ATTEYA, A.I., ALI, D. and HOSSAIN, M. 2022. Developing a capacity sizing and energy management model for a hybrid photovoltaic-hydrogen grid-connected building scenario. Presented at the 2022 All-energy exhibition and conference: low carbon heating and cooling, 11-12 May 2022, Glasgow, UK.

Developing a capacity sizing and energy management model for a hybrid photovoltaichydrogen grid-connected building scenario.

ATTEYA, A.I., ALI, D. and HOSSAIN, M.

2022

This document was downloaded from https://openair.rgu.ac.uk

Title: "Developing a Capacity Sizing and Energy Management Model for a Hybrid Photovoltaic-Hydrogen Grid-connected Building Scenario"

Presented by: Ayatte I. Atteya Supervised by: Dr. Dallia Ali - Dr. Mamdud Hossain School of Engineering, Robert Gordon University (RGU)

Outline

- Introduction
- Green Hydrogen Energy Storage
- Rationale of the proposed Research
- The proposed hybrid PV-H2 system for grid-connected buildings
- Case Study
- Capacity sizing of the proposed system components
- Energy Management Model of the proposed system components
- Simulation Results
- Conclusion

Introduction

3

In June 2019, the parliament passed a new legislation The energy supply sector requiring the UK to bring down all greenhouse gas has accounted for 70% of emissions (GHG) by 100% by 2050, compared to 1990 the overall reduction in UK GHG emissions since 1990. levels. 1990-2020

UK Greenhouse Gases (GHG) Emissions by sector 1990-2020

Introduction

2020 UK GHG Emissions by Sector

4

Energy Supply Sector has been the second largest contributor to GHG emissions in 2020 after transport sector, constituting 21% of total GHG emissions.

2020 UK Electricity Generation by Fuel

5% Natural Gas Transport 16% Renewables 25% 11% Energy Supply Coal 36% Oil and other fuels 3% Business Nuclear Residential Hvdro 16% Agriculture 21% The share of renewable energy mix is required 41% 18% to increase by more than twice its current amount to achieve the Zero-Carbon ambition.

Introduction

5

- Fossil-fuel The admission of renewable energy systems into the grid is subject spinning reserves to significant variability due to their intermittency, requiring central running without generations to cover any transient variation between renewable energy storage power input and consumer demand. Improvement of **Power Plant Profile** Charging with Energy Storage Storage Discharging **Generation** profile during hours storage Peaking generation without storage of low during hours Generation profile demand of high with storage demand System Demand / MW Integration of Suggested Mid mcrit generation Energy Storage Storage charged Storage charged Solution from baseload from baseload Systems Storage used to generating plant generating plant maintain frequency and voltage by balancing supply and demand Baseload Generation profile without storage
 - ----- Generation profile without energy storage

Generation profile with energy storage

Time of day

midday

6am

6pm

midnight

Green Hydrogen Energy Storage Systems

Rationale of the Proposed Research

The integration of Renewables into Electrical Power Systems brings major technical challenges which can be addressed by integrating Green Hydrogen Energy Storage (HES); however, integrating HES requires:

- Meeting the energy demands
- Mitigating the intermittency of renewable energy
- Minimizing the GHG emissions

 Scheduling the operation of the hydrogen system components with other parts of the electrical system

Case Study: Sir Ian Wood Building (SIWB) – RGU Campus

The proposed system sizing and energy management modelling has been developed for SIWB (as case study) based on its actual hourly load demand profile for the year 2020/2021

Parameter	Rating
Average Demand	515.8 kW
Peak Demand	738 kW
Minimum Demand	340 kW
Total Annual Demand	4.518 GW

Simulating the Building Currently Installed PV Capacity

Design Specification currently installed in	s of PV Facility RGU Campus
Panel Orientation	Facing South (Azimuth: 0°)
Pitch Angle	15°
Solar PV Module Type	SI-Mono X Neon 300 W PV Panel
Number of PV panels installed	100
Total PV Installed Capacity	30 kW
Inverter Type	Power-One TRIO- 27.6TL S2X Inverter
Number of installed inverters	1

-Sub-arra	y name and Or	rentation			Pre-sizi	ng neip					_	0
Name	PV Array				O No siz	ting		Enter plann	ed power 🔇	30.0	kWp	3
Orient.	Fixed Tilted P	lane	Tilt Azimuth	15° 0°	~	Resize		or available area	(modules)(164	m²	
Select the	PV module											
All modules	s 🗸	Filter All PV	/ modules 🛛 🗸					Approx. needed I	modules	100		
AE Solar	\sim	300 Wp 28V	Si-mono A	E 300M6	5-60 (1500)) Si	ince 2020	Manu	facturer 202	20 🗹 👘	Q Open	
🗌 Use optir	mizer											
		Siz	zing voltages : Vmpp	(60°C)	28.3 V							
			Voc (-	10°C)	43.7 V							
Select the	e inverter											
All inverter	's 🗸	Output volta	ge 400 V Tri 50Hz							\leq	50 Hz 60 Hz	
ABB	\sim	27.6 kW 2	00 - 950 V TL 50	0 Hz	TRIO-27	6-TL-OUTD-4	400 (27,6 kWa	ac max) Until 2	020		Q Open	
Nb. of inver	ters 1	🗘 🔽 Ope	erating voltage:		200-95	0 V Global	Inverter's po	wer 27.6	kWac	_		
🗌 Use mu 🕜	ılti-MPPT featu	ire	Input maximum vo	ltage:	100	0 V inve	rter with 2 M	1PPT				
Design the	e array											
Number	of modules and	d strings		Ope	rating con	ditions		The Array max specified Inve	imum power rter maximu	is greater f m allowed in	than the nput PV	
Mod. in serie	es 20 ^	between 8	and 22 🕜	Vmp Voc	p (80°C) p (20°C) (-10°C)	671 V 873 V		pc (Ir	ower , i.e. 2 Ifo, not sign	9 kW. ificant)		
Nb. strings	5 ^	🗹 only possibi	ility 5	Plane	irradiance	1000 W/	/m²	O Max	. in data	● STC		1
Overload los Pnom ratio	ss 0.0 % 1.09	Sho	w sizing 🕜	Impp Isc (S	(STC) TC)	46.1 A 48.1 A	Μ	lax. operating po (at 1000 W/m² a	wer ind 50°C)	27.3	κW	
Nb. module	es 100	Area	164 m²	Isc (a	t STC)	48.1 A	A	rray nom. Pow	ver (STC)	30.0	Wp	

Solar Energy

fed to load

Monthly

Load Energy

11

Simulating the Building Currently Installed PV Capacity

Normalized productions (per installed kWp): Nominal power 30.0 kWp

							onsum	ption	der	nand
	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
January	15.5	10.60	4.00	24.1	22.6	0.668	376.0	0.645	0.000	375.4
February	30.2	19.20	3.80	40.7	38.6	1.144	360.0	1.113	0.000	358.9
March	68.0	37.70	5.40	83.0	79.5	2.318	389.0	2.263	0.000	386.7
April	102.0	64.00	7.30	112.7	108.4	3.133	364.0	3.062	0.000	360.9
Мау	144.2	76.30	9.90	152.5	147.4	4.187	391.0	4.095	0.000	386.9
June	140.9	79.60	12.40	145.0	140.1	3.930	386.0	3.840	0.000	382.2
July	136.7	72.30	14.80	142.3	137.4	3.805	404.0	3.716	0.000	400.3
August	105.5	59.70	14.40	114.2	110.0	3.093	354.0	3.022	0.000	351.0
September	74.3	39.60	12.10	88.0	84.4	2.393	349.0	2.338	0.000	346.7
October	38.7	24.30	9.30	48.8	46.5	1.342	377.0	1.306	0.000	375.7
November	16.8	11.90	6.30	24.6	23.1	0.679	381.0	0.656	0.000	380.3
December	9.6	6.90	3.90	16.0	14.8	0.437	387.0	0.418	0.000	386.6
Year	882.4	502.09	8.66	991.7	952.9	27.128	4518.0	26.473	0.000	4491.5

Analysis of PV Facility curr	ently installed in RGU
------------------------------	------------------------

Total Solar Energy Supplied to Load Demand	26.47 MWh
Total Load Energy Consumption	4518 MWh
% Solar Energy Supplied to Load Demand	0.58 %

Legends			
GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_User	Energy supplied to the user
T_Amb	Ambient Temperature	E_Solar	Energy from the sun
GlobInc	Global incident in coll. plane	E_Grid	Energy injected into grid
GlobEff	Effective Global, corr. for IAM and shadings	EFrGrid	Energy from the grid

• Sizing of the Proposed PV System Capacity

12

The size of the proposed PV capacity can be calculated based on the PV capacity factor, defined as the percentage of the average output power from the PV to the rated power of PV module:

13

Modelling and Simulation of the Proposed PV System Capacity with no H2 Energy Storage

PVSyst Simulation Results - Monthly Solar energy production by the proposed PV capacity

Normalized productions (per installed kWp): Nominal power 4310 kWp

PVSyst Simulation Results – Performance of the proposed grid-connected PV capacity in feeding load demands with no H2 energy storage

Sizing of the Proposed H2 Electrolyser

15

Pa

Av

Av

Av

H2

H2

The electrolyser can be sized as 50% of the proposed PV capacity to compensate for the level of underutilization during the hours of low availability of solar energy.

	$P_{ele\ rated} = 0.5 \times$	P _{PV rated}		NEL A1000 H2 electrolyser (A-Se	ries stacked together)
	$= 0.5 \times 4.31 MW =$	2 155 <i>MW</i>		SPECIFICATIONS	A1000
		2.100 ////	Π	Net Production Rate	600-970 Nm³/h
	Flectrolyser Canacity Ra	n a e	$ \prec $	Production Capacity Dynamic Range	15-100% of flow range
	Διεειτοιγσει σαράειι γ κα	nge		Power Consumption at Stack ¹	3.8-4.4 kWh/Nm ³
	, kWh	Nm^3		Purity – with optional purification	99.99-99.999%
	$=(3.8-4.4)\frac{1}{Nm^3}\times(600)$	$(-970) - \frac{1}{h}$		O ₂ -Content in H ₂	< 2 ppm v
				H ₂ O-Content in H ₂	< 2 ppm v
	= (2.28 - 4.27) MW	Satisfying the propose Size of H2 Electrolyse	r l	Delivery Pressure	1-200 barg
				Dimensions	
rametei	,	Rating		Footprint	~225 m²
eraae H	12 Electrolyser Capacity	3.275 <i>MW</i>	1	Container 1 - W x D x H	NA
	12 Volume Production	705 N3 /h		Container 2 – W x D x H	NA
erage r	12 VOIUME Production	785 Nm [°] /n		Container 3 - W x D x H	NA
erage H	12 mass Production	70.7 kg/h		Ambient Temperature	5-35⁰ C
Mass Fl	ow Rate per unit capacity	0.0216 kg/h/kW		Electrolyte	25% KOH aqueous solution
Electro	lyser Target Pressure	200 bar		Feed Water Consumption	0.9 l/Nm³
rameter erage H erage H erage H Mass Fl Electro	Electrolyser Capacity Ra $= (3.8 - 4.4) \frac{kWh}{Nm^3} \times (600)$ $= (2.28 - 4.27) \text{ MW}$	nge $-970) \frac{Nm^3}{h}$ Satisfying the propose Size of H2 Electrolyse Rating 3.275 MW $785 Nm^3/h$ 70.7 kg/h 0.0216 kg/h/kW 200 bar	۲ ۲	Production Capacity Dynamic Range Power Consumption at Stack ¹ Purity - with optional purification O ₂ -Content in H ₂ H ₂ O-Content in H ₂ Delivery Pressure Dimensions Footprint Container 1 - W x D x H Container 2 - W x D x H Container 3 - W x D x H Ambient Temperature Electrolyte Feed Water Consumption	15-100% of flow range 3.8-4.4 kWh/Nm ³ 99.99-99.999% < 2 ppm v < 2 ppm v 1-200 barg ~225 m ² NA NA NA S-35° C 25% KOH aqueous solution 0.9 l/Nm ³

Sizing of the Proposed H2 Fuel Cell

16

The H2 fuel cell has been sized to cover the maximum power deficit that can occur by the proposed PV capacity during the hours of minimum solar production.

Sizing of the Proposed H2 Storage Tank

17

Based on the maximum permissible working pressure of the selected H2 electrolyser (200 bar), a BOC Manifold 15-Cylinder Pallet (MCP) with the following specifications can be selected:

	Volume of H2 tank	Target Pressure	Maxi	imum Storage Capacity
Manifolded 15 cylinder pallet (MCP)	MCP contents volume (m³)†	Maximum filled pressure at 15°C (bar)	Approx. dimensions (H X W X D) [‡] - heights are given to centre of typical valve outlet (m)	Approx. gross MCP weight (kg)
WL	132.00	200	1.85 x 1.29 x 0.84	1331

The suitability of the selected H2 tank is verified through the thermodynamic model of H2 accumulation inside the tank, considering pressure build-up and pressure decrease during charging and discharging processes of H2 tank over the year.

Sizing Summary of the Proposed Hybrid PV-H2 Energy System

	Component		Rating
	PV System	Proposed Capacity	4.31 MW
/		PV Modules	14368 Modules, 300 W each
/		Modules connection	449 strings x 32 in series
		PV inverters	4 units, 1000 kW each
/		Rated Capacity	3.275 MW
	H2 Electrolyser	H2 Mass Flow Rate	0.0216 kg/h/kW
		Target Pressure	1-200 bars
	H2 Fuel Cell	Rated capacity	500 kW
		Tank Volume	132 m ³
	H2 storage tank	Mass Storage Capacity	1331 kg
		Target Pressure	200 bars

Running on an hourly-basis over the year

> To schedule the operation of proposed components and the utility grid in feeding the building demands

Energy Management Model – Flowchart

Simulation Results of Hybrid PV-H2 Energy System

Simulation Results over one-year timescale

Simulation Results over one Summer week

Simulation Results of Hybrid PV-H2 Energy System

Electrical load demand (kW) 80 88 96 104 112 120 128 136 144 152 160 168 PV solar generation (kW) 8 16 24 32 72 80 96 104 112 120 128 136 144 152 160 168 Power fed to electrolyzer (kW) 104 112 128 136 144 152 160 168 Operating Pressure of H2 tank (bar) 128 136 144 152 160 168 112 120 Mass status of H2 tank (kg) 128 136 152 160 168 Power fed by Fuel cell and imported from grid (kW) Grid import Fuelcell 104 112 120 128 136 144 152 160 168 Timescale (hours)

Simulation Results over one Winter week

Simulation of Hourly status of H2 tank and the associated operating pressure during the month of June

Simulation Results of Hybrid PV-H2 Energy System

Annual Contribution of the proposed grid-

Conclusion

- A Capacity sizing and Energy Management Modelling has been developed for the proposed hybrid Photovoltaic-Hydrogen Energy System for grid-connected building scenario to support the building sector decarbonization while ensuring a reliable system operation
- The results have shown a maintained energy balance between the renewable generation, load consumption, green hydrogen production by electrolyser and consumption by fuel cell, with less contribution from the utility grid throughout the year.
- The integration of the proposed Hydrogen Energy Storage System has increased the total contribution of green energy in feeding the building load demand by 21%, while improving the utilization of the proposed PV system capacity by 59%.

Thank you!

