 4.2 illustrate how the finite–dimensional distribu-

tion (shown at time t = 0.5) of the driving process is distorted under the quantile

transformation, to produce the finite–dimensional distribution of the quantile process,

FZ(t, z; g, h, µ) for all t ∈ [t0,∞), or equivalently the finite–dimensional distribution of

the driving process under the PZ–measure, for a range of g, h and µ parameters. Fig-

ure 4.3 shows the same result, considering the Tukey–gh quantile process construction

again, with the same driving process, however now with F (t, y;λ) = Φ(x + λ) for Φ

the CDF of the standard normal distribution and λ ∈ R.
The emphasis we place here is that, by nature of the flexible quantile process con-

struction, one has large levels of (directly parameterised) control over the properties of

the measure induced by the quantile process.
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Figure 4.1: Relation between the marginal distribution functions of the driving process
under the P– and PZ–measures at t = 0.5 for µ = 0 and a range of g and h parameters.
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Figure 4.2: Relation between the marginal distribution functions of the driving process
under the P– and PZ–measures at t = 0.5 for µ = 0.8 and a range of g and h parameters.
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Figure 4.3: Relation between the marginal distribution functions of the driving process
under the P– and PZ–measures at t = 0.5 for µ = 0 and a range of g, h and λ
parameters.

4.1 Connection with the Radon–Nikodym deriva-

tive

Consider the distorted measure induced by the quantile process, given by Definition

4.0.2. The measure transform from P to PZ implies a Radon–Nikodym derivative,
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which follows from the assumption that Dζ ⊆ DY , and so PZ is absolutely continuous

with respect to P, i.e., PZ ≪ P. To consider the instance in which the measures P and

PZ are equivalent, that is, P ∼ PZ , we refer to e.g., Feller (2008), and define the sets

NP := {A ∈ F | P(A) = 0} ,

NPZ :=
{
A ∈ F | PZ(A) = P(Z−(A)) = 0

}
.

Then, if NP = NPZ , it holds that P ∼ PZ . For the application that follows in this

thesis, we consider the less stringent case that PZ ≪ P, and the explication of the

equivalence of the two probability measures is left for future work.

Now, let P|Ft denote the restriction of P to the sub–σ–algebra Ft, where P|Ft(A) =

P(A) for all A ∈ Ft, and likewise (PFt)|Fs the restriction of P|Ft to Fs for all t0 ≤ s <

t < ∞, where (P|Ft)|Fs(A) = P|Fs(A) = P(A) for all A ∈ Fs. By the same argument

as above, for all t ∈ [t0,∞), PZ
t ≪ P|Ft , and for all t0 ≤ s < t < ∞, PZ

t|s ≪ (P|Ft)|Fs .

As such, by the Radon–Nikodym theorem, there exists an Ft–measurable function

ϱt|s(ω) : Ω → R+
0 , such that

PZ
t|s(A) =

∫
{ω∈A}

ϱt|s(ω)dP|Fs(ω) (4.1.1)

for all A ∈ Ft.

By construction, it holds that EP[ϱt|s|Fs] = 1 for all 0 ≤ s < t < ∞, and for an

Ft–adapted random variable Yt, we can write

EPZ

[Yt|Fs] = EPZ
t|s [Yt] = E(P|Ft )|Fs [ϱt|sYt] = EP[ϱt|sYt|Fs]. (4.1.2)

We may now define the Radon–Nikodym derivative explicitly.

Definition 4.1.1. Recall Definition 3.1.1 for a continuous quantile process (Zt)t∈[t0,∞)

with driving process (Yt)t∈[0,∞). Let F
P
Y denote the distribution associated to the driving

process under the P–measure. The Radon–Nikodym derivative in Eq. (4.1.1) is given

by

ϱt|s(ω) =
dF P

Y (t, Q (t, Fζ (Yt(ω))) |Fs)

dF P
Y (t, Yt(ω)|Fs)

(4.1.3)

for all t0 ≤ s < t <∞ and all ω ∈ Ω, where the derivative is taken with respect to the
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second argument, and so

ϱt|s(ω) =
fP
Y (t, Q (t, Fζ (Yt(ω))) |Fs)

f (t, Q (t, Fζ (Yt(ω))))

fζ (Yt(ω))

fP
Y (t, Yt(ω)|Fs)

. (4.1.4)

Assuming the existence of the derivatives ∂uQζ(u; ξ), ∂zFζ(z; ξ) = fζ(z; ξ) and ∂yF (t, y;θ) =

f(t, y;θ), the (unconditional/ marginal) Radon–Nikodym derivative is given by

ϱt(ω) =
fP
Y (t, Q (t, Fζ(Yt(ω))))

f (t, Q (t, Fζ(Yt(ω))))

fζ(Yt(ω))

fP
Y (t, Yt(ω))

(4.1.5)

for t0 = s < t <∞ and for all ω ∈ Ω. The case where (Zt) is a discrete quantile process

is similar and one may consider the ratio of conditional probability mass functions of

(Zt) and (Yt) under P.

4.2 The multidimensional case

We conclude this chapter by considering the multidimensional random–level quantile

process, given by Eq. (3.4.1). Whilst the driving process is multivariate, with dimen-

sion m > 1, the output quantile process is univariate by construction and so we may

consider Definition 4.0.2 for the distorted measures induced by (Zt)t∈[t0,∞). That is,

PZ
t (A) := P {Zt ∈ A} =

∫
{
ω∈Ω :Qζ

(
C
(
t,F1

(
t,Y

(1)
t (ω)

)
,...,Fm

(
t,Y

(m)
t (ω)

)))
∈A

} dP(ω) (4.2.1)

for all A ∈ Ft and t ∈ [t0,∞).

Consider the special case whereby C(t, u1, . . . , um; θ̃) = CY (t, u1, . . . , um; θ̃) and

Fj(t, y;θj) = FY (j)(t, y;θj) for all j = 1, . . . ,m, i.e., the implicit copula is used in

the construction of the multidimensional quantile process—see the discussion following

Definition 3.4.1. Here, we may simplify the expression for the probability measure

induced by the quantile process, using the Kendall distribution function, defined as

follows.

Definition 4.2.1. Consider Definition 3.4.1 where Qζ(u; ξ) : [0, 1] → Dζ ⊆ R is

a quantile function, and assume Fj(t, y;θj) = FY (j)(t, y;θj) for j = 1, . . . ,m is the

distribution function associated to each margin of the multivariate driving process (Yt)

so that U
(j)
t

d
= FY (j)(t, Y

(j)
t ;θ) is uniformly distributed on [0, 1] for all j = 1, . . . ,m.



4.2 The multidimensional case 91

For all t ∈ [t0,∞), define the random variable

Ct
d
= CY (t, FY (1)(t, Y

(1)
t ), . . . , FY (m)(t, Y

(m)
t )). (4.2.2)

The distribution function of Ct for t ∈ [t0,∞) is given by the Kendall distribution

function KCY
(t, v) : [t0,∞) × [0, 1] → [0, 1], where KCY

(t, v) := P(Ct ≤ v) for all

v ∈ [0, 1].

The properties of the Kendall distribution function are discussed by Capéraa et al.

(1997), Genest and Rivest (1993, 2001) and Nelsen et al. (2009). It follows that for

any z ∈ Dζ , the marginal distorted measure induced by the multidimensional quantile

process is given by PZ
t ((infDζ , z]) = KCY

(t, Fζ(z)) for all t ∈ [t0,∞). The distribution

function Fζ = Q−
ζ may be approximated if a closed–form or analytical expression for

it does not exist. In this context, the Radon–Nikodym derivative in Eq. (4.1.1), where

PZ
t|s is the restriction of the measure PZ in Eq. (4.2.1) to the sub–σ–algebra Fs, is

given by

ϱt|s(ω) =
dKC (t, Qζ (Yt(ω)) |Fs)

dF P
Y (t, Yt(ω)|Fs)

(4.2.3)

for all 0 ≤ s < t <∞ and all ω ∈ Ω.



Chapter 5

Stochastic ordering

In this chapter we consider random–level quantile processes, as given by Definition

3.1.1, and derive the conditions under which the composite map preserves stochastic

ordering of the driving processes to produce a stochastic ordering of the output quantile

processes. We consider first– and second–order stochastic dominance.

The stochastic ordering of risks plays an important role in decision making, risk

measures and valuation frameworks. In decision theory—specifically, expected util-

ity theory—the maximisation of von Neumann–Morgenstern, see Morgenstern and

Von Neumann (1953), non-decreasing (resp. non-decreasing and concave) utility func-

tions by rational market participants equates to the notion of first-order (resp. second-

order) stochastic dominance. In the context of risk measures, if one risk is preferred to

another under stochastic dominance (of some order), the risk measure for the preferred

risk should be less than that of the other risk if the risk measure considered preserves

stochastic ordering (of that order). The monotonicity of risk measures with respect to

stochastic orderings has been considered, for example by Bäuerle and Müller (2006),

De Giorgi (2005), de Vries et al. (2006), Goovaerts et al. (2004), Pflug (1999) and Wirch

and Hardy (2001), and the references therein, largely in the characterisation of con-

sistent risk measures. Drawing these together, valuation frameworks with preserved

stochastic ordering (of some order) imply monotonic behaviour between the level of

risk and the price associated to some contract dependent on the risk, e.g., an insur-

ance premium. That is, assuming investors act rationally, it is desirable for valuation

frameworks to preserve the stochastic dominance of risks. The results presented in this

chapter thus lead to the establishment of desirable properties in the novel valuation
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principle developed in the following chapter.

We begin with recalling the notion of stochastic ordering, as presented by Levy

(1992), adapted to our context of quantile processes, given by Definition 3.1.1. We

consider the compact supports [zi, zi] ⊆ R and [y
i
, yi] ⊆ R where zi, zi ∈ R with zi < zi

and yi, yi ∈ R with y
i
< yi, for i = 1, 2. We consider the quantile processes marginally

on the timeline [t0,∞), t0 > 0, allowing us to apply static stochastic ordering results

to the dynamic setting. That is, we wish to observe when families of quantile processes

satisfy stochastic ordering results at all fixed times t ∈ [t0,∞). In what follows, we

drop the notational dependence of distribution and quantile functions on the vectors

of parameters.

Definition 5.0.1. Recall Definition 3.1.1, where Qζi(u) : [0, 1] → [zi, zi] are quan-

tile functions and Fi(t, y) : (0,∞) × [y
i
, yi] → [0, 1] are distribution functions for

i = 1, 2. Consider the quantile processes Z
(i)
t

d
= Qζi(Fi(t, Y

(i)
t )) with marginal distribu-

tions FZ(i)(t, zi) = P(Z(i)
t ≤ zi), for zi ∈ [zi, zi]. We say that (Z

(1)
t )t∈[t0,∞) dominates

(Z
(2)
t )t∈[t0,∞) by first–, or second–order stochastic dominance on

Dζ := [z0(t),max{z1, z2}], where z0(t) ∈ [min{z1, z2},max{z1, z2}) with
FZ(1)(t, z0(t)) = FZ(2)(t, z0(t)), if, and only if, for all t ∈ [t0,∞) the following hold,

respectively:

FOSD: FZ(2)(t, z)− FZ(1)(t, z) ≥ 0, for all z ∈ Dζ,

SOSD:
∫ z

z0(t)
[FZ(2)(t, x)− FZ(1)(t, x)] dx ≥ 0, for all z ∈ Dζ.

In either stochastic dominance criterion, strict inequality is required for at least one

z ∈ Dζ and all t ∈ [t0,∞)|.

If (Z
(1)
t ) dominates (Z

(2)
t ) by first–order (resp. second–order) stochastic dominance

on Dζ , we write Z
(1)
t ≿FOSD Z

(2)
t (resp. Z

(1)
t ≿SOSD Z

(2)
t ) on Dζ .

The relation between risk preferences via utility functions with the FOSD and SOSD

criterion are given, with proofs, by Hadar and Russell (1969), Hanoch and Levy (1969)

and Rothschild and Stiglitz (1970).
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5.1 First–order stochastic dominance of univariate

quantile processes

We begin by considering two distinct quantile processes, constructed by the transfor-

mation of two driving processes such that one driving process dominates the other in

the first order. The conditions under which the pair of composite maps preserve the

FOSD of the driving processes are given in the following Proposition, where the most

general case is considered. Here, the quantile and distribution functions used in the

two composite maps are distinct, and the distribution function is not that associated

to the law of the driving process, i.e., Fi ̸= FY (i) . In the following two Corollaries,

we consider the case where Fi = FY (i) for both composite maps, and then that where

the two driving processes used to construct the two quantile processes are distribu-

tionally indistinct. This covers all possible ‘types’ of random–level quantile process

constructions.

Proposition 5.1.1. Consider (Z
(i)
t )t∈[t0,∞), i = 1, 2, in Definition 5.0.1. Define

y0(t) := {y0 ∈ [min{y
1
, y

2
},max{y1, y2}] : FY (1)(t, y0) = FY (2)(t, y0)} (5.1.1)

and assume Y
(1)
t ≿FOSD Y

(2)
t on DY := [y0(t),max{y1, y2}] for all t ∈ [t0,∞). It holds

that Z
(1)
t ≿FOSD Z

(2)
t on Dζ := [z0(t),max{z1, z2}], where

z0(t) := {max z0 ∈ {[z1, z1] ∪ [z2, z2]} : z0 ≤ Qζ2(F2(t, y0(t)))

& FZ(1)(t, z0) = FZ(2)(t, z0)} ,
(5.1.2)

if Qζ1 (F1 (t, y)) ≥ Qζ2 (F2 (t, y)) for all y ∈ DY and t ∈ [t0,∞). That is, first–order

stochastic dominance is preserved under the pair of composite maps at each time.

Proof. Since, by assumption, Y
(1)
t ≿FOSD Y

(2)
t on DY , by the definition of FOSD

it holds that FY (1)(t, y) ≤ FY (2)(t, y) for all y ∈ DY and t ∈ [t0,∞) with strict in-

equality for at least one y ∈ DY . The quantile processes are constructed as Z
(i)
t

d
=

Qζi(Fi(t, Y
(i)
t )) for i = 1, 2, and so we may write Y

(i)
t

d
= Qi(t, Fζi(Z

(i)
t )). It follows that

FY (i)(t, y) = P
(
Y

(i)
t ≤ y

)
= P

(
Qi

(
t, Fζi

(
Z

(i)
t

))
≤ y
)

= P
(
Z

(i)
t ≤ Qζi (Fi (t, y))

)
= FZ(i) (t, Qζi (Fi (t, y)))



5.1 First–order stochastic dominance of univariate quantile processes 95

for all y ∈ DY , t ∈ [t0,∞) and so, by assumption,

FZ(1) (t, Qζ1 (F1 (t, y))) ≤ FZ(2) (t, Qζ2 (F2 (t, y))) (5.1.3)

for all y ∈ DY , t ∈ [t0,∞). Eq. (5.1.3) can be written as FZ(1) (t, z1(y)) ≤ FZ(2) (t, z2(y))

where zi(y) = Qζi(Fi(t, y)), for y ∈ DY and i = 1, 2. However, we need to show that

FZ(1) (t, z) ≤ FZ(2) (t, z) for all z ∈ Dζ , for some Dζ ⊆ [min{z1, z2},max{z1, z2}], to
be determined. We consider the following cases: First, we assume that z1(y) ≥ z2(y).

Since FZ(i)(t, z), i = 1, 2, are increasing functions in z for all t ∈ [t0,∞), it holds that

FZ(1)(t, z2(y)) ≤ FZ(1)(t, z1(y)) ≤ FZ(2)(t, z2(y)) ≤ FZ(2)(t, z1(y)), (5.1.4)

so that FZ(1)(t, z2(y)) ≤ FZ(2)(t, z2(y)) and FZ(1)(t, z1(y)) ≤ FZ(2)(t, z1(y)) for all y ∈ DY

and t ∈ [t0,∞). It then follows that FZ(1)(t, z) ≤ FZ(2)(t, z) for all

z ∈ [min
i
Qζi(Fi(t, y0(t))),max{z1, z2}] = [Qζ2(F2(t, y0(t))),max{z1, z2}], (5.1.5)

with strict inequality for at least the values z = zi(y
∗), i = 1, 2, where y∗ ∈ DY is any

value such that FY (1)(t, y∗) < FY (2)(t, y∗), and hence Z
(1)
t ≿FOSD Z

(2)
t on Dζ ⊆ R for

t ∈ [t0,∞).

The situation considered next is that in which Fi = FY (i) is the distribution function

applied in the composite map, where FY (i) is the marginal distribution of each driving

process at t ∈ [t0,∞) for i = 1, 2. Here, we construct the quantile processes

Z
(i)
t

d
= Qζi(FY (i)(t, Y

(i)
t ))

d
= Qζi(U

(i)
t ) (5.1.6)

where U
(i)
t is uniformly distributed on [0, 1] for each t ∈ [t0,∞) and i = 1, 2.

Corollary 5.1.1. Consider the case where Fi(t, yi) = FY (i)(t, yi) for i = 1, 2, and all

yi ∈ [yi, yi], t ∈ (0,∞). Assume Y
(1)
t ≿FOSD Y

(2)
t on DY where DY is defined as in

Proposition 5.1.1. It holds that Z
(1)
t ≿FOSD Z

(2)
t on Dζ, defined as in Proposition 5.1.1,

for all t ∈ [t0,∞), if Qζ1(u) ≥ Qζ2(u) for all u ∈ [FY (1)(t, y0(t)), 1] and t ∈ [t0,∞).

Proof. Since, by assumption, Y
(1)
t ≿FOSD Y

(2)
t on DY for each t ∈ (0,∞), by the

definition of FOSD it holds that FY (1)(t, y) ≤ FY (2)(t, y) for all y ∈ DY and t ∈ [t0,∞)
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with strict inequality for at least one y ∈ DY . The quantile processes are constructed

as Z
(i)
t

d
= Qζi(FY (i)(t, Y

(i)
t )) for i = 1, 2, and so we may write Y

(i)
t

d
= QY (i)(t, Fζi(Z

(i)
t )).

It follows that

FY (i)(t, y) = P
(
Y

(i)
t ≤ y

)
= P

(
QY (i)

(
t, Fζi

(
Z

(i)
t

))
≤ y
)

= P
(
Z

(i)
t ≤ Qζi (FY (i) (t, y))

)
= FZ(i) (t, Qζi (FY (i) (t, y)))

for all y ∈ DY , t ∈ [t0,∞) and so, by assumption,

FZ(1) (t, Qζ1 (FY (1) (t, y))) ≤ FZ(2) (t, Qζ2 (FY (2) (t, y))) (5.1.7)

for all y ∈ DY , t ∈ [t0,∞). By the same argument as the proof to Proposition 5.1.1,

under the assumption that the inequality 5.1.7 holds, FZ(1)(t, z) ≤ FZ(2)(t, z) for all

z ∈ Dζ , with strict inequality for at least one z ∈ Dζ whenever Qζ1(FY (1)(t, y)) ≥
Qζ2(FY (2)(t, y)) for all y ∈ DY , t ∈ [t0,∞).

Since u1(y) := FY (1)(t, y) ≤ FY (2)(t, y) =: u2(y) for all y ∈ DY , t ∈ [t0,∞), by the

increasing property of quantile functions, it holds that

Qζ1(u2(y)) ≥ Qζ1(u1(y)) ≥ Qζ2(u2(y)) (5.1.8)

so that Qζ1(u2(y)) ≥ Qζ2(u2(y)), and that

Qζ1(u1(y)) ≥ Qζ2(u2(y)) ≥ Qζ2(u1(y)) (5.1.9)

so that Qζ1(u1(y)) ≥ Qζ2(u1(y)) for all y ∈ DY and t ∈ [t0,∞). As such, the

condition Qζ1(FY (1)(t, y)) ≥ Qζ2(FY (2)(t, y)) reduces to Qζ1(u) ≥ Qζ2(u) for all u ∈
[FY (1)(t, y0(t)), 1], as required.

Now we present the corollary for the case where the driving processes are equal in

finite–dimensional distributions.

Corollary 5.1.2. Assume Y
(1)
t

d
= Y

(2)
t , i.e., FY (1)(t, y) = FY (2)(t, y) for all y ∈

[min{y
1
, y

2
},max{y1, y2}] and t ∈ (0,∞). It holds that Z

(1)
t ≿FOSD Z

(2)
t on D̃Z :=

[z̃0(t),max{z1, z2}], if Qζ1(F1(t, y)) ≥ Qζ2(F2(t, y)) for all y ∈ D̃Y := [ỹ0(t),max{y1, y2}],
for some ỹ0(t) ∈ [min{y

1
, y

2
},max{y1, y2}), with strict inequality for at least one
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y ∈ D̃Y , where

z̃0(t) := {max z0 ∈ {[z1, z1] ∪ [z2, z2]} : z0 ≤ Qζ2(F2(t, ỹ0(t)))

& FZ(1)(t, z0) = FZ(2)(t, z0)}
(5.1.10)

for all t ∈ [t0,∞). However, in the case that Fi(t, y) = FY (i)(t, y) for i = 1, 2, for all

y ∈ DY , and t ∈ (0,∞), then Z
(1)
t ≿FOSD Z

(2)
t on DZ := [z0,max{z1, z2}] where

z0 ∈ [min{z1, z2},max{z1, z2}] (5.1.11)

with Fζ1(z0) = Fζ2(z0) for all t ∈ [t0,∞) if Qζ1(u) ≥ Qζ2(u) for all u ∈ [Fζ1(z0), 1],

with strict inequality for at least one u.

Proof. The proof is similar to that of Proposition 5.1.1. However, to ensure

FZ(1)(t, z) < FZ(2)(t, z) (5.1.12)

for at least one z ∈ D̃Z and all t ∈ [t0,∞), see Definition 5.0.1 of FOSD, Qζ1(F1(t, y)) >

Qζ2(F2(t, y)) is required for at least one y ∈ D̃Y . This follows from the fact that there

does not exist some y ∈ [min{y1, y2},max{y1, y2}] such that FY (1)(t, y) < FY (2)(t, y) to

impose Inequality 5.1.12 whenever Qζ1(F1(t, y)) ≥ Qζ2(F2(t, y)) without strict inequal-

ity for at least one y ∈ D̃Y holding almost surely.

In the case where Fi(t, y) = FY (i)(t, y), i = 1, 2, it holds that

FZ(i)(t, z) = P
(
Z

(i)
t ≤ z

)
= P

(
Y

(i)
t ≤ QY (i) (t, Fζi(z))

)
= Fζi(z), (5.1.13)

i.e., the quantile process is stationary. Thus, by the definition of FOSD, Z
(1)
t ≿FOSD

Z
(2)
t on DZ := [z0,max{z1, z2}] when Fζ1(z) ≤ Fζ2(z) for all z ∈ DZ with strict

inequality for at least one z and where Fζ1(z0) = Fζ2(z0). This is equivalent to Qζ1(u) ≥
Qζ2(u) for all u ∈ [Fζ1(z0), 1] with strict inequality for at least one u.

This concludes the results for first–order stochastic dominance. The following exam-

ple applies the result given in Corollary 5.1.2 for canonical Tukey–gh quantile processes,

given by Definition 3.1.2 with quantile function Qζ = QTgh
given by Eq. (2.1.11).
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Example 5.1.1. Let (W
(i)
t )t∈[0,∞) for i = 1, 2 be two independent Brownian motions

and consider the canonical Tukey–gh quantile processes

Z
(i)
t

d
= QTgh,i

(
FW

(
t,W

(i)
t

)
; gi, hi

)
d
=

1

gi

[
exp

(
giW

(i)
t√
t

)
− 1

]
exp

(
h

2t

(
W

(i)
t

)2)
(5.1.14)

for i = 1, 2, gi ∈ R \ 0, hi ∈ R+
0 and all t ∈ [t0,∞). The location and scale parameters

Ai and Bi, respectively, are standardised. As the (indistinct) distribution functions of

the driving processes (Brownian motions) are used in the composite maps producing

such quantile processes, we consider Corollary 5.1.2 with Fi(t, y) = FW (i)(t, y) for all

y ∈ R. We consider the following cases:

(i) g1 > g2, h1 = h2. For fixed h ∈ R+
0 , there is monotonicity with respect to the

projection g 7→ QTgh
(u; g, h) since ∂QTgh

(u; g, h)/∂g ≥ 0 for all g ∈ R \ 0. It

follows that Z
(1)
t ≿FOSD Z

(2)
t on DTgh

= R for t ∈ [t0,∞).

(ii) g1 = g2, h1 > h2. Here, QTgh,1
(u; g1, h1) ≥ QTgh,2

(u; g2, h2) for all u ∈ [0.5, 1] with

equality at u = 0.5 and so Z
(1)
t ≿FOSD Z

(2)
t on [QTgh,1

(0.5), 1].

(iii) g1 > g2, h1 > h2. Then there exists some 0 ≤ u∗ < 0.5 such that Z
(1)
t ≿FOSD Z

(2)
t

on [QTgh,1
(u∗), 1]. Here, QTgh,1

(u∗) = QTgh,2
(u∗) and QTgh,1

(u) > QTgh,2
(u) for all

u ∈ (u∗, 1]. The larger g1−g2, or the smaller h1−h2, the closer u∗ is to 0. When

u∗ = 0, Z
(1)
t ≿FOSD Z

(2)
t on R. The rate of change in u∗ as g1 − g2 increases for

fixed values of h1 − h2 is illustrated in Figure 5.1.

(iv) g1 > g2, h1 < h2. Then there exists some 0.5 < u∗ ≤ 1 such that Z
(2)
t ≿FOSD Z

(1)
t

on [QTgh,1
(u∗), 1]. Here, QTgh,1

(u∗) = QTgh,2
(u∗) and QTgh,2

(u) > QTgh,1
(u) for all

u ∈ (u∗, 1]. The larger g1−g2, or the smaller h2−h1, the closer u∗ is to 1. When

u∗ = 1, Z
(1)
t ≿FOSD Z

(2)
t on R.

As an example, cases (i)—(iv) are illustrated for values of the g and h parameters in

Table 5.1.
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g1 g2 h1 h2 u∗ Outcome

2 0.8 0.4 0.05 0.0218 Z
(1)
t ≿FOSD Z

(2)
t on [−1.109,∞)

3 0.5 0.2 0.05 0 Z
(1)
t ≿FOSD Z

(2)
t on R

2 0.8 0.05 0.4 1 Z
(1)
t ≿FOSD Z

(2)
t on R

2 1.5 0.05 0.2 0.985 Z
(2)
t ≿FOSD Z

(1)
t on [42.36,∞)

Table 5.1: FOSD results for Tukey–gh quantile processes for different values of the
skewness and kurtosis parameters.

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

g1 − g2

u
∗

h1 − h2
0.2
0.35
0.5

Figure 5.1: Values of u∗ as g1 − g2 is increased for g2 = 0.1 fixed, and h1 − h2 ∈
{0.2, 0.35, 0.5} with h2 = 0.05 fixed.

5.2 Second–order stochastic dominance of univari-

ate quantile processes

We now proceed to show under what conditions the composite maps used in the con-

struction of two quantile processes preserve the SOSD of the driving processes. The

same cases considered in Section 5.1 are considered in this section. We us the short-

hand notation ∂z ≡ ∂/∂z.
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Proposition 5.2.1. Consider (Z
(i)
t )t∈[t0,∞), i = 1, 2, in Definition 5.0.1. Define

y0(t) :=
{
y0 ∈ [min{y

1
, y

2
},max{y1, y2}] : FY (1)(t, y0) = FY (2)(t, y0)

}
(5.2.1)

and assume Y
(1)
t ≿SOSD Y

(2)
t on DY := [y0(t),max{y1, y2}] for all t ∈ [t0,∞). It holds

that Z
(1)
t ≿SOSD Z

(2)
t on Dζ := [z0(t),max{z1, z2}] where z0(t) := min

i
Qζi(Fi(t, y0(t)),

for i = 1, 2, and for all t ∈ [t0,∞), if any of the following conditions are satisfied for

all z ∈ Dζ and t ∈ [t0,∞):

(i) ∂zQ2(t, Fζ2(z)) ≤ 1 ≤ ∂zQ1(t, Fζ1(z)).

(ii) ∂zQ2(t, Fζ2(z)) ≥ 1, ∂zQ1(t, Fζ1(z)) ≥ 1, and
FZ(2)(t, z)

FZ(1)(t, z)
≤ ∂zQ1(t, Fζ1(z))− 1

∂zQ2(t, Fζ2(z))− 1
.

(iii) ∂zQ2(t, Fζ2(z)) ≤ 1, ∂zQ1(t, Fζ1(z)) ≤ 1, and
FZ(2)(t, z)

FZ(1)(t, z)
≥ 1− ∂zQ1(t, Fζ1(z))

1− ∂zQ2(t, Fζ2(z))
.

Proof. Since, by assumption, Y
(1)
t ≿SOSD Y

(2)
t for all t ∈ (0,∞), by the definition of

SOSD it holds that
∫ y

y0(t)
[FY (2)(t, x)− FY (1)(t, x)]dx ≥ 0 for all y ∈ DY and t ∈ [t0,∞),

with strict inequality for at least one y ∈ DY . The quantile processes are constructed

as Z
(i)
t

d
= Qζi(Fi(t, Y

(i)
t )) for i = 1, 2, and so we may write Y

(i)
t

d
= Qi(t, Fζi(Z

(i)
t )). It

follows that

FY (i)(t, y) = P
(
Y

(i)
t ≤ y

)
= P

(
Qi

(
t, Fζi

(
Z

(i)
t

))
≤ y
)

= P
(
Z

(i)
t ≤ Qζi (Fi (t, y))

)
= FZ(i) (t, Qζi (Fi (t, y)))

(5.2.2)

for all y ∈ DY , t ∈ [t0,∞) and so, by assumption,∫ y

y0(t)

[FZ(2) (t, Qζ2 (F2 (t, x)))− FZ(1) (t, Qζ1 (F1 (t, x)))] dx ≥ 0 (5.2.3)

for all y ∈ DY and t ∈ [t0,∞), with strict inequality for at least one y ∈ DY . By

making the changes of variables vi := Qζi(Fi(t, x)) for i = 1, 2 so that dvi/dx =

fi(t, x)/fζi(Qζi(Fi(t, x))), Eq. (5.2.3) can be rewritten as

∫ Qζ2
(F2(t,y))

Qζ2
(F2(t,y0(t)))

FZ(2) (t, v2)
fζ2 (v2)

f2 (t, Q2 (t, Fζ2 (v2)))
dv2

−
∫ Qζ1

(F1(t,y))

Qζ1
(F1(t,y0(t)))

FZ(1) (t, v1)
fζ1 (v1)

f1 (t, Q1 (t, Fζ1 (v1)))
dv1 ≥ 0.

(5.2.4)
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If Qζ1(F1(t, y)) ≥ Qζ2(F2(t, y)) for all y ∈ DY and t ∈ [t0,∞), then by Proposition

5.1.1, Z
(1)
t ≿FOSD Z

(2)
t which implies Z

(1)
t ≿SOSD Z

(2)
t . We consider the case where

Qζ1(F1(t, y)) ≤ Qζ2(F2(t, y)) for at least one y ∈ DY . It holds that

0 ≤
∫ Qζ2

(F2(t,y))

Qζ2
(F2(t,y0(t)))

FZ(2) (t, v2)
fζ2 (v2)

f2 (t, Q2 (t, Fζ2 (v2)))
dv2

−
∫ Qζ1

(F1(t,y))

Qζ1
(F1(t,y0(t)))

FZ(1) (t, v1)
fζ1 (v1)

f1 (t, Q1 (t, Fζ1 (v1)))
dv1

(5.2.5)

which, since it holds that Qζ2(F2(t, y0(t))) ≥ miniQζi(Fi(t, y0(t)) and Qζ2(F2(t, y) ≥
miniQζi(Fi(t, y)), we have

≤
∫ max

i
Qζi

(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t)))

FZ(2)(t, v)
fζ2 (v)

f2 (t, Q2 (t, Fζ2 (v)))
dv

−


∫ max

i
Qζi

(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t)))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv

−
∫ Qζ1

(F1(t,y0(t)))

min
i

Qζi
(Fi(t,y0(t)))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv

−
∫ max

i
Qζi

(Fi(t,y))

Qζ1
(F1(t,y))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv

}
.

(5.2.6)

Rearranging terms, Eq. (5.2.6) is equal to

∫ max
i

Qζi
(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t))

[
FZ(2)(t, v)

fζ2 (v)

f2 (t, Q2 (t, Fζ2 (v)))
− FZ(1)(t, v)

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))

]
dv

+

∫ Qζ1
(F1(t,y0(t)))

min
i

Qζi
(Fi(t,y0(t)))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv

+

∫ max
i

Qζi
(Fi(t,y))

Qζ1
(F1(t,y))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv

≤
∫ max

i
Qζi

(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t))

[
FZ(2)(t, v)

fζ2 (v)

f2 (t, Q2 (t, Fζ2 (v)))
− FZ(1)(t, v)

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))

]
dv,

(5.2.7)

where the last inequality follows from FZ(i)(t, z), fζi(z), fi(t, Qi(Fζi(z))) ≥ 0 for all
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z ∈ Dζ , t ∈ [t0,∞) and so

∫ Qζ1
(F1(t,y0(t)))

min
i

Qζi
(Fi(t,y0(t)))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv ≥ 0,

∫ max
i

Qζi
(Fi(t,y))

Qζ1
(F1(t,y))

FZ(1)(t, v)
fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
dv ≥ 0

for all y ∈ DY , t ∈ [t0,∞), with strict inequality for at least one y ∈ DY .

For all z ∈ Dζ := [z0(t),max{z1, z2}], define

A(z) :=
fζ2(z)

f2 (t, Q2 (t, Fζ2(z)))
, (5.2.8)

B(z) :=
fζ1(z)

f1 (t, Q1 (t, Fζ1(z)))
. (5.2.9)

It holds that

A(z)FZ(2)(t, z)−B(z)FZ(1)(t, z) ≤ FZ(2)(t, z)− FZ(1)(t, z)

whenever either

(i) A(z) ≤ 1 and B(z) ≥ 1,

(ii) A(z), B(z) ≥ 1 and A(z)FZ(2)(t, z)−FZ(2)(t, z) ≤ B(z)FZ(1)(t, z)−FZ(1)(t, z), i.e.,

FZ(2)(t, z)/FZ(1)(t, z) ≤ (B(z)− 1)/(A(z)− 1),

(iii) A(z) ≥ 1, B(z) ≤ 1 and FZ(2)(t, z)−A(z)FZ(2)(t, z) ≥ FZ(1)(t, z)−B(z)FZ(1)(t, z),

i.e., FZ(2)(t, z)/FZ(1)(t, z) ≥ (1−B(z))/(1− A(z))

for all z ∈ Dζ , t ∈ [t0,∞). As such, whenever either condition (i)–(iii) hold with

A(z), B(z) given by Eq. (5.2.8) and (5.2.9), respectively, it follows that

0 ≤
∫ z

z0(t)

[
FZ(2)(t, v)

fζ2 (v)

f2 (t, Q2 (t, Fζ2 (v)))
− FZ(1)(t, v)

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))

]
dv

≤
∫ z

z0(t)

[FZ(2)(t, v)− FZ(1)(t, v)] dv

(5.2.10)

where z0(t) := min
i
Qζi(t, y0(t)) for all t ∈ [t0,∞) and z := max

i
Qζi(Fi(t, y)) for all
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y ∈ DY and t ∈ [t0,∞). If y := max y ∈ DY , then max
i
Qζi(Fi(t, y)) = max{z1, z2} :=

max z ∈ Dζ . Since the inequality (5.2.3) is strict for at least one y ∈ DY , that in Eq.

(5.2.10) will be strict for at least one z ∈ Dζ , corresponding to the composite map

transformation of such y value. Here, if the above conditions are satisfied, Z
(1)
t ≿SOSD

Z
(2)
t on Dζ := [z0(t),max{z1, z2}] by the definition of SOSD, as required.

In the next corollary, the driving processes are distinct and the distribution func-

tions F = FY (i) , corresponding to the marginals of the driving processes at t ∈ (0,∞),

are used in each composite map.

Corollary 5.2.1. Consider the case where Fi(t, yi) = FY (i)(t, yi) for i = 1, 2, and all

yi ∈ [yi, yi], t ∈ (0,∞). Assume Y
(1)
t ≿SOSD Y

(2)
t on DY , where DY is defined in

Proposition 5.2.1. It holds that Z
(1)
t ≿SOSD Z

(2)
t on Dζ for all t ∈ [t0,∞), if any of

the following conditions is satisfied for all z ∈ Dζ, defined in Proposition 5.2.1, and

t ∈ [t0,∞):

(i) ∂zQY (2)(t, Fζ2(z)) ≤ 1 ≤ ∂zQY (1)(t, Fζ1(z)).

(ii) ∂zQY (2)(t, Fζ2(z)) ≥ 1, ∂zQY (1)(t, Fζ1(z)) ≥ 1, and
Fζ2(z)

Fζ1(z)
≤ ∂zQY (1)(t, Fζ1(z))− 1

∂zQY (2)(t, Fζ2(z))− 1
.

(iii) ∂zQY (2)(t, Fζ2(z)) ≤ 1, ∂zQY (1)(t, Fζ1(z)) ≤ 1, and
Fζ2(z)

Fζ1(z)
≥ 1− ∂zQY (1)(t, Fζ1(z))

1− ∂zQY (2)(t, Fζ2(z))
.

Proof. The proof is analogous to that of Proposition 5.2.1, however it now holds that

FZ(i)(t, z) = P
(
Z

(i)
t ≤ z

)
= P

(
Qζi

(
FY (i)(t, Y

(i)
t

)
≤ z
)

= P
(
Y

(i)
t ≤ QY (i) (t, Fζi(z))

)
= FY (i) (t, QY (i) (t, Fζi(z))) = Fζi(z)

(5.2.11)

for i = 1, 2 and all z ∈ [min{z1, z2},max{z1, z2}] and t ∈ [t0,∞), and so we replace

FZ(i)(t, z) and Qi(t, u) with Fζi(z) and QY (i)(t, u), respectively, in conditions (i)–(iii) in

the proposition.

Analogous to the FOSD analysis in Section 5.1, we next give conditions for SOSD

in the case where the two quantile processes are generated by driving process that are

equal in distribution, however under different composite maps.
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Corollary 5.2.2. Assume Y
(1)
t

d
= Y

(2)
t , that is FY (1)(t, y) = FY (2)(t, y) for all y ∈

[min{y
1
, y

2
},max{y1, y2}] and t ∈ (0,∞). Define Dζ := [z0(t),max{z1, z2}] where

z0(t) := {z0 ∈ [min{z1, z2},max{z1, z2}) : FZ(1)(t, z0) = FZ(2)(t, z0)} (5.2.12)

for all t ∈ [t0,∞). It holds that Z
(1)
t ≿SOSD Z

(2)
t on Dζ for all t ∈ [t0,∞) if either of

the conditions (i)–(iii) in Proposition 5.2.1 hold for all z ∈ Dζ and t ∈ [t0,∞), with

strict inequality for at least one z ∈ Dζ. If, however, Fi(t, y) = FY (i)(t, y) for i = 1, 2

and for all y ∈ DY and t ∈ (0,∞), then Z
(1)
t ≿SOSD Z

(2)
t on Dζ for all t ∈ [t0,∞)

if either of the conditions (i)–(iii) in Corollary 5.2.1 hold for all z ∈ Dζ, with strict

inequality for at least one z, and all t ∈ [t0,∞).

Proof. The proof is similar to that of Proposition 5.2.1, however it holds that

FY (1)(t, y) = FY (2)(t, y) for all y ∈ [min{y1, y2},max{y1, y2}] and t ∈ (0,∞), and so∫ y

min{y1,y2}
[FY (2)(t, x)− FY (1)(t, x)]dx = 0 (5.2.13)

for all y ∈ [min{y1, y2},max{y1, y2}] and t ∈ [t0,∞). By Eq. (5.2.2), this can equiva-

lently be written as∫ y

y0(t)

[FZ(2)(t, Qζ2 (F2(t, x))− FZ(1)(t, Qζ1 (F1(t, x))] dx = 0 (5.2.14)

for all y ∈ [min{y1, y2},max{y1, y2}], where y0(t) ∈ [min{y1, y2},max{y1, y2}}). Con-

sider the case where Qζ1(F1(t, y)) ≤ Qζ2(F2(t, y)) for all t ∈ [t0,∞) and at least one

y ∈ [min{y1, y2},max{y1, y2}] so that, by Proposition 5.1.1, Z
(1)
t ̸≿FOSD Z

(2)
t . Making

the changes of variables vi := Qζi(Fi(t, x)) for i = 1, 2, Eq. (5.2.14) can be rewritten

as

0 =

∫ Qζ2
(F2(t,y))

Qζ2
(F2(t,y0(t)))

fζ2(v2)

f2 (t, Q2 (t, Fζ2(v2)))
FZ(2)(t, v2)dv2

−
∫ Qζ1

(F1(t,y))

Qζ1
(F1(t,y0(t)))

fζ1(v1)

f1 (t, Q1 (t, Fζ1(v1)))
FZ(1)(t, v1)dv1

(5.2.15)

which, since it holds that Qζ2(F2(t, y0(t))) ≥ miniQζi(Fi(t, y0(t))) and Qζ2(F2(t, y)) ≥
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miniQζi(Fi(t, y)), we have

0 ≤
∫ max

i
Qζi

(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t)))

fζ2(v2)

f2 (t, Q2 (t, Fζ2(v2)))
FZ(2)(t, v2)dv2

−


∫ max

i
Qζi

(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t)))

fζ1(v1)

f1 (t, Q1 (t, Fζ1(v1)))
FZ(1)(t, v1)dv1

−
∫ max

i
Qζi

(Fi(t,y))

Qζ1
(F1(t,y))

fζ1(v1)

f1 (t, Q1 (t, Fζ1(v1)))
FZ(1)(t, v1)dv1

−
∫ Qζ1

(F1(t,y0(t)))

min
i

Qζi
(Fi(t,y0(t)))

fζ1(v1)

f1 (t, Q1 (t, Fζ1(v1)))
FZ(1)(t, v1)dv1

 .

(5.2.16)

Rearranging terms, Eq. (5.2.16) is equal to

∫ max
i

Qζi
(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t)))

[
fζ2(v)

f2 (t, Q2 (t, Fζ2(v)))
FZ(2)(t, v)−

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
FZ(1)(t, v)

]
dv

+

∫ max
i

Qζi
(Fi(t,y))

Qζ1
(F1(t,y))

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
FZ(1)(t, v)dv

+

∫ Qζ1
(F1(t,y0(t)))

min
i

Qζi
(Fi(t,y0(t)))

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
FZ(1)(t, v)dv

≤
∫ max

i
Qζi

(Fi(t,y))

min
i

Qζi
(Fi(t,y0(t)))

[
fζ2(v)

f2 (t, Q2 (t, Fζ2(v)))
FZ(2)(t, v)−

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
FZ(1)(t, v)

]
dv

(5.2.17)

for all y ∈ [y0(t),max{y1, y2}] and t ∈ [t0,∞). By the same argument given in the

proof of Proposition 5.2.1,

fζ2(z)

f2 (t, Q2 (t, Fζ2(z)))
FZ(2)(t, z)−

fζ1(z)

f1 (t, Q1 (t, Fζ1(z)))
FZ(1)(t, z) ≤ FZ(2)(t, z)− FZ(1)(t, z)

(5.2.18)

for all z ∈ Dζ , with strict inequality for at least one z ∈ Dζ , and all t ∈ [t0,∞) if the

inequalities (i)–(iii) hold for all z ∈ Dζ , with strict inequality for at least one z ∈ Dζ ,
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and all t ∈ [t0,∞). Here,

0 ≤
∫ z

z0(t)

[
fζ2(v)

f2 (t, Q2 (t, Fζ2(v)))
FZ(2)(t, v)−

fζ1(v)

f1 (t, Q1 (t, Fζ1(v)))
FZ(1)(t, v)

]
dv

≤
∫ z

z0(t)

[FZ(2)(t, v)− FZ(1)(t, v)] dv

(5.2.19)

where z0(t) := min
i
Qζi(Fi(t, y0(t))) for all t ∈ [t0,∞) and z := max

i
Qζi(Fi(t, y)) for all

y ∈ DY , and by the definition of SOSD, Z
(1)
t ≿SOSD Z

(2)
t on Dζ := [z0(t),max{z1, z2}]

as required. In the case where F1(t, y) = FY (1)(t, y) = FY (2)(t, y) = F2(t, y) for all

y ∈ [min{y1, y2},max{y1, y2}] and t ∈ (0,∞), we replace FZ(i)(t, z) and Qi(t, u) with

Fζi(z) and QY (i)(t, u) in the inequalities.

The following example considers the case where SOSD is satisfied, but FOSD does

not hold, for canonical Tukey–g quantile processes, given by Definition 3.1.2 with

quantile function Qζ = QTg given by Eq. (2.1.11) with h = 0.

Example 5.2.1. Consider two canonical Tukey–g quantile processes,

Z
(i)
t

d
= QTg,i

(FW (t,W
(i)
t ); gi)

d
=

1

g

[
exp

(
gW

(i)
t√
t

)
− 1

]
(5.2.20)

for i = 1, 2, gi ∈ R+ and all t ∈ [t0,∞). By the same argument given in Example

5.1.1, it holds that Z
(1)
t ≿FOSD Z

(2)
t if, and only if, g1 > g2. As such, Z

(1)
t ≿SOSD Z

(2)
t

if, and only if, g1 > g2. If g1 < g2, then by the same argument, that is Z
(2)
t ≿FOSD

Z
(1)
t =⇒ Z

(2)
t ≿SOSD Z

(1)
t , and so Z

(1)
t ̸≿SOSD Z

(2)
t . As such, when considering the

induced measure of a canonical Tukey–g quantile process, we have a risk ordering in

the skewness parameter. To treat the case where SOSD is satisfied but FOSD does not

hold, we consider the canonical Tukey–g case, see Definition 3.1.2, as follows.

Assume now that the skewness parameter is state–dependent. Let g2 ∈ R+ \ 0 and

g1 = g1(z) =

ga1 > g2, z ≤ 0

gb1 < g2, z > 0,
(5.2.21)

for all t ∈ [t0,∞) and where ga1 , g
b
1 ∈ R+ \ 0. It holds that Z

(1)
t ̸≿FOSD Z

(2)
t on

DTg := [−1/g2,∞). We have FZ(i)(t, z) = 0.5[1 + erf(log(giz + 1)/(gi
√
2))]. It follows
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that if ga1 , g
b
1, g2 are such that∫ 0

−1/g2

[
erf

(
log(g2x+ 1)

g2
√
2

)
− erf

(
log(ga1x+ 1)

ga1
√
2

)]
dx

≥
∫ ∞

0

[
erf

(
log(gb1x+ 1)

gb1
√
2

)
− erf

(
log(g2x+ 1)

g2
√
2

)]
dx,

(5.2.22)

then, by Definition 5.0.1, Z
(1)
t ≿SOSD Z

(2)
t on DTg . For example, take ga1 = 0.8,

gb1 = 0.2 and g2 = 0.3. The left–hand integral in Eq. (5.2.22) is equal to 0.1341347,

and the right–hand is equal to 0.0660684 and the inequality is satisfied so that, here,

Z
(1)
t ≿SOSD Z

(2)
t on DTg .

In the above propositions and corollaries, we derive the conditions under which,

in various constructed cases, we have FOSD and SOSD for the marginals of quan-

tile processes, that is at each t ∈ [t0,∞). As such, the results utilise the marginal

(finite–dimensional) distributions of the driving and quantile processes. If one wishes

to consider conditional stochastic dominance, that is conditional on the information

contained in the filtration up to some time t0 ≤ s < t < ∞, the conditional distribu-

tion functions are considered, e.g., FZ(t, z|Fs) for the quantile process. Here, we may

say Z
(1)
t ≿ Z

(2)
t conditional on the sub–σ–algebra Fs, where t0 ≤ s < t < ∞, for all

t ∈ [t0,∞), if the necessary conditions are satisfied for the statement to hold true.

5.3 First–order stochastic dominance of multidimen-

sional quantile processes

We conclude this section by providing a result on the stochastic ordering of multidi-

mensional random–level quantile processes, given by Definition 3.4.1. Recall, we have a

multivariate, Rm–valued driving process (Yt)t∈[0,∞) that produces a univariate quantile

process (Zt)t∈[t0,∞), t0 > 0. We consider the case in which the implicit copula is used

in the quantile process construction. Additionally, we refer to Capéraa et al. (1997)

and Nelsen et al. (2009) for the definition of Kendall stochastic ordering.

Definition 5.3.1. Let (Yt)t∈[0,∞) and (Xt)t∈[0,∞) be m–dimensional stochastic processes

for m > 1, with the joint distribution function of the margins of each process given by

FY (t, y1, . . . ym;ϑY ) : R+ × Rm → [0, 1] and FX(t, x1, . . . , xm;ϑX) : R+ × R → [0, 1],
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respectively. By Sklar’s theorem, see Nelsen (2007), there exists copulas CY and CX

such that FY (t, y1, . . . , ym;ϑY ) = CY (t, u1, . . . , um; θ̃Y ) and FX(t, x1, . . . , xm;ϑX) =

CX(t, u1, . . . , um; θ̃X) for all t ∈ (0,∞) and where ϑY ,ϑX , θ̃Y , θ̃X are vectors of pa-

rameters. At each t ∈ (0,∞), the Kendall distribution functions KCY
and KCX

of (Yt)

and (Xt), respectively are given by Definition 4.2.1. We say (Yt) dominates (Xt) by

Kendall stochastic order on Rm if, and only if, KCY
(t, v) ≤ KCX

(t, v) for all v ∈ [0, 1]

and t ∈ (0,∞), with strict inequality for at least one v. Here, we write Yt ≻K Xt for

all t ∈ (0,∞).

Equivalently, consider the definition of FOSD, given by Definition 5.0.1; it holds that

Yt ≻K Xt if, and only if, FY (t, Y
(1)
t , . . . , Y

(m)
t ;ϑY ) ≿FOSD FX(t,X

(1)
t , . . . , X

(m
t );ϑX)

for all t ∈ (0,∞)—see Nelsen et al. (2009). Using the notion of Kendall stochastic

ordering, we present the following result on the stochastic ordering of multidimensional

quantile process, where we omit any notional dependence on the vectors of parameters.

Proposition 5.3.1. Let (Yt) and (Xt) be m–dimensional Dm–valued, D ⊆ R, stochas-
tic processes with marginal laws FY (i)(t, y) and FX(i)(t, x) for i = 1, . . . ,m and t ∈
(0,∞), respectively, and joint distributions FY (t, y1, . . . , ym) and FX(t, x1, . . . , xm), re-

spectively. Let Qζ1(u) : [0, 1] → Dζ ⊆ R and Qζ2(u) : [0, 1] → Dζ be quantile functions

so that

Z
(1)
t

d
= Qζ1

(
CY

(
t, FY (1)

(
t, Y

(1)
t

)
, . . . , FY (m)

(
t, Y

(m)
t

)))
, (5.3.1)

Z
(2)
t

d
= Qζ2

(
CX

(
t, FX(1)

(
t,X

(1)
t

)
, . . . , FX(m)

(
t,X

(m)
t

)))
(5.3.2)

are multidimensional quantile processes, given by Definition 3.4.1, for t ∈ [t0,∞), and

where CY and CX are the implicit copulas determined by FY and FX , respectively.

Assume Yt ≻K Xt on Dm for all t ∈ (0,∞), then Z
(1)
t ≿FOSD Z

(2)
t on Dζ for all

t ∈ [t0,∞) if, and only if, Qζ1(u) ≥ Qζ2(u) for all u ∈ [0, 1].

Proof. The quantile processes are constructed as Z
(1)
t

d
= Qζ1(C

(1)
t ) and Z

(2)
t

d
= Qζ2(C

(2)
t ),

where

C
(1)
t

d
= CY

(
t, FY (1)

(
t, Y

(1)
t

)
, . . . , FY (m)

(
t, Y

(m)
t

))
, (5.3.3)

C
(2)
t

d
= CX

(
t, FX(1)

(
t,X

(1)
t

)
, . . . , FX(m)

(
t,X

(m)
t

))
(5.3.4)
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for all t ∈ (0,∞). It follows that

KCY
(t, v) = P

(
C

(1)
t ≤ v

)
= P

(
Fζ1

(
Z

(1)
t

)
≤ v
)

= P
(
Z

(1)
t ≤ Qζ1 (v)

)
= FZ(1) (t, Qζ1(v))

(5.3.5)

and, similarly, KCX
(t, v) = FZ(2)(t, Qζ2(v)) for all v ∈ [0, 1] and t ∈ (0,∞) with strict

inequality for at least one v ∈ [0, 1]. As such, by assumption, FZ(1)(t, Qζ1(v)) ≤
FZ(2)(t, Qζ2(v)) for all v ∈ [0, 1], t ∈ [t0,∞) and the rest of the proof follows by the

same argument as in the proof of Proposition 5.1.1, following Eq. (5.1.3).



Chapter 6

Distortion–based pricing and

valuation

In this chapter, we present a novel stochastic valuation principle, based on random–

level quantile processes, given by Definition 3.1.1. We utilise the distorted measures

induced by such processes, discussed in Chapter 4, and the stochastic ordering results

discussed in Chapter 5 to present some useful and, in many financial and insurance set-

tings, desirable properties of the valuation principle. Considering quantile processes in

such a setting is one of the many ways to interpret their potential in applications, and

utilise the properties that the theoretical construction given in Section 2.2 presents.

Additionally, the valuation framework provides a means to add interpretation to each

constructive component of random–level quantile processes, as discussed in this chap-

ter. We begin by presenting some background material on distortion–based pricing

methods, so to draw connections between such work and the new ideas presented in

this thesis. For the majority of the following section, the static case is considered, in

line with the literature.

6.1 Existing frameworks for decision–based valua-

tion of risks

Existing methods for actuarial pricing of insurance risks are largely reliant on theo-

ries of decision under uncertainty, whereby many well–established techniques exist to
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capture and quantify such uncertainty. As insurance markets are often incomplete,

contingent claims may carry risk that cannot be hedged (as in complete financial mar-

ket models), and so (unique) prices cannot be obtained by arbitrage arguments. In

this case, investor preferences are explicitly characterised in order to determine prices

and strategies in light of such risks. In expected utility (EU) theory, see Morgenstern

and Von Neumann (1953), investor preferences (e.g., risk aversion) are modelled by a

nonlinear utility function that is applied to the random cash flow of the risky financial

or insurance contract. Expectations of the transformed cash flow are taken under some

objective, or ‘real–world’ probability measure and so, by Jensen’s inequality, concavity

of the utility function is a sufficient condition for investor risk aversion. Extending EU

theory, Savage (1954) described and axiomatised investor behaviour and preferences

through subjective expected utility theory. Here, nonlinear utility functions to describe

preferences are combined with subjective probability measures that reflect each agent’s

beliefs on the possible outcomes of each considered decision situation. Similarly, the

dual theory of choice under risk was introduced by Yaari (1987) and considers a nonlin-

ear, increasing (and, for risk averse agents, convex) function applied to the probability

distribution of the cash flow, where the choice of function characterises risk attitudes of

market participants. The premium proposed is then expressed as the Choquet integral,

see Choquet (1954), with respect to the distorted probability distribution. A review

on further alternative theories to EU theory, e.g., rank–dependent expected utility,

see Quiggin (1982, 1993) and Schmeidler (1989), and Choquet expected utility theory

(CEU), see Choquet (1954), is given by Sugden (1997). The approach discussed by

Schmeidler (1989) and Quiggin (1993) combines both EU theory and the dual theory of

Yaari (1987), characterising preferences through both a utility function and a distortion

on the probability distribution of the underlying risk—such an approach is discussed

by Tsanakas and Desli (2003), and employed in the proposal of a new class of risk

measures, or premium principle. A general framework for distributional transforms,

and the conditions under which they are probability distortions, is given by Liu et al.

(2021), with a connection to convex and coherent risk measures also discussed.

Following the approach of Yaari (1987), distortion premium principles (in the con-

text of insurance markets) were derived by Denneberg (1990) and Wang (2000) via

an indifference argument, i.e., the premium should be set so to offset potential losses

from the contract. A set of axioms for such premiums is proposed, under which they
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can be represented as the Choquet integral with respect to the distorted probability

distribution, see Eq. (6.1.1). The prices are shown to be directly related to coherent

risk measures, in the sense of Artzner et al. (1999), leading to the notion of distortion

risk measures. More generally, risk measures, under the likeness of premium principles,

and their axiomatic properties have been studied by Bühlmann (1970) and Goovaerts

et al. (1984), and in more recent work, the reader may refer to Laeven et al. (2008) and

the references therein for a detailed survey on premium calculation principles (PCPs).

We define PCPs and risk measures as follows, referring to Laeven et al. (2008) and

Föllmer and Schied (2004), respectively.

Definition 6.1.1. Let X be a set of random variables on the measurable space (Ω,F)

with each X ∈ X representing a risk. A premium calculation principle (or pricing

principle) is defined as the functional π : X → R, where π(X) represents the premium

charged by an insurer to insure the risk X. If X > 0, it is considered a loss, and

π(X) ∈ R+.

The premium calculation principle gives the minimum amount that the insurer

must charge for it to be beneficial to sell the contract. As such, there is a clear

correspondence between the interpretation of a premium principle and a risk measure,

which represents the amount of additional capital that, in an insurance context, the

insurer must hold to make his aggregate position acceptable to a regulator. Whilst

in the insurance literature, a loss is most commonly denoted by a positive random

variable, in the general risk management literature, a loss is denoted by a negative

random variable. We adhere to these conventions, considering π(X) = ρ(−X) for any

X ∈ X and where ρ is a risk measure. Mathematically, a risk measure is defined as

follows.

Definition 6.1.2. Let ρ : X → R be a mapping such that for all X, Y ∈ X and all

ω ∈ Ω, X(ω) ≤ Y (ω) implies that ρ(X) ≥ ρ(Y ), and for any m ∈ R, ρ(Y + m) =

ρ(Y )−m. Then ρ is called a risk measure.

Further axiomatic properties may be imposed on the risk measure, depending on

the required interpretation in terms of factors such as the aggregation of risky posi-

tions, portfolio diversification and scaling of portfolios sizes, among others, and how

capital requirements should respond. The widely accepted axiomatic characterisation



6.1 Existing frameworks for decision–based valuation of risks 113

of coherent risk measures was proposed by Artzner et al. (1999), and characterises risk

measures as follows. For all X, Y ∈ X , the following properties are satisfied:

(i) Monotonicity: If X ≤ Y almost surely, then ρ(X) ≥ ρ(Y ).

(ii) Translation invariance: For m ∈ R, ρ(X +m) = ρ(X)−m.

(iii) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(iv) Positive homogeneity: For m ∈ R+, ρ(mX) = mρ(X).

Convex risk measures were proposed by Föllmer and Schied (2002a,b) whereby the

requirement of positive homogeneity and subadditivity were replaced with a convexity

condition, that is for all X, Y ∈ X the following property is satisfied:

Convexity: For λ ∈ [0, 1], ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

The class of distortion risk measures, which we focus on next, is a subclass of coherent

risk measures, also satisfying the following property:

Additivity for comonotonic risks: If X, Y ∈ X are comonotonic, then ρ(X + Y ) =

ρ(X) + ρ(Y ),

see Denneberg (1990), Wang (1996) and Wang et al. (1997). Here, these risk measures

are defined in the context of insurance pricing, and termed distortion principles. It

is shown that any premium principle satisfying monotonicity, translation invariance,

positive homogeneity, subadditivity, comonotonic additivity and law invariance has the

representation

πν(Y ) =

∫ 0

−∞
[ν (1− FY (y))− 1] dy +

∫ ∞

0

ν (1− FY (y)) dy, (6.1.1)

for Y ∈ X a risk with probability distribution function FY (y) = P(Y ≤ y), and where

ν : [0, 1] → [0, 1] is an increasing, concave function such that ν(0) = 0 and ν(1) = 1.

The function ν is called a distortion operator, acting on the probability distribution of

the underlying risky random variable Y . The requirement that the distortion operator

be a concave function is to ensure the resulting risk measure satisfies the axioms of

coherence, as shown by Denneberg (2013). Since insurance risks (liabilities) are often
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denoted by positive random variables, i.e., considered to be losses as per Definition

6.1.1, here, Eq. (6.1.1) becomes

πν(Y ) =

∫ ∞

0

ν (1− FY (y)) dy. (6.1.2)

The corresponding (coherent) distortion risk measure is given by ρν(Y ) = πν(−Y ). As

an example, value at risk (VaR) at quantile level α ∈ (0, 1) can be represented as a

distortion risk measure with distortion function

να(u) :=

0, 0 ≤ u ≤ 1− α

1, 1− α < u ≤ 1.
(6.1.3)

We remark that the distortion operator given by Eq. (6.1.3) is not concave, and so

VaR is not a coherent risk measure.

In what follows, we focus largely on the characterisation of preferences, and how

this feeds into the valuation of risk and risk measures, through probability distor-

tions. Bühlmann’s economic principle, see Bühlmann (1980, 1984), however, states

that premiums must also reflect conditions of the market where risks are traded, and

the interactions of market participants. One may also refer to Aase (1993), Borch

(1962) and the references cited therein for discussions on market equilibrium pricing

models involving risk measures. For those obtained under the distortion principle, see

Tsanakas and Christofides (2006) and the references therein. The following subsection

presents distortion operators in further detail.

6.1.1 Distortion operators

We now discuss some well–known distortion operators that have been developed in

the literature. Motivated in part by the argument by Venter (1991) that no–arbitrage

implications of insurance pricing (by layer) implies a distributional transformation, a

distortion operator termed the Proportional Hazards (PH) transform was introduced

by Wang (1995, 1996), and given by νγ(u) := u1/γ for γ > 1. Subsequently, the

well–known one–factor Wang transform was introduced, see Wang (2000), given by

νλ,1(u) := Φ
[
Φ−(u) + λ

]
, (6.1.4)
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where Φ(x) is the CDF of the standard normal distribution, and λ ∈ R is a parameter

of risk aversion, or market price of risk. It is shown by Wang (2003) that, under

certain conditions on the aggregate environment, the one–factor Wang transform can

be derived from Bühlmann’s economic model. However, whilst the one–factor Wang

transform is motivated from the perspective of its ability to recover CAPM and the

Black–Scholes model, see Wang (2002), it has received criticism for its inability to

produce a distorted measure that accounts for higher–order moments, e.g., heavy–

tailed features or skewness, that are often observed in financial returns data. The

two–factor Wang transform, see Wang (2002), given by

νλ,2(u) := Tk
(
Φ−(u) + λ

)
, (6.1.5)

where Tk(x) is the CDF of the Student–t distribution with location parameter µ = 0

and k ∈ N degrees of freedom, overcomes such limitations, as well as accounting for

parameter uncertainty that may arise when pricing under such a model. However, this

model is no longer consistent with the risk–neutral CAPMmodel or Bühlmann’s pricing

principle. Figure 6.1 illustrates the effect of the one– and two–factor Wang transforms

on a generic input distribution F (x) for a range of λ ∈ R and k ∈ N parameter values.

A further extension of the Wang transform (the generalised Wang transform) pro-

posed by Kijima and Muromachi (2008), is consistent with Bühlmann’s principle and

also provides more flexibility in incorporating higher–order moments. A multivari-

ate extension is given by Kijima (2006). Additionally, Hamada and Sherris (2003)

and Pelsser (2008), among others, consider the Wang transform in the context of the

pricing of contingent claims.
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Figure 6.1: The one– and two–factor Wang transforms, νλ,1(u) = Φ(Φ−(u) + λ) and
νλ,2(u) = Tk(Φ

−(u)+λ), respectively, applied to some base CDF F (x) for risk aversion
parameter values λ ∈ {0.1, 0.5, 1, 0,−0.1,−0.5,−1} and degrees of freedom parameter
(in the two–factor transform) values k = {1, 3, 7}.

We now consider the generalised class of distortion operators, introduced by Godin

et al. (2019). Here, the existence of a probability measure Q on (Ω,F ), that is equiv-

alent to P, is assumed, such that one may derive the distribution of some random

variable X under both probability measures, that is F P
X and FQ

X . Then, under the

conditions on X given in the paper, the general distortion operator implied by the
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random variable is defined by

νQP
X (u) := 1− FQ

X

(
QP

X(1− u)
)
, (6.1.6)

for u ∈ [0, 1]. This class of distortion operators is flexible in its ability to incorporate

higher–order distribution features such as skewness and kurtosis, and allows one to

produce prices that are consistent with no-arbitrage models, equilibrium models and

actuarial pricing principles. In the case that Eq. (6.1.6) is used to price financial

derivative contracts (with continuous and increasing payoff functions) written on the

random variable X, the distorted P–distribution of the contract coincides with its Q-

distribution, where Q is a given pricing measure such as a risk–neutral measure. The

distortion operator used is that implied by the random variable modelling financial

risk that underlies the derivative contract, i.e., Eq. (6.1.6) when the value of the asset

underlying the financial derivative is modelled by the random variable X. The connec-

tion with the Radon–Nikodym derivative is also given, and the distortion operator is

employed in the pricing of CAT bonds.

A further discussion on the properties of distortion risk measures and premium

principles is given by Wang et al. (1997) and Wirch and Hardy (2001). We conclude

this section by making a remark on the preservation of stochastic ordering of risks

under distortion operators—recall Definition 5.0.1 of first– and second–order stochastic

dominance. It is shown in these papers that the FOSD of any two risks is preserved

under distortion operators, as they are increasing functions, and SOSD is preserved if

the distortion operator is concave. That is, for any X, Y ∈ X and ν : [0, 1] → [0, 1] a

distortion operator,

X ≿FOSD Y ⇐⇒ πν(X) ≥ πν(Y ) & ρν(X) ≤ ρν(Y ), (6.1.7)

and if ν is concave,

X ≿SOSD Y ⇐⇒ πν(X) ≥ πν(Y ) & ρν(X) ≤ ρν(Y ). (6.1.8)

There is a direct connection between SOSD and risk aversion, in that whenX ≿SOSD Y

a risk averse investor will prefer X to Y and so the requirement that πν(X) ≥ πν(Y )

indicates that this investors preferences may be reflected through the choice of a concave
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distortion operator. Referring to Figure 6.1, we see that the Wang transform produces

a concave distortion operator for λ > 0, i.e., λ is considered to be a parameter of risk

aversion.

6.2 A general stochastic valuation principle

The purpose of this section is now to characterise a general, stochastic risk valuation

principle, motivated by the literature discussed in the preceding section. We consider

a finite timeline t ∈ [0, T ], where 0 < T < ∞, and recall the filtered probability space

(Ω,F , (Ft)t∈[0,∞),P) whereby (Yt)t∈[0,T ] is an (Ft)–adapted càdlàg process with law FY .

Henceforth, this process will represent the time dynamic of a risk, including non–

tradable risks. We emphasise that we consider the case in which losses are assumed

to be positive, however risk measures are calculated under the usual convention in

risk management literature that losses are negative, i.e., in the calculation of risk

measures, the negative of any loss process is considered. We assume the filtration

contains all information about the development of the risk process and the market.

The principle and its properties are characterised by a collection of Ft–measurable

stochastic mappings, or operators, to which a direct connection is made to the quantile

process–induced distorted measures, given in Section 6.3. The valuation principle is

also shown to be directly related to time–consistent, dynamic risk measures.

Definition 6.2.1. Let Πt : R → R denote a collection of (Ft)–measurable, continuous

and monotonically increasing mappings, or operators, satisfying the properties of posi-

tive homogeneity and translational invariance, and where Πt(0) = 0, for all t ∈ [0, T ].

The stochastic valuation principle for the risk (Yt) is defined as the (Ft)–adapted process

(Πt,u)0≤t≤u≤T where Πt,u := Πt (Yu) for all 0 ≤ t ≤ u ≤ T and such that Πs,u = Πs(Πt,u)

for all 0 ≤ s ≤ t ≤ u ≤ T . In the context of a financial or insurance contract, we refer

to (Πt,u) as the stochastic pricing principle for the contract written on the risk (Yt).

Consider Definition 6.1.2. The definition of a risk measure may also be extended

to that of a conditional risk measure to capture riskiness at some future point in time.

It follows that a sequence of conditional risk measures defines a dynamic risk measure.

One may refer to, e.g., Definition 1 by Acciaio and Penner (2011) or Bion-Nadal (2008),

and Definition 2.3 by Detlefsen and Scandolo (2005), for the following definition of a

convex, conditional risk measure.
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Definition 6.2.2. Consider the filtered probability space and let L∞
t := L∞

t (Ω,Ft,P)
denote the space of all essentially bounded, (Ft)–measurable random variables, for all

t ∈ [0,∞). A map ρt,u(X) := L∞
u → L∞

t is called a convex, conditional risk measure if

it satisfies the following properties for all 0 ≤ t < u <∞ and Xu, Yu ∈ L∞
u :

(i) Conditional translation invariance: For all Yt ∈ L∞
t , ρt,u(Yu+Yt) = ρt,u(Yu)−Yt;

(ii) Monotonicity: Xu ≤ Yu ⇒ ρt,u(Xu) ≥ ρt,u(Yu);

(iii) Conditional convexity: For all λ ∈ L∞
t where 0 ≤ λ ≤ 1, ρt,u(λYu + (1− λ)Xu) ≤

λρt,u(Yu) + (1− λ)ρt,u(Xu);

(iv) Normalisation: ρt,u(0) = 0.

One may now refer to, e.g., Definitions 5 and 6 by Bion-Nadal (2006), Definitions 1

and 2 by Bion-Nadal (2009), and Definition 5.1, as well as Remark 5.2, by Detlefsen and

Scandolo (2005), for the definition of a time–consistent, dynamic (in continuous–time),

convex risk measure, given as follows.

Definition 6.2.3. A dynamic, convex risk measure on the filtered probability space is

a family (ρt,u)t∈[0,∞) of conditional convex risk measures for all 0 ≤ t ≤ u < ∞. A

dynamic risk measure is time–consistent if ρs,u = ρs,t(−ρt,u), for all 0 ≤ s < t < u <

∞.

We may now present the following proposition, that characterises the setting in

which the stochastic valuation principle in Definition 6.2.1 relates to a time–consistent

dynamic risk measure.

Proposition 6.2.1. Consider Definition 6.2.1 and an (Ft)–adapted risk process (Yt).

If, and only if, Πt(·) is a concave mapping for all t ∈ [0, T ], then −Πt(Yu) : L
∞
u → L∞

t

is a convex, conditional risk measure. The family of mappings (−Πt,u)0≤t≤u≤T is a

time–consistent dynamic risk measure.

Proof. If Πt(·) is a concave mapping for all t ∈ [0, T ], then −Πt(·) will be a convex

mapping. By Definition 6.2.1, −Πt(·) is translation invariant and for any real–valued

x ≤ y, −Πt(y) ≤ −Πt(x) for all t ∈ [0, T ] as Πt(·) is monotonically increasing. Thus,

under the assumption that Πt(·) is concave, for some (Ft)–adapted risk (Yt), −Πt(Yu)
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adheres to Definition 6.2.2 of a convex, conditional risk measure. It follows, by Defini-

tion 6.2.3, that the family of maps (−Πt,u) is a dynamic risk measure. The dynamic risk

measure (−Πt,u) is time–consistent, by Definition 6.2.3, if for all 0 ≤ s ≤ t ≤ u ≤ T ,

−Πs,u = −Πs,t(Πt,u). For all 0 ≤ s ≤ t ≤ u ≤ T it holds that Πs,t = Πs,t(Yt) = Πs(Yt)

and so, since Πs,u = Πs(Πt,u), it follows that Πs,u = Πs,t(Πt,u) and −Πs,u = −Πs,t(Πt,u),

as required.

For all 0 ≤ t ≤ u ≤ T , the map −Πt(·) assigns to each random variable Yu an

Ft–measurable random variable −Πt(Yu) that quantifies the risk given the information

at time t. For each t ∈ [0, T ], if the map Πt(·) is linear, it fulfills Assumption 2.3

by Wüthrich and Merz (2013) and thus is consistent with the definition of a valuation

functional given therein and by Bühlmann (1980) and Wüthrich et al. (2010). If −Π0(·)
is a sub–additive map, then for each t ∈ (0, T ], −Π0,t is a coherent risk measure in

the sense of the axiomatisation by Artzner et al. (1999), and thus incorporates static

pricing frameworks built by concave distortion operators—see, for example, Godin

et al. (2012, 2019), Kijima (2006), Kijima and Muromachi (2008), Wang (1996, 2000,

2002), Wang et al. (1997). For t = 0, u = T , Definition 6.2.1 covers a large number of

premium calculation principles (PCPs) as given by Definition 6.1.1—also, see Laeven

et al. (2008) and the references therein.

In what follows, we may assume the existence of a money–market, or ‘risk–free’,

asset with price process (Bt)t∈[0,∞) that offers a positive rate of return. We now give

the definition of a dynamically consistent risk–loading.

Definition 6.2.4. Consider Definition 6.2.1. A stochastic pricing principle (Πt,u) for

a risk (Yt) produces a dynamically consistent risk–loading if Πt,u ≥ E[Yu|Ft] for all

0 ≤ t ≤ u ≤ T . If the pricing principle accounts for discounting using the money–

market process (Bt), then we require Πt,u ≥ BtE[Yu/Bu|Ft] for all 0 ≤ t ≤ u ≤ T .

The choice of mappings Πt(·) in the valuation principle given in Definition 6.2.1

should ensure that time–consistent prices, or premiums, in line with the treatment of

different risks in the literature, and the observed behaviour in financial or insurance

markets, are produced. For example, if the framework is applied to the valuation of

insurance products, prices ought to be at least higher than the expected value of the

loss process to ensure a risk–loading. In the context of a traded financial asset in

complete markets, the valuation framework should be consistent with the principle of
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no–arbitrage. Hereafter, we consider an insurance context whereby markets are not as-

sumed to be complete. We remark, however, that in general, insurance liabilities may

be a combination of both traded and non–traded risks, and thus neither entirely repli-

cable or non–replicable. Whilst we remain in the setting of totally incomplete markets

for the purpose of presenting the quantile process–based valuation principle, consider

the paper by Barigou et al. (2022), and the references given therein, for literature on

pricing insurance liabilities in the aforementioned context. Here, insurance liabilities

are decomposed into “hedgeable” and “residual” parts, for which hedging arguments

and risk measures are applied, respectively, to obtain insurance premiums. We leave

the application of the valuation principle presented in this thesis, in the context of such

a decomposition of the considered liabilites, for future work.

In the following proposition, we present a special case of the stochastic valuation

principle thus introduced, that is characterised by a probability measure. The super-

script of the valuation process denotes the measure that it is characterised by.

Proposition 6.2.2. Consider a σ–finite probability measure on the measurable space

(Ω,F), denoted P̃, and define the stochastic operator ΠP̃
t (·) := EP̃[·|Ft] for all t ∈

[0, T ] where 0 < T < ∞. Then for a risk process (Yt), and by Definition 6.2.1,

ΠP̃
t,u := ΠP̃

t (Yu) = EP̃[Yu|Ft] is a time–consistent stochastic valuation principle for all

0 ≤ t ≤ u ≤ T .

Proof. By the properties of the conditional expectation, ΠP̃
t (·) := EP̃[·|Ft] is a collec-

tion of (Ft)–measurable, continuous and monotonically increasing maps, satisfying the

properties in Definition 6.2.1 for all t ∈ [0, T ]. For all 0 ≤ s ≤ t ≤ u ≤ T , we have

ΠP̃
s,u = EP̃[Yu|Fs] and, by the tower property of conditional expectations,

ΠP̃
s (Π

P̃
t,u) = EP̃[EP̃[Yu|Ft]|Fs] = EP̃[Yu|Fs] = ΠP̃

s,u. (6.2.1)

Therefore, ΠP̃
s,u = ΠP̃

s (Π
P̃
t,u), and so the stochastic valuation principle in Proposition

6.2.2 is time–consistent in the sense of Definition 6.2.1.

Corollary 6.2.1. Consider an (Ft)–adapted risk (Yt) and the pricing principle given

in Proposition 6.2.2, that is, ΠP̃
t,u := EP̃[Yu|Ft]. If P̃ is such that P̃(Yu > y|Ft) ≥

P(Yu > y|Ft) for y ∈ DY and all 0 ≤ t ≤ u ≤ T , then the pricing principle produces a

dynamically consistent risk–loading, as per Definition 6.2.4.
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Proof. For all 0 ≤ u ≤ t ≤ T , ΠP̃
t,u = EP̃[Yu|Ft], so under the assumption that P̃(Yu >

y|Ft) ≥ P(Yu > y|Ft) for all y ∈ DY , 0 ≤ t ≤ u ≤ T , it follows that EP̃[Yu|Ft] ≥
EP[Yu|Ft]. As such, Π

P̃
t,u ≥ EP[Yu|Ft], as required.

The stochastic valuation principle given in Proposition 6.2.2 is a general valuation,

or pricing, principle that depends not only on the underlying risk (Yt), but also on

the measure P̃ which may, for instance, be chosen to incorporate investor preferences

or systemic risk factors. If (ΠP̃
t,u) in Proposition 6.2.2 produces a risk–loading, (Yt)

becomes, for example, more heavy tailed or skewed, or both, under P̃; that is, the

riskiness of (Yt) is amplified under P̃ relative to P. We emphasise that the risk–loading

in Corollary 6.2.1 is attributed to the choice of distorted measure P̃. It is common

in many valuation settings to define prices with respect to a pricing kernel (financial

mathematics), state price deflator (actuarial mathematics) or state price density and

stochastic discount factor (economic theory)—see e.g., Bühlmann (1980), Wüthrich

and Merz (2013) and Wüthrich et al. (2010). Here, for a given deflator, or pricing

kernel, (φt)t∈[0,∞) such that φt > 0 almost surely for all t ≥ 0 with φ0 = 1, the

valuation process is given by

Πt,u =
1

φt

EP [φuYu
∣∣Ft

]
. (6.2.2)

In this thesis, we do not require that prices should necessarily satisfy no–arbitrage

unless markets are assumed complete (which in general they are not, in an insurance

setting) However, this is not saying that trading in such markets must lead to arbitrage,

i.e., if all market participants do agree on a specific pricing kernel/equivalent martingale

measure then we have no–arbitrage prices.

The valuation processes (Πt,u)0≤t≤u≤T , given by Eq. (6.2.2), defines a pricing sys-

tem for a given state price deflator (φt). In general, there are infinitely many deflators

which map from the space of (insurable or financial) risks to corresponding prices.

Such deflators may be determined by factors such as market risk aversion, individual

risk preferences, market completeness or incompleteness, legal constraints or tail be-

haviour of underlying risks, among others. It is, in general, not assumed that (φt) be

independent of (Yt).

We note that there is an explicit connection between the pricing kernel and the

Radon–Nikodym derivative process that induces the measure change from P to P̃ in
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Proposition 6.2.2. Thus, the task pertains to modelling (φt) by the Radon–Nikodym

derivative process to capture both external risk and risk preferences in the desired way.

We present this in the following section, in the context of quantile process–induced

distorted measures, given by Definition 4.0.2 and discussed in Chapter 4.

6.3 A valuation principle based on measure distor-

tions induced by quantile processes

We now present the quantile process–based stochastic valuation principle. Consider

a finite time horizon [0, T ], for 0 < T < ∞, and Definition 3.1.1 for a random–level

quantile process (Zt)t∈[t0,T ] constructed from some DY –valued driving process (Yt)t∈[0,T ]

for DY ⊆ R. As per Chapter 4, we consider Qζ(u; ξ) : [0, 1] → Dζ ⊆ DY and so the law

of the quantile process is given by Definition 4.0.1 and the marginal and conditional

distorted measures induced by the quantile process by Definition 4.0.2. We recall, for

the purpose of this section, that we define the conditional distorted measure by

PZ
t|s(B) :=

∫
{ω∈Ω:Zt(ω)∈B}

dP (ω|Fs) (6.3.1)

for all 0 ≤ s < t ≤ T and B ∈ Ft, and that the marginal distorted measure is given by

PZ
t = PZ

t|0.

Definition 6.3.1. Recall Proposition 6.2.2 and let P̃ = PZ be the law of the quantile

process (Zt), given by Definition 4.0.1. The process (ΠPZ , ζ
t,u )0≤t≤u≤T , defined by

ΠPZ , ζ
t,u := BtEPZ

[
1

Bu

Yu|Ft

]
, (6.3.2)

is the (discounted) quantile process–based stochastic valuation, or pricing, principle

(QPVP or QPPP) for the risk (Yt) and money–market process (Bt), corresponding to

the constructive choice of (Zt). The second argument in the superscript of the valuation

principle process denotes the random variable ζ that characterises (Zt)—see Definition

3.1.1.

Since (Bt) is the money–market process, Eq. (6.3.2) is akin to the quantile process–

induced measure PZ being a risk–neutral measure. We note that as markets are not
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assumed complete, there may exist infinitely many risk–neutral measures, i.e., there

is a risk–neutral measure corresponding to each construction of the quantile process

(Zt) that induces the measure PZ . If all market participants do agree on a specific

risk–neutral (martingale) measure, however, this equates to all of their preferences

corresponding to the same composite map that produces the quantile process from any

given driving risk process. In such a case, the measure PZ is unique and so by the

Fundamental Theorem of Asset Pricing, the market is complete.

We also highlight that the transformation from P to each PZ involves more than

just a drift transformation; the distorted measure is constructed so to account for risk

associated to higher–order moments (e.g., skewness, kurtosis), and as such the Girsanov

theorem (where the risk adjustment is captured by a first–order/ drift correction) does

not apply. Additionally, we do not, in general, assume equivalence of the probability

measures P and PZ . If one were to apply the QPVP in the context of arbitrage–free

asset pricing (i.e., under the assumption of complete markets), however, the quantile

process that induces the distorted measure must be constructed so to ensure that

P ∼ PZ—see Section 4.1.

Now consider the Radon–Nikodym derivative between the conditional distorted

measure and the P–measure, given in Eq. (4.1.3). There is a natural connection

between the pricing kernel representation in Eq. (6.2.2) and the QPVP given in Def-

inition 6.3.1 when the pricing kernel is defined by the relation φu/φt := ϱu|tBt/Bu for

all 0 ≤ t < u <∞, and where

ϱt|s(ω) =
dF P

Y (t, Q (t, Fζ (Yt(ω))) |Fs)

dF P
Y (t, Yt(ω)|Fs)

(6.3.3)

is given in Definition 4.1.1.

Proposition 6.3.1. Let (Bt)t∈[0,∞) be the money–market process and consider the pric-

ing kernel associated with the P–measure, defined by

φu

φt

:=
ϱu|tBt

Bu

(6.3.4)

for all 0 ≤ t < u <∞ with φ0 = 1. The process (φtBt)t∈[0,∞) is a P–martingale.

Proof. By construction, (φtBt)t∈[0,∞) is (Ft)–adapted for all t ∈ (0,∞). Recall that
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EP[ϱt|s|Fs] = 1 for all 0 ≤ s < t <∞ and so

EP[φuBu|Ft] = EP[ϱu|tφtBt|Ft] = φtBtEP[ϱu|t|Ft] = φtBt. (6.3.5)

For 0 ≤ s < t < u <∞,

EP [φuBu|Fs] = EP [ϱu|tφtBt|Fs

]
= EP [ϱu|tϱt|sφsBs|Fs

]
= φsBsEP [EP [ϱu|tϱt|s|Ft

]
|Fs

]
= φsBsEP [ϱt|sEP [ϱu|t|Ft

]
|Fs

]
= φsBsEP [ϱt|s|Fs

]
= φsBs,

(6.3.6)

where the third and fourth equalities follow from the tower property and since ϱt|s is

Ft–adapted, respectively.

Given that (φt) is the pricing kernel associated with the P–measure, we may write

the QPVP as

ΠPZ , ζ
t,u = BtEPZ

[
1

Bu

Yu|Ft

]
= BtEP

[
ϱu|t
Bu

Yu|Ft

]
=

1

φt

EP [φuYu|Ft] (6.3.7)

for all 0 ≤ t ≤ t ≤ T .

6.3.1 Properties of the quantile process–based valuation prin-

ciple

We now discuss properties of the valuation principle supported by quantile processes

in the context of varying risk profiles and preferences. The quantile process–induced

measure allows one to incorporate and parameterise higher–order risk behaviour, in-

vestor risk preferences and auxiliary factors (e.g., systemic risk, economic and market

conditions) to the valuation principle in Definition 6.3.1. Such factors may be deter-

mined, for instance, by how investors react to other risky contracts or market risks.

We view the distorted measure as subjective; in an insurance setting, given some risk

attitude, the valuation principle captures the price an investor would be willing to pay

for a contract written on the risk process (Yt). The challenge thus lies in selecting a

suitable composite map in Definition 3.1.1 to construct the quantile process that in-

duces the distorted measure. The map must be chosen so that the valuation principle

in Definition 6.3.1 is appropriate given the situation or market under consideration.
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We emphasise that each investor’s preferences correspond to a different, but not

necessarily unique, composite map used in the construction of a quantile process; the

valuation process will capture the preferences of the investor through the induced mea-

sure; and the valuation process may be considered relative to those under no distortion.

We consider the P measure to be some objective baseline to which the distorted, ‘sub-

jective’ risk–neutral measure PZ can be compared. The subjectivity of PZ means each

market participant determines their own risk–neutral measure used for their valuation

of financial, insurance, or other risks. The notion of a subjective probability measure

was considered and axiomatised by Savage (1954). First, we present the following result

regarding the risk–loading produced by the valuation principle.

Proposition 6.3.2. Recall Definition 6.3.1 and let the càdlàg risk process (Yt) be the

stochastic driver used to construct a quantile process (Zt). If Zu ≿FOSD Yu, conditional

on the sub–σ–algebra Ft for all 0 ≤ t < u ≤ T , then the valuation principle based

on a quantile process produces a dynamically consistent risk–loading, i.e., ΠPZ , ζ
t,u ≥

BtEP[Yu/Bu|Ft] for all 0 ≤ t ≤ u ≤ T .

Proof. By construction, P{Zt ∈ B} = P{Yt ∈ Q(t, Fζ(B))} = P{Yt ∈ Z−(B)} =

PZ{Yt ∈ B} and P{Zt ∈ B|Fs} = P{Yt ∈ Z−(B)|Fs} = PZ{Yt ∈ B|Fs} for all

B ∈ Ft, i.e., the marginal and conditional distributions of the driving process under

the pushforward measure PZ coincide with the distributions of the quantile process

under P. As such, it follows that

ΠPZ ,ζ
t,u = EPZ

[
Bt

Bu

Yu|Ft

]
= EP

[
Bt

Bu

Zu|Ft

]
≥ EP

[
Bt

Bu

Yu|Ft

]
(6.3.8)

where the last inequality follows from the definition of FOSD.

In the context of insurance pricing, it is desirable that the valuation principle pro-

duces a risk–loading, i.e., so premiums are mean–value exceeding or satisfy the ‘no

rip–off’ condition. As such, here, one may consider the following result.

Proposition 6.3.3. Consider Proposition 6.3.2, such that the quantile process is de-

fined by Zt
d
= Qζ(F (t, Yt)) for all t ∈ [t0,∞). It holds that Zu ≿FOSD Yu, conditional

on the sub–σ–algebra Ft for all 0 ≤ t < u ≤ T if, and only if, Qζ(F (u, y)) > y for all

u ∈ (t,∞) and y ∈ DY ⊆ R.
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Proof. Recall Definition 5.0.1 of FOSD. Consider the conditional distributions of the

driving and quantile processes, given by FZ(u, z|Ft) and FY (u, y|Ft), respectively, for

0 ≤ t < u ≤ T , so that Zu ≿FOSD Yu, conditional on Ft when

FZ (u, y|Ft) ≤ FY (u, y|Ft) (6.3.9)

for all 0 ≤ t < u ≤ T and y ∈ DY , with strict inequality for at least one y. We have

FZ (u, y|Ft) = P (Zu ≤ y|Ft) = P (Qζ (F (u, Yu)) ≤ y|Ft)

= P (Yu ≤ Q (u, Fζ(y)) |Ft) = FY (u,Q (u, Fζ(y)) |Ft) .
(6.3.10)

Since distribution functions are increasing, it holds that FY (u, x|Ft) ≤ FY (u, y|Ft)

if, and only if, x < y and for all 0 ≤ t < u ≤ T . As such, FY (u,Q(u, Fζ(y))|Ft) ≤
FY (u, y|Ft) if, and only if, Q(u, Fζ(y)) < y or, equivalently, Qζ(F (u, y)) > y for all

u ∈ (t,∞) and y ∈ DY , as required.

We remark on a similar result, given by Wirch and Hardy (2001), in the context

of distortion operators: A distortion risk measure is bounded from below by the mean

loss, that is, ρν(Y ) ≥ E[Y ] for some loss random variable Y and distortion operator

ν(u) if, and only if, ν(u) ≥ u for all u ∈ [0, 1].

As the operator characterising the QPVP in Definition 6.3.1 is the conditional

expectation, the principle satisfies the property of law invariance, as follows. For any

risks (Y
(1)
t ) and (Y

(2)
t ), and quantile processes

Z
(1)
t

d
= Qζ1

(
F1

(
t, Y

(1)
t

))
, (6.3.11)

Z
(2)
t

d
= Qζ2

(
F2

(
t, Y

(2)
t

))
, (6.3.12)

where the pushforward measures are PZ1 and PZ2 , respectively, if the PZ1 distribution

of Y
(1)
t is equal to the PZ2 distribution of Y

(2)
t for all t ∈ (0,∞), then it holds that

ΠPZ1,ζ1

t,u = BtEPZ1

[
1

Bu

Y (1)
u |Ft

]
= BtEPZ2

[
1

Bu

Y (2)
u |Ft

]
= ΠPZ2,ζ2

t,u . (6.3.13)

We may refer to this as distorted law invariance. We note that if Y
(1)
t

d
= Y

(2)
t under the

P–measure and the finite–dimensional distribution is denoted FY , then if ζ1 = ζ2 =: ζ
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and F1 = F2 =: FY , it will hold that the PZ1 distribution of Y
(1)
t will be equal to the PZ2

distribution of Y
(2)
t , i.e., the distorted law invariance property holds. This follows from

the fact that for each t ∈ [t0,∞) the random variables defined by U
(i)
t = FY (t, Y

(i)
t ),

for i = 1, 2, are uniformly distributed on [0, 1] and so, marginally,

Z
(1)
t

d
= Qζ(U

(1)
t )

d
= Qζ(U

(2)
t )

d
= Z

(2)
t . (6.3.14)

As such, the finite–dimensional distribution of the risk process (Yt) is assumed to

fully characterise (i.e., contain all information required to measure) its riskiness. We

now present the following result on the ranking, or ordering, of valuation principles

under different distorted measures.

Proposition 6.3.4. Consider Definition 5.0.1, where Z
(i)
t = Qζi(Fi(t, Y

(i)
t )) are quan-

tile processes for i = 1, 2. Let PZi be the pushforward measure induced by each quantile

process, as given in Definition 4.0.1. Define

ΠPZi , ζ
t,u = BtEPZi

[
1

Bu

Y (i)
u

∣∣∣∣∣Ft

]
, (6.3.15)

as per Definition 6.3.1, where the risk process (Y
(i)
t ) is taken to be the quantile process

driver for i = 1, 2. Then, ΠPZ1 , ζ1
t,u ≥ ΠPZ2 , ζ2

t,u for all 0 ≤ t < u <∞ if either Z
(1)
u ≿FOSD

Z
(2)
u , or Z

(1)
u ≿SOSD Z

(2)
u , conditional on Ft.

Proof. Since the risk process underlying each valuation principle is given by the driver

of each quantile process, it holds that

ΠPZi , ζ
t,u = BtEPZi

[
1

Bu

Y (i)
u

∣∣∣∣∣Ft

]
= BtEP

[
1

Bu

Z(i)
u

∣∣∣∣∣Ft

]
, (6.3.16)

for i = 1, 2—see the proof of Proposition 6.3.2. It is known, see e.g., Hanoch and Levy

(1969) and Levy (1992), that a necessary condition for both FOSD and SOSD, as per

Definition 5.0.1, is that EP[Z
(1)
t ] ≥ EP[Z

(2)
t ] for all t ∈ [t0,∞), t0 > 0. We consider the

conditional distribution functions of the quantile processes: for all 0 ≤ t < u < ∞,

Z
(1)
u ≿FOSD Z

(2)
u conditional on Ft when F P

Z(1)(u, z|Ft) − F P
Z(2)(u, z|Ft) ≥ 0, and

Z
(1)
u ≿SOSD Z

(2)
u conditional on Ft when

∫ z

z0(t)
F P
Z(1)(u, x|Ft) − F P

Z(2)(u, x|Ft)dx ≥ 0,

for all z ∈ Dζ . As such, EP[Z
(1)
u |Ft] ≥ EP[Z

(2)
t |Ft] if either Z

(1)
u ≿FOSD Z

(2)
u or
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Z
(1)
u ≿SOSD Z

(2)
u , conditional on Ft. It follows that

ΠPZ1 , ζ
t,u = BtEP

[
1

Bu

Z(1)
u |Ft

]
≥ BtEP

[
1

Bu

Z(2)
u |Ft

]
= ΠPZ2 , ζ

t,u (6.3.17)

if either Z
(1)
u ≿FOSD Z

(2)
u or Z

(1)
u ≿SOSD Z

(2)
u , conditional on Ft, as required.

We note that FOSD implies SOSD, and so one may first check for FOSD between

the two considered quantile processes when considering when we observe ordered val-

uation principles under the corresponding distorted probability measures. If FOSD

is not observed, one may check for SOSD between the quantile processes. We also

remark that, although we do not consider it in this thesis, third–order stochastic dom-

inance (TOSD) between the considered quantile processes produces the necessary, and

sufficient, equivalent to Proposition 6.3.4.

Stochastic dominance results for quantile processes are given in Chapter 5. Such

results can be applied in the context of Proposition 6.3.4 to produce stochastically

ordered valuation principles, where the order is characterised by the quantile process

composite map, and thus risk preferences or profiles that are embedded into the map.

We emphasise that stochastic ordering in any of the quantile process parameters im-

plies such parameters capture levels of risk–aversion—the more risk–averse a market

participant, the higher they value some given risk. We draw attention to the pivot

quantile process given in Definition 3.1.4. When considering valuation principles for

different underlying risk factors from the same family, this construction may be advan-

tageous: One may map from each risk factor to a common pivot process, which will be

used as the quantile process driver, with distribution under the ‘reference measure’ to

which all distorted measures may be compared. The pivot process may be constructed

in such a way to account for all baseline risk factors that are common to all market

participants and independent of their preferences. This setting allows for a ‘relativised’

system of valuation principle processes across market participants.

The flexibility and generality of the quantile process approach to constructing a val-

uation principle allows the framework to be applicable to a large number of risk–based

situations, not restricted to the pricing of financial or insurance contracts. One may

consider non–monetary risks, for example those in the context of disaster modelling

or climate and environmental science—we mention risks in these contexts as extreme

events may often be related to skewness and heavy–tailedness, and one has direct con-
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trol over such factors in the quantile process–induced measure. The composite map

also need not necessarily capture purely risk preferences, e.g., risk aversion, and can

be used, for instance, to reflect the variability of risks or risk profiles involving ex-

ternal market factors (e.g., economical development, government policy, geopolitical

factors, technological developments etc.), or historical behaviours (e.g., levels of his-

torical emissions of an economy or business), among other things. We illustrate this in

the following qualitative, toy example.

Example 6.3.1. We consider the QPVP in the context of carbon tariffs, where the

goal is to cut global emissions that are not controlled under domestic emissions trading

schemes (ETS), see, e.g., The World Bank (2021). The aim of the cost–adjustment

(tariff) on carbon–intensive imports is to prevent ‘carbon leakage’, that is domestic

firms taking production to countries with looser environmental standards, and to ensure

a level–playing field for foreign and domestic production. Exporters are also incentivised

by such schemes to switch to greener production methods. It is important, however, for

the fairness of trade that the tariff is not used as an instrument that unfairly hits im-

ports from a country reliant on exporting such goods. Tariffs correspond to the price

that would have been paid had the good been produced under domestic carbon pricing

rules, however given that not all countries have access to the same levels of ‘green

production’ methods, an indiscriminate carbon tariff scheme could lead to regional in-

equality and negatively impact export–led development of nations. Further details on

the impact carbon tariffs may have on vulnerable nations under the scheme recently

proposed in the EU for implementation in 2026 are given by Durant et al. (2021). We

consider an illustrative framework for the determination of tariffs that accounts for the

emissions of imported goods through the use of the QPVP. The idea is to relativise car-

bon tariffs by adjusting the monitored emissions levels that determine the tariff, in line

with a number of production–based and economic factors. Monitoring absolute levels of

emissions involved in the production of exported goods is difficult for reasons including,

but not limited to, (greener) technological access and advancements, GDP, inflation,

geopolitical factors, historical emissions, and whether exporters have paid a domestic

carbon price. The goal is for the mechanism to prevent tariffs drastically impacting less

developed or technologically advanced exporters that are disadvantaged in the area of

greener production.

Consider a setting with one importer, n ∈ N exporters of goods produced within a
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given industry sector, and d ∈ N factors that must be considered in the relativisation

of tariffs charged to each exporter. For i = 1, . . . , n, the càdlàg process (Y
(i)
t ), equipped

with P–law FY (i), corresponds to the absolute level of CO2 emissions (in tonnes) of

the production sector for each exporter through time. Consider Definition 3.1.1: We

aim to produce a set of ordered maps Qζi(Fi(t, y;θi); ξi) such that if each exporter were

to produce the same levels of CO2 emissions, the tariffs paid would be ranked fairly.

The distributional families and the choice of parameters will be determined by the d

‘relativising’ factors that impact the level of sophistication in emissions management

of each exporter. One may start, for instance, by considering Fi(t, y;θ) = FY (i)(t, y −
γi;θ) where γi ∈ [0, 1] quantifies the domestic carbon cost already paid, if any. The

exporter with the highest average amount of carbon price paid per tonne of CO2 has

parameter γi = 1, and the lowest has γi = 0. The remaining ‘relativising’ factors, e.g.,

those discussed above, would then determine the parameters of the distributional family

characterised by ζ. If ζi = Tg, ξi = gi so that

Z
(i)
t

d
=

1

gi

[
exp

(
gi
√
2erf−

(
2FY (i)

(
t, Y

(i)
t − γi;θi

)
− 1
))

− 1
]

(6.3.18)

for all i ∈ 1, . . . , n, the larger the skewness parameter gi, the larger the tariff that

will be paid by the ith exporter. One could, for example, construct a weighted index of

all relativising factors that determines the skewness parameter of the composite map

corresponding to each exporter. Assume GBP C ∈ R+ is the domestic price per tonne

of CO2 emissions. It follows that the stochastic, relative cost of exporting for the

ith exporter, with emission levels modelled by the process (Y
(i)
t ), is given by ΠPZi , ζ

t,u =

BtEPZi [CY
(i)
u /Bu|Ft] for each i ∈ 1, . . . , n and all 0 ≤ t < u < ∞. One may refer to

Proposition 6.3.4 for the conditions under which the prices will be ordered.

6.4 Connection to insurance premium calculation

principles

The purpose of this section is to draw comparison between the quantile process–based

valuation principle, in the context of insurance premiums, and existing premium cal-

culation principles. We consider a risk process (Yt)t∈[0,∞) with marginal distribution

function FY (t, y) at all t ∈ (0,∞), omitting the vector of parameters. First, we present



6.4 Connection to insurance premium calculation principles 132

a general setup in which the QPVP recovers premiums derived under theWang and Pro-

portional Hazards (PH) transforms, and then we consider an explicit Tukey–g QPVP

to compare premiums in terms of the parameters involved.

First, recall the one–factor Wang transform, given by Eq. (6.1.4) such that for any

distribution function F (t, y), the distorted distribution function is given by

F ∗(t, y) := νλ,1(F (t, y)) = Φ
[
Φ− (F (t, y)) + λ

]
. (6.4.1)

Now, consider Definition 3.1.1 for some quantile function Qζ , stationary distribution

function F (t, y;λ) = Φ(y + λ) for λ ∈ R, and driving process (Yt) that is marginally

standard normally distributed, that is FY (t, y) = Φ(y), for all t ∈ (0,∞). Such a (Yt)

may be obtained from the pivotal quantile process construction in Definition 3.1.4 for

instance. Then, for each t ∈ [t0,∞), we have Zt
d
= Qζ(Φ(Yt + λ); ξ) and so

F P
Z (t, z;λ, ξ) = P (Zt ≤ z) = P (Qζ(Φ(Yt + λ); ξ) ≤ z)

= P
(
Yt ≤ Φ−(Fζ(z; ξ)) + λ

)
= Φ

(
Φ−(Fζ(z; ξ)) + λ)

)
.

(6.4.2)

Therefore, the distorted distribution, i.e., that induced by the quantile process, is

equivalent to the distortion induced by a one–factor Wang transform acting on the

base distribution function Fζ = Q−
ζ . The two factor Wang transform is replicated

similarly if we consider a driving process with FY (t, y;θ) = Tk(y) for all t ∈ (0,∞).

Similarly, consider the PH transform, characterised by the distortion operator νγ(u) =

u1/γ for γ > 1. Let the distortion operator act on the decumulative distribution

function, so that the distorted distribution is given by F ∗(t, y; γ) = 1− (1−F (t, y))1/γ

for each t ∈ (0,∞). Now, consider Definition 3.1.1 for some quantile function Qζ ,

stationary distribution function F (t, y) = 1 − 1/y for y > 1 (i.e., that of the inverse

standard uniform distribution) and driving process (Yt) that is marginally distributed

according to the Pareto distribution with scale parameter 1 and shape parameter 1/γ,

that is FY (t, y; 1, γ) = 1 − (1/y)1/γ and Yt > 1 for all t ∈ (0,∞). It follows that

Zt
d
= Qζ(1− 1/Yt; ξ) and so for each t ∈ [t0,∞),

F P
Z (t, z; γ, ξ) = P (Zt ≤ z) = P (Qζ(1− 1/Yt; ξ) ≤ z)

= P (Yt ≤ 1/(1− Fζ(z; ξ))) = 1− (1− Fζ(z; ξ))
1/γ .

(6.4.3)
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Therefore, the distorted distribution induced by the quantile process is equivalent to the

distortion induced by the PH transform acting on the distribution function Fζ := Q−
ζ .

The above two results confirm that the distortion produced by the composite map in

the random–level quantile process construction does not imply a distortion operator, as

the output (distorted) distributions cannot be obtained by defining a function acting

on the base (driving process) distribution. Instead, we recover the Wang and PH

transforms by specifying the different components of the composite map construction.

For the following numerical example, consider Example 1 by Wang (2000). Let a

positive–valued risk process (Yt)t∈[0,T ] be such that at T = 1 the random variable YT

has finite–dimensional distribution given by the Pareto distribution function

FY (T, y) = FY (y) = 1−
(

2000

2000 + y

)1.2

, (6.4.4)

for y > 0. We note that whilst, most generally in the literature (and in this example),

the Wang transform is considered at some fixed time t = T , the distortions we present

lead naturally to a dynamic structure. We note that whilst we do not consider the

following example dynamically, such a structure will be meaningful in the context

of applications that wish to consider price or premium processes that describe, for

instance, how premiums evolve over time, or when one may wish to compute forward

premiums. Additionally, such a setting leads naturally to the consideration of dynamic

(distortion) risk measures.

Now, assume for the risk (Yt), the maximum insured loss is given by some Y ∈ R+,

so that the insured risk is limited and refers to the interval (0, Y ]. Often, the insured

risk is divided into layers (ai, ai + hi] for 1 ≤ i ≤ n, that is ∪n
i=1(ai, ai + hi] = (0, Y ],

each of which characterises some range in (0, Y ] to which an insurance product refers.

It follows that a layer at (ai, ai + hi], 1 ≤ i ≤ n, of the risk (Yt) for all t ∈ (0,∞) is

defined as the loss from an excess–of–loss cover, given by the random variable

Yt,(ai,ai+hi] =


0, 0 ≤ Yt ≤ ai

(Yt − ai) ai < Yt ≤ ai + hi

hi Yt > ai + hi

(6.4.5)
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with marginal distribution function

FYt,(ai,ai+hi]
(t, y) =

FY (t, y + ai) y < hi

1 y ≥ hi,
(6.4.6)

where ai is the attachment point and ai + hi is the exhaustion point of the ith layer.

Now consider a Tukey–g quantile process, given by Definition 3.1.1 with F (t, y) =

Φ(y + κt) for κ ∈ R, i.e.,

Zt
d
=
B

g
exp (gYt + gκt) (6.4.7)

for all t ∈ [t0, T ] and B, g > 0, κ ∈ R. By Proposition 3.1.1, the finite–dimensional

distributions of the quantile process are more positively skewed than those of the driving

process, and by Corollary 3.3.1, all skewness is controlled via the parameter g. Let PZ

be the measure induced by the distribution of the random variable ZT , that is,

PZ(A) :=

∫
{ω∈Ω: ZT (ω)∈A}

dP(ω) (6.4.8)

for all A ∈ F . We compare the Tukey–g risk–adjusted premium by layer to that

produced under the Wang transform with parameter λ = 0.1 and PH transform with

index γ = 0.9245. Premiums are obtained using the QPVP, given by Definition 6.3.1

with t = 0, u = T , and where we consider Bt = 1 for all t ∈ [0,∞), for simplicity. As

such,

Π
PZ , Tg

0,T = EPZ [
YT,(ai,ai+hi]

]
(6.4.9)

for the layer (ai, ai + hi].

We allow g > 0 to introduce positive skewness relative to the risk distribution to

capture investor risk–aversion levels, to account for skewness–related systemic risk and

to place probabilistic emphasis on the occurrence of higher losses under the transforma-

tion. The results are presented in Table 6.1, where in the third column, the parameter

κ is selected to match the premium with the Wang and PH premiums for the basic

limit layer ($0, $50000], as shown in bold, illustrating how the quantile transform in-

fluences the premiums for subsequent layers relative to this figure. The same is done

in the fourth column, however κ is now chosen so to match the premiums for the layer

($200, $300], shown in bold. We observe that prior to this layer, the Tukey–g premium
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is lower than the Wang and PH premiums, and higher in subsequent layers with sig-

nificantly larger layer–by–layer increases towards the higher layers resulting from the

introduction of relative skewness under the quantile transform. Overall, we observe

that the PH transform premium increases faster than the Wang transform, and the

Tukey–g measure distortion produces a premium that increases much faster than the

PH transform with the rate of increase determined by the magnitude of g. Figure 6.2

illustrates further how the rate of increase of premiums at higher layers is determined

by the magnitude of the skewness parameter g, as expected.

Layer in 000’s
PH premium Wang premium Π

PZ , Tg

0,T , B = 0.01

γ = 0.9245 α = 0.1 g = 0.8, κ = 6.96 g = 0.08, κ = −10.25

(0,50] 5,487.0 5,487.0 5,487.2 261.9

(50,100] 910 845.0 4,632.6 228.5

(100,200] 857 769.9 8,642.6 431.7

(200,300] 475 414.2 8,219.7 414.2

(300,400] 325 278.4 7,965.5 403.5

(400,500] 246 207.3 7,785.9 395.9

(500,1000] 728 598.0 37,287.4 1,909.3

(1000,2000] 675 533.2 70,349.5 3,635.2

(2000,5000] 819 616.6 197,478.0 10,306.4

(5000,10000] 567 405.7 310,290.9 16,331.72

Table 6.1: Risk–adjusted premiums by layer under the Wang transform and Tukey–g
distorted measure. The figures in bold correspond to the premiums matched across
the different distortions, through the choice of κ.
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Figure 6.2: Premiums by layer under the Tukey–g QPVP, with B = 0.01, κ = −100
and g ∈ {0.05, 0.1, 0.3, 0.8, 1, 2}

We now present an outline of the multidmensional QPVP in the context of deter-

mining the correct premium to charge for property and casualty (P&C) insurance. The

reader may refer to Young (2006) for a discussion on the properties, and examples, of

premium principles considered in the literature. It is important that the premium cover

the expected loss of the risk, as well as some risk–loading to account for uncertainty and

involved costs. The risk–loading induced by the QPVP can be derived from Corollary

3.1.1. The multidimensional premium QPVP for an excess of loss insurance policy (or

layer contract) is defined as follows, where we may consider the risk process for which we

wish to determine a premium for to be given by Yt = Y
(1)
t where Yt = (Y

(1)
t , . . . , Y

(m)
t ).

Intuitively, the multidimensional QPVP is analogous to that given by Definition 6.3.1

in the univariate case, however one has a constructive, and flexible, mechanism for the

incorporation of auxiliary risk factors, that is (Y
(2)
t , . . . , Y

(m)
t ).

Definition 6.4.1. Consider the multidimensional quantile process given by Definition
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3.4.1 where (Yt) is an m–dimensional, positive–valued risk process. Let PZ be the

distorted measure induced by (Zt), given by Equation 4.2.1. Recall Proposition 6.2.2

and let P̃ = PZ. Consider a function V (y) that defines the payoff of a layer contract

covering losses between the predefined attachment point a and exhaustion point b, with

maximum payout b−a, i.e., V (y) = (y−a)1{a≤y<b}+(b−a)1{y≥b} for 0 < a < b <∞.

Then, for a univariate risk process (Yt) and money–market process (Bt), the premium

QPVP is given by ΠPZ

t,u := BtEPZ
[V (Yu)/Bu|Ft] for 0 ≤ t < u ≤ T .

The multidimensional premium QPVP for a limited stop–loss contract can be com-

puted similarly, using Definition 6.4.1 with V (y) = min{(y − a)+, b} for a, b > 0.



Chapter 7

Application

The purpose of this chapter is to exemplify the novel stochastic valuation principle

based on quantile processes, introduced in Section 6.3, in the context of pricing a stop–

loss insurance contract linked to greenhouse gas emissions. We consider the univariate

quantile process, given in Section 3.1, and the induced probability measure, given in

Chapter 4. The example presented is empirical, apart from the choice of parametric

quantile function in the composite map, and serves the purpose of illustrating the

properties of the QPVP in regard to the inputs to its construction (e.g., choices of

parameters).

We consider an application in the context of insuring the regulatory risk associated

with excess greenhouse gas emissions under an emissions trading scheme (ETS). We

employ the univariate quantile process, given in Section 3.1, for the purpose of pricing

excess greenhouse gas (GHG) emissions in geographical regions that implement an

ETS, see, e.g., The World Bank (2021). We consider insurance contracts from the

perspective of the insurer, where the contract issued insures the regulatory risk (in the

forms of fines, or ‘civil penalties’) faced by market participants (‘installations’), e.g.,

those in the power sector, manufacturing industry or airlines, exceeding the level of

emissions for which they’ve purchased allowances for. We highlight the following to

provide context:

(i) The EU ETS works on the ‘cap and trade’ principle whereby a cap (that reduces

over time to contribute to meeting legally binding carbon reduction commitments,

e.g., the EU’s 2030 Climate Target plan to reduce emissions to below 55% of 1990

levels by 2030) is set on the total amount of certain GHGs that can be emitted
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by the installations covered by the system. Details of the EU ETS is given in EC

Europa (2015).

(ii) The primary means of introducing allowances into the market is auctioning, with

participants also able to trade allowances on a secondary market. The auction

calendar confirms the volume of annual allowances available in each auction and is

published in the second half of the year prior. Free allowances are also allocated

to operators of eligible installations to protect international competitiveness of

domestic producers and reduce the risk of carbon leakage—see Example 6.3.1.

(iii) Following each year, an installation must submit an emissions report that must

be verified by an accredited verifier by 31 March of the following year. Once veri-

fied, installations must cover fully their reportable emissions by surrendering the

equivalent number of allowances by 30 April, or face heavy fines (‘civil penalties’).

(iv) Installations can trade in EU ETS futures markets, where the futures contract

is ‘a deliverable contract where each Clearing Member with a position open at

cessation of trading for a contract month is obliged to make or take delivery of

EUAs to or from a Trading Account within the EUA Delivery Period and in

accordance with the Rules’, see ICE (2021). That is, the delivery of one EUA

entitles the installation to emit one tonne of carbon dioxide equivalent gas; the

minimum trading size is one lot, equivalent to 1000 EUAs.

Consider the timeline [0, T ]. For the purpose of this example we assume that at

auction date, the installations purchase the required amount of allowances to cover

their expected emissions at the reporting date (t = T ), i.e., market participants act

rationally to avoid civil penalties. Additionally, we assume that EU ETS futures prices

reflect expectations of future GHG emissions in the price formulation. This assumption

lies on the basis of installations trading in the futures market when realised production

levels appear to be driving up emissions and so EUA futures are purchased to prevent

civil penalties. Associated with exceeding the emissions levels for which an installation

can cover with allowances is a regulatory risk (in the form of civil penalties). Such a

risk may be insured by purchasing a stop–loss contract issued by an insurance firm,

that pays out in the instance of such an event occurring at the reporting date. The

purpose of this example is to value the premium associated to this stop–loss insurance
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contract. Whilst the contract considered is of a simple nature, we see it as most fitting

for the purpose of this illustrative example.

As an alternative to purchasing a stop–loss contract, installations can consider

covering the cost of emitting over their allowances by trading on the open market,

namely buying EUA futures with expiry on or before the date at which allowances must

be surrendered following the reporting date. However since the market is highly illiquid

(due to caps on allowances), in the case of unexpected market shocks driving increases

in demand of goods and services provided by the installations, the price impact of

buying allowances in the open market (particularly in the case of significantly large

producers) may be so substantial that it’s no longer equitable to cover excess emissions

in such as way. As such, the installation may purchase the insurance contract where

the insurer is pricing the excess risk associated with potential price impacts associated

to the occurrence of such an event.

In this context, we motivate the use of the QPVP for pricing the insurance contract

as follows. The distortion map allows the insurer to account for the excess risk that

may be associated with an individual installation’s behaviour, i.e., the price impact

they would have if covering excess emissions by buying allowances on the open market.

Historical emissions prices (and thus the real–world or market probability measures)

don’t reflect such potential price impacts, and so the insurer may adjust premiums

accordingly by pricing in skew or leptokurtosis that may materialise in the event of

this scenario (through the quantile process–induced distorted measure). If the scenario

plays out at time t = T , the excess skew or kurtosis ensures the insurer is solvent when

the insurance contract pays out.

Consider the case where the insurer is pricing the premium for an EU–based instal-

lation. We consider the case where the driving process (Yt) represents the EUA futures

with a December 2022 expiry date. We have stop–loss payoff function V (y) = (y− a)+

where a > 0 is the threshold beyond which the installation may wish to insure against

the price going beyond. We consider the threshold to be directly related to civil penal-

ties that may be incurred in the case that realised emissions exceed the levels for which

the installation has purchased allowances for. As such, this may also be partially deter-

mined by the level of emissions allowances held by the institution. The composite map

accounts for the price impact of the individual installation, with the potential to build

in other factors, e.g., historical behaviour of exceeding emissions allowances, realised
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efforts to make production ‘greener’, weather indexes, macroeconomic factors such as

GDP or inflation, government policies such as imposed national lockdowns. We omit

the consideration of such factors for the purpose of this somewhat simple, illustrative

example, but the case study may be further developed under their consideration.

We choose the empirical distribution function of the driving process, and the Tukey–

gh quantile function. The installation can enter into the insurance contract at any time

prior to the reporting date, and after the auction date (so that futures on the allowances

begin trading on the market) i.e., any t ∈ (0, T ). The expiry date of the contract is

assumed to be the reporting date for the calendar year, 31 December. If the contract

pays out, the installation is equipped with financial means to cover the associated

cost of higher than expected realised emissions. These costs may materialise in the

form of civil penalties, or purchasing allowances on the secondary market (which are

now inflated as a result of rising emissions and thus demand for the futures contracts)

which may be surrendered, in line with their level of reported emissions, by 30 April

the following year.

We consider the Tukey–gh random–level quantile process,

Zt
d
= QTgh

(FY (t, Yt) ;A,B, g, h) , (7.0.1)

given by Definition 3.1.1, for all t ∈ (0,∞). Here, QTgh
is given by Eq. (2.1.11) with

A ∈ R, B ∈ R+ g ∈ R ̸= 0, h ∈ R+
0 , and FY is the marginal distribution of the driving

process. It follows that the price of the insurance contract (premium), obtained under

the QPVP, is given by

ΠPZ

t,T = EPZ

[
Bt

BT

(YT − a)+
∣∣Ft

]
=

∫
{ω∈Ω :YT (ω)∈[a,∞)}

(YT (ω)− a) dPZ
T |t(ω), (7.0.2)

where (Bt)t∈(0,∞) is the money–market process with which we discount. Here,

PZ
T |t(A) =

∫
ω∈Ω :Zt(ω)∈A

dP(ω|Ft) (7.0.3)

is the probability measure induced by the quantile process in Eq. (7.0.1). The premium

accounts for the effect of the distortion map through the choice of the A,B, g and h

parameters in the quantile function QTgh
, as well as FY . We refer to Chapter 5, in
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particular, Example 5.1.1, in which stochastic ordering results of quantile processes

are derived, and Proposition 6.3.4 where such results are applied in the context of the

QPVP. There will be a first–order stochastic ordering in the skewness parameter g for

all h ∈ R+
0 , and so the insurer may, for example, adjust (increase) g to guard against

excess payments due to shocks. The extent to which the parameter is increased will

differ between insurers and their risk appetites. The location and scale parameters, A

and B, respectively, may be set by the insurer based on whether they wish to preserve

some measure of centrality of the driving risk process under the distortion map—we

discuss this further in Section 7.4. We remark that an exploration into the calibration

of these flexible classes of quantile process–based premium principles is left for future

work. We discuss the data, next.

7.1 Description of the data

We consider the daily closing price of the ICE EUA December 2022 (with symbol

CKZ22), over the period ranging 27 February 2020 to 25 April 2022, in Euros and Euro

cents per metric tonne. The period is set based on the data available. We consider

25 April 2022 to be the time t ∈ (0, T ), so that the filtration (Ft)t∈(0,T ) is assumed to

contain all information about such prices over the period for which the data is obtained.

The closing value from Friday is carried over to Saturday and Sunday to account for

missing daily values on weekends; otherwise, no daily values are missing from the data.

The time series of the data sets are plotted in Figure 7.1. We observe an upward linear

trend, where the steepness of the trend increases from 2021 onwards, most likely as a

result of the easing of Covid–19 restrictions that were put in place in 2020. Shortly

after January 2020, a price drop of approximately 40% occurred, the cause of which

may be linked to the Russian invasion of Ukraine.
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Figure 7.1: Time series plot of the EUA December 2022 futures daily closing price.

We use the R function ndiffs() to estimate the number of differences required to

make the time series stationary, and perform an Augmented Dickey–Fuller (unit–root)

test using the function adf.test(), with the null hypothesis being that the differenced

time series is non–stationary. The output of the ndiffs() function is one, and we reject

the null hypothesis (with a p–value of less than 0.01) and conclude that the once–

differenced time series is stationary. Figure 7.2 shows the time series after one difference

has been taken, and Figure 7.3 shows the autocorrelation functions at various lags of

this de–trended time series.
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Figure 7.2: Time series plot of the de–trended (once differenced) EUA December 2022
futures daily closing price.
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Figure 7.3: Plots of the ACF of the once differenced EUA December 2022 futures daily
close time series.

7.2 Model calibration

A non–seasonal autoregressive integrated moving average (ARIMA) model is fitted to

the data for the purpose of forecasting through the use of the auto.arima() function

in R, see Hyndman and Khandakar (2008). A non–seasonal ARIMA(p,d,q) model, for

p, d, q ≥ 0, is given by(
1−

p∑
i=1

ϕiB
i

)
(1−B)d Yt = c+

(
1 +

q∑
i=1

θiB
i

)
ϵt, (7.2.1)

where B is the backshift (or lag) operator, that is BiYt = Yt−i for t > 1, i ≥ 0, ϕi are the

autoregressive parameters, θi are the moving average parameters, c ∈ R is a drift, and

ϵt is a white noise sequence with mean 0 and variance σ2, σ ∈ R+. The modelling task

pertains to selecting the most appropriate values of p, q, d, where the criterion for ‘most
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appropriate’ will be some chosen forecast accuracy measure such as mean square error

(MSE), mean absolute percentage error (MAPE), Akaike’s Information Critera (AIC),

among others. The auto.arima() function, which belongs to the ‘forecast’ package, see

Hyndman et al. (2022), selects the best models according to the AIC. Since it is not

feasible to fit every possible model and observe which has the lowest AIC, the function

fits an ARIMA(p,d,q) model by using the following step–wise algorithm:

1. Choose d based on successive KPSS unit–root tests, see Kwiatkowski et al. (1992).

It is assumed 0 ≤ d ≤ 2 so that the approach does not lead to over–differencing

(which can lead to inaccurate forecasts and wider prediction intervals).

2. Four initial models are fitted:

(i) ARIMA(2,d,2),

(ii) ARIMA(0,d,0),

(iii) ARIMA(1,d,0),

(iv) ARIMA(0,d,1),

where c ∈ R, a drift constant, is included unless d = 2. If 0 ≤ d ≤ 1, an

ARIMA(0,d,0) model without a constant is also fitted. Of the considered models,

that with the lowest AIC is set as the ‘current model’.

3. Variations on the current model are considered by:

(i) Varying p and/ or q from the current model by ±1,

(ii) Including or excluding c, the drift constant, if c = 0 or c ̸= 0, respectively,

and if a model with a lower AIC is found it becomes the new ‘current’ model, for

which the above procedure is repeated (until no model with a lower AIC can be

found).

Maximum bounds may be set on either of the parameters, with default values of 5 on

p and q. We keep these default upper bounds on p and q, and use the auto.arima()

function to find the best fitting model on the data sets discussed in Section 7.1. The

output of the function applied to the EUA December 2022 data is given in Table 7.1,

and the in–sample fitted model is shown against the data in Figure 7.4.
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Series: Dec22ts.EU ARIMA(2,1,3) with drift

Coefficients AR1 AR2 MA1 MA2 MA3 Drift

-0.2489 -0.8724 0.1656 0.8751 -0.1502 0.0889

s.e. 0.0520 0.0425 0.0606 0.0378 0.0386 0.0489

σ2 estimated as 2.224 log likelihood = -1328.47

AIC = 2670.93 AICc = 2671.09 BIC = 2703.1

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1

Training set -1.4953e-06 1.4843 0.8082 -0.0710 1.6065 0.0220 -0.00175

Table 7.1: Output of the auto.arima(), function applied to the EUA December 2022
futures time series data

Time
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Figure 7.4: Time series for the EUA December 2022 (black line) against the fitted
ARIMA(2,1,3) with drift c = 0.0889 model (red dashed line).
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We compute the Ljung–Box test statistic on the residuals of the fitted model; the

p–values are shown for lags 1–5 and 10 in Table 7.2. The purpose of this test is to

determine whether any of the autocorrelations of the residuals at given lag are different

from zero; the null hypothesis is that the data are independently distributed, and any

observed correlations result from randomness. In all cases, we do not reject the null

hypothesis at a 95% significance level (as p > 0.05). In agreement, Figure 7.5 shows

the ACF of the residuals.

Lag

p–value (Ljung–Box statistic) 1 2 3 4 5 10

EUA Dec.22, ARIMA(2,1,3) w.drift 0.9621 0.9846 0.9797 0.7788 0.8326 0.0553

Table 7.2: p–values for the Ljung–Box test statistic for the residuals of the fitted model
at lags 1–5 and 10.
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Figure 7.5: Plots of the ACF of the residuals of the fitted ARIMA(2,1,3) with drift
c = 0.0889 model for the EUA December 2022 futures daily close time series.
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7.3 Forecasting

We use the fitted ARIMA model given in Table 7.1 to obtain a forecast for each time

series up to time T = 31 December 2022, i.e., we choose a forecast length of 249 days.

The forecasted time series, with the 80% and 95% prediction intervals, is shown in

Figure 7.6, and the forecast accuracy measures are shown in Table 7.3. The measures

given in the tables are defined and discussed by Hyndman and Koehler (2006).

Forecasts from ARIMA(2,1,3) with drift
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Figure 7.6: Forecasts from the fitted ARIMA(2,1,3), with drift c = 0.0889, model for
a forecast horizon h = 249 days.

ME RMSE MAE MPE MAPE MASE ACF1

Training set -1.4953e-06 1.4843 0.8082 -0.0710 1.6065 0.0220 -0.0018

Table 7.3: Forecast accuracy measures of the ARIMA(2,1,3) with drift c = 0.0889
model fitted to the EUA December 2022 data.

Based on the data and forecasts, we construct the empirical Tukey–gh quantile
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process, given in Eq. (7.0.1), as follows.

7.4 Construction of the empirical quantile process

Consider the quantile process in Eq. (7.0.1) where (Yt) is a process modelling the EUA

December 2022 daily futures prices. We want to construct the process (Zt) from the

data and the forecasts obtained from the fitted models, to obtain the quantile process–

induced distorted measure, given in Eq. (7.0.3), so that we can price the insurance

contract at time T = 31 December 2022, using Eq. (7.0.2). We consider a half–yearly,

overlapping sliding window (that is, of length 182 days) that shifts by one day to

produce the next window, and use the runner() function in R to compute the psuedo–

observations, that is the process defined by Ut
d
= FY (t, Yt), on each window. It follows

that the empirical quantile process at time t corresponding to each sliding window is

given by

Zt
d
= QTgh

(Ut;A,B, g, h) (7.4.1)

for A ∈ R, B ∈ R+, g ∈ R \ 0 and h ∈ R+
0 . We show the empirical distribution of

the quantile process at T = 31 December 2022 (which corresponds to the last sliding

window) for A = 92.9430, B ∈ {10, 30} and a range of g and h parameters in Figure

7.7. The grey, vertical dashed lines lie at the values of the thresholds of the stop–loss

contract that we consider, next.
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Figure 7.7: Empirical CDFs of the forecasted quantile process at time T = 31 December
2022 for a range of parameters in the Tukey–gh quantile function. The grey dashed
lines lie at the considered threshold values a ∈ {93.6476, 104.064, 121.408}.



7.5 Pricing results and sensitivities 152

It is imperative in the quantile process construction to choose the parameters in-

tuitively (with regard to the application at hand), particularly in the context of the

discussion in Section 3.1 following Proposition 3.1.2, where one may wish to preserve

some measure of centrality under the distortion induced by the composite map. We

employ such an argument to set the parameter A. We consider the instance that h = 0

and g → 0 in Eq. (7.4.1), where it would hold that Zt ≈ A at any t ∈ (0,∞). If we

consider such a case to represent ‘no distortion’, we may set A equal to the mode of

the forecasted samples of YT , that is, ZT = mode(YT ) where T = 31 December 2022

corresponds to the last sliding window, for which we have 182 samples of the forecasted

driving processes. We vary the remaining parameters in the pricing case study, below.

7.5 Pricing results and sensitivities

We now employ the results given in the preceding subsections for the purpose of pricing

the stop–loss contract. We recall that the premium is given by

ΠPZ

t,T = e−r(T−t)EPZ [
(YT − a)+

∣∣Ft

]
= e−r(T−t)

∫
{ω∈Ω :YT (ω)∈[a,∞)}

(YT (ω)− a) dPZ
T |t(ω)

(7.5.1)

where we have chosen the discount factor Bt = e−rt for r ≥ 0 the interest rate, and

PZ
T |t(A) =

∫
ω∈Ω :Zt(ω)∈A

dP(ω|Ft) (7.5.2)

is the probability measure induced by the quantile process in Eq. 7.4.1 at time T =

31 December 2022, conditional on the information (in the form of the daily futures

price data) available at time t ∈ (0, T ). The purpose of this empirical example is

largely to illustrate the sensitivity of the insurance premium to the parameters in

the quantile distortion, that is B, g and h, as well as the choice of copula. We set

A = mode(YT ) = 92.9430, as discussed in the previous section. The parameter B ∈ R+

‘spreads’ out the empirical distribution of the quantile process; we consider two values

of B for comparison of its impact on the output premiums. We also consider various

thresholds a > 0, which the installation wishes to insure against the futures price

going beyond. Such a threshold is likely to differ between market participants (e.g.,
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installations and/ or the insurers), with those that are more risk averse setting a lower

threshold, and vice versa. Whilst the threshold will likely be related to the quantity

of allowances held by each installation and the potential civil penalties they may face

if their reported emissions exceed such allowances, we consider, for the purpose of this

case study, that a > 0 is some proportion of the price of the EUA December 2022

futures price at t = 25 April 2022. In other words, the insurance contract covers

the possibility of the futures price rising, if a > 1, (or decreasing, if a < 1) by some

percentage. The EUA December 2022 futures price at t = 25 April 2022 is 86.72. The

pricing results for a range of distortion parameters, scale values B ∈ {10, 30}, and
thresholds a = k × 87.72 for k ∈ {1.08, 1.2, 1.4}, are given in Tables 7.4 and 7.5. We

set r = 0 in line with the Euro Area interest rate as of 25 April 2022.

We consider the pricing results in regards to the plots of the empirical CDFs of the

quantile process, for a range of parameter values, given in Figure 7.7, where the grey

dashed lines lie at the considered threshold values a ∈ {93.6576, 104.064, 121.408}.
In line with the stochastic ordering results given in Chapter 5 and Proposition 6.3.4,

which relates such results to the QPVP, we observe ordered prices in both the g and h

parameters. As such, the characterisation of the preferences of more risk averse agents

will correspond to higher values of these skewness and kurtosis parameters. We also

observe that, as expected, prices are higher for a lower threshold value a, as again,

more risk averse agents will prefer insuring against a less extreme price rise, as well as

the probability of the contract paying out with a lower threshold being more likely. As

the threshold increases, i.e., to a = 121.408, the installation is insuring against more

extreme events which are less probabilistically likely, and so we observe lower prices of

the insurance contract. Additionally, referring to Figure 7.7, the closer the threshold a

is to the median of the empirical distribution of ZT , the choice of distortion parameters

have less effect on the marginal distribution of the quantile process. The theoretical

median of the quantile process is A = 92.9430, which is equal to the mode of the

empirical distribution of the forecasted driving process at T = 31 December 2022. We

construct the quantile process in such a way that the distortion has less effect around

the mode of the driving process, A, since as the threshold a converges to A, the payoff

of the insurance contract converges to 0.
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B= 10 g

a= 93.6576 0.1 0.5 0.8 1 2 4 6

0.01 1.8570 2.5007 3.2226 3.8794 12.3277 382.06 28476.16

h 0.1 2.2630 3.1074 4.0776 4.9769 17.1972 615.65 48727.70

0.2 2.9032 4.0844 5.48001 6.8000 25.8210 1065.92 89182.13

0.5 7.6856 11.7318 16.8868 22.0272 107.54 6047.95 566704.52

a= 104.064 0.1 0.5 0.8 1 2 5 6

0.01 0.13088 0.3807 0.73720 1.07176 6.2655 269.64 21928.35

0.1 0.2754 0.6477 1.1459 1.6656 9.1490 435.32 37524.36

h 0.2 0.5368 1.1060 1.8799 2.6297 14.5382 754.70 68678.92

0.5 2.7723 5.0498 7.9612 11.1110 66.3937 4358.76 436426.05

a= 121.408 0.1 0.5 0.8 1 2 4 6

0.01 7.4535e-05 0.01513 0.08964 0.1976 3.1693 210.82 18653.63

0.1 0.0089 0.0768 0.2419 0.4496 5.0618 341.19 31921.87

h 0.2 0.06633 0.2456 0.5671 0.9572 8.7647 604.83 59451.52

0.5 1.0822 2.3251 4.1337 6.0892 45.8372 3513.67 377799.76

Table 7.4: Premiums obtained under the QPVP for A = 92.9430, B =
10, and range of distortion parameters g ∈ {0.1, 0.5, 0.8, 1, 2, 4, 6} and h ∈
{0.01, 0.1, 0.2, 0.5}. The thresholds of the stop–loss contract that are considered are
a ∈ {93.6576, 104, 064, 121.408}.
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B= 30 g

a= 93.6576 0.1 0.5 0.8 1 2 4 6

0.01 6.1034 8.1021 10.3433 12.3827 38.6117 1186.50 87392.69

h 0.1 7.3639 9.9853 12.9978 15.7899 53.7299 1911.73 149543.96

0.2 9.3514 13.0188 17.3517 21.4500 80.5039 3309.6575 273697.22

0.5 24.1992 36.7612 52.7657 68.7252 334.1997 18777.12 1739196.96

a= 104.064 0.1 0.5 0.8 1 2 5 6

0.01 2.8778 4.4578 6.2278 7.7804 29.0234 997.94 75607.41

0.1 3.7967 5.8742 8.2548 10.5352 41.0832 1609.09 129378.73

h 0.2 5.3272 8.1563 11.5801 14.9223 62.4413 2787.12 236792.23

0.5 16.3330 26.4142 39.2024 51.5704 268.56 15821.50 1504696.50

a= 121.408 0.1 0.5 0.8 1 2 4 6

0.01 0.6264 1.5631 2.7639 3.9048 20.3220 836.01 66767.60

0.1 1.1674 2.4499 4.1521 5.7739 29.4855 1349.37 114253.96

h 0.2 2.0552 4.0146 6.4773 8.9337 46.5678 2376.04 209112.63

0.5 9.4324 16.8713 26.3506 35.8227 207.0160 13498.69 1348361.76

Table 7.5: Premiums obtained under the QPVP for A = 92.9430, B =
30, and range of distortion parameters g ∈ {0.1, 0.5, 0.8, 1, 2, 4, 6} and h ∈
{0.01, 0.1, 0.2, 0.5}. The thresholds of the stop–loss contract that are considered are
a ∈ {93.6576, 104, 064, 121.408}.

7.6 Multidimensional extension

We now consider the multidimensional quantile process, given in Section 3.4, and its in-

duced probability measure, for the purpose of incorporating multiple risk drivers in the

valuation principle. This extension of the above example serves the purpose of illustrat-

ing the comparison between the univariate and multidimensional QPVP. We consider

the driving processes (Y
(1)
t ) and (Y

(2)
t ), where (Y

(1)
t ) represents the EUA futures with a

December 2022 expiry date (i.e., the risk driver considered in the univariate case), and

(Y
(2)
t ) the EUA futures price process with a different expiry date, that is March 2023

(symbol CKH2023). This allows us to observe how premiums are impacted by including
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of more ‘information’ regarding the EUA futures market, and the effect of considering

different maturities. We choose the empirical distribution functions of each marginal

driving process and, the empirical copula (the nonparametric Bernstein copula, see,

e.g., Definition 1 by Sancetta and Satchell (2004)), and the Tukey–gh quantile func-

tion. It follows that the Tukey–gh multidimensional random–level quantile process,

given by Definition 3.4.1, is defined by

Zt
d
= QTgh

(
CY

(
t, F

(1)
Y

(
t, Y

(1)
t

)
, FY (2)

(
t, Y

(2)
t

))
;A,B, g, h

)
d
= QTgh

(
FY

(
t, Y

(1)
t , Y

(2)
t

)
;A,B, g, h

)
,

(7.6.1)

for all t ∈ (0,∞). Here, F
(i)
Y is the marginal distribution of the ith driving process,

and FY is the marginal joint distribution function of the two driving processes. The

premium obtained under the QPVP is again given by Eq. (7.0.2) where, now, PZ is

the probability measure induced by the quantile process in Eq. (7.6.1). The premium

accounts for the dependence between the underlying risk and auxiliary risk factors

through the copula C, and the effect of the distortion map through the choice of the

A,B, g and h parameters in the quantile function QTgh
, as well as the choice FY . The

data is treated analogously to the EUA December 2022 data in Sections 7.1 and 7.2,

and the auto.arima() function is applied to fit an ARIMA(2,1,3) model, as shown in

Table 7.6.

Series: Mar23ts.EU Model: ARIMA(2,1,3)

Coefficients AR1 AR2 MA1 MA2 MA3

-0.2636 -0.8715 0.1846 0.8806 -0.1449

s.e. 0.0792 0.0559 0.0899 0.0552 0.0540

σ2 estimated as 3.757 log likelihood = -823.78

AIC = 1659.56 AICc = 1659.78 BIC = 1683.47

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1

Training set 0.1325 1.9237 1.0984 0.1708 1.6152 0.0297 -0.0055

Table 7.6: Output of the auto.arima(), function applied to the EUA March 2023 futures
time series data
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Using the fitted model, we obtain forecasts with a forecast length of h = 249 days.

The forecasted time series, with the 80% and 95% prediction intervals, is shown in

Figure 7.8, and the forecast accuracy measures are shown in Table 7.7.

Forecasts from ARIMA(2,1,3)

Jun 2021 Jan 2022 Jun 2022 Jan 2023

40
60

80
10
0

12
0

14
0

Figure 7.8: Forecasts from the fitted ARIMA(2,1,3) model for a forecast horizon h =
249 days.

ME RMSE MAE MPE MAPE MASE ACF1

Training set 0.1325 1.9237 1.0984 0.1708 1.6153 0.0297 -0.0055

Table 7.7: Forecast accuracy measures of the ARIMA(2,1,3) model fitted to the EUA
March 2023 data.

Since the data is bivariate, we use the function Bcopula() from the package ‘sub-

copem2D’, see Erdely (2019), to produce the Bernstein copula approximation from the

empirical subcopula of the data, which we denote CB(t, ·). We do this on each window,

as we do not necessarily assume that the joint dependence structure between the data
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sets (modelled by the two driving processes) is stationary. It follows that the empirical

quantile process at time t corresponding to each sliding window is given by

Zt
d
= QTgh

(
CB

(
t, U

(1)
t , U

(2)
t

)
;A,B, g, h

)
d
= A+

B

g

[
exp

(
g
√
2erf−

(
2CB
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t, U

(1)
t , U

(2)
t
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− 1
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− 1
]

× exp
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h
(
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(
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(
t, U
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t , U

(2)
t

)
− 1
))2)

.

(7.6.2)

Figure 7.9 shows the contour plots of the empirical copula between the EUA December

2022 and EUA March 2023 data sets at windows i ∈ {182, 239, 296, 353, 400, 466},
where i = 182 corresponds to the first full length (half–yearly) window, and i = 466

corresponds to the last window, i.e., that at time T . In Figure 7.10, we show the

empirical distribution of the multidimensional quantile process at T = 31 December

2022 (which corresponds to the last sliding window) for A ∈ {92.9430, 106.8844}, B =

10 and a range of g and h parameters. The grey, vertical dashed lines lie at the value

of the thresholds of the stop–loss contract that we consider in the univariate QPVP

example above. The effect of distributional distortions in the multivariate setting is

less transparent than the univariate setting. For example, the output process ZT is no

longer distributed according to the Tukey–gh distribution, however ‘inherits’ properties

(e.g., increasing heavy–tailedness in the h parameter, as shown in Figure 7.10) from the

distribution, when the Tukey–gh quantile function is used in the composite map. We

also see from the empirical CDF plots that considering the same parameter A = 92.9430

(which is equal to the empirical mode of Y
(1)
T ), for the given thresholds of the insurance

contract, may not lead to ordered prices, as desired. The thresholds, for many of the

considered combinations of parameters, sit in the area where the empirical CDF is equal

to one. This is less so the case in the second two plots in Figure 7.10, where we consider

A = 106.8844, that is 15% higher than the previously considered value, as the increased

value of A shifts the location of the distribution to the right. Intuitively, it makes sense

that we need not necessarily consider A = mode(Y
(1)
T ) in the multidimensional quantile

process construction, as the composite map is not defined in such a way that we distort

around this measure of centrality, as in the univariate case. The lack of transparency

of the impact of multivariate distortions, relative to the univariate case, gives rise to

interesting future work in better understanding the impact of distortion maps and
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copulas when applied to multivariate driving processes. We further discuss the choice

of parameters of the multidimensional quantile process construction in regard to the

pricing results given in Table 7.8.

Figure 7.9: Contour plots of the Bernstein copula based on the empirical
EUA December 2022 and EUA March 2023 futures data at time windows i ∈
{1, 94, 188, 282, 376, 466}, where i = 466 corresponds to the last window, i.e., that
at time T .
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Figure 7.10: Empirical CDFs of the forecasted quantile process at time T = 31 De-
cember 2022, for a range of parameters in the Tukey–gh quantile function. The grey
dashed lines lie at the considered threshold values a ∈ {93.6476, 104, 064, 121, 408}.

We present some pricing results obtained under the multidimensional QPVP in

Table 7.8. We consider the same values of the g and h parameters as those considered

in the univariate case, and we increase the location parameter by 15% to A = 106.8844.

If A = 92.9430, we have PZ(Y
(1)
T > a) = 0 for most cases of the considered distortion

parameters, as shown in the distribution plots in Figure 7.10, and so ΠPZ ,ζ
t,T = 0 and

the insurer does not sell the contract. Considering the results in Table 7.8, we again
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observe an ordering in the g parameter, however this is no longer the case with regard

to the h parameter. In Table 7.9, we set A = 126.9485 to match the premium given

in Table 7.5 for B = 30, g = 0.1, h = 0.01. This provides a direct comparison as to

how the prices increase with regard to increasing g and h from this reference point.

In this example, the increase in information (in the form of price data from the EUA

March 2023 futures contract) reduces the sensitivity of premiums to changes in the

parameters.

A=106.8844 g

a= 93.6576 0.1 0.5 0.8 1 2 4 6

0.01 2.8288 3.2741 3.6618 3.8993 4.6703 5.3403 5.6352

h 0.2 2.5580 2.8509 3.0962 3.2662 4.0531 4.9474 5.3480

0.5 2.3010 2.5047 2.6732 2.7874 3.3817 4.2738 4.7623

a= 104.064 0.1 0.5 0.8 1 2 4 6

0.01 0.0328 0.0332 0.03352 0.03371 0.0348 0.0376 0.0411

h 0.2 0.0328 0.0332 0.0335 0.0337 0.0347 0.0375 0.0410

0.5 0.0328 0.0332 0.0335 0.0336 0.0347 0.0374 0.0409

Table 7.8: Premiums obtained under the QPVP for A = 106.8844, B = 10, and range
of distortion parameters g ∈ {0.1, 0.5, 0.8, 1, 2, 4, 6} and h ∈ {0.01, 0.2, 0.5}. The
thresholds of the stop–loss contract that are considered are a ∈ {93.6576, 104, 064}.

A=126.9485 g

a= 93.6576 0.1 0.5 0.8 1 2 4 6

0.01 6.1034 7.0506 7.9580 8.6268 10.9397 12.9497 13.8344

0.1 5.8352 6.5996 7.2817 7.7772 10.1028 12.4794 13.5182

h 0.2 5.6041 6.2451 6.8033 7.2034 9.2535 11.8136 13.0066

0.5 5.1062 5.5590 5.9373 6.2021 7.6497 10.0325 11.4248

Table 7.9: Premiums obtained under the QPVP for A = 126.9485, B = 30, and range of
distortion parameters g ∈ {0.1, 0.5, 0.8, 1, 2, 4, 6} and h ∈ {0.01, 0.1, 0.2, 0.5}. The
thresholds of the stop–loss contract that are considered are a ∈ {93.6576, 104, 064}.



Chapter 8

Conclusions

In this thesis, two new classes of stochastic processes are developed, that model the

continuous–time evolution of quantiles and quantile functions. The first of these con-

structions is predominantly focused on. Here, the statistical properties of the finite–

dimensional distributions of the process are characterised by a composite map for which

direct interpretation is provided, and a focus is placed on such properties relative to

those of the base driving process from which it is constructed. This allows one to

take a stochastic process (we focus on those with càdlàg paths), e.g., a process that

may already be calibrated to some data set, and transform it in such a way that all

introduced statistical properties (e.g., skewness and kurtosis) are controlled via the

parametric distortion. We consider the Tukey family of transformations in the quan-

tile process construction, and motivate such a choice by the above reason, being that

skewness and kurtosis are directly parameterised in the transformation.

Following the quantile process construction, we focus on the probability measures

induced by the processes, and become intrigued by the properties that such measures

may bring to dynamic risk analysis and a pricing application. It is not novel to study

distorted measures in the context of risk valuation, however we consider the construc-

tive approach of the quantile process–induced measures in this thesis, and the prop-

erties they exhibit, as an innovative way to extend this area of literature. With such

a construction, one may develop a probability measure that produces a wide range of

statistical properties—covering an extensive skew–kurtosis range—in the evaluation of

distributions under the measure. Necessary and sufficient conditions are derived under

which the quantile processes satisfy first– and second–order stochastic dominance, thus
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producing ordered parametric families of measure distortions. We consider the con-

ditional expectation under the distorted measure as a member of the time–consistent

class of dynamic valuation principles, and extend it to the setting where the driving

risk process is multivariate. This requires the introduction of a copula function in

the composite map for the construction of quantile processes, which presents another

new element in the risk quantification and modelling framework based on probability

measure distortions induced by quantile processes.

The second quantile process construction, which models the dynamic evolution of

the entire quantile function through time, is presented as a continuous–time extension

to the dynamic quantile function (DQM) models presented by Chen et al. (2022). Here,

a quantile function is considered (more complex quantile functions may be obtained by

applying the discussed quantile–preserving maps to simpler quantile functions), and

its parameters are modelled by continuous–time càdlàg processes. There exists much

room for exploration of this class of models and what they can achieve, in further work.

In summary, we consider the work presented in this thesis as the start of a framework

that has vast potential in various applications, as well as to further examine theoreti-

cally. It opens up many interesting questions in connection with additional families of

such models that may be developed and the breadth of statistical behaviours they may

inherit, as well as a deeper exploration into their dynamic properties. We believe, as

a next step, it would be of particular interest to examine serial dependence structures,

and the parametric control one may have over them, in the quantile process con-

structions. Additionally, there is much room for development of the multidimensional

random–level quantile processes in application, as well as in regard to their stochastic

orderings and the distorted measures they induce. This thesis is of a theoretical na-

ture, and so going forward, one may also wish to take a more statistical approach in

the estimation and calibration of the models, and their descriptive capabilities of large

data sets.
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nomic model. ASTIN Bulletin: The Journal of the IAA, 33(1):57–73, 2003.

S. S. Wang, V. R. Young, and H. H. Panjer. Axiomatic characterization of insurance

prices. Insurance: Mathematics and Economics, 21(2):173–183, 1997.

J. L. Wirch and M. R. Hardy. Distortion risk measures: Coherence and stochastic

dominance. In International congress on insurance: Mathematics and economics,

pages 15–17, 2001.
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