
1

One-Shot Domain-Adaptive Imitation Learning
via Progressive Learning

Dandan Zhang, Wen Fan, John Lloyd, Chenguang Yang, Nathan Lepora

Abstract—Traditional deep learning-based visual imitation
learning techniques require a large amount of demonstration data
for model training, and the pre-trained models are difficult to
adapt to new scenarios. To address these limitations, we propose
a unified framework using a novel progressive learning approach
comprised of three phases: i) a coarse learning phase for concept
representation, ii) a fine learning phase for action generation, and
iii) an imaginary learning phase for domain adaptation. Overall,
this approach leads to a one-shot domain-adaptive imitation learn-
ing framework. We use the robotic pouring task as an example
to evaluate its effectiveness. Our results show that the method
has several advantages over contemporary end-to-end imitation
learning approaches, including an improved success rate for task
execution and more efficient training for deep imitation learning.
In addition, the generalizability to new domains is improved, as
demonstrated here with novel backgrounds, target containers,
and granule combinations in the experiment. We believe that
the proposed method is broadly applicable to various industrial
or domestic applications that involve deep imitation learning for
robotic manipulation, and where the target scenarios are diverse
and human demonstration data is limited.

Note to Practitioners— The motivation of this paper is to
develop a progressive learning framework, which can be used
for both service and industrial robots to learn from human
demonstrations, and then transfer the learned skill to different
scenarios with ease. We use the robotic pouring task as an
example to demonstrate the effectiveness of our proposed method,
since pouring is an essential skill for service robots to assist
humans’ daily lives, and can benefit robot automation in wet-lab
industries. The aim of this research is to enable robots to obtain
visuomotor skills (such as the pouring skill), and accomplish the
tasks with a high success rate using our proposed progressive
learning method. We conducted experiments to show that the
proposed method has good performance, high data efficiency and
evident generalizability. This is significant for intelligent robots
working in various practical applications.

Index Terms—Efficient robot skill learning, imitation learning,
robot and automation, one-shot learning, robotic pouring.

I. INTRODUCTION

Imitation learning is an effective tool for robots to learn
dexterous manipulation skills [1]–[4], in scenarios where
obtaining a dynamic model for control or specifying a re-
ward function [5] for reinforcement learning are challenging.
However, a large database is normally required for training
control policies [6]. Moreover, the policies trained in a specific
environment may not work well in other environments, due
to the presence of domain gaps. An ideal automatic robotic

Dandan Zhang Wen Fan, John Lloyd, Nathan Lepora are with the Depart-
ment of Engineering Mathematics, University of Bristol; Chenguang Yang
is with the Department of Engineering Design and Mathematics, University
of the West of England. All the authors are affiliated with Bristol Robotics
Laboratory, UK.

(a)

Scene J+1
(One Trial)

Scene J+2
(One Trial)

Fine-Tune
Model

Policy for
Scene J+1

Policy for
Scene J+2

Require: Collect one trial of demonstration
data in new scene and fine-tune models for
task execution in Scene J+1, J+2,…

Testing Phase

Fine-Tune
Model

Scene 1
(Many Trials)

Scene J
(Many Trials)

Policy for
Scene
1,2,…J

Train
Model

Training Phase

Demonstration

… … …

Scene 2
(Many Trials)

…

Demonstration

(b)

One-Shot Domain Adaptive Imitation Learning

Progressive Learning

Phase

Target Concept
Representation

Domain
Adaptation

Action
Generation

Source Domain

Target Domain

Coarse
Learning

Fine
Learning

Imaginary
Learning

Figure 1. Schematic diagram of the proposed learning framework and
approach. (a) Illustration of the one-shot domain adaptive imitation learning
framework. (b) The workflow of the progressive learning method, including a
coarse learning phase, a fine learning phase, and an imaginary learning phase.

manipulation system should be able to adapt to new scenarios
for task execution even if only very limited demonstration data
is available for training the control policy [7]. To this end,
we develop a one-shot domain adaptive imitation learning
framework that is data-efficient and can generalize the learned
behavior to a new scenario with novel domain characteristics
without significant loss in performance.

Humans are good at learning and generalizing strategies
for everyday tasks from a few demonstrations. In particular,
humans can learn the concepts for performing a series of tasks
and then transfer that knowledge to new scenarios by practic-
ing specific visuomotor skills. Motivated by the advantages of
human learners, we propose a progressive learning method
that decouples the traditional end-to-end imitation learning
pipeline into three phases: coarse learning, fine learning and
imaginary learning. Our method allows the robot to acquire the
general knowledge with a good concept representation in the
coarse learning phase [8], then learn to generate the precise
motions in the fine learning phase, and finally expand this
knowledge to new scenarios in the imaginary learning phase,
which mimics the progressive learning process that humans

2

also appear to do.
We use robot pouring task as an example to evaluate the

effectiveness of the proposed method, which is an essential
skill for industrial or domestic robots when used for dispensing
lubricants [9], carrying out chemical experiments [10], [11],
cleaning [12], and cooking [13]. We chose this task because
pouring involves complex dynamic processes that are difficult
to model [14]. Moreover, it is not feasible for robots to
learn from trial-and-error based on reinforcement learning
approaches for the pouring task, because of the large amount
of human intervention that would be required while training
the robot. To this end, we consider the robotic pouring task
as an appropriate example to validate the proposed imitation
learning framework.

The main contributions of this paper are as follows.
1) We train the robot to learn general concepts by encoding
concept representation features during the coarse learning
phase, which provides compact but interpretable features
extracted from raw pixels. This paves the way for the robot to
learn action generation with high efficiency.
2) We enable the robot to generate precise motions using an
LSTM-Attention hybrid model during the fine learning phase,
based on the features extracted at the coarse learning phase,
which ensures the success rate of task execution by incorpo-
rating concept representation with temporal information.
3) We employ a generative adversarial network to generate a
large amount of synthetic observation data in new scenarios
during the imaginary learning phase, which enhances the
perception skills of the robot and ensures that the robot can
adapt the pre-trained policies to new scenarios with ease.

In summary, we formulate a one-shot domain adaptive
imitation learning framework and demonstrate a progressive
learning approach that can implement such framework. The
proposed method addresses the fundamental limitations of
deep imitation learning by eliminating the need for recollecting
a large amount of demonstration data and retraining the
whole model in new domains with unseen object properties
or environments.

The rest of this paper is structured as follows. Section
II introduces the related work. The problem statement and
the construction of the proposed framework are introduced
in Section III. Following that, we use a robotic pouring as
a concrete example to demonstrate the proposed progressive
learning approach in Section IV. The experiment design and
result analysis are described in Section V. Finally, conclusions
are drawn in Section VI.

II. RELATED WORK

1) Imitation Learning: Imitation learning considers the
problem of acquiring skills from observing demonstrations.
Behaviour Cloning and Inverse Reinforcement Learning (IRL)
are two major research directions for imitation learning [15],
[16]. Behaviour Cloning aims to teach the robot to follow
the expert guidance from supervised learning. IRL estimates
a reward function from human demonstration, and then the
learned reward function is used for reinforcement learning.
Survey articles include [17]–[19].

For traditional imitation learning, a large amount of demon-
stration data is normally required for training the policies [6].
Moreover, policies obtained during the model training phase
are domain-specific [20]. For example, a model trained for task
execution in one scene through an imitation learning algorithm
in the training phase may not result in good performance for
task execution in the testing phase when encountering a new
scenario with new properties. Therefore, recent research for
imitation learning has been focusing on one-shot learning and
domain adaptation, which enhances the data efficiency and
generalizability of traditional imitation learning approaches.

2) One-Shot Imitation Learning : One-shot imitation
learning enables robots to learn to perform a new task with few
demonstrations from humans [21]–[24]. The objective of one-
shot imitation learning is to train action prediction networks
that are not specific to one task, then maximize the expected
performance of the learned policy when faced with a new,
previously-unseen task. In one example, a one-shot imitation
learning method uses one demonstration and the observed
state as the input and generates the action value for a block
stacking task [25]. The first vision-based one-shot imitation
learning framework [26] used Model-Agnostic Meta-Learning
(MAML) [27] for an object placing task. However, this method
requires the training database to have high diversity with many
demonstration trials for different tasks; for example, about
1300 demonstrations were collected for meta-training during
the training phase [26]. Therefore, in this paper we aim to
eliminate the need for collecting a large amount of diverse
demonstration data during the training phase. Moreover, to
verify that the one-shot learning can be implemented for
more complex tasks, we evaluate our proposed method on a
robotic pouring task, which involves more complex dynamic
processes.

3) Domain Adaptation : Domain adaptation is a process
that allows a neural network model trained with samples from
a source domain to generalize to a target domain [28]. Recent
domain adaptation methods learn deep neural transformations
that map image data from dstinct domains into a common
feature space. For example, adversarial discriminative domain
adaption (ADDA) [29] is a method for domain adaptation
in image classification. However, the labels in the source
domain and the target domain were required to be identical,
which is unrealistic for imitation learning in robotics and
does not align with the one-shot imitation learning setting.
Another research direction is to reconstruct the target domain
from the source representation [30]. To this end, a generative
adversarial network can be used to generate a large database
with synthetic observation data for model training to support
domain adaptation [31], which we will use in this paper.

4) Learning-Based Robotic Pouring : Previously, imita-
tion learning approach has been investigated for a dynamic
fluid pouring task similar to the one in this paper [32].
However, that previous study required many failed human
demonstrations for the robot to learn how to recover from
errors [32]. In another work, an RNN-enabled MPC (Model
Predictive Control) controller determined the optimal velocity
for execution, which was verified with a custom apparatus.
A single motor was used to generate the rotational motions

3

[33], instead of a robotic arm. While the approach was able to
learning the task, the generalizability was not demonstrated,
in particular the 3D position of the source container cannot be
adjusted. Thus, the above methods can perform well in specific
scenarios, but there are open questions about how well they
would carry over to new scenarios with novel target containers,
granules and backgrounds. To this end, learning-based method
for robotic pouring task with generalizability will be developed
and evaluated in this paper.

III. METHODOLOGY: PROGRESSIVE LEARNING

A. Overview
Our goal is to learn a policy that can adapt to new domains

from a single demonstration of that task in a new scenario
during the testing phase, while eliminating the need for
collecting a large amount of data from different scenes during
the training phase (in contrast to traditional one-shot learning,
as discussed in Section II-2).

As shown in Fig. 1(a), the data collection process is similar
to that of traditional imitation learning, with several trials
of demonstration data collected for several scenes (Scene 1,
2,· · · , J). During the testing phase, for task execution in Scene
J + 1, J + 2, · · · , only one trial of demonstration data is
required. The model obtained in the training phase can be
fine-tuned during the testing phase and new policies for task
execution in new scenes can be obtained quickly.

Our approach is to develop a progressive learning approach,
which may be considered as a representative architecture for
the one-shot domain-adaptive imitation learning scheme. The
workflow of our progressive learning approach is shown in
Fig. 1(b).

B. Problem Formulation
We use ot to represent the observation and at to represent

the action at time t. Then τ represents a trajectory for
performing the task, consisting a sequence of observation and
action pairs: τ =

[
(o1,a1) , (o2,a2), . . . , (oT ,aT)

]
.

Training Phase. Let Tj = {τ1, τ2, · · · , τK} denotes a
group of trajectories for task execution in Scene j. Let
DT = {T1, T2, · · · , TJ} denotes the database for model
training, which is comprised of different trajectories τk(k =
1, 2, · · · ,K) for task execution in different scenes Tj(j =
1, 2, · · · , J), demonstrated by human for the robot to imitate.
A policy πΘ will be obtained to map observations ot(t =
1, 2, ..., T) to actions at(t = 1, 2, ..., T) under the parameters
Θ. We denote the observation data used for model training in
the training phase as being from source domain H .

Testing Phase. Let Dr
T = {TJ+1, TJ+2, · · · } de-

note the new database collected during the testing phase.
TJ+1, TJ+2, · · · represent new scenarios for task execution,
which have novel domain characteristics unseen during the
training phase. Unlike the training phase (where each scene
Tj has several demonstrated trajectories), Dr

T only includes a
single trajectory collected as demonstration data for each scene
TJ+1, TJ+2, · · · , while the corresponding policies πΘJ+1

,
πΘJ+2

, · · · for task execution are obtained via transfer learn-
ing. We denote the observation data collected during the
testing phase as being from target domain R.

C. Framework Construction

1) Coarse Learning - Concept Representation: The main
goal of the coarse learning phase is to enable the robot to learn
basic concepts by encoding representation from raw pixels,
which can be used to accelerate the action generation model
training during the fine learning phase while ensuring model
performance by preserving compact but interpretable features.

Representation learning techniques aim to extract features
from high-dimensional sensory input, which can help improve
the model performance in some downstream learning tasks
[34]. Though deep neural networks such as VGG16, Incep-
tionV3, and ResNet50 [35] with pre-trained weights on Ima-
geNet can be used for transfer learning, the encoded features
cannot explicitly express the contexts for a specific task. Auto-
encoders and their variances can be used for feature extrac-
tion, but these models cannot guarantee the representation is
human-interpretable. Therefore, we aim to train a model that
can learn concept representation with interpretable features
that benefit the downstream process (action generation) when
data is limited.

Let FC(.) denote the coarse learning model. In this paper,
the architecture of the coarse learning model FC(.) is an
adapted version of a ResNet-18 model [36]. Different from
the original ResNet-18 model for single image classification,
we reorganize the architecture into a multi-head structure
for multi-variable classification. During model training, we
draw a batch of samples {Xk, Yk}(k = 1, 2, ...,K) to update
the parameters of FC(.) in a supervised learning manner,
with batch spize K, inputs Xk = ot and outputs Yk. The
construction of the key components will be detailed in Section
IV-E1.

After FC(.) is trained using database DT , we use it
to convert the image data to their corresponding concept
representation feature vectors. A new database D′ is then
constructed in which the original observation-action pairs τk =[
(o1,a1) , (o2,a2), . . . , (oT ,aT)

]
are replaced by state-action

pairs τ ′k =
[
(s1,a1) , (s2,a2), . . . , (sT ,aT)

]
with st = V t

F .
This database will be used for the fine learning process next.

2) Fine Learning - Action Generation: The fine learning
process aims to utilize the general concepts obtained by the
coarse learning phase to generate the precise action during
task execution.

We use a Long-Short Term Memory (LSTM) recurrent
neural network [37], which contains memory cells and gates
that allow the network to propagate gradients back in time.
The network takes the inputs at the current time step alongside
hidden states from previous time steps to generate the output
for the current time step. LSTM models are good at processing
sequential data, and will thus be used as an essential architec-
ture to construct a fine learning model of the action values.

A potential issue with the LSTM model is that it may overfit
by memorizing the mean trajectory, which makes it harder to
generalize to novel tasks and thus limits its generalizability. To
address this issue with the vanilla LSTM architecture, we in-
corporate an attention mechanism [38]: instead of considering
all neighbors as equal, the neighboring neurons are weighted
according to a criterion specified by the attention model.

4

The architecture of the fine learning model, denoted Ff(.),
consists of two LSTM layers with 128 and 64 units respec-
tively, following the standard described in [39]. A key aspect
of our model is to improve upon previous work using LSTM-
based motion control for robotic pouring, by incorporating an
attention mechanism [40]. After combining the LSTM model
and the attention layer, the generated encoded features pass
through a multi-layer perceptron with four hidden units to
predict the actions for task execution.

After obtaining the extracted concept representation feature
vector of each frame, a sequence of feature vectors can be
formed by V w

F = [V t−w+1
F , V t−w+2

F , ..., V t−1
F , V t

F], where the
parameter w sets the length of the sequence. The fine learning
model uses the features obtained from observation images at
these times t − w + 1, t − w + 2, . . . , t − 1, t as input,
with the robot’s end-effector action values as output. During
model training, we draw a batch of samples {Xk, Yk}(k =
1, 2, ...,K) to update the parameters of Ff(.) in a supervised
learning manner, where K represents the batch size.

3) Imaginary Learning - Domain Adaptation: The Pix2Pix
GAN [41] has been used for domain adaptation from the
simulated environment to a real environment [42]. However,
aligned image pairs from different domains are required for the
model training, which is not realistic for robotic dexterous ma-
nipulation task because the duration of end-effectors’ trajecto-
ries in different scenarios may vary significantly. Alterantives
such as the CycleGAN [43], DiscoGan [44] or DualGan [45]
can achieve image translation between different domains using
unpaired images in an unsupervised learning manner. In this
paper, we use CycleGAN to transfer images from the original
database to a new database that includes sufficient synthetic
data with the appropriate properties (domain characteristics)
for generalization to novel scenarios. We note in passing that
it should be possible to achieve similar levels of performance
using other types of GAN model such as DiscoGAN and
DualGAN [44], [45].

Our proposed method will benefit robotic manipulation
tasks that are either too difficult to model or too costly to
learn from failures via reinforcement learning approaches.
Unlike prior methods for domain adaptation that require time-
aligned and paired demonstrations from different domains to
obtain state correspondences, our proposed method enables the
robot to adapt to new scenarios via imaginary learning in an
unsupervised manner.

The imaginary learning phase can be implemented by three
steps: i) training the generators via CycleGAN, ii) constructing
the synthetic database, and iii) transferring knowledge via
fine-tuning. In Step 1, the CycleGAN model is trained in an
unsupervised learning manner. However, in Step 3, the model
is fine-tuned in a supervised learning manner.

Step 1: Training Generators via CycleGAN. First, we
collect one-shot demonstration data for task execution in a
novel scene with new domain characteristics. This database
denoted Dr

T .
We sample observation data from DT , which is drawn

from the source domain H , and then sample observation
data from Dr

T , which is drawn from the target domain R.
For domain adaptation, we need to train a generator G(.)

to take observation images from the source domain and
generate new observation images matching those from the
target domain, while a generator G′(.) takes the images back
from the target domain to the source domain. Meanwhile,
a discriminator DH(.) is trained to classify whether a data
sample is drawn from the source or from the generated data
in the target domain, while a discriminator DR(.) is trained
to classify whether a data sample is drawn from the target
or generated data in the source domain. The distribution of
the real observations remains fixed, and the distribution of the
generating observation is learned to match the real data. The
aim is to solve a min-max problem such that

G∗, G
′∗ = arg min

G,G′
max

DH ,DR

L
(
G,G

′
, DH , DR

)
. (1)

The details of the loss functions for training the CycleGAN
can be found in Appendix.

Step 2: Constructing the Synthetic Database. The next
step is to use the generator G(.) to generate new obser-
vation data in an imaginary manner to construct a syn-
thetic database D′r

T . More specifically, we sample trajecto-
ries τ1, τ2, · · · = [(o1,a1), (o2,a2), · · ·], and generate new
observation images to replace the original observation images
from the original trajectories as new trajectories τ ′1, τ ′2, · · · =
[(G(o1),a1), (G(o2),a2), · · ·]. These trajectories are consid-
ered to be imaginary demonstration data with generated ob-
servation and action pairs, giving Dr′

T = {τ ′j}(j = 1, 2, · · ·)
comprised of a series of imaginary trajectories.

Step 3: Transferring Knowledge via Fine-Tuning. Finally,
a new database Do

T is constructed by combining Dr′

T and Dr
T ,

which is used to fine-tune FC(.) in a transfer learning man-
ner. Subsequently, we combine fp (extracted by FC(.) with
updated parameters) and the new task-specific characteristics
z′ to generate a new feature vector V o

F . In this manner, Do′

T
is constructed by pairing V o

F with the corresponding action
values. After fine-tuning Ff(.) usingDo′

T , a series of generated
new policies πΘJ+1

, πΘJ+2
, · · · are obtained for task execution

in novel scenarios with new domain characteristics absent from
the original training database DT (z′ ̸= z), achieving the
appropriate domain adaptation.

IV. CASE STUDY: ROBOTIC POURING

A. Task Description

The pouring task requires the robot to successfully pour
different granular materials into different target containers with
distinct background environments. Here we consider distinct
scenes to correspond to cases where either granular materials,
target containers, or backgrounds are different from previously
experienced combinations. The robot should learn to adjust
a reasonable position of the source container and control
the wrist motions in a proper manner to avoid spilling the
materials out of the target containers. More specifically, the
robot needs to learn 4-DoF end-effector control and ensure a
reasonable success rate for pouring granular materials to target
containers with different shapes in different environments. We
collected human demonstration data to train a model for online
deployment. The learned model will generate action values to
command the robot to execute the pouring task. The robot then

5

Table I
DETAILS OF THE DATABASE

Scene Target Container Granules Background Trails EvaluationType Property Size Color Type Color Shape Color Type Train Test
1 Goblet Opaque Medium White Lentils Green Oblate Orange Board 8 1
2 Goblet Opaque Medium White Rice White Prolate Orange Board 8 1
3 Goblet Opaque Medium White Couscous Yellow Cylindrical Orange Board 8 1 ✓
4 Plate Opaque Small White Lentils Green Oblate Orange Board 8 1 ✓
5 Plate Opaque Small White Rice White Prolate Orange Board 8 1
6 Plate Opaque Small White Couscous Yellow Cylindrical Orange Board 8 1
7 Cup Opaque Small White Lentils Green Oblate Orange Board 8 1
8 Cup Opaque Small White Rice White Prolate Orange Board 8 1 ✓
9 Jar Transparent Big / Lentils Green Oblate Orange Board 8 1
10 Jar Transparent Big / Rice White Prolate Orange Board 8 1 ✓
11 Cup Opaque Small White Couscous Yellow Cylindrical Orange Board 0 1
12 Jar Transparent Big / Couscous Yellow Cylindrical Orange Board 0 1
13 Jar Transparent Big / Lentils Green Oblate Blue Tissue 0 1 ✓(New Background)
14 Plate Opaque Small White Lentils Green Oblate Blue Tissue 0 1 (New Background)
15 Goblet Opaque Medium White Lentils Green Oblate Blue Tissue 0 1 (New Background)
16 Cup Opaque Small White Coffee Brown Irregular Orange Board 0 1 ✓(New Granules)
17 Plate Opaque Small White Coffee Brown Irregular Orange Board 0 1 (New Granules)
18 Goblet Opaque Medium White Coffee Brown Irregular Orange Board 0 1 (New Granules)
19 Cup Opaque Big Black Rice White Prolate Orange Board 0 1 ✓(New Container)
20 Cup Opaque Big Black Couscous Yellow Cylindrical Orange Board 0 1 (New Container)

✓ represents that the scene will be used for physical experiments for model evaluation.

Figure 2. The experimental setup for the robotic pouring task. A pouring
container is mounted as the end effector to the wrist of a UR5 (Universal
Robots) 6-axis robot arm. An RGB camera is mounted at a fixed position
to view a target container placed on a table adjacent to the base of the
arm. Human demonstration data is collected via teleoperation using Geomagic
Touch X haptic motion-capture device as the remote controller.

returns to its original starting configuration after each episode
of the pouring task is completed.

B. Hardware Deployment

The human demonstration database for model training was
collected via teleoperation of a UR5 (Universal Robots) 6-axis
robot arm, using a Geomteric Touch X (3D Systems) haptic
motion-capture device as the remote controller to provide
human-guided commands. An RGB camera sited to view the
container was used to capture the image frames for training.
The source container was attached as an end effect to the wrist
of the robotic arm, with the target container placed on a table
near the base of the robot arm. The experimental setup for the
robotic pouring task is shown in Fig. 2.

(a) (b)

(c) (d)prepare pouring finish pouringconduct pouring

t

t

…

…

t

…

S1

S6

S10

Su
cc
e
ss

Fa
ilu

re
s

Figure 3. Overview of the constructed database for model training. (a) Raw
trajectories of the 3D position of the end-effector. (‘S’ is the abbreviation of
‘Scene’) (b) Raw trajectories of the rotation angle of the robot’s wrist joint. (c)
Examples of three successful trails of the pouring experiments. (d) Examples
of failed trails.

C. Database Construction

The demonstration database is constructed from ten distinct
pouring scenes (known as scene S1-S10). Eight trials are
collected for each scene respectively, as shown in Fig. 4.
The properties of the target containers, granules and back-
ground used for different pouring scene are summarized in
Table I. Four different types of target containers are used
for experiments: a ‘goblet’, ‘plate’, ‘cup’ and ‘jar’ that have
various properties, sizes, and colors. As for the granules, we
used ‘lentils’, ‘rice’, and ‘couscous’, which have different

6

S1 S2 S3 S4

S6 S7 S8 S9

S5

S10

Training Database

Figure 4. Examples of the ten different pouring scenes, S1-S10, for con-
structing the training database (‘S’ abbreviates ‘Scene’).

colors and shapes. A sheet of orange cardboard is used as
the background during data collection, which will be changed
during testing.

The database contains a series of trajectories that are
comprised of observation-action pairs. This training database,
denoted as DT , will be used for model training in the coarse
learning phase and fine learning phase. The images captured
as observation data ot during teleoperation are cropped to
size of 224 × 224 at 30 fps. The robot kinematics states are
recorded simultaneously as the corresponding action values.
To pour the granules, the tilt angle of the source container is
controlled directly by commanding the rotating angle θ(t) of
the wrist joint of the robotic arm, while the 3-dimensional (3D)
position p(t) = [x(t), y(t), z(t)] of the end-effector is adjusted
to ensure pouring without spillage. We use the 3D velocity
v(t) = [vx(t), vy(t), vz(t)] and rotation angle for robot control
during online deployment. Therefore, we define action values
as at = [vx(t), vy(t), vz(t), θ(t)] in this paper.

D. Performance Evaluation

The success rate is used to evaluate the performance of
the imitation learning algorithm, which is a ratio between the
number of successful trials and the total conducted during the
experiments. A successful trial is defined as one in which
the granules are poured from the source container into the
target container without spilling. If the total volume of the
granules in the source container is smaller than the maximum
capacity of the target container, a successful trial is defined as
pouring at least 90% total volume of granules from the source
container to the target container. If the maximum capacity of
the target container is smaller than the source container, the
target container should be filled to at least 90% of the total
capacity of the target container.

Ten raw trajectories, including the 3D position and the
rotation angle of the wrist joint of the robot’s end-effector,
are plotted in Fig. 3(a)-(b) as examples. Fig. 3(c) shows three
successful trials of robotic pouring as examples, while Fig.
3(d) indicates failures when executing the pouring task.

E. Implementation Details

The neural network architecture of the progressive learning
method is shown in Fig. 5. The implementation details of

automatic robotic pouring using the proposed method are
illustrated as follows.

1) Coarse Learning - Concept Representation: The goal of
the coarse learning phase is to obtain a concept representation
feature vector that includes information from several key com-
ponents in an interpretable manner. The concept representation
of the pouring task is comprised of three key components: i)
the tilt angle control, ii) the 3D-position adjustment, and iii)
the task-specific characteristics (encoded as a distinct variable
z).

Component 1: Tilt Angle Control. Imagine that a ‘teacher’
(human demonstrator) is responsible for supervising a ‘stu-
dent’ (robot imitator) to learn the pouring task by transferring
general concepts using descriptive language. The whole pour-
ing process could then be split into several stages, such as:
(1) increase the tilt angle of the source container quickly until
granules flow out from the source container;
(2) keep increasing the tilt angle of the source container stably
to fill up the target container;
(3) reduce the tilt angle of the source container when the target
container is almost full or no remaining granules are in the
source container.

Suppose that θs is the tilt angle of the source container when
the granules begin to leave the container. Then θm represents
the maximum tilt angle, after which the robot starts to restore
to its original pose. The tilt angle of the source container is the
rotation angle of the robot’s wrist (axis-6), denoted by θ(t).

For a simple implementation, the first stage of the task could
be labelled as θ̃(t) = 0 (when θ(t) < θs), and the second and
the third stages labelled as θ̃(t) = 1 (when θs ≤ θ(t) ≤ θm)
and θ̃(t) = 2 (when θm < θ(t)) respectively. The supervision
for tilt angle control could then be formulated as a 3-class
classification problem on the visual images.

For a more general implementation, we want the ‘student’
to learn detailed knowledge, such as ‘increase the tilt angle
slightly’ or ‘increase the tilt angle significantly’. In this case,
the second stage could be further segmented into many sub-
stages. Suppose that there are N stages in total with the first
stage is denoted as θ̃(t) = 0 and the final stage denoted as
θ̃(t) = N − 1. Then, we define the discrete class labels as

θ̃(t) =

 0 if θ(t) < θs
⌈(θ(t)− θs)/θr⌉ if θs ≤ θ(t) ≤ θm
N − 1 if θm < θ(t),

(2)

where θr = (θs − θm)/(N − 2) represents a normalization to
the original simpler implementation during the second stage.
In consequence, the class label θ̃(t) for a specific observation
ot is integer-valued, and the supervision for tilt angle control
is formulated as an N-class classification problem.

Component 2: 3D Position Adjustment. During each
stage, to avoid the granules missing the target container,
the ‘teacher’ should instruct the ‘student’ to adjust the 3D
position of the source container in a reasonable manner. For
example, if the source container is far away from the target
container, the ‘teacher’ can give instructions to the student
like ‘move forwards’, ‘move backwards’, ‘move left’, ‘move
right’, ‘move up’, ‘move down’ to control the source container
to reach a desired position for pouring that depends on the

7

(a)

3x3, ConV,64

Residual Block
(3x3, ConV,64)

Residual Block
(3x3, ConV,128)

Residual Block
(3x3, ConV,256)

Residual Block
(3x3, ConV,512)

FC, 256

FC, 128

FC, M FC, M FC, M FC, N

SoftMax SoftMax SoftMax SoftMax
Concatenate

Feature
𝑰t−w

෦𝒗𝒙(𝒕)

Feature
𝑰t−𝒘+𝟏

……
Feature
𝑰t−𝟏

Feature
𝑰t

LSTM
128

LSTM
128

LSTM
128

LSTM
128

LSTM
64

LSTM
64

LSTM
64

LSTM
64

tanh tanh tanh tanh

Attention Layer, 32

𝜽(𝒕)

Fully Connected Layer, 4

Linear Linear Linear Linear

Coarse Learning Fine Learning

෦𝒗𝒚(𝒕) ෦𝒗𝒛(𝒕)

𝒗𝒙(𝒕) 𝒗𝒚 (𝒕) 𝒗𝒛(𝒕)

Raw Image
𝑶t

……

……

3x3, ConV, 128

3x3, ConV, 128

3x3, ConV, 128

3x3, ConV, 128

Residual Block

𝐷𝑇

𝐷𝑇
𝑟′

𝐷𝑇 𝐷𝑇
𝑟

𝑯 𝑹

𝑮(.)

𝑮′ (.)

Training Generators via CycleGAN

Constructing Synthetic Database

Example

𝐷𝑇
𝑟′

𝑮(.)

𝐷𝑇
𝑜

Transferring Knowledge Via Fine-Tuning

Synthetic
Database

New
Database

Fine-tune

𝑭𝑪(.) 𝑭𝒇(.)

𝑭𝑪(.)

𝑭𝒇(.)

(b) (c)

Imaginary Learning

෩𝜽(𝒕) z

Concatenate

𝑓𝑝

𝐷𝑇
𝑟 +

Figure 5. The architecture of the progressive learning method. (a) The architecture of the coarse learning model for feature extraction, (b) The architecture
of the fine learning model for action generation, (c) The workflow illustration of the imaginary phase for domain adaptation.

relative 3D-position between the two containers. If the source
container has already been located at a reasonable position,
the instruction can be simply to ‘keep still’.

Suppose that vq(t)(q = x, y, z) represent the end-effector’s
linear velocity along the x-, y- and z-axis respectively. Then
we denote vs > 0 as a threshold value on intentional motion,
such that if ||vq(t)|| < vs, then the velocity is regarded as not
caused by a human’s intention to move but by unintentional
motion, e.g. tremor, during the teleoperation. For the simplest
implementation, ṽq(t) = 0 when vs ≤ vq(t) and ṽq(t) = 2
when vq(t) ≤ −vs, representing motions in the positive and
negative directions along the x-, y-, or z-axis respectively;
meanwhile, ṽq(t) = 1 when ||vq(t)|| < vs represents not
moving. In this case, the supervision for 3D-position control
can be formulated as a 3-class classification problem.

For a more general implementation, we want the ‘student’
to learn both the direction and magnitude for 3D-position
adjustment, such as to ‘move quickly in the positive direction’
or ‘move slowly in the positive direction’. Suppose that there
are M -classes of instructions for position adjustment in total,
then the class labels are defined as:

ṽq(t) =

 0 if vs ≤ vq(t)
M − 1 if vq(t) ≤ −vs
⌈(vq(t) + vs)/m⌉ if − vs < vq(t) < vs

(3)

where m = 2vs/(M − 2) is a normalization to give integer
class labels.

Component 3: Task-Specific Characteristics Encoding. In
addition, a ‘teacher’ may also give task-specific information
to the ‘student’ that could include physical factors that affect

the pouring dynamics. For example, if the granules/liquids
used for pouring have high friction, then the pouring velocity
should be higher to ensure they flow quickly out of the source
container. Conversely, if the target container is small in size,
then the velocity for adjusting the 3D-position of the source
container should be relatively slow to minimize spilling the
granules/liquids out of the target container.

Here a variable z is used to represent the characteristics of
the task, relating to factors that affect the pouring dynamics but
do not change with time. In this work, z = [C,P], where C is a
scalar that indicates the size of the target container (depending
on its maximum capacity) and P is a scalar that indicates the
type of granules used for pouring. Here we used three distinct
types of granules in the experiments, denoted by 3 scalar
values (P=0,1,2 for lentils, rice and couscous). In the coarse
learning phase, Xk = ot, Yk = [ṽx(t), ṽy(t), ṽz(t), θ̃(t)].

Concept Representation. Since the first and second com-
ponent can be formulated as a classification problem, we use
categorical cross-entropy loss Lp(p = 0, 1, 2, 3) to update
the parameters of the neural network model by maximizing
the accuracy of prediction of the distinct variables θ̃(t),
ṽx(t), ṽy(t), ṽz(t). The overall loss function L is the linear
combination of Lp with different weights. For the pouring task,
tilt angle control is more important and has higher relationship
with the success rate of task execution. We set the weight as
0.4,0.2,0.2,0.2 for Lp respectively in this paper.

When the model training is completed, a “softmax” output
layer is then used to learn each of the distinct outputs.
After obtaining the probability distribution of each output

8

variable, all four probability distributions are concatenated
into a single feature vector fp(t) of dimension 3M + N .
Subsequently, this feature vector fp(t) is concatenated with
the contextual representation z to give an overall feature vector
V t
F = [fp(t), z], which is obtained for each image frame ot.
Here we will use the class probabilities produced by the

coarse learning model as ‘soft inputs’ to train the fine learning
model (see below), instead of using the ‘hard inputs’ (one-hot
encoded values) [46]. Our reasoning is that the ‘soft inputs’
have high entropy and thus contain more information than
‘hard inputs’, because they not only provide information on
the most probable class but also on the other classes according
to their probabilities.

The neural network model for coarse learning is trained via
self-supervision, since the labels can be generated automati-
cally based on (2),(3), which eliminates the need of manual
annotation of data. We don’t need to label data for concept
representation in the coarse learning phase.

2) Fine Learning - Action Generation: In the fine learning
phase, Xk = V w

F , Yk = [θ(t), vx(t), vy(t), vz(t)]. To ensure
that the generated velocities are safe and reasonable for
controlling the robot, we calculate the mean and variance
of the angular velocity ω(t) = θ̇(t) for every pouring stage
determined by (2). We also obtain the lower and upper bounds,
ωmin and ωmax, of the angular velocity of the wrist joint’s
rotation during pouring. We then use these statistics to form a
safety constraint to ensure that the generated angular velocity
remains within [ωmin, ωmax] during online deployment.

The loss function Lr (r = {vx, vy, vz, vθ}) for each compo-
nent of the predicted action uses a Mean Square Error (MSE)
between the predicted and target outputs. The overall loss
function is a sum of the MSE over the four distinct outputs.

After training the models FC(.) and Ff (.) using the demon-
stration database in the source domain H , the policy πΘ

can be used for the pouring task in scenarios involving
target containers, granules, and background that have been
seen before. The domain adaptation in the testing phase is
implemented via imaginary learning, which is described next.

3) Imaginary Learning - Domain Adaptation: First, we
collect one-shot demonstration data for task execution in a
novel scene with new domain characteristics (e.g., a new
background, a different container or a different granular ma-
terial). According to Table I, scenes S13-S15 have a new
background (blue tissue), scene S16-S18 include new granules
(brown coffee with irregular shapes), scene S19-S20 include
a new container (large black cup), none of which has been
demonstrated previously in the training phase. A key aspect
of our method is that only one trial of demonstration data need
be collected during the testing phase for each of these scenes
S13-20, with this database denoted Dr

T . We then sample
observation data from DT as source domain H and sample
observation data from Dr

T as target domain R. Following
that, we train the G(.) based on (1) for new data generation.
Fig. 6 shows several examples of image generation using
CycleGAN-based techniques to transfer the original image
data to synthetic data in the new domain.

An overall summary of the workflow for progressive learn-
ing is given in Algorithm 1.

Algorithm 1: Progressive Learning
Input: Demonstration Database DT
Required: learning rate α; batch size K;
Coarse Learning Phase;
Initialize parameters Θ for FC(.);
while Training FC(Θ,DT) do

Sample batch of trajectories from DT ;
Convert θ(t) to θ̃(t) based on (2);
Convert vq(t) to ṽq(t) based on (3);
Construct {Xk, Yk}(k = 1, 2, ...,K) for training;
Compute loss function L;
Backpropagate gradient of FC(.);
Update parameters Θ;

end
Construct new database D′

using FC(.);
Fine Learning Phase;
Initialize parameters Θr of Ff(.);
while Training Ff (Θr,D

′
) do

Sample batch of trajectories τk from D′
;

Construct sequential data based on τk:
V w
F = [V t−w+1

F , V t−w+2
F , ..., V t−1

F , V t
F];

Construct {Xk, Yk}(k = 1, 2, ...,K) for training;
Compute loss function Lr;
Backpropagate gradient of Ff(.);
Update parameter Θr;

end
Imaginary Learning Phase;
Construct database Dr

T with one-shot demonstration;
Draw observation data from DT as source domain H;
Draw observation data from Dr

T as target domain R;
Obtain the optimal G(.) based on (1);
(see Appendix)
Sample τj(j=1,2,···)=[(o1,a1), (o2,a2), · · ·];
Generate new trajectories:
τ

′

j(j = 1, 2, · · ·) = [(G(o1),a1), (G(o2),a2), · · ·];
Construct Dr′

T with τ
′

j(j = 1, 2, · · ·);
Do

T ← Dr
T ∪ Dr′

T ;
Fine-tune FC(.) using Do

T ;
Construct new database Do′

T ;
Fine-tune the parameters of Ff(.) using Do′

T ;
Output: Model FC(.),Ff(.).

V. EXPERIMENTS AND RESULTS

A. Experiment Design

After initial model training described above, we conducted
real-time experiments on a UR5 robot arm, using the setup
shown in Fig. 2. Three distinct groups of experiments were
conducted in total to answer three research questions, which
can be known as ablation study for coarse learning, fine
learning and imaginary learning respectively.

• Whether the concept representation features extracted
during the coarse learning phase enhance the training
efficiency of the action generation model during the fine
learning phase or not?

9

new granules

new target container

new background(a)

(b)

(c)

Figure 6. Examples of the results for domain adaptation based on a CycleGan. Image generation to (a) new backgrounds (blue tissue), (b) new granules
(coffee with irregular shapes and lentils with red color), and (c) a new target container (big black cup and while cup).

• How does the performance of the action generation model
obtained during the fine learning phase compare with
the traditional behavior cloning method in terms of the
success rate of the pouring task?

• Novel domain characteristics represent the usage of new
backgrounds, new types of granules, new target contain-
ers that have not been included in the database for model
training. Can the algorithm demonstrate its generaliz-
ability in the imaginary learning phase by performing
the pouring task in new scenarios with novel domain
characteristics?

With the experiments mentioned above, we can prove the
significance of each component for the proposed progressive
learning.

B. Coarse Learning Model enhances data efficiency

This group of experiments evaluates the effectiveness of
the concept representation features for just the coarse learning
phase of the overall framework.

An offline analysis is conducted first to evaluate the per-
formance of the coarse learning model. For an ablation study,
we use the one-hot values as features to replace the original
concept representation features, so that this comparison study
is conducted between with and without concept representation
features.

When using the whole database without concept represen-
tation features for training the action generation model in the
coarse learning phase, the training and testing MSE is 0.0036
and 0.0037 respectively. This is markedly poorer than the
training and testing MSE for our proposed method using the
extracted features, which is 0.0020 and 0.0023 respectively.
If 50% of data from the original database is used for model
training, then the training and testing MSE becomes 0.0022
and 0.0023 respectively, and with only 25% of data from the

original database for model training, the MSE becomes 0.0024
and 0.0029 respectively. The results are summarized in Table
II.

Table II
RESULTS FOR COMPARISONS BETWEEN WITH AND WITHOUT COARSE

LEARNING AND THE ANALYSIS OF DATA EFFICIENCY.

Model & Data Training Testing
Without + 100%Data 0.0036 0.0037

With + 100%Data 0.0020 0.0023
With + 50%Data 0.0022 0.0023
With + 25%Data 0.0024 0.0029

These results show that when using the coarse learning
model for concept representation features extraction, the per-
formance of the action generation is better than that without,
even if we only use 25% of the available data. Thus, we
conclude that the coarse learning model enhances the data
efficiency of the action generation model training.

C. Fine Learning Model improves the success rate
The second group of experiments compares the proposed

approach with a baseline method which implements imitation
learning using one model. The comparison is conducted in
terms of the success rate for automatic robotic pouring in four
distinct scenes.

We used an end-to-end behaviour cloning approach [47] for
comparison with our proposed progressive learning method to
demonstrate the value of fine learning. The neural network
architecture for the baseline model is shown in Fig. 7(c).

Scenes S3, S4, S8 and S10 are selected to cover all the
types of granular materials and containers in the experiments.
Our evaluation is based on the success rate of the pouring for
the different scenes.

Fig. 8 shows four example successful trials of pouring in
these scenes, while Table III summarizes the experimental

10

(a)

Epoch

Epoch

Baseline

3x3, ConV,64

Residual Block
(3x3, ConV,64)

Residual Block
(3x3, ConV,128)

Residual Block
(3x3, ConV,256)

Residual Block
(3x3, ConV,512)

FC, 256

FC, 128

FC, 3 FC, 3 FC, 3 FC, 20

Linear Linear Linear Linearz

Raw Image

𝜽(𝒕)𝒗𝒙(𝒕) 𝒗𝒚 (𝒕)𝒗𝒛(𝒕)

(c)

(b)

Figure 7. The training and validation loss for (a) the coarse learning model,
(b) the fine learning model, (c) baseline model for comparison between with
and without fine learning.

(b)

(c)

(a)

(d)

S3

S4

S8

S10

Figure 8. Examples of four successful pouring trials. The experiments were
conducted in (a) scene S3; (b) scene S4; (c) scene S8; and (d) scene S10
according to Table I.

results on the comparison study. The overall results indicated
that with our progressive learning method, the success rate is
improved significantly (77.5% vs. 35.0%). Table III demon-
strates that our proposed method outperforms the traditional
end-to-end learning-based model for action generation.

In our view, the reason why the progressive learning method
performs better than the baseline method on this task is that the
baseline does not utilize temporal information, resulting in the
predicted trajectories being unstable and causing the granules

Table III
EXPERIMENTAL RESULTS FOR COMPARISONS BETWEEN WITH AND

WITHOUT FINE LEARNING.

S3 S4 S8 S10 Mean
Without 2/10 4/10 2/10 6/10 35.0%

With 6/10 8/10 7/10 10/10 77.5%

to flow out of the container during the pouring process. That
said, the success rate for the distinct scenes has differing
variances, with the success rate across scenes using the pro-
gressing learning method ranging from 60% to 100%. This
seems to be due to the fact that some containers have a rela-
tively large opening diameter, and therefore less requirement
for precise motion generation during pouring. Since some of
the target containers have relatively small opening diameters,
the pouring task becomes more challenging, and thus leads
to a higher risk of failure. For those target containers with
smaller opening diameters, there is potential for improving the
task execution success rate by using more advanced computer
vision techniques and enhancing the control precision degree.

Another inherent advantage of progressive learning is its
ability to adapt to new scenes quickly. The training and
validation loss for the coarse learning model FC(.) and the
fine learning model Ff(.) are visualized in Fig. 7 (a) and
(b) respectively. The training of FC(.) requires more than
100 epochs, while the training of Ff(.) only requires 10-
20 epochs. The model training in the fine learning process
is much faster than the one in the coarse learning process.
When applied the proposed method to new environment with
variances, we can fine-tune the model obtained in fine learning
process without retraining the whole model like the end-to-end
learning approach.

D. Imaginary Learning ensures the generalizability

This third group of experiments is aimed at verify-
ing the generalizability of the progressive learning method.
These experiments examine whether the proposed progressive
learning method can be adapted to new scenarios with new
domain characteristics or not, including new environments
(backgrounds), granular materials, and target containers that
were not included in the demonstration data collection process
for model training.

Table IV
EXPERIMENTAL RESULTS FOR COMPARISONS BETWEEN WITH AND

WITHOUT DOMAIN ADAPTATION.

Type of Experiment Without With
New Background 2/8 7/8

New Granules 2/8 6/8
New Target Container 3/8 6/8

Mean 29.1% 79.2%

Examples of four successful trials are shown in Fig. 9,
including testing the performance of the method when adapted
to new backgrounds, new granules, new target containers, as
well as the combination of new granules and target container.

11

(a)

(b)

(c)

new granules

new target container

new background

(d) new granules + new target container

Figure 9. Four successful trials for demonstrating the generalizability of
the proposed method. Domain adaptation to (a) new background, (b) new
granules, (c) new target container, and (d) new granules and new target
container.

The experimental results are summarized in Table IV. With
the domain adaptation method, the average success rate for
the task execution in new scenarios is increased by a large
margin from 29.1% to 79.2%. Comparing the success rate with
and without domain adaptation, the results indicate that with
the adaptation coupled with progressive learning, the robot is
able to perform automatic pouring in novel scenarios and has
demonstrated good generalizability.

E. Comparisons with Other Work

The work closest to ours is in [48], where a CycleGAN [43]
is used to translate human demonstrations to robot-looking
ones at pixel space. An important difference to this work is
that we do not aim to learn a reward function for reinforcement
learning and do not require the robot to practice the skill
to learn its physical execution. Moreover, in [48], the robot
needs to query the human user to indicate success or failure
at some critical points during the learning process. We try
to avoid intensive human supervision in this work, and avoid
using reinforcement learning that requires trial-and-error for
the robot to learn the action generation policy.

To the best of our knowledge, this is the first time that a one-
shot domain adaptation has been defined for imitation learning
tasks. The one-shot domain-adaptive imitation learning is
different from traditional one-shot learning implemented in
[25]–[27]. For example, traditional one-shot learning requires
the training database to be of high diversity with many
demonstration trials for different tasks. For example, about
1300 demonstrations were collected for meta-training during
the training phase for [26]. In our paper, we only need
to collect 80 demonstrations, which reduced the need for
expensive data collection in the training process. In the testing
phase, we collect only one trial of demonstration data for

Require: Collect many trials of
demonstration data for few scenes

Domain Adaptation

…

Scene 1
(Many Trials)

Scene J
(Many Trials)

Policy for
Task

Execution
in Scene
1,2,…J

Train
Model

Training Phase

Testing Phase

One-Shot Learning

…

Scene 2
(Many Trials)

Scene K
(Many Trials)

Policy for
Task

Execution
in Scene
1,2,…K
(K >> J)

Train
Model

Require: Collect many trials of
demonstration data in new scene and
train models for task execution in
Scene J+1, J+2,…

Require Collect many trials of
demonstration data for many scenes

(K >> J)

…

Scene J+1
(Many Trials)

Scene j+2
(Many Trials)

Train
Model

J+1

Policy for
Task

Execution in
Scene J+1

Train
Model

J+2

Policy for
Task

Execution in
Scene J+2

Scene K+1
(One Trial)

Scene K+2
(One Trial)

Fine-
Tune

Model
K+1

Policy for
Task

Execution in
Scene K+1

Policy for
Task

Execution in
Scene K+2

Require: Collect one trial of
demonstration data in new scene and
fine-tune models for task execution in
Scene K+1, K+2,…

Testing Phase

…

… …

Fine-
Tune

Model
K+2

One-Shot Domain Adaptation

Scene J+1
(One Trial)

Scene J+2
(One Trial)

Fine-
Tune

Model
J+1

Policy for
Task

Execution in
Scene J+1

Policy for
Task

Execution in
Scene J+2

Require: Collect one trial of
demonstration data in new scene and
fine-tune models for task execution in
Scene J+1, J+2,…

Testing Phase

Fine-
Tune

Model
J+2

…

Scene 1
(Many Trials)

Scene J
(Many Trials)

Policy for
Task

Execution
in Scene
1,2,…J

Train
Model

Training Phase

Require: Collect many trials of
demonstration data for few scenes

… … … … … …

Scene 1
(Many Trials)

Training Phase

Figure 10. Concept illustration of different robot learning schemes, including
’domain adaptation’, ’one-shot learning’ and ’one-shot domain adaptation’.

domain adaptation, which is similar to traditional one-shot
learning. Therefore, the main advantage of ‘One-Shot Domain
Adaptation’ is that it removes the need to collect a much larger,
diverse training set during the training phase. We illustrate the
difference between the different robot learning schemes in Fig.
10.

We compare our proposed progressive learning method with
the other methods in terms of performance, data efficiency
and generalizability. We assume the algorithm is of high
efficiency if the performance does not decrease significantly
after reducing 75% of data for training the model in new
scene. If the robot can accomplish a new pouring task with
either new environments (backgrounds), granular materials, or
target containers that haven’t been included in the training
dataset, then the applied method can be known to have good
generalizability.

Table V
COMPARISONS WITH RELATED WORK: “✓“ AND “X“ INDICATE WITH

AND WITHOUT THE RELEVANT PROPERTIES, RESPECTIVELY.

Methods Performance Data Efficiency GeneralizabilityMSE SR
BC-LSTM [33] 0.0023 0.10 ✓ X
BC-DCNN [6] 0.0158 / X X

BC-ResNet [14] 0.0037 0.35 X X
Proposed 0.0023 0.78 ✓ ✓

“/“ indicates not applicable; SR indicates success rate.

Table V shows the comparisons of the proposed method
with other related work that can be applied to the automatic
pouring task, including deep imitation learning method (also
known as behavior cloning) based on LSTM, deep convo-
lutional neural network (DCNN) [6], deep residual neural
network (ResNet) respectively [14]. We can conclude that our
proposed method has the advantage of high success rate, data
efficiency and generalizability.

12

F. Discussion
1) Advantages of the Proposed Method: Compared to other

methods, the proposed method can work better when given
limited training data. The potential reason is that the robot
mimics the progressive learning process that humans appear
to do. For example, the robots learn the key concepts in
the coarse learning phase, then learn to generate the precise
motions in the fine learning phase, and finally learn by analogy
(imaginary) by expanding the acquired knowledge to new
scenarios. This hierarchical learning process enables the robot
to learn with higher efficiency.

The robot can learn an effective feature extraction model
during the course learning phase, while the model training in
the fine learning process is much faster than the one in the
coarse learning process. When applying the proposed method
to a new environment with variances, we can fine-tune the
models obtained in the fine learning process without retraining
the complex model with a large amount of new data. More
importantly, CycleGAN is used to generate a large amount
of synthetic observation data in new scenarios during the
imaginary learning phase, which enhances the perception skills
of the robot and ensures that the robot can adapt the pre-trained
policies to new scenarios with ease.

2) Adaptation to Other Tasks: The purpose of this work
is to provide a general framework that can bring benefits to
automation in both service and industrial robotics. While our
experiments focus on a robotic pouring task, our framework
is not specific to this task, and could also be used for a wide
variety of similarly dexterous tasks, spanning from making
consumer beverages to handling dangerous chemical solvents,
building a pyramid of cups, washing dishes, opening doors.
Take the door opening task as an example, in the coarse
learning phase, we can replace the component of ‘tilt angle
control’ with the ‘door opening angle control’, while the
component of 3D position adjustment remains the same. As
for the task characteristics, we can replace the various types
of granules with the various types of door handles’ shapes.
The fine learning and imaginary learning phase can remain
the same.

Moreover, the proposed framework could be modified to
more complex scenarios that require the robot to learn from
demonstration based on sensory input with multiple modal-
ities. For example, we use image data as observations in
this work, while force/torque sensors, tactile sensors, RGB-
D/stereo cameras could be incorporated into the proposed
progressive learning approach to provide more comprehensive
and accurate information as observations, further enhancing
the efficiency and generalizability of robot learning.

3) Future Work: To probe limitations of the approach,
we notice that for the adaptation to new backgrounds, the
lighting condition may influence slightly the performance of
the model. In particular, for a background material with high
reflectivity, the success rate of the pouring task was reduced,
which we attribute to the strong reflected light leading to poor
performance of the robot’s perception system. Moreover, were
the granules to have the same color as the target container, then
the pouring task may become more challenging. In the future,
we will enhance the robustness of the proposed method by

incorporating more sensory information with effective feature
extraction techniques.

The proposed progressive learning framework include three
essential modules, each of which can be further improved. For
example, we can use more efficient representation learning ap-
proach to generate the concept representation for downstream
tasks, which can further accelerate the training speed of the
fine learning model and enhance its performance. As for fine
learning, we can employ Neural Architecture Search (NAS) to
optimize the neural network model, which has high potential
to outperform manually designed models.

Imaginary learning is the key step that enables domain
adaptation to new scenarios. CycleGAN is deployed to gen-
erate new data in this paper. The integration of CycleGAN
in our proposed progressive learning method is novel, since it
enables imaginary learning for adaptation to unseen scenarios.
However, a current limitation is that we need to retrain the
generator when a new scenario shows up. To overcome this
problem, other types of GANs such as Lifelong GAN [49]
can be used in future development to update the generator
continuously when adapting to a new task.

VI. CONCLUSIONS

In this paper, we proposed a progressive learning framework
to achieve one-shot domain adaptive imitation learning. The
robotic manipulator learned a concept representation in the
coarse learning phase, and then progressed to learning how to
generate accurate actions for task execution across multiple
pouring scenarios in the fine learning phase. To improve
the generalization to new domains, imaginary learning is
implemented via CycleGAN to generate new observations for
the robot to enhance its perception capability in new scenarios
during the imaginary learning phase.

Our experiments were based on a robotic pouring task that
required the robot to pour different types of granular materials
into distinct target containers in front of different backgrounds.
We verified that our proposed method has advantages in terms
of high success rate, data efficiency and generalizability.
With our progressive learning method, the success rate for the
robotic pouring task can reach 77.5%, while the performance
of the fine learning model can maintain even if we only use
25% of data for training. Moreover, with imaginary learning
phase, the robot can increase the success rate for task execution
in new scenarios from 29.1% to 79.2%.

To the best of our knowledge, this is the first time that
one-shot domain adaptation has been carried out for a robotic
pouring task in a physical environment. Moreover, we pro-
posed the progressive learning method, which can be widely
applied to different learning-based robotic manipulation tasks.

APPENDIX

Suppose that n is the total number of samples used for
calculating the loss function, the adversarial loss on the

13

observation samples in domain R can be calculated as follows:

Ladv (G,DR,H,R) =
1

n

n∑
i=1

(
DR (xr

i)− 1
)2

+

1

n

n∑
i=1

(
DR

(
G
(
xh
i

)))2 (4)

Similarly, the adversarial loss on the observation samples in
domain H can be calculated as follows:

Ladv

(
G

′
,DH ,R,H

)
=

1

n

n∑
i=1

(
DH

(
G

′
(xr

i)
))2

+

1

n

n∑
i=1

(
DH

(
xh
i

)
− 1

)2
(5)

The cycle consistency loss can be calculated as follows.

Lcyc (G,G
′
) = L1

cyc + L2
cyc =

1

n

n∑
i=1

[
∥G

′
(G(xh

i))− xh
i ∥1
]

+
1

n

n∑
i=1

[
∥G(G

′
(xr

i))− xr
i ∥1
]

(6)
where ||.|| represents the L1 norm (Manhattan norm). The
overall loss is computed by adding the adversarial loss of
G(.) and G

′
(.) as well as the cycle consistency loss, which

is defined as follows:

L
(
G,G

′
,DH ,DR

)
= Ladv (G,DR,H,R)

+ Ladv

(
G

′
,DH ,R,H

)
+ λLcyc(G,G

′
)

(7)

where λ is a parameter that controls the relative importance
between the adversarial loss and the cycle consistency loss.
The target is to solve a min-max problem as follows:

G∗, G
′∗ = arg min

G,G′
max

DH ,DR

L
(
G,G

′
, DH , DR

)
(8)

REFERENCES

[1] Y. Wang, Y. Jiao, R. Xiong, H. Yu, J. Zhang, and Y. Liu, “Masd:
A multimodal assembly skill decoding system for robot programming
by demonstration,” IEEE Transactions on Automation Science and
Engineering, vol. 15, no. 4, pp. 1722–1734, 2018.

[2] X. Fu, Y. Liu, and Z. Wang, “Active learning-based grasp for accurate
industrial manipulation,” IEEE Transactions on Automation Science and
Engineering, vol. 16, no. 4, pp. 1610–1618, 2019.

[3] J. Chen, D. Zhang, A. Munawar, R. Zhu, B. Lo, G. S. Fischer, and G.-Z.
Yang, “Supervised semi-autonomous control for surgical robot based on
banoian optimization,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2943–2949.

[4] X. Liu, P. Huang, and Z. Liu, “A novel contact state estimation method
for robot manipulation skill learning via environment dynamics and
constraints modeling,” IEEE Transactions on Automation Science and
Engineering, 2022.

[5] Y. Zhou, Y. Aytar, and K. Bousmalis, “Manipulator-independent repre-
sentations for visual imitation,” arXiv preprint arXiv:2103.09016, 2021.

[6] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1–8.

[7] Y. Ma, Y. Xie, W. Zhu, and S. Liu, “An efficient robot precision
assembly skill learning framework based on several demonstrations,”
IEEE Transactions on Automation Science and Engineering, 2022.

[8] G. Cheng, K. Ramirez-Amaro, M. Beetz, and Y. Kuniyoshi, “Purposive
learning: Robot reasoning about the meanings of human activities,”
Science Robotics, vol. 4, no. 26, p. eaav1530, 2019.

[9] P. M. van den Bemt, J. C. Idzinga, H. Robertz, D. G. Kormelink,
and N. Pels, “Medication administration errors in nursing homes using
an automated medication dispensing system,” Journal of the American
Medical Informatics Association, vol. 16, no. 4, pp. 486–492, 2009.

[10] N. Saigal, S. Baboota, A. Ahuja, and J. Ali, “Fast-dissolving intra-oral
drug delivery systems,” Expert Opinion on Therapeutic Patents, vol. 18,
no. 7, pp. 769–781, 2008.

[11] M. Kennedy, K. Schmeckpeper, D. Thakur, C. Jiang, V. Kumar, and
K. Daniilidis, “Autonomous precision pouring from unknown contain-
ers,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2317–
2324, 2019.

[12] Z. Pan and D. Manocha, “Feedback motion planning for liquid pouring
using supervised learning,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1252–1259.

[13] A. Neumann, C. Elbrechter, N. Pfeiffer-Leßmann, R. Kõiva,
B. Carlmeyer, S. Rüther, M. Schade, A. Ückermann, S. Wachsmuth, and
H. J. Ritter, ““kognichef”: A cognitive cooking assistant,” KI-Künstliche
Intelligenz, vol. 31, no. 3, pp. 273–281, 2017.

[14] D. Zhang, Q. Li, Y. Zheng, L. Wei, D. Zhang, and Z. Zhang, “Explain-
able hierarchical imitation learning for robotic drink pouring,” IEEE
Transactions on Automation Science and Engineering, 2021.

[15] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and
J. Peters, “An algorithmic perspective on imitation learning,” arXiv
preprint arXiv:1811.06711, 2018.

[16] W. Wang, R. Li, Y. Chen, Z. M. Diekel, and Y. Jia, “Facilitating human–
robot collaborative tasks by teaching-learning-collaboration from human
demonstrations,” IEEE Transactions on Automation Science and Engi-
neering, vol. 16, no. 2, pp. 640–653, 2018.

[17] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[18] B. Zheng, S. Verma, J. Zhou, I. Tsang, and F. Chen, “Imita-
tion learning: Progress, taxonomies and opportunities,” arXiv preprint
arXiv:2106.12177, 2021.

[19] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of imitation
learning for robotic manipulation,” International Journal of Intelligent
Robotics and Applications, vol. 3, no. 4, pp. 362–369, 2019.

[20] T. Nguyen, T. Le, H. Zhao, Q. H. Tran, T. Nguyen, and D. Phung, “Most:
Multi-source domain adaptation via optimal transport for student-teacher
learning,” in Uncertainty in Artificial Intelligence. PMLR, 2021, pp.
225–235.

[21] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Computing Surveys
(CSUR), vol. 53, no. 3, pp. 1–34, 2020.

[22] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching net-
works for one shot learning,” Advances in neural information processing
systems, vol. 29, pp. 3630–3638, 2016.

[23] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” in ICML deep learning workshop,
vol. 2. Lille, 2015.

[24] D. Rezende, I. Danihelka, K. Gregor, D. Wierstra et al., “One-shot
generalization in deep generative models,” in International Conference
on Machine Learning. PMLR, 2016, pp. 1521–1529.

[25] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learning,”
arXiv preprint arXiv:1703.07326, 2017.

[26] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in Conference on Robot Learning.
PMLR, 2017, pp. 357–368.

[27] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 1126–1135.

[28] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[29] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 7167–7176.

14

[30] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep
reconstruction-classification networks for unsupervised domain adapta-
tion,” in European Conference on Computer Vision. Springer, 2016,
pp. 597–613.

[31] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adversarial
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 3722–3731.

[32] J. D. Langsfeld, K. N. Kaipa, R. J. Gentili, J. A. Reggia, and S. K.
Gupta, “Incorporating failure-to-success transitions in imitation learning
for a dynamic pouring task,” in Workshop on Compliant Manipulation:
Challenges and Control, Chicago, IL, 2014, p. 4.

[33] T. Chen, Y. Huang, and Y. Sun, “Accurate pouring using model predic-
tive control enabled by recurrent neural network,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 7688–7694.

[34] J. Pari, N. Muhammad, S. P. Arunachalam, L. Pinto et al., “The
surprising effectiveness of representation learning for visual imitation,”
arXiv preprint arXiv:2112.01511, 2021.

[35] D. Theckedath and R. Sedamkar, “Detecting affect states using vgg16,
resnet50 and se-resnet50 networks,” SN Computer Science, vol. 1, no. 2,
pp. 1–7, 2020.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[37] O. Khatib, “Inertial properties in robotic manipulation: An object-level
framework,” The International Journal of Robotics Research, vol. 14,
no. 1, 1998.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[40] C. Schenck and D. Fox, “Visual closed-loop control for pouring liquids,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 2629–2636.

[41] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[42] A. Church, J. Lloyd, N. F. Lepora et al., “Tactile sim-to-real policy
transfer via real-to-sim image translation,” in Conference on Robot
Learning. PMLR, 2022, pp. 1645–1654.

[43] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[44] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to
discover cross-domain relations with generative adversarial networks,”
in International conference on machine learning. PMLR, 2017, pp.
1857–1865.

[45] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual
learning for image-to-image translation,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2849–2857.

[46] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[47] P. Sharma, L. Mohan, L. Pinto, and A. Gupta, “Multiple interactions
made easy (mime): Large scale demonstrations data for imitation,” in
Conference on robot learning. PMLR, 2018, pp. 906–915.

[48] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine, “Avid:
Learning multi-stage tasks via pixel-level translation of human videos,”
arXiv preprint arXiv:1912.04443, 2019.

[49] M. Zhai, L. Chen, F. Tung, J. He, M. Nawhal, and G. Mori, “Lifelong
gan: Continual learning for conditional image generation,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 2759–2768.

	Introduction
	Related Work
	Imitation Learning
	 One-Shot Imitation Learning
	Domain Adaptation
	Learning-Based Robotic Pouring

	Methodology: Progressive Learning
	Overview
	Problem Formulation
	Framework Construction
	Coarse Learning - Concept Representation
	Fine Learning - Action Generation
	Imaginary Learning - Domain Adaptation

	Case Study: Robotic Pouring
	Task Description
	Hardware Deployment
	Database Construction
	Performance Evaluation
	Implementation Details
	Coarse Learning - Concept Representation
	Fine Learning - Action Generation
	Imaginary Learning - Domain Adaptation

	Experiments and Results
	Experiment Design
	Coarse Learning Model enhances data efficiency
	Fine Learning Model improves the success rate
	Imaginary Learning ensures the generalizability
	Comparisons with Other Work
	Discussion
	Advantages of the Proposed Method
	Adaptation to Other Tasks
	Future Work

	Conclusions
	References

