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A Trimodel SAR Semisupervised Recognition
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Abstract—Semisupervised learning in synthetic aperture radars
(SARs) is one of the research hotspots in the field of radar image
automatic target recognition. It can efficiently deal with challenging
environments where there are insufficient labeled samples and large
unlabeled samples in the SAR dataset. In recent years, consistency
regularization methods in semisupervised learning have shown
considerable improvement in recognition accuracy and efficiency.
Current consistency regularization approaches suffer from two
main shortcomings: first, extracting all of the relevant information
in the image target is difficult owing to the inability of conventional
convolutional neural networks to capture global relational informa-
tion; second, the standard teacher–student regularization method-
ology causes confirmation biases due to the high coupling between
teacher and student models. This article adopts an innovative
trimodel semisupervised method based on attention-augmented
convolutional networks to address the aforementioned obstacles.
Specifically, we develop an attention mechanism incorporating a
novel positional embedding method based on recurrent neural net-
works and integrate this with a standard convolutional network as a
feature extractor, to improve the network’s ability to extract global
feature information from images. Furthermore, we address the
confirmation bias problem by introducing a classmate model to the
standard teacher–student structure and utilize the model to impose
a weak consistency constraint designed on the student to weaken the
strong coupling between the teacher and the student. Comparative
experiments on the Moving and Stationary Target Acquisition and
Recognition dataset show that our method outperforms state-of-
the-art semisupervised methods in terms of recognition accuracy,
demonstrating its potential as a new benchmark approach for the
deep learning and SAR research community.
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) sensors have been widely
used because of their ability to work throughout the day

in various weather situations, as well as their high resolution
and penetrating ability [1], [2], [3], [4], [5]. With an increasing
amount of data acquired by SAR imaging systems, SAR au-
tomatic target recognition (ATR) technology has become one
of the research hotspots in the field of image cognition [6],
[7]. A growing number of deep neural network (DNN) models
have been applied to SAR ATR [8], [9]. Convolutional neural
networks (CNNs), for example, have gradually become the
standard model in the field of SAR image processing due to its
powerful feature extraction capabilities [10], [11], [12]. Chen
and Wang [13] converted SAR images into a set of feature maps
to propose a new CNN model. Min et al. [14] proposed a micro
CNN, which is a compressed form of deep convolutional neural
networks (DCNNs) that utilizes a novel knowledge-distillation
algorithm called gradual distillation. Huang et al. [15] applied
an enhanced DCNN to learn the features of SAR images and the
support vector machine to map features into output labels. Nu-
merous studies have shown that CNN models can significantly
increase SAR ATR accuracy.

However, state-of-the-art CNN models require a large number
of labeled samples during the training process to attain high
recognition accuracy. The speckle noise and clutters in SAR im-
ages make sample annotation challenging; therefore, gathering
SAR labeled data is generally time consuming and expensive.
Studies show that when the number of labeled samples is in-
sufficient, the recognition accuracy of the CNN is significantly
reduced [16], which severely limits the utilization of the CNN in
SAR ATR problems. Numerous studies have employed few-shot
learning techniques to raise the performance of DNN models in
terms of recognition accuracy when there are not many labeled
samples available [17], [18], [19]. Meanwhile, there is a lot of
feature information in the unlabeled samples that can be used
to improve the training effect of the model. In contrast, the
acquisition of such unlabeled samples is simpler than labeled
samples. Therefore, with a small number of labeled samples, a
number of researchers have attempted to take advantage of some
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additional unlabeled data to boost the DNN model’s recognition
ability. Yue et al. [20] introduced thresholding processing and
the linear discriminant analysis method to the CNN to achieve
a superior strategy of deep semisupervised learning (DSSL).
Chen et al. [21] proposed a semisupervised method based on
the consistency criterion, domain adaptation, and top-k loss to
alleviate the need for labeled samples. Wang et al. [22] designed
a new framework comprising a self-consistent augmentation
rule, mixup-based mixture, and weighted loss, which allows a
classification network to utilize unlabeled data during training.

In the context of SAR target recognition, DSSL has pro-
gressively become a popular research topic [23], [24]. Genera-
tive methods, consistency regularization methods, graph-based
methods, pseudo-labeling methods, and hybrid methods are five
types of DSSL [25]. The consistency regularization method,
which is derived from network noise regularization [26], yields
good results. Goodfellow et al. [27] demonstrated the advan-
tages of adversarial noise over random noise. In addition to
noise, the consistency constrained target’s quality was also
shown to be critical in the procedure. Bachman et al. [28]
present a novel regularizer based on making the behavior of
a pseudo-ensemble robust to the noise process that generates
it. The ladder network [29], [30] is the first successful attempt
toward using a teacher–student model that is inspired by a deep
denoising autoencoder. An attention-augmented convolutional
network (ACN), termed the Π model [31], and a temporal
ensembling model [32] create two random augmentations for
both labeled and unlabeled data to achieve regularization. The
mean teacher [33] uses an exponential moving average (EMA)
algorithm to create teacher and student models that are similar
in structure but not in parameters. Virtual adversarial training
(VAT) [34] utilizes the concept of adversarial attacks to improve
targets with adversarial noise and make regularization more
effective.

All of these teacher–student models, however, have some
limitations. First, the teacher network is derived mostly from
the EMA of the student network in all teacher–student strategies.
The most typical model is a mean teacher, which introduces per-
turbations between networks by constructing another network
from one network’s EMA calculation, thus exploiting the con-
sistency constraint’s effectiveness. The teacher has the same pa-
rameters as the student in theΠmodel, the temporal ensembling,
and VAT methods, which is equivalent to setting the average
coefficient to zero. In these methods, two networks are strongly
coupled, and the degree of coupling increases with training. As
a result, the student uses the teacher’s potentially inaccurate
recognition results as a target for its own learning, making it
difficult to achieve the optimal recognition performance [35]. To
address this challenge, Ke et al. [35] presented a dual-student
model, which replaces the teacher model with another student
model while creating a stabilization constraint based on the
concept of stable samples to make the model trainable. However,
because of the coupling and variations in the teacher–student
structure, the network’s semisupervised training results show
a significantly improved generalization performance, demon-
strating the utility of its structural property. In this article, we
present a new semisupervised consistency strategy in which a

“classmate” is introduced to classic teacher–student structures
to construct a trimodel consistency structure. The purpose of the
classmate model is to reduce the teacher–student model’s cou-
pling by developing new guidance for the student. Furthermore,
to ensure that the classmate model plays a positive role in the
student model’s training process, we utilize information entropy
to construct a weak consistency constraint (WCC) to balance the
two guides on the student.

Second, while CNNs are generally the best option due to
their superior performance in deep semisupervised recognition
tasks, they still lack the ability to capture global relational
information against image transformation [36]. DSSL aims to
make efficient use of unlabeled data to assist the network to
learn from the labeled data. However, image targets contain a
lot of global information in addition to local information, and
the lack of such information can impede further improvement
in semisupervised recognition performance when labeled data
are insufficient. In this article, the self-attention mechanism is
combined with a standard convolutional network to serve as
a feature extractor, so that it can make better use of sample
information. The self-attention mechanism is a type of attention
mechanism (AM) that first appeared in natural language pro-
cessing applications. It relies on little external data and thrives
at capturing the internal association of data or features. Many
subsequent computer vision studies have started to investigate
integrating CNN structures with self-attention mechanisms,
which has achieved impressive results [37], [38]. Some studies
have even replaced the entire convolutional network structure
with a self-attentional structure [39], [40]. Zhang et al. [41]
proposed an AM-CNN model by combining the AM with deep
convolutional networks and achieved better recognition perfor-
mance. Ma et al. [42] proposed a attention graph convolution
network, which combines an AM layer and graph convolution
networks to achieve image segmentation in big SAR imagery
data. Bello et al. [36] suggested a 2-D relative self-attentional
approach to strengthen convolutional networks. Inspired by
these approaches, this research proposes ACNs by combining
the self-attention mechanism with convolutional networks in
parallel. In order to adapt the AM to the image task, it is usually
necessary to obtain positional information in the images. In [43],
images are transformed into a sequence of image patches, while
adding fixed position embedding to image patches to improve the
effectiveness of self-attention for image targets. The encoding
of positional information in this method is obtained by learning,
which is a less complex way of position embedding. Bello
et al. [36], on the other hand, extended the use of relative
position encoding [44] to two dimensions and proposed a 2-D
position encoding method. The CoordConv [45] method directly
connects the position channel to the activation map. Although
many methods succeed in achieving position embedding, they
usually perform this in a more straightforward way and have
limited effect on the improvement of self-attention mechanisms.
While extracting position information and applying it to the
learning process in a more efficient way necessitates a signif-
icant amount of additional computing, this is often at the ex-
pense of computational efficiency. We present a novel recurrent
neural network (RNN)-based solution for extracting 2-D
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Fig. 1. Various architectures used for consistency regularization semisupervised methods. In addition to the identifiers in the figure, ζ denotes the perturbation
noise. � is the consistency constraint. x is the input data.

position information to simultaneously solve these two chal-
lenges. In particular, this enhances the effect of self-attention
for image data by utilizing multiple RNNs to process short
sequences in parallel with high efficiency.

In overview, in this study, a novel consistency-regularization-
based DSSL method is proposed to alleviate the confirmation
bias problem. Furthermore, an ACN is designed as a feature
extraction network to optimize the utilization of the sample’s
information for semisupervised recognition. The originality and
significance of our proposed method are outlined as follows.

1) ACNs are employed as a feature extraction network to cap-
ture both local and global information in images in the case
of insufficient labeled samples. Furthermore, the RNN’s
superior sequence target processing capability is used to
extract 2-D position information in the self-attention part.

2) A classmate model is introduced to present a trimodel
consistency regularization procedure, alongside a WCC
scheme to balance the influence of the classmate and the
teacher in training.

The rest of this article is organized as follows. In Section II,
consistency regularization and self-attention mechanisms are
briefly introduced. Section III describes the principle of our
method in detail. Comparative experiments are performed in
Section IV. Finally, Section V concludes this article.

II. PRELIMINARY

A. Consistency Regularization

Consistency regularization’s principle is that an input should
be forecast consistently even if it is subject to tiny disruptions.
The teacher–student structure is the dominant model in consis-
tency regularization methods. In these methods, perturbations
are often added to the inputs or network parameters of two
networks. The teacher sets targets for the student to improve,
and then, the student learns by imposing consistency constraints
on both of their outputs. Formally [37], we assume that dataset

X consists of labeled and unlabeled samples. Let θ denote the
weights of the basic student. The consistency constraint l is
defined as

l =
∑
x∈X

�(f(θ, x),Tx) (1)

where �(·, ·) is the distance between two vectors. f(θ, x) is the
prediction from model f(θ) for input x. Tx is the consistency
target generated by the teacher model. The Π model [31] ex-
presses this consistency constraint in the form of

l =
∑
x∈X

�(f(θ, x, ζ1), f(θ, x, ζ2)) (2)

where ζ1 and ζ2 are two different perturbation noises created
for the training dataset samples. The structure of the Π model
is shown in (1) in Fig. 1. The two networks in the Π model
use data augmentations and dropout to introduce stochastic
perturbations, which is also a teacher–student structure in formal
terms. When the same sample with different random noise
is propagated forward twice, the predictions obtained may be
different. Then, the Π model minimizes the difference between
the two predictions by learning. Temporal ensembling is similar
to the Π model with the addition of the EMA algorithm. The
structure of temporal ensembling is shown in (2) in Fig. 1.
Temporal ensembling uses EMA to accumulate the predictions
over epochs as Tx to reduce computational overhead. Formally,
the consistency constraint of the temporal ensembling model is

l =
∑
x∈X

�(f(θ, x, ζ1),EMA(f(θ, x, ζ2))) (3)

EMA is calculated as

vt = αvt−1 + (1− α)yt (4)

where vt is the average of the output predictions of last
1/(1− α) epochs. yt is the output prediction for epoch t. α is
an adjustable hyperparameter. Mean teacher is the most typical
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teacher–student structure, and its structure is shown in (3) Fig. 1.
The student model is involved in the learning process, while
the teacher model is derived from the EMA calculations of the
student. Different random perturbations are also applied to each
of the two networks’ inputs. Formally, the consistency constraint
of the mean teacher model is

l =
∑
x∈X

�(f(θ, x, ζ1), f(EMA(θ), x, ζ2)). (5)

In addition, the VAT model [34] employs adversarial noise to
generate higher quality Tx, which improves the training effect.

The teacher computed by the student will have a stronger
generalization capacity than the student in these teacher–student
structural models. This method of target network generation,
however, results in a significant coupling between the two net-
works. This coupling effect has been visualized in [35]. Because
of the coupling effect, if a student makes biased predictions for
specific samples, the EMA teacher is more likely to accumulate
the errors and force the student to follow, resulting in irreversible
misclassification. This is a kind of the confirmation bias [33].
The quality of the targets provided by the teacher’s model de-
termines the success of consistency regularization in this model
structure. Improving the quality of the targets can help mitigate
the impacts of the confirmation bias, and mean teacher and VAT
are two examples. Furthermore, the “valid” information that
the teacher offers to the student varies as the network training
progresses. The recognition accuracy of the teacher is still low
at the start of the training, so the student should not regard it as a
fully trusted target at this stage. As the recognition performance
of the teacher and the student improves in the middle or later
stages of training, the information that two networks may supply
to each other at this point is accurate and effective. Thus, it is
necessary to modify the degree of coupling between the teacher
and the student to prevent confirmation biases.

B. Self-Attention Mechanism

In cognitive science, humans prefer to selectively focus on
a portion of the information while disregarding the rest. This
mechanism is known as the AM. Therefore, the AM in deep
learning is concerned with determining which portions of the
input to concentrate on and how to devoting limited information
processing resources. Based on such properties, the AM can
be employed as an effective way to extract global relational
information from data.

The AM’s purpose is to determine the degree of necessity for
the source sequence to pay attention to each element in the target
sequence. This degree can be represented by attention values.
Attention values can be calculated by mapping a query and a set
of key–value pairs to an output, where the query, keys, values,
and output are all vectors. Query is an element in the target
sequence, and each key–value pair corresponds to an element
in the source sequence. The output is the weighted sum of the
values, with the weight assigned to each value determined by the
query’s compatibility function with the corresponding key. In a
self-attention mechanism, the source and target sequences are

Fig. 2. Computational process of the attentional mechanism. To simplify the
representation, let the source sequence contain four key–value pairs. Similarity
calculation is performed in phase 1, where F () is the dot product operation
and si is the similarity score. Phase 2 performs Softmax normalization, and the
resultant ai is the weight of values. The weighted summation process of values
is performed in phase 3. The final result is the attention value of the source
sequence for query.

the same, which means self-attention deals with the information
between each element in a sequence and the sequence itself.

Fig. 2 shows the computational process of the attentional
mechanism. The procedure can be split into three phases. The
first phase is to calculate the similarity between the query and
keys. We use the dot product to quantify this similarity

si = F (query, keyi) = query · keyi (6)

where si is the similarity score. The Softmax calculation is
introduced in the second phase, which comes from the results
of the previous phase. On the one hand, normalization can be
performed, and on the other hand, the inherent mechanism of
Softmax can emphasize the weights of significant elements. The
output of Softmax is

ai = Softmax(si) =
esi∑N
j=1 e

sj
(7)

where ai is the weighting factor of valuei. N is the size of the
source sequence. In the third phase, ai is used to weight the
summation of values

Attention =

N∑
i=1

ai · valuei. (8)

For image targets, their elements that match to the source
and target sequences can be image patches [43], pixel dots, or
features. In this case, the query, keys, and values vectors are
generally converted to two dimensions and represented in matrix
form. The attention value for the image target is calculated as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (9)
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Fig. 3. Model overview. The proposed model mainly consists of a feature extraction part and two network training parts. Three ACNs are utilized to extract
features from the labeled dataset L and the unlabeled dataset U to get the predicted outputs L1, L2, U1, and U2. The consistency constraint is then applied to U1
and U2 to obtain the loss lc. The WCC is applied to L1 and L2 to obtain loss lw . L1, L2, and true labels G are calculated to obtain the classification losses l1 and
l2, respectively. l1, lc, and lw are used for the student training, while l2 and lw are used for the classmate training.

where Q, K, and V are the matrix forms of queries, keys,
and values. dk is the depth of queries and keys. The acquired
attention maps are also in the form of a matrix. It can be seen
that the key principle of the self-attention mechanism is to create
the weighted average of the information corresponding to the
target elements. Unlike pooling or convolutional operations, the
weights used in this process are dynamically computed by a
similarity function between the elements. Therefore, the final
computed attention value is decided by the interplay between
the elements of the signal itself, rather than being predicted
by their relative positions as in the convolutional procedure.
This property enables the self-attention to gather long-range
relational information without increasing the number of param-
eters. In an SAR semisupervised recognition task, collecting
global information of samples can considerably compensate for
the lack of information caused by a limited number of labeled
samples, while the superior local information extraction capacity
of convolutional networks should not be discarded. As a result,
a feature extraction scheme that combines self-attentional and
convolutional operations may be useful.

III. METHODOLOGY

We first define the system parameters. The training
dataset X = [L,U ] ∈ Rd×n consists of two parts. L =
[x1, x2, . . . , xl] ∈ Rd×l represents the labeled dataset and U =
[xl+1, xl+2, . . . , xl+u] ∈ Rd×u represents the unlabeled dataset,
where d denotes the dimension of the samples. n, l, and u
represent the number of samples in X , L, and U respectively.
G = [y1, y2, . . . , yl] ∈ R1×l denotes the labels. The labeled
samples are input to the student and classmate models, while the
unlabeled samples are input to the teacher and student models
and provide L1, L2 and U1, U2, respectively.

As shown in Fig. 3, the training process of our method
is composed of three parts: feature extraction, student model
training, and classmate model training. In the feature extraction
part, we use three ACNs to obtain features from labeled and
unlabeled samples individually to get the output predictions.
The student and the classmate are trained simultaneously. In the
student model training part, we establish a normal consistency
constraint lc and a WCC lw between the student and the other two
networks, respectively. These two constraints are employed as
semisupervised components of the loss function, which guides
the student training. EMA calculation is used to obtain the
teacher’s parameter from the student in each epoch. Meanwhile,
we train the independently initialized classmate with labeled
samples in the classmate training part, and lw also operates on the
classmate model to increase its training effect. Next, the feature
extraction process of the ACN and the trimodel consistency
regularization training method are described in detail.

A. Attention-Augmented Convolutional Networks

Convolutional networks have been considerably successful in
many computer vision applications, especially in image classi-
fication. Local and global features are the two types of features
that can be obtained in images. Convolutional layers excel
at extracting local features because they can enforce locality
through a confined receptive field while reducing the number of
parameters using weight sharing. However, this nature of CNN
leads to the lack of capability to learn the image’s global context,
which is normally required for superior target recognition [46].
We present a self-attentional approach to gain additional global
relational information from images and so increase the utiliza-
tion of image information. The self-attention mechanism is a
form of AM that focuses on the importance of each element
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Fig. 4. Principle of 2-D LocalRNN. To simplify the representation, we set the
size of the input image to be H ×W = 4× 4, and complement 0 to the left
and upper sides. A local short sequence of length 4 for pixel xi,j is formed,
which is input into the RNN to retrieve the corresponding four hidden states
h1, h2, h3, and h4, where h4 represents the position information pi,j of xi,j .
P is the position information map.

in a sequence to the sequence itself. As a result, it excels at
capturing the internal correlation of data or features, which is a
complement to the CNN’s capabilities. In this article, we inte-
grate the self-attentive mechanism with a convolutional network
to create attention-augmented convolutional module (ACM) and
then replace the convolutional layer in the CNN with the ACM
to construct ACNs to gain improved image feature extraction
capabilities.

1) Two-Dimensional Positional Embeddings Based on the
RNN: Self-attention in images is permutation equivariant with-
out explicit information about positions, which means for any
permutation transformation π of image X

Attention(π(X)) = π(Attention(X)). (10)

Therefore, self-attention treats all the information at each
position equally and cannot distinguish among them, making
it less effective for targets with complex structures such as
images. To solve this issue, numerous positional embedding al-
gorithms that extract spatial information and integrate it into the
learning process have been proposed to improve self-attention.
The image transformer [47] extends the sinusoidal waves from
the original transformer [48] to 2-D inputs to create a 2-D
positional embedding. Bello et al. [36] proposed a 2-D position
encoding system that extended the use of relative position rep-
resentations [44] to two dimensions. However, current position
embedding methods in image attention face the problems of
both excessive computation and insufficient improvement for
self-attention. As a solution, we propose to extend the use of
LocalRNN in sequences [49] to two dimensions and design a 2-D
positional embedding method based on the RNN. It utilizes the
unique parallel computation of LocalRNN to extract the spatial
information with high efficiency.

Fig. 4 depicts the principle of the 2-D LocalRNN. We set up a
square window that moves on the input image and use the RNN to
extract the local structure of the lower right pixel in the window,
and this local structure can be used as the position information
of this pixel. Specifically, we set the size of the window to 2.

Fig. 5. Two-dimensional positional embedding module. The input map Ain

is encoded to obtain the intermediate map Amid containing pixel information.
Amid is then processed by the 2-D LocalRNN module to obtain the position
information map P . Finally, P and Amid are summed by the corresponding
elements to deliver the positional embedding and produce the final output Aout.

For the pixel vector xi,j ∈ RL, the RNN sequentially processes
a short local sequence xi−1,j−1, xi−1,j , xi,j−1, xi,j and outputs
four hidden states, with the last hidden state used as the position
information pi,j of the pixel

h1, h2, h3, h4 = RNN(xi−1,j−1, xi−1,j , xi,j−1, xi,j) (11)

pi,j = h4 (12)

where RNN() denotes the RNN cell, while long short-term
memory (LSTM) is used in this article. h1, h2, h3, h4 is the
output sequence of the RNN cells. pi,j ∈ RL is the position
information of xi,j , where L is the depth of pixel vectors. In
this way, the spatial structural information of a target position
and its surrounding elements is retrieved by using the RNN’s
sequence processing capabilities. In addition, only the neigh-
boring positions preceding the processing position are included
within the LocalRNN window in order to process a position
without integrating future information and to enable the model
to process the sequence in an autoregressive way. We employ the
complementary 0 operation to ensure that there are enough pixels
in the window for the RNN operation while processing the edge
positions. Finally, the position information map P containing
the spatial information of each pixel can be obtained.

The overall procedure of 2-D position embedding is shown
in Fig. 5. The input map Ain ∈ RH×W×Fin may be the initial
SAR image or feature map, where H and W are the height and
width of the input, respectively. Fin is the number of input filters
of the input map. Ain is first fed through an encoder that gives
each pixel of the input map the information of dimension L
through a learnable linear transformation. The encoder outputs
the intermediate matrixAmid ∈ RH×W×L. To obtain the position
information map P , the intermediate map is subjected to 2-D
LocalRNN operations, which are executed in parallel. Finally,
the embedding of 2-D information is achieved by summing the
matching elements of the intermediate map and the position
information map. The whole process can be expressed as

Amid = Ain ∗ w (13)

Aout = Amid + LocalRNN(Amid) = Amid + P (14)

where w ∈ RFin×L is learned linear transformation. Aout ob-
tained from the above positional embedding module can be used
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Fig. 6. ACM structure. The input is embedded with position information and then enters convolutional layer conv1 to calculate matrices queries Q, keys K, and
values V , where dv is the depth of values. Nh attention maps are calculated by multiplying Q and K to weight average V to obtain V out. The results are then
mixed with a pointwise convolution conv2. Multihead self-attention is implemented in parallel to a standard convolution operation and the outputs are concatenated
to the final Fout-dimensional output.

as a new input map in the self-attention calculation part, which
helps self-attention overcome the problem of the permutation
equivariant with considerable calculation efficiency.

The properties of the RNN are used in our method to extract
position information from image targets. The RNN has a limited
ability to capture the long-term dependencies and the time com-
plexity of its computation is linearly related to the length of the
sequence. However, the 2-D LocalRNN module in our method
does not suffer from the above problem because its processing
targets are short sequences in fixed-size windows. Meanwhile,
the RNN processes every short sequences independently, so it is
very simple to implement parallel operation and can achieve
high processing efficiency. Self-attention for image data can
be considerably improved by using this positional embedding
module.

2) Attention-Augmented Convolutional Module: In image
processing tasks, the self-attention mechanism is usually per-
formed in two steps: 1) acquisition and embedding of image
position information and 2) self-attentive computation in matrix
form. The specific implementation is usually to use the input
map containing the positional information as the matrix to be
processed. Then, the source and target matrices are obtained
by linear transformation. Finally, the self-attentional output
map is obtained by matrix similarity calculation and weighting
operation. Our proposed method is also based on this idea for
the construction of the network structure. Fig. 6 illustrates the
structure of the ACM. The self-attention part and the standard
convolution part are computed in parallel, and the outputs of
them are concatenated as the layer’s output. In the self-attention
part, the multihead self-attentional approach is used, where Nh

is the number of heads. The size of the input is H ×W × Fin,
where H and W denote the height and width of the input image,
respectively, and Fin is the number of input filters of the input
image. The input map is first extracted by the 2-D positional
embedding module for spatial position information. Then, the
convolutional layer conv1 is utilized to compute the three matri-
cesQ,K, andV , which denote queries, keys, and values in image
attention. The specific implementation is to use a convolutional
layer as a linear transform to transform the input map containing

the position embedding into a map of large depth and then split
it into three matrices corresponding to the source and the query.
Formally, this process can be viewed as three learnable linear
transformation matrices to linearly transform the input map
separately. We flatten the input map Ix ∈ RH×W×Fin , which has
been positionally embedded, into a 2-D matrix Ix ∈ RHW×Fin ,
and the attention values are computed as

Attention = softmax

(
(IxWq)(IxWk)

T

√
dk

)
(IxWv) (15)

where Wq,Wk ∈ RFin×dk and Wv ∈ RFin×dv are learned
linear transformations that map the input to queries Q =
IxWq ∈ RHW×dk , keys K = IxWk ∈ RHW×dk , and values
V = IxWv ∈ RHW×dv . dk denote the depth of queries and
keys, while dv denote the depth of values. Attention maps are
obtained by QKT . Then, we complete the weighted average
calculation of V with attention maps as weights

V out =

dk∑
i=1

dk∑
j=1

softmax(qi ∗ kj) ∗ vj (16)

where V out ∈ RHW×dv is the result of the weighted average
of V . qi and vj are rows i and j of Q and V , respectively. kj is
row j of K. V out goes through a pointwise convolution layer
conv2 to mix the results of the multihead calculation and then is
reshaped to match the original volume’s spatial dimensions and
size. The output of this section contains the information of the
global relationships between the pixels in the images.

Existing studies show that self-attention possesses enough
competitiveness to completely replace convolutional net-
works [39]. But instead of absolutely abandoning the concept of
convolution, we combine it with the self-attention mechanism
and augment the former with the latter. To limit the size of
the network, we use only one layer of standard convolution
in the convolution part to obtain the local feature mapping.
If the outputs of the two parts are combined in a summation
manner, the features obtained from each of the two parts may
constrain each other and cannot be best utilized at the same time.
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Fig. 7. Relationship between the three models. The classmate and the teacher
guide the student’s training together. The teacher is made from the EMA of the
student and imposes the consistency constraint on the student. The classmate is
initialized independently from the student and imposes the WCC on the student.

In addition, since the depth of the self-attention map must be
dv , using this merging method will limit the size of the ACM’s
output. Based on the above considerations, we concatenate the
convolutional feature mapping that enhances locality with a
self-attentional feature mapping that can model the long-range
relationships as the output of the ACM, as shown in Fig. 6. The
output depth of standard convolution part is set to Fout − dv ,
where Fout denotes the freely settable depth of ACM’s outputs.

B. Trimodel Consistency Regularization

1) Weak Consistency Constraint: As shown in Fig. 7, the
purpose of introducing the classmate model is to impose a new
consistency constraint on the student as a part of the student’s
loss function, thus lowering the coupling effect between the
teacher and student models and alleviating the confirmation
bias problem. However, owing to the performance disadvantage
associated with the supervised training strategy of the classmate
model, it cannot enforce too strong a constraint on the student;
otherwise, it may not only fail to suppress bias, but also affect
the effectiveness of the teacher as a target for the learning of
the student. Therefore, in the trimodel training procedure, the
teacher should continue to operate as the primary guide for
the student’s learning, and the classmate should only serve as
a supplement. Based on the preceding discussion, we design
a WCC to allow the classmate to play a weak guidance role
to the student, hence successfully reducing the effects of the
confirmation bias.

We introduce information entropy to design the WCC module,
and the principle is shown in Fig. 8. The output vector of the
ACN for an input sample is the predicted probability value that
the sample belongs to each category. The uncertainty of the
predicted value can be measured by the information entropy. A
larger value of information entropy indicates that the uncertainty
of the predicted value is greater, which means the prediction
vector is close to the edge of the classification surface and its
probability of belonging to each category is uniform. Therefore,
we determine the reliability degree of this output by calculating
the information entropy of this prediction vector. We define the
reliable outputs to be outputs with information entropy values
less than or equal to the credibility threshold t, and unreliable
outputs to be the opposite. When sample xi is input to model
f(θ), the output is assumed to be f(θ, xi) = [qi1, q

i
2, . . . , q

i
N ],

Fig. 8. WCC. The student and the classmate process the labeled samples
simultaneously to obtain the predicted outputs L1 and L2. H() denotes the
information entropy function. The outputs with information entropy less than
the credibility threshold t in L2 are reliable outputs, which are computed with
the outputs of the same samples in L1 to obtain the consistency loss.

where qik denotes the probability that sample xi belongs to cate-
gory k andN denotes the number of categories. The information
entropy of this output is calculated as

H(f(θ), xi) = −
N∑

k=1

qiklog2(q
i
k + σ) (17)

where H(f(θ), x) is the information entropy of the output of
model f(θ) for sample x. σ is a small constant, which is used
to cope with the situation of qik = 0. We set σ = 1× 10−12.
The determination of reliable output is then performed. If the
output is unreliable, it will not be involved in the calculation of
the loss function in this training epoch. Otherwise, a component
of constraint loss is calculated between this reliable output and
the output of the student model for the same sample. A larger
t indicates a higher performance condition required for the
classmate to guide the student, and if the performance of the
classmate model is not sufficient to obtain prediction output that
satisfy the threshold for most samples, the classmate model will
barely participate in the training of the teacher–student model.
As a result, it is particularly important to choose an appropriate
t. Formally, the WCC is

WCC(f(θ1), f(θ2), X)

=
∑
x∈X

F (f(θ1, x), f(θ2, x)) (18)

where WCC() is the WCC function. θ1 and θ2 denote the
weights of the student and classmate models, respectively. F ()
is expressed as

F (f(θ1, x), f(θ2, x)) =

{
0, H(f(θ2)x) ≥ t
�(f(θ1, x), f(θ2, x)), else

(19)
where�(·, ·) is the distance between two vectors. As the training
proceeds, the recognition performance of the classmate model
continues to improve and the amount of its reliable outputs
will gradually increase. Meanwhile, as the performance of the
student and the teacher gradually increases, the effective guid-
ance provided by the classmate to the student will gradually
deteriorate. In summary, by imposing the WCC to the student
from the classmate in the early stage of training, the performance
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impact of the strong coupling in the teacher–student structure
can be effectively weakened.

2) Loss Function: The training process of the trimodel
method is shown in Fig. 3. A conventional consistency constraint
is imposed between the student model and the teacher model,
and the WCC is imposed between the student model and the
classmate model, and the mean square error (MSE) is used for
both the constraint functions. The student and the classmate
are initialized independently. The student is processed by EMA
in each epoch to obtain the teacher, which can achieve better
generalization performance than the student and thus serve as a
learning target for the student model.

The student model is trained using a semisupervised strategy,
in which both the labeled and unlabeled samples are used in
each epoch, and its loss function has three components: 1) the
classification loss between the predicted outputs of the labeled
samples and the true labels; 2) the consistency constraint loss
between the predicted output of the student model and the
teacher model for unlabeled samples, respectively; and 3) the
WCC loss between the predicted output of the student model and
the classmate model for labeled samples, respectively. Formally,
the loss function is as follows

Lossstu = l1 + a ∗ lc + b ∗ lw (20)

where l1 is the classification loss, using the cross-entropy loss
function. a and b are hyperparameters. lc is the consistency
constraint loss between the student and the teacher

lc =
∑
x∈U

MSE(f(θ1, x), f(EMA(θ1), x)) (21)

where θ1 denotes the weights of the student model. MSE() is
the MSE function. lw = WCC(f(θ1), f(θ2), L) is the WCC loss
between the student and the teacher. The function F () in the
WCC WCC() at this point is performed as

F (f(θ1, x), f(θ2, x))

=

{
0, H(f(θ2)x) ≥ t
MSE(f(θ1, x), f(θ2, x)), else

(22)

where θ2 denotes the weights of the classmate model. Since the
classmate model is only supervised training, its performance will
gradually fail to keep up with the performance of the teacher–
student model as the training progresses. And the attenuation
of the confirmation bias was mainly performed in the early
stage of training, because the predictions of the student and
the teacher had substantially stabilized in the late stage. We,
therefore, introduce a weight factor to make b decrease to zero
as training proceeds. The expression of b is

b =
E − e

E
∗ c (23)

where c is a hyperparameter, E is the total number of training
epochs, and e is the current number of training epochs.

The classmate model is trained simultaneously with the stu-
dent model, using a supervised training approach with labeled
samples L. Unlike conventional supervised learning, the loss
function of the classmate model training consists of two compo-
nents: 1) the classification loss between the predicted outputs

Fig. 9. SAR and optical images of ten targets in the MSTAR dataset. (a) 2S1.
(b) ZSU234. (c) BRDM-2. (d) BTR60. (e) BTR70. (f) BMP2. (g) D7. (h) ZIL131.
(i) T62. (j) T72.

of the labeled samples and the true labels and 2) the WCC
loss between the student and the classmate. The addition of the
latter can enhance the supervised training effect of the classmate
model and further improve its performance improvement effect
on the student model. Formally, the loss function is as follows:

Losscla = l2 + d ∗ lw (24)

where l2 is the classification loss, using the cross-entropy loss
function. d is a hyperparameter. Our proposed approach is
essentially an inductive training method that aims to train a
recognition model in a semisupervised manner using labeled
and unlabeled samples and, then, use this model to achieve the
task of recognizing new data. In this respect, our approach is
consistent with the traditional SAR ATR. We use the generated
teacher model with better generalization performance to predict
the labels of the test dataset samples to evaluate the performance
of the model after the training is completed.

IV. EXPERIMENTS

A. Dataset

In this article, we use the MSTAR dataset, which is a bench-
mark dataset in the field of SAR image recognition, to validate
the proposed method. This dataset uses a radar resolution of
0.3 m × 0.3 m and operates in the X-band, using HH po-
larization. MSTAR includes ten types of ground targets: T62,
T72, BMP2, BRDM2, BTR60, BTR70, D7, ZIL131, 2S1, and
ZSU234, and their optical images and SAR images are com-
pared, as shown in Fig. 9. It can be seen that although the optical
images of various types of the targets are clearly different from
each other, their SAR images are difficult to identify due to their
imaging nature.

In the original dataset, the size of the images is 128×128,
and the target subject is concentrated in the center of an image.
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TABLE I
TRAINING AND TESTING DATASETS IN EXPERIMENTS

Fig. 10. Structure of the ACN. The network contains three ACM modules,
one flatten layer, three fully connected layers, and one Softmax layer.

To reduce the interference of background clutters, we uniformly
crop it to 64×64 at the center. Meanwhile, two different pitch
angles of 15◦ and 17◦ are included for each type of the target.
The dataset used in this article includes both the training and
testing datasets, and Table I lists the details.

B. Experimental Settings

As shown in Fig. 10, the feature extraction network we employ
contains three ACMs and three fully connected layers. Each
ACM contains three convolutional layers and one LocalRNN
layer. The first two convolutional layers conv1 and conv2 assist
in the self-attention operation. The third convolutional layer is
to extract local features as part of the final output, with a con-
volutional kernel size of 3×3 and a number of 32 convolutional
kernels. The sequence processing part of the LocalRNN layer
uses an LSTM with four input and output channels, and each

LocalRNN layer is added with residual [50] and layernorm [51]
connections, with dropout set to 0.5. The specific structure
of the ACM is described in Section III. The fully connected
layers Linear1, Linear2, and Linear3 have 2048, 2048, and 10
output channels, respectively, with the rectified linear unit as an
activation function.

The CNN we utilized in our experiments has the identical
structure as the ACN, except that the ACMs are replaced with
convolutional modules. Each convolutional module consists of
a convolutional layer, a batch normalization layer, and a max-
pooling layer. Each convolutional layer has 64 convolutional
cores with a convolutional kernel size of 3×3. The max-pooling
layers use 2×2 convolution.

During the training process, we only crop the input images
to 64×64 uniformly, without extra preprocessing and data ex-
pansion. ACM1, ACM2, and ACM3 have 8, 16, and 32 out-
put channels, with the size of the output feature maps being
32× 32, 16× 16, and 8× 8, respectively. Nh in the multihead
self-attention is set to 2. The threshold t for determining the
reliability degree in the WCC is set to 1.5. Fig. 11 shows the
difference between our approach and the traditional SAR ATR
way of using the dataset. In SAR ATR experiments, the dataset is
usually divided into two parts: the training dataset is all available
labeled data used for model training, while the data in the testing
dataset is set to be unlabeled data used to test the recognition
ability of the model. In contrast, in our SAR semisupervised
recognition method, the training dataset consists of a small
portion of labeled data and a larger portion of unlabeled data,
both of which are available for training the model. In addition
to this, we set up a test dataset that also consists of unlabeled
samples that have never been observed in the model training,
which is equivalent the newly added data to be recognized in real
applications. In this regard, inductive semisupervised learning
is the same as SAR ATR, which is a recognition method with
new data generalization capability that can perform recognition
tasks on newly obtained data.

Based on the analysis above, we treat the MSTAR dataset
in the experiments as follows: The training dataset is divided
into a labeled dataset L and an unlabeled dataset U. The same
number of samples from each class in the training dataset is
randomly selected and added to L. Since the training dataset
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Fig. 11. Different ways of applying the dataset in SAR ATR and in our method.

TABLE II
NUMBERS OF SAMPLES IN L AND U UNDER DIFFERENT PARTITIONS OF THE

TRAINING DATASET

was partitioned for the purpose of evaluating the results of
comparison experiments or ablation experiments under each
partition, and not for the purpose of making cross-sectional
comparisons between the results under each partition. Therefore,
in order to make full use of the data volume of the dataset to
enrich the unlabeled sample part, we add the remaining samples
to U after constructing the labeled dataset L. In addition, there is
a fixed number of unlabeled samples forming the test dataset T.
After training the model with L and U, we use the trained model
to identify the samples in T to obtain the experimental results.
We set up six experimental groups based on the different ways
of dividing L and U, and the sample sizes of each dataset in each
group is shown in Table II. We utilize the Adam optimizer for
optimization when training the feature extraction network, with
the following parameters: η = 0.001, β1 = 0.9, and β2= 0.99.
Since differences in the randomly selected labeled samples may
affect the experimental results, we repeat each experiment ten
times to take the average.

C. Evaluation Indicators

We mainly use recognition accuracy and the Kappa score as
the main evaluation metrics in the experiments. The recognition
accuracy refers to the ratio of the number of correctly recognized
samples to the number of all the samples. The Kappa score is a

method for evaluating consistency, and we can use it to assess the
accuracy of a multiclassification model. The closer the value is to
1, the higher the model classification accuracy. The calculation
of Kappa score is based on the confusion matrix, which can
accurately measure the recognition accuracy of each class. The
definition of Kappa score is shown in (25), where po represents
the relative observed agreement between the recognition results
of the testing data and the true labels and pe represents the
hypothetical probability of the chance agreement

Kappa =
po − pe
1− pe

. (25)

D. Ablation Experiments

1) Evaluation of the ACN Feature Extraction Module: We
compare the feature extraction capability of the ACN proposed
in this article with that of the conventional CNN and the Trans-
former model [43], all of which use the trimodel consistency
regularization method for training. The Transformer model uses
the ViT-Base architecture from [43]. The results are shown in
Table III.

It can be seen that our method outperforms the CNN under
each dataset division. The reason is that the self-attention part
and the convolutional part of our feature extraction module can
extract both global and local information in the sample images
simultaneously. Compared with CNNs that extract only local
information, our strategy can significantly improve feature ex-
traction and information utilization of images when the labeled
samples is insufficient. In addition, the difference in performance
between the two methods is more significant when the number
of labeled samples is smaller. The improvement in recognition
accuracy of the ACN method reaches 7.67% when L = 300,
while the improvement is only 2.19% when L = 1000. This is
because when the number of labeled samples increases, the CNN
network’s generalization capacity grows, and the gap between
the two feature extraction networks is smaller, the performance
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TABLE III
ACN, CNN, AND VIT FEATURE EXTRACTION CAPABILITY COMPARISON

Fig. 12. Distribution of the feature vectors outputted by our model and the CNN model. (a)–(d) represent the supervised CNN model’s output and (e)–(h) represent
our model’s output. Different colors represent different classes. (a) L = 400. (b) L = 600. (c) L = 800. (d) L = 1000. (e) L = 400. (f) L = 600. (g) L = 800.
(h) L = 1000.

advantage of our method decreases. Even so, our method has a
distinct advantage in each experimental partition.

The Transformer network, in comparison, has unsatisfactory
recognition performance across all partitions, and each indicator
is even lower than the CNN network. This is because the ViT
network has a very large architecture with a huge number of
parameters, while the dataset has a small amount of data, and
training with the Transformer network would lead to severe
overfitting. Besides, the Transformer model completely adopts
a self-attention mechanism for network construction, giving up
the ability to extract local features of images that convolutional
networks can provide. The ACN for the combination of convo-
lutional networks and self-attention, in contrast, is more adapted
to the feature extraction task of SAR images.

Next, we use visual figures to illustrate the effectiveness of
the ACN. We select partitions 2, 4, 5, 6 in Table II and extract
the feature vectors of the test samples output by the trained
ACN model and the CNN model. We then transform the fea-
tures into 2-D feature vectors using the t-distributed stochastic
neighborhood embedding (t-SNE) method. The training method
for both the models uses the trimodel training. The distribution
of the feature vectors obtained from the two models is shown in
Fig. 12, where the points of different colors represent samples
of different classes. It can be seen that as the number of labeled
samples increases, the recognition performance of both the
CNN and the ACN is gradually enhanced. Also, the degree of

TABLE IV
COMPARISON OF THE RECOGNITION ACCURACY OF NETWORKS USING CNN,

ACN WITHOUT POSITIONAL EMBEDDING, AND ACN WITH POSITIONAL

EMBEDDING BASED ON LOCALRNN

confusion between different classes of sample clusters in the
visualization graph gradually reduces. In addition, it can be seen
that compared with the CNN method, our method can effectively
reduce the within-class distance and increase the between-class
distance for the same number of labeled samples. This means
that our model can better extract image features and, thus, train
better recognition performance, which is consistent with the
experimental results shown in Table III.

2) Evaluation of the 2-D Positional Embeddings Based on
the RNN: In the ACN feature extraction module proposed in
this article, we employ an RNN-based 2-D location embedding
module to enhance self-attention. Table IV shows the com-
parison of recognition accuracy under three network models
using CNN, ACN without positional embedding, and ACN with
positional embedding based on LocalRNN. It can be seen that
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Fig. 13. Distribution of the feature vectors outputted by the ACN under trimodel training and supervised training. (a)–(d) represent the output of the ACN trained
by the trimodel method, and (e)–(h) represent the output of the ACN trained by the supervised method. Different colors represent different classes. (a) L = 400.
(b) L = 600. (c) L = 800. (d) L = 1000. (e) L = 400. (f) L = 600. (g) L = 800. (h) L = 1000.

TABLE V
PERFORMANCE COMPARISON OF OUR TRAINING METHOD WITH THE

TEACHER–STUDENT METHOD AND THE SUPERVISED METHOD

the recognition accuracy of the ACN is higher than that of the
CNN in every partition even in the absence of position infor-
mation. This is because the self-attention augmented convolu-
tional network extracts image features better than the traditional
convolutional network and so achieves superior recognition
performance. However, when the number of labeled samples
in the training dataset increases, the performance advantage of
the ACN without positional embedding over the CNN becomes
small. At the same time, the recognition accuracy of the ACN
with the 2D-LocalRNN module is the highest in each partition.
The reason is that the 2D-LocalRNN module improves the
effectiveness of self-attention in processing image data, resulting
in more accurate global relationship information extracted by the
self-attention unit.

3) Evaluation of Trimodel Consistency Regularization
Method: We introduce a classmate model in this study to es-
tablish a WCC on the student model to lessen the coupling
of the teacher–student, which is the difference between the
trimodel consistency regularization method and the traditional
teacher–student method. To validate the effectiveness of our
approach, we compare our training method with the conventional
teacher–student method and the supervised method, evaluated
with recognition accuracy. The feature extraction network used
is ACN, and the results are shown in Table V. It can be seen
that the traditional teacher–student structure has high perfor-
mance improvement over the supervised training method, most
significantly at L = 300, reaching an accuracy improvement
of 8.15%, while the smallest advantage is at L = 1000, with
a 2.19% improvement in recognition accuracy. This is because

the semisupervised approach utilizes richer sample information
compared to the supervised approach. To break the performance
bottleneck of the teacher–student structure, our solution expands
on the teacher–student structure by weakening the coupling
impact of this structure by introducing an independent new
model. Compared to the teacher–student, the trimodel structure
has good performance advantages in all partitions. Our method
achieves the highest performance improvement of 8.32% at
L = 300 and the smallest performance improvement of 3.84%
at L = 1000 compared to the supervised method. In the above
comparison between semisupervised and supervised methods,
when the number of labeled samples becomes larger, the differ-
ence in the amount of information between semisupervised and
supervised methods decreases, so the recognition performance
gap gradually narrows.

In addition, we also plot the t-SNE diagram in Fig. 13 to
visualize the performance of our semisupervised and supervised
approaches. As shown in Fig. 13, our method has a larger
between-class distance and less between-class confounding,
which indicates that the network trained by the trimodel method
outperforms the network trained by the supervised method. This
is consistent with the experimental results in Table V.

Based on the above discussion, each of the modules used in
our approach is productive. The comparison of the metrics shows
that the incorporation of the modules we designed all achieved
an improvement in the overall model recognition performance.

1) The use of the ACN network plays the most significant
role in improving the performance of the model in each
experimental partition.

2) The 2-D positional embedding module enhances the ef-
fectiveness of the self-attention mechanism on the image
targets to a certain extent and achieves an enhancement
effect on the model performance.

3) Our proposed trimodel semisupervised training method
achieves significant performance improvement compared
to the supervised method, and the introduction of the class-
mate model enhances the performance of the traditional
teacher–student SSL method.
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TABLE VI
RECOGNITION ACCURACY OF OUR METHOD, LADDER NETWORK, Π MODEL,

TEMPORAL ENSEMBLING MODEL, MEAN TEACHER, DUAL STUDENT, AND

UDA MODEL WITH DIFFERENT PARTITIONS OF THE TRAINING DATASET

E. Comparison With Other Semisupervised Methods

On the MSTAR dataset, we validate various semisuper-
vised recognition methods, including ladder network [30], Π
model [31], temporal ensembling model [32], mean teacher [33],
dual student [35], and unsupervised data augmentation (UDA)
model [52]. First, each comparative method is introduced as
follows.

1) Ladder network: This method is the earliest teacher–
student structure approach to achieve consistency regular-
ization by adding Gaussian noise to each neural network
layer.

2) Π model: Unlike the perturbation used in the ladder net-
work, the Π model creates two random augmentations of
a sample for both labeled and unlabeled data and intro-
duces random perturbation between the two networks via
dropout.

3) Temporal ensembling: This method incorporates EMA
calculation based on random data augmentation, where
the output predictions of the network are calculated by
EMA and subjected to the consistency constraint.

4) Mean teacher: This method applies EMA calculation to
the network for the first time. The student model is cal-
culated by EMA to obtain the teacher model, thus adding
perturbations between the two networks.

5) Dual student: This method abandons the teacher–student
structure and uses two models with independent initial-
ization. The concept of stable sample is also introduced
to establish the stability constraint between the two mod-
els, avoiding the performance bottleneck problem of the
teacher–student structure.

6) UDA model: This method follows the consistency regular-
ization framework and replaces simple noise addition with
high-quality data enhancement methods such as AutoAug-
ment, RandAugment, etc., thus improving the recognition
performance of the model.

Table VI shows the comparison results of the recognition ac-
curacy of the selected six comparison methods with our method.
It can be seen that our method achieves the best recognition
accuracy in all the training dataset partitions, which reflects the
effectiveness and superiority of our algorithm.

Our method has huge performance improvement compared
to the ladder network. The reason is that the ladder network
only uses simple Gaussian noise to add perturbations between
networks and uses a feature extraction network that is not capable

TABLE VII
COMPARISON OF THE RECOGNITION ACCURACY OF DIFFERENT POSITIONAL

ENCODING METHODS IN IMAGE SELF-ATTENTION

of fully extracting features from images. Compared with the Π
model, the temporal ensembling model, and the mean teacher
model, our method also has significant improvement in recog-
nition accuracy, especially in the partitions with few labeled
samples. This is because these methods use a student–teacher
structure, and the strong coupling between the two models makes
it difficult to continue improving their performance. Our method,
however, weakens this coupling by adding a parallel training
model and has a much superior training effect. The dual-student
approach replaces the teacher model with another student model
in order to eliminate the impact of the teacher–student structure’s
characteristics on recognition performance and to create more
stable constraint between the two models. In contrast, on the
one hand, our method maintains the excellent performance of
the traditional teacher–student structure and designs weaken-
ing the confirmation bias on its basis; on the other hand, our
method’s feature extraction network can extract both local and
global information in the image target, which means a stronger
information extraction ability. Therefore, our method has better
performance. In addition, the UDA model applies the data aug-
mentation approach commonly used in supervised learning to
semisupervised learning, proposes the TSA method to deal with
the data imbalance between labeled and unlabeled samples, and
improves the consistency regularization from the perspective of
data. In contrast, our method optimizes from the perspective of
networks by enhancing the feature extraction of the networks
while improving the training process of the network, which
acquires a weak recognition performance advantage.

F. Discussions

1) Comparison of Different Positional Embedding Methods:
Table VII shows the performance of our 2D-LocalRNN posi-
tional encoding method compared with several other methods.
It can be seen that our 2D-LocalRNN method achieves the
highest recognition accuracy under each partition, especially
with an average accuracy advantage of 3.14% compared to the
CoordConv method. The reason is that CoordConv, although
not permutation equivariant, does not satisfy translation equiv-
ariance, which is a required property when processing images.
The fixed position encoding method used in Transformer [43] is
one of the simplest position encoding methods, which is based on
the principle that the position encoding is obtained by learning
during the training of the model. The validity of the positional
information obtained in this way is relatively insufficient, so its
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Fig. 14. Training time per epoch with the five positional encoding methods.

recognition performance is similar to that of CoordConv and
lower than that of our method. The sinusoidal position encoding
method proposed in [48] is a special form of fixed position
encoding. The sinusoidal encoding approach can achieve higher
effectiveness of position information extraction, and therefore,
its recognition accuracy is higher than fixed position encoding
method. However, its effectiveness is still inferior to that of the
relative position encoding method, and the recognition accuracy
is lower than the Relative method and our method. At the
same time, our method does not have a significant advantage
in recognition accuracy compared to the Relative method. The
Relative method is able to extract accurate and valid position
information with a high computational effort, so the performance
is not weaker than our method.

Next, we compare the efficiency of different positional en-
coding methods. We choose a partition with L = 500 for the
experiment and count the time to train one epoch under each
positional encoding method. All the algorithms are implemented
in Pytorch 1.8.0 and trained and tested on an Nvidia GeForce
RTX 2080Ti graphics card with 11 GB of video memory. We
use Cuda9.1 to speed up GPU computing. The results are shown
in Fig. 14. It can be seen that the training time per epoch of
our method is 14.43 s, which has a great advantage in training
efficiency compared with 16.74 s of the Relative method. This is
because the processing of short sequences with RNNs to obtain
position information in our method, which is easy to achieve
parallel computation and fast processing speed, thus achieving
efficiency improvement while maintaining recognition perfor-
mance. The fixed position encoding uses model learning to
obtain position encoding with a shorter training time, which
has a slight efficiency advantage over our method, but has a
greater disadvantage in recognition accuracy. The sinusoidal
position encoding method is comparable to our method in terms
of training efficiency due to the more complex encoding strategy.
In contrast, CoordConv has a simpler computational process, and
although its recognition accuracy is not high, the training time
per epoch is the shortest at 11.55 s.

2) Hyperparameters in the Loss Function: In our training
method, the loss function of the student model consists of
three components, with two hyperparameters a and b to adjust
the proportion of the three components. The following section

TABLE VIII
RECOGNITION ACCURACY OF OUR METHOD AT DIFFERENT a WHEN L = 600

concentrate on the training effect of the weak consistency loss
between the classmate and student models in terms of the pro-
portion of the loss function. We set a = 100 and b is calculated
as

b =
E − e

E
∗ c. (26)

We set c to 0, 1, 50, 100, and 1000 and test under each
partition, respectively. Fig. 15 shows the effect of different c
on the recognition accuracy under each partition. When c = 0,
it means the classmate model is not constrained to the student
model, and the recognition accuracy is now low. When c = 1
and c = 50, this part of the loss improves the student model’s
training to some extent, and the improvement peaks situates at
c = 50. At this point, the classmate model lessened the coupling
effect between the student and teacher models, and the best
balance between the three models is obtained. And when c is
further increased to 100 and 1000, the classmate model plays
a side effect on the training of the teacher–student model, and
the recognition accuracy in multiple partitions is even lower
than the case of c = 0. This is because, if the loss function’s
WCC component is too large, the classmate model will gradually
overtake the teacher model’s dominant position in consistency
training and the classmate model’s lackluster performance will
seriously mislead the student model’s growing learning trajec-
tory. In addition, different c can have a significant impact on the
recognition accuracy when the labeled samples are small. As
the number of labeled samples increases, the recognition ability
of the ACN improves. Therefore, the influence of the classmate
model on the teacher–student model progressively fades, and the
accuracy change curve due to changing the value of c tends to
be flat. Based on the above analysis, setting c = 50 allows the
addition of the classmate model to optimize the teacher–student
model to the best performance.

Then, we set c = 50 and set the hyperparameters a to 0,
1, 50, 100, 1000, 10 000, and experiment under the partition
of L = 600. The recognition accuracies of our method under
different a are shown in Table VIII. It can be seen that the
recognition accuracy is lowest at a = 0. As a increases, the
recognition accuracy rises and reaches its highest at a = 100.
This illustrates the effectiveness of the loss function lc for model
training. This loss function is the consistency constraint of the
teacher model on the student model, and if its weight is too large,
the effectiveness of the classification loss l1 will be affected,
which will lead to the degradation of the final recognition
performance.

In addition, the WCC part of the loss function of the classmate
model is weighted by the hyperparameter d. The role of this
part of the loss is to assist the classification loss to optimize
the training of the classmate model. We set d to 0, 1, 50, 100,
1000, and 10 000 and evaluate the recognition accuracy of the
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Fig. 15. Recognition accuracy of our method for different selections of c under each partition. (a) L = 400. (b) L = 600. (c) L = 800. (d) L = 1000. (e) L = 400.
(f) L = 600.

TABLE IX
RECOGNITION ACCURACY OF THE CLASSMATE MODEL AT DIFFERENT d WHEN

L = 600

classmate model under L = 600 partition. The experimental
results are shown in Table IX. It can be seen that the recognition
accuracy is lowest at d = 0. The recognition accuracy rises and
reaches its highest at d = 100 as d increases. This reflects the
optimization of the WCC part for the training of the classmate
model. As the weights increase further, the WCC partially affects
the dominant role of classification loss in the loss function,
so the recognition performance decreases sharply. Next, we
verify the effect of the size of the credibility threshold t in the
WCC on the training effect. The significance of the credibility
threshold t is to balance the strength of the weak consistency
constraint imposed by the classmate model on the student model,
and it cannot be too large or too small. The information entropy
of the output is calculated as follows:

H(f(θ), xi) = −
N∑

k=1

qiklog2(q
i
k + σ). (27)

According to the information entropy property, the choice of
the size of the credibility threshold t is mainly related to the
number of dataset categories N . The maximum possible value
of H is log2N . For instance, the output information entropy
in the MSTAR dataset ranges from 0 to 3.32 when N = 10.
The optimal t size for this dataset can be found by conducting
several sets of experiments on t values in this range. Therefore,
we set t to 0.5, 1, 1.5, 2, and 2.5 and tested it under the partition
L = 600. As shown in Fig. 16, the network is trained optimally

Fig. 16. Recognition accuracy with different credibility thresholds t at
L = 600.

at t = 1.5. The final performance of the teacher model decreases
when t is increased or decreased. This is because the threshold
t determines the strength of the constraint played by the WCC:
If it is too small, the role played by the classmate model on the
student model at the early stage of training will not be sufficient
to affect the strong coupling between the teacher and student
models; if it is too large, the reliability of the output of the
classmate model will be significantly reduced and will play a
less effective role in guiding the student model and may even
mislead the student model to a large extent. Based on the above
discussion, choosing an appropriate credibility threshold t can
effectively improve the training effect of the trimodel method.

V. CONCLUSION

Inspired by the AM and semisupervised learning mechanisms
in the human cognitive process, a trimodel-consistency-based
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semisupervised method was proposed that utilizes an attention-
augmented convolutional model for SAR target recognition.
Specifically, in the feature extraction part, we combined the self-
attentional mechanism with a standard convolutional network,
which effectively improves the ability of the network to extract
both the local and global features of the image. Furthermore,
we designed a 2D-LocalRNN positional embedding module to
efficiently extract 2-D position information of images utilizing
the properties of RNNs, which enhances the performance of
the self-attention module. In the trimodel-consistency-based
semisupervised training part, we introduced an independently
initialized classmate model to the traditional teacher–student
structure to weaken the confirmation bias and designed a weak
consistency regularization method to adjust the influence of
the classmate model on the teacher–student model. Our pro-
posed feature extractor and semisupervised training method
successfully utilized feature information from a large number of
unlabeled samples and only a small number of labeled samples,
while alleviating performance drawbacks caused by high cou-
pling between teacher and student models, leading to improved
model recognition performance. Experiments on the MSTAR
dataset demonstrated the effectiveness of our proposed method.
The recognition accuracy of our method reached 85.69% when
the labeled samples were only 1/10 of the sample dataset and
95.92% when the labeled samples were 1/3 of the sample dataset.
The recognition performance is shown to exceed that obtained
by classical consistency-regularization-based semisupervised
recognition methods, such as mean teacher and dual student, for
each dataset partitioning case. Future work will aim to optimize
our developed model and evaluate its performance–complexity
tradeoff on a range of datasets to further demonstrate its util-
ity as a benchmark resource for the DNN and SAR research
community.
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