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Lay Summary
The money lending process considers several assessments that support the lender’s
decision-making throughout the credit lifecycle. In the beginning, for example,
lenders evaluate whether an applicant will be able to repay the loan in the future
or, equivalently, how prone they are to the event of default. Once the credit is
granted, lenders, in light of new data gathered about the performance of their
borrowers, focus on updating these assessments or determining the likelihood of
other events that affect the expected return of the loans (e.g., prepayment of
the total amount owed). This monitoring is supported by mathematical models
that estimate how probable the event of interest will occur in a future period.
Therefore, more reliable models sustain competitiveness and good management
of the associated risks. In this thesis, we are interested in dynamically predicting
when credit-related events occur. Dynamic, in this context, refers to a setting
where we can update predictions given the newly collected data.

Survival models are widely used in the credit risk literature to make dynamic
predictions. These models answer, for example, how likely a particular borrower
will default for different time horizons, given the data available. These data
include variables such as loan repayment history, the use of other credit products
and even related to economic conditions. However, the sound way to build these
models must question whether these variables would eventually be influenced
by the occurrence of the event or not. For example, we would not expect a
borrower default event to influence the future path of the unemployment rate.
However, a borrower’s loan repayment path would be strictly related to its default.
These latter sorts of variables are called endogenous variables. We must address
this mutual evolution when incorporating these variables in a survival analysis
context. The commonly used techniques do not handle this joint evolution and
could harm the quality of the prediction.

The thesis studies relatively new models in the credit risk literature called joint
models of longitudinal and survival data. In their standard version, these models
are formed of two sub-models, one survival and the other related to the trajectory
of the endogenous variable. Furthermore, the approach postulates that these two
sub-models are connected. In this way, we can address the mutual evolution,
employ what the model has estimated with the data collected up to a given
point, and project this evolution for predictive purposes.
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These models, like survival models, have their origins in medical research. In
medical applications, the interest can be, for example, the time to the appear-
ance of a disease and how it relates to the evolution of biomarkers. Although
the analogy to credit-related applications is straightforward, there are essential
distinctions. This thesis introduces several innovations for a more appropriate
joint model approach.

In particular, we modify the standard formulation so that predictions and eval-
uation metrics are consistent with the monthly frequency of loan reporting.
Moreover, we present a methodology that handles variables whose values at a
given moment can be partly described by their values observed in the past. In
addition, we reformulate the joint models to estimate them more quickly than
commonly used techniques. That facilitates exploring appealing designs in line
with the credit context, such as leveraging large dataset environments, including
more than one endogenous variable or considering the borrower neighbourhood
effect in the model. Finally, we propose new methodologies to estimate dynamic
predictions accurately and efficient ways to compare different models.

We apply joint modelling approaches to default and prepayment events in mort-
gage and consumer loan portfolios. Empirical results reveal that these models
are viable in credit-related applications and can achieve better predictions than
standard survival models.
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Abstract
Lenders monitor their borrowers over time, allowing them to dynamically predict
the probability of an event of interest, such as default. The widely used survival
models focus on when the event happens and can handle time-varying covariates
(TVCs) and censored observations. However, an issue little addressed in the
literature is that the model specification and the predictive framework depend
on the type of TVC included. TVCs can be either exogenous or endogenous
to the survival time. Exogenous are those whose future paths are not affected
by the event’s occurrence, such as macroeconomic variables. Endogenous, on the
contrary, are those whose paths are influenced by the survival status. An example
of the latter would be the unpaid principal balance when the event is the default.

This thesis explores new mathematical models in credit-related applications,
known as joint models of longitudinal and survival data. Initially developed
in medical research, these models, in their standard version, are formed by two
sub-models, one for the survival process and the other for the endogenous TVC
(also named longitudinal outcome in this context). A latent structure links the
sub-models, commonly in the form of random effects. Joint models have two
advantages compared to survival models. First, they allow us to handle possible
endogeneities in the TVCs. Second, by jointly modelling both processes, they of-
fer us a dynamic prediction framework that incorporates their mutual evolution.

We propose a series of innovations to make the approach appropriate to credit-
related applications. These innovations relate to the nature of survival time, the
specific evolution of the TVCs, ways to scale the technique to large datasets and
how to leverage the available data in the modelling framework.

In concrete, we adapt the formulation of the joint models and their performance
metrics to the discrete nature of the loan data. In addition, we include autore-
gressive terms in the TVC specification to address observed serial correlation
and enhance predictive capability. Moreover, we can study more complex spe-
cifications with larger datasets by reformulating the approach within the INLA
framework, a fast and accurate algorithm for Bayesian inference. Among these
specifications are the joint models with more than one TVC and the joint model
that leverages geographical information to include spatial and spatio-temporal ef-
fects in the hazard function. We also introduce a more accurate way to estimate

vii



individual survival predictions using the Laplace method. Finally, to compare
different models, we propose a computationally efficient implementation of the
cross-entropy estimate of the posterior predictive conditional density that uses
the estimates obtained in the inference step.

We apply joint models to predict the time to credit events in the following three
settings: default in US mortgages, full prepayment in a German consumer loan
portfolio, and full prepayment in US mortgages. The main empirical results show
that the autoregressive terms in the joint model let us achieve better discrimin-
ation performance, the predictive ability is significantly enhanced compared to
survival models when more TVCs are considered, and the inclusion of spatial
effects consistently leads to better data representation.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Credit context

Credit is the ability to receive money with the understanding that it will be paid
later. It is a vital source of liquidity for financial transactions in the public and
private sectors and an essential means for economic growth (Beck et al., 2000).
This way of funding permits, among other things, companies’ daily operations,
long-term investments, owning a house or even starting a business. Conceptually,
credit has been present in our lives since the beginning of civilisation (Doumpos
et al., 2019, Ch.1). However, in the last few decades, we have witnessed enormous
changes in the credit market concerning its volume, type of credits, channels to
provide it, and how it is regulated.

Table 1.1 shows data from the Bank of International Settlements (BIS)1 reflect-
ing credit expansion in the private non-financial sector (non-financial corpora-
tions and households) over the last twenty years for China, the Euro area and
the United States (figures in domestic currency billions). For example, in 2000,
China’s total credit amounted to 10,957 billion Yuan, corresponding to 109% of
its gross domestic product (GDP). In 2020, this amount increased to 224,901
billion Yuan, equivalent to 223% of GDP. Without such a spectacular but un-
doubtedly significant expansion, the Euro area and the United States, over the
same period, have increased credit to non-financial corporations and households

1https://stats.bis.org/

1

https://stats.bis.org/
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by 49 and 30% relative to GDP, respectively.

2000 2020

Total credit % of GDP Total credit % of GDP
China 10,957 109 224,901 223
Euro area 8,993 126 19,553 175
United States 13,885 135 34,429 165

Table 1.1: Total credit to the private non-financial sector in domestic currency billions and
as a percentage of GDP.

Moreover, like many other markets, financial services have been stimulated by
technology and innovation. Financial Technology, known as FinTech, is an ex-
panding industry that has challenged incumbent financial institutions through
the use of technology. This industry has gained prominence in the market by
allowing broader and more efficient access to the end customer in various lines of
business such as wealth management, investments, trading, payment methods and
lending. For example, considering the unsecured personal loan market, FinTech
companies in the United States went from a market share of 22% in 2015 to 49%
in 20192. In response, traditional lenders have had to adopt similar technology,
further boosting competitiveness, particularly in the lending business. All of this
has influenced the extension of the service offering and the reach to new customer
segments.

Credit expansion, technological advances, and an increasingly interconnected fin-
ancial world have posited challenges in managing and supervising financial risks.
Recognising this, the main standard-setter for the prudential regulation of banks,
the Basel Committee on Banking Supervision (BCBS), has introduced a series
of supervision recommendations known as the Basel Accords3. These Accords
have evolved to adjust to the growing sophistication of the banking industry and
enhance financial stability. The first Basel Accord, Basel I, was presented in
1988 and set guidelines for capital requirements focused mainly on credit risk.
However, these guidelines were oversimplified and consisted of minimum capital
requirements for banks based on a weighting scheme of their assets. In 2004,
acknowledging the limitations of Basel I, the Committee presented Basel II. This

2https://www.experian.com/blogs/insights/2019/09/fintech-vs-traditional-fis
-latest-trends-personal-loans/

3https://www.bis.org/basel_framework/

https://www.experian.com/blogs/insights/2019/09/fintech-vs-traditional-fis-latest-trends-personal-loans/
https://www.experian.com/blogs/insights/2019/09/fintech-vs-traditional-fis-latest-trends-personal-loans/
https://www.bis.org/basel_framework/
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more refined Accord included capital requirements to address not only credit risk
but also market and operational risks. Yet, these new rules were inadequate to
prevent the subprime financial crisis that started in 2007, and a new Accord was
developed. Basel III, expected to be in place on the 1st of January 20234, aims
to strengthen the Basel II capital requirements and introduce new requirements
on assets liquidity and funding stability.

Credit risk management is a complex and constantly improving process with
regulatory, technical and methodological challenges. Furthermore, its scope is
not only relevant for the particular lender but also for the proper functioning of
the financial system. For a management process to work correctly, the timely
identification, measurement, monitoring, reporting, control and mitigation of the
risks associated with the entire credit life cycle is essential. To this extent, the
risks can be originated from any potential that the borrower will fail to meet
future obligations by the terms agreed in the contract. Yet, the crucial point is
that the lender is ultimately the one who accepts who is subject to credit and
under what contractual terms. Therefore, how much risk is acceptable to the
company strictly depends on the risk-reward ratio they can assess.

A clear example of the risks associated with credit is when the borrower, for
whatever reason, does not repay the loan (BCBS, 2000). Under these circum-
stances, the consequences for the company’s profits are clear. Thus, before loans
are granted, potential borrowers are evaluated based on their ability to repay
in the future. Indeed, much of the effort in credit risk management goes into
creating these evaluation protocols, commonly supported by statistical models.
However, the intrinsic nature of reckoning an event that has not yet occurred
means that even the best protocol will eventually fail. Knowing this, lenders set
loan provisions for potential losses, and the size of these provisions is in line with
what they measure as expected losses over a fixed time horizon (e.g., 12 months).
Getting the right amount of provision is essential. If the evaluation is too conser-
vative, meaning loan loss provisions above the actual losses, rule out the option
of profiting from the overestimated amount (e.g., granting more credit). On the
contrary, if the amount is underestimated, the losses are balanced with the bank’s
capital. If the latter is insufficient, it can directly affect banks’ intermediary role

4Initially, it was scheduled to be gradually implemented between 2013 and 2015. Then, it
has been repeatedly rescheduled. The last postponement from January 1, 2022, to the following
year is due to the pandemic.
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in linking depositors and borrowers.

While credit default is given the importance it deserves, lenders also recognise that
it is not the only risk associated with the credit life cycle. Prepayment risk, for
example, is the risk that the borrower repays the loan before the term stipulated
in the contract. The reasons for prepayment can be driven by better market
conditions to refinance the loan, changes in the collateral value, and renegotiation
of new loans with the same lender, among others (Consalvi and Scotto di Freca,
2010). When prepayments are made, the lender stops receiving scheduled cash
inflows, directly affecting earnings by reducing future interest flows. However,
prepayments can trigger other effects, such as maturity mismatch. Loan portfolios
are financed through bank liabilities such as deposits and bonds. Both assets
and liabilities have their respective maturities, and the lender, through different
mechanisms, tries to match future inflows and outflows. As a result, prepayments
produce a mismatch in maturities, and if they are not anticipated on time, they
can induce over-or under-financing.

We mentioned the risk of default and prepayment. However, despite being fun-
damental when defining optimal credit decision policies (Ma et al., 2010), these
risks are not the only ones for which lenders must protect themselves. Rather, we
describe them because, as we will see below, this thesis explores new approaches
for credit-related applications, precisely motivated by the prediction of default
and prepayment events. In particular, we build mathematical models, known as
a credit scoring system, to serve as a technical tool to support decision-making.

1.1.2 Credit scoring systems

Analysing the risks in the credit industry comprises qualitative and quantitative
extents. Quantitative analysis plays a significant role, in particular, in retail and
small business lending, where decisions need to be made over many clients. To
help decision-making, lenders build mathematical models to estimate the prob-
ability of the occurrence of the event of interest for each client. These models,
known as credit scoring systems, have traditionally been used to predict customer
default on specific products. However, today the use and purpose of these models
are much broader and in line with the profit maximisation objectives of the lender.
Some applications where these models are used apart from the prediction of de-
fault are in predicting early repayment, fraud, usage, retention, etc. (Thomas
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et al., 2017). Depending on whether these models are aimed at new customers
or existing ones, they are commonly referred to as an application or behavioural
models, respectively (see Thomas, 2000, for a detailed discussion between these
models).

These systems, whether application or behavioural, are built under different tech-
niques, all with the common goal to describe and predict the credit phenomenon
in question in the best possible way. Classification analysis, the most used tech-
nique in the industry, uses cross-sectional data to estimate the probability that
the event of interest will or will not occur within a predefined time horizon.
This fixed planning horizon is usually 12 months, as suggested by the BCBS
(2004). The setting is then a binary classification problem where historical data
are statistically analysed to extract the borrower covariates most beneficial to the
prediction.

Several classification algorithms have been explored in this regard, with greater
emphasis on predicting the default event. To mention a few, neural networks
(Baesens et al., 2003; Khashman, 2010), classification trees (Arminger et al.,
1997), support vector machines (Wang et al., 2005; Bellotti and Crook, 2009b),
smoothing nonparametric methods (Liu et al., 2009), and more computationally
expensive ones like deep neural networks, heterogeneous ensembles, among others
(Lessmann et al., 2015; Dastile et al., 2020). Historically, the most used ones are
discriminant analysis and logistic regression (Hand et al., 2001).

However, classification analysis approaches have some limitations. The most
evident is the need to predefine a fixed planning period, restricting the analysis
to other time horizons. Other problems can arise, for example, when the outcome
period does not include a portion of the credit cycle where a significant part
of the events occurs in the portfolio. In this case, we shall be incurring an
underestimation of the risk in that portfolio. That happened, for instance, in
the subprime crisis of 2007, where some credit scoring systems were built using
the first year of the mortgages’ performance. Yet, most of the defaults occurred
between the second and third years when the interest rates increased compared
to those at origination (Thomas et al., 2017).

In addition, the performance period in building these models is often too short
to observe substantial variability of covariates over time, making it challenging to
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include time-varying effects in the modelling framework, which has proven useful
when forecasting (Bellotti and Crook, 2009a; Stepanova and Thomas, 2002; Dirick
et al., 2019). Furthermore, the credit scoring modeller needs to decide how to
treat limiting cases, such as where the borrower’s records are not complete within
this period due, for instance, to an early closure of the account; or when the
event has not occurred by the end of the period, but the borrower has given clear
signals that it will (e.g., when the credit is in arrears and the event is the default).
Usually, these cases are removed from the training sample, discarding valuable
information (Thomas, 2000).

Another widely used technique for building credit scoring systems is survival
analysis (Thomas et al., 2017, Ch.5). Rather than predicting whether the event of
interest will occur or not within a fixed planning horizon, this approach estimates
when the event is likely to occur. That allows analysing the event under different
time horizons and overcoming the mentioned issues. That is to say, survival
methods permit the inclusion of any outcome period in the study, time-varying
covariates in the predictor and incomplete/censored performance records without
the need to discard valuable data. This thesis is in the context of survival analysis
with the inclusion of time-varying covariates.

1.2 Motivation

Lenders periodically collect data, such as variables that describe the economic
conditions, account-level data about the performance of their portfolios or up-
dated characteristics of the borrowers. Which and how many of these time-
varying covariates (TVCs) are tracked depends on the lender’s capacity to pull
and join different sources of information. However, some common records include
macroeconomic variables (GDP, interest rate, unemployment rate, etc.), unpaid
principal balance, scores from external companies such as Fair Isaac Corporation
(FICO), number of credit products with the lender, arrears in instalments, in-
come, and collateral evaluations, among others (Bellotti and Crook, 2014; Djeun-
dje and Crook, 2018; Calabrese and Crook, 2020). Furthermore, when building
a model for predictive purposes, one wants to use the most updated informa-
tion. The attention is then on exploring ways to include TVCs in the modelling
framework.
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Survival analysis provides a framework that facilitates the inclusion of TVCs.
The literature on survival credit analysis has shown that TVCs can improve the
model’s predictive performance (see Section 2.1.4). Nonetheless, the type of TVC
included in the model dictates the estimation and predictive procedures, and only
a few papers address these topics. TVCs can be linked to a specific account, such
as unpaid principal balance, or not, such as macroeconomic variables. Those that
are account-specific can be further categorised as exogenous or endogenous to the
survival status. Exogenous TVCs are whose future paths are not affected by
the event’s occurrence but affect the outcome. On the contrary, endogenous are
influenced by the survival status and thus carry direct information on the event
timing (see Section 2.1.5 for further discussion between exogenous and endogenous
TVCs). To this extent, all the TVCs that are not specific to the account, such as
macroeconomic variables, are exogenous, and not all account-specific TVCs are
endogenous to the survival time. An example of the latter could be the borrower’s
income when predicting the time to credit default. One can think that income,
which is borrower-specific, can directly affect the time to default. However, the
default will probably not influence the borrower’s future income.

We can find survival models in credit risk literature that include, in addition
to time-fixed covariates, only TVCs that are not specific to the account (Bellotti
and Crook, 2009a; Dirick et al., 2019), only account-specific TVCs (Stepanova and
Thomas, 2001; Crook and Bellotti, 2010) or both (Djeundje and Crook, 2019a;
Calabrese and Crook, 2020). However, of those that include account-specific
TVCs, the distinction between their endogenous nature is commonly overlooked,
meaning there is no control for this matter. The statistical consequence of not
controlling by endogeneity is incorporating estimation bias (Wulfsohn and Tsiatis,
1997; Tsiatis et al., 1995). Since we commonly do not know the true data gen-
eration process, one might think that bias measurement is impractical. Also, if
models are built for predictive purposes, why should we bother measuring bias
in the first place? Regardless, when we use account-specific TVCs in a survival
model, standard techniques to make predictions are to carry forward the last
available observations of the TVCs or lag their values to relate past information
to future survival status. Both techniques have limitations, as we will see fur-
ther in Section 2.1.6. One is that we are not relating synchronised observations
between TVCs and survival paths, which could indeed affect predictive perform-
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ance. Therefore, even if we focus on prediction and overlook potential endogeneity
issues, the relationship commonly assumed between endogenous TVCs and the
time to event appears suboptimal.

The primary motivation of this thesis comes from exploring a relatively new ap-
proach to the literature on credit analysis, namely the joint modelling of longitud-
inal and survival data (Elashoff et al., 2016; Fitzmaurice et al., 2008; Rizopoulos,
2012). This modelling approach allows us to control for potential endogeneities
of the TVCs and offers a dynamic predictive framework that does not rely on
lagging the TVCs or extrapolating the last observations. Instead, the approach
takes advantage of the estimated association between the evolution of the en-
dogenous TVCs and the survival path and casts this mutual evolution into the
predictive time horizon.

The joint modelling approach, like survival analysis, has its origins in the area
of medical research. The commonly found applications are associated with the
occurrence of some clinical events and repeated measurements of biomarkers to
evaluate the efficacy of treatments. Yet, regardless of the research discipline,
statistical principles and methods apply to any longitudinal follow-up study. The
standard joint model assumes two sub-models, one for the survival process and
the other for the longitudinal outcome, which in our case is the endogenous
TVC. The link between the two sub-models comes from an assumed latent re-
lationship modelled as subject-specific random effects. Both sub-models can be
disentangled, considering conditional independence given the random effects (see
Section 2.2).

The medical-related setup is analogous to credit analysis since we have credit
events of interest and performance measurements over time. Nevertheless, relev-
ant differences between medical and credit applications determine the modelling
approach’s appropriateness. Among these differences are the dataset size, the
available information, the evolution of the TVCs, and the discrete nature of time.

The datasets observed in medical applications that use joint models are smaller
than in credit analysis. Joint models are computationally expensive, so alternat-
ive estimation procedures are required if the goal is to scale the approach to larger
datasets. Also, the standard joint model considers only one longitudinal outcome,
but, as we mentioned above, we can find more than one in credit data, which also
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increases the computational cost. Further, lenders have different sources of in-
formation that they can leverage in the modelling framework. An example is
the location of real estate when mortgage loans are granted. These data can be
used, for instance, to include spatial effects in the model. Similarly, if we have
performance variables, we can imagine that some of these variables, such as the
unpaid principal balance, are highly correlated to previous months’ levels. Lastly,
a common assumption in joint models for medical applications is to treat time
as continuous. On the other hand, credit data, specifically instalment loans, are
typically recorded monthly and intrinsically discrete. Consequently, a significant
motivation also stems from the need to customise the joint modelling approach
to credit-related applications.

1.3 Objectives

This thesis addresses the following question: Can we improve dynamic predic-
tions in a survival analysis context with credit-related applications when poten-
tially endogenous time-varying covariates exist? To shape the research strategy,
we focus on studying a reasonably new approach in this area: the joint model-
ling of longitudinal and survival data. That allows us to handle endogeneity and
offers a predictive survival framework that updates dynamically when new data
are provided. Therefore, we define the research hypothesis as follows: The joint
modelling approach is a viable, flexible and appropriate methodological frame-
work to predict the time to an event of interest in credit-related applications
when endogeneity over the TVCs exists and can lead us to better performance
than survival approaches used in the literature.

To test the hypothesis, we focus on developing methodological and programming
tools that enable us to represent and evaluate the mutual evolution of survival and
longitudinal processes in the credit context. These developments contribute to the
research community by providing new and more powerful ways to analyse data,
build credit survival models with endogenous TVCs, and ultimately complement
the toolbox of decision-makers and practitioners in the lending industry.

Moreover, as mentioned, the joint modelling approach is new to the credit lit-
erature, and as such, we conceive significant innovations to make this approach
more suitable. In concrete, our specific objectives respond to the following four
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extents:

Nature of survival time

• To formulate the joint models and their corresponding performing metrics
assuming time as discrete.

Evolution of credit TVCs

• To include autoregressive terms in the longitudinal outcome and explore
performance improvements.

Scalability

• To estimate the joint modelling approach in a more efficient way that allows
us to scale it to sample sizes such as those seen in credit-related applications.

• To develop a scalable methodology for out-of-sample individual survival
prediction.

• To develop a model comparison methodology integrated into the inference
procedure without performing extensive post-estimation calculations.

Available information

• To estimate joint models considering more than one endogenous TVCs.

• To include spatial and spatio-temporal interactions in the joint modelling
framework.

1.4 Contribution to knowledge

In this thesis, we present several contributions to the literature that are developed
in Chapters 3, 4 and 5.

In Chapter 3, we make two main contributions. Firstly, to our knowledge, we
present the first work exploring joint models for discrete survival data in credit
risk applications. We argue that the discrete-time assumption is not only more
appropriate for these data, but we also see computational benefits compared to
its continuous-time counterpart. Second, we reinforce the modelling of subject
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heterogeneity by including both random effects and autoregressive terms in the
longitudinal outcome. This decision is motivated by the serial correlation found
in our data and the potential implications these autoregressive terms could have
for prediction performance.

In Chapter 4, we make four contributions. First, from a methodological per-
spective, we propose a multivariate joint model for longitudinal and survival data
that can be framed using integrated nested Laplace approximations (INLA) (Rue
et al., 2009). As detailed in Section 2.2.4, INLA is a fast and accurate determ-
inistic algorithm for approximating Bayesian inference. This algorithm allows us
to scale the approach to larger sample sizes than the ones seen in standard joint
models and makes the approach viable for credit-related datasets. To illustrate
the implementation and assess the recovery of true parameter values, we perform
simulation studies.

Moreover, since we build the models for prediction purposes, the standard setting
is to apply them to new individuals (out-of-sample) whose records are not used in
the estimation procedure. In this setting, we are interested in individual survival
predictions which require the marginalisation of subject-specific parameters. In
the literature on joint models, these predictions are computed via empirical Bayes
or simulation schemes (Rizopoulos, 2012). This step can be computationally ex-
pensive, mainly if applied to several new individuals. To address this issue, our
second contribution is to propose a methodology for individual survival predic-
tions using the Laplace method (Tierney and Kadane, 1986). This gives us more
accurate approximations than the empirical Bayes approach and, unlike simu-
lation methods, can be applied to several new individuals without significantly
increasing the computational costs.

Our third and fourth contributions are from an empirical point of view. Spe-
cifically, we apply for the first time a multivariate joint model approach in the
context of credit risk, in particular, to predict the probability of full prepayment
in a portfolio of consumer loans. Although Hu and Zhou (2019) use joint models
to predict mortgage loan prepayment events and show performance improvements
compared to survival models, the authors consider only the univariate case and
time as continuous. Finally, we show that these multivariate approaches result in
better discrimination and calibration performance than the traditional survival
models used in the literature (Thomas et al., 2017).
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Finally, in Chapter 5, we make four contributions to the literature. First, from a
methodological perspective, we propose a discrete-time joint model with a flexible
baseline hazard that includes spatial and spatio-temporal interactions. As in
Chapter 4, we frame the model within the INLA methodology to estimate it
in a vast mortgage loan dataset. We use a dataset with a total of 2,559,056
observations, and as far as we are aware, this is the largest sample size for which
a joint model of this type has been applied.

To compare model specifications, our third contribution in this chapter is to pro-
pose a new implementation of the cross-validated Dynamic Conditional Likelihood
(cvDCL), a recently proposed cross-entropy estimate of the posterior predictive
conditional density (see Section 5.2.3). Our implementation takes advantage of
the quantities already computed by INLA in the model estimation, making it
faster than the benchmark.

Lastly, we apply the proposed approach to predict full prepayment events in US
mortgage loans. The empirical results show that including the spatial compon-
ents can consistently improve the performance of the joint model. Yet, when
spatio-temporal effects are included in addition to the spatial main effects, the
performance improvements are less conclusive.

1.5 Thesis structure

The thesis consists of 6 chapters.

Chapter 2 presents the main background on the methodologies used throughout
the thesis and the corresponding literature in the context of credit risks and joint
models. To this end, we separate the chapter into two sections: survival analysis
and joint models of longitudinal and survival data.

In Section 2.1, we start by describing survival analysis in general terms, introdu-
cing commonly used terminology and assumptions such as proportional hazards.
We then present the survival approaches with TVCs used in the credit risk lit-
erature. Then, we formally illustrate the differences between endogenous and
exogenous TVCs and the mathematical consequences that each type entails. Fi-
nally, we describe prediction techniques in survival models in the presence of
TVCs.
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Section 2.2 introduces the joint model approach, the more standard specifications
used in the literature, and the advantages over survival models when dynamic pre-
diction is essential. We then describe the estimation procedure under simulation-
based schemes employed in Chapter 3. Next, we present the model from the
perspective of latent Gaussian models, which is the family of models that the
INLA methodology estimate. Finally, we describe how the INLA methodology
works.

In Chapter 3, we present the joint model with autoregressive terms. We start by
situating its relevance and contribution in the literature to give way to detail-
ing the methodology, estimation, evaluation metrics and how individual survival
predictions are carried out. Next, we present a simulation study with different
configurations to support the inference procedure. We then apply the proposed
model to estimate the time to default event on a portfolio of US mortgages.
Finally, we conclude the chapter with the main findings.

Chapter 4 addresses the situation where more than one longitudinal outcome is
present. We reformulate the approach to make it suitable for INLA (see Section
4.2). That makes it computationally efficient and applicable in the credit context.
In addition, we present a methodology that is theoretically more accurate than
relevant benchmarks for estimating individual survival predictions. As illustrated
in Section 4.2.3, this methodology is based on Laplace’s method but is independ-
ent of INLA and can be used with other estimation procedures. In Section 4.3,
we explore the adequacy of model inference through a simulation study. Next, we
build multivariate joint models to estimate the prepayment events in a German
consumer loan portfolio (see Section 4.4). A discussion in Section 4.5 concludes
the chapter.

In Chapter 5, we propose the joint model of longitudinal outcome and sur-
vival data with spatial effects and spatio-temporal interactions (see Section 5.2).
This approach captures the survival effect due to the spatio-temporal correlation
between events occurring within a short period and nearby locations. Section
5.2.2 develops its inference through the INLA approach. In Section 5.2.3, to
compare different specifications, we present a new implementation of the cross-
entropy estimate of the posterior predictive conditional density. Next, in Section
5.3, we apply the proposed joint model to predict the time to full prepayment of
mortgage loans in the US. Section 5.4 discusses the main findings.
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Finally, in Chapter 6, we summarise each chapter’s results and findings. We
also discuss the limitations of these approaches and examine different options to
extend the proposed methods for future developments.



Chapter 2

Background

This chapter provides the background on survival analysis in the context of credit
risk literature and the improvements that the joint models of longitudinal and
survival data approach can bring in this respect. First, Section 2.1 describes sur-
vival models, their main assumptions, and how predictions are made when TVCs
are provided. Then, Section 2.2 describes the joint model approach, the advant-
ages that this approach confers over standard survival analysis when dynamic
predictions are important and how we can estimate the joint models faster.

2.1 Survival Analysis

2.1.1 Introduction

As mentioned in Chapter 1, survival analysis, rather than predicting the outcome
within a fixed time horizon, such as classification analysis, concerns about pre-
dicting when the event is potentially occurring. This framework also allows us to
handle censored observations and facilitates the inclusion of time-varying covari-
ates. Researchers have studied survival methods for years and have successfully
applied them in different areas (see Kalbfleisch and Prentice, 2002; Collett, 2015,
for a comprehensive description). In the context of credit lending, for example,
since the first application introduced by Narain (1992), many authors have fur-
ther developed this approach. Banasik et al. (1999) show how survival models can
be as good as those obtained by traditional techniques. Stepanova and Thomas
(2001, 2002) present how survival analysis can be used in the application and

15
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behavioural models. Further, Bellotti and Crook (2009a) apply the approach to
relate the prediction of default to time-varying covariates, particularly by includ-
ing macroeconomic variables such as unemployment and interest rates.

More recently, Djeundje and Crook (2019a), using B-splines parametrisation, in-
clude time-varying coefficients in a survival model to predict credit card defaults,
showing that it can improve predictive performance. Bhattacharya et al. (2019)
build a Bayesian survival model for competing risks to study prepayment and
default events in a US mortgage portfolio. Wang et al. (2020) use a discrete sur-
vival approach with TVCs to predict mortgage defaults and measure coefficient
uncertainty in stressed scenarios. Similarly, Calabrese and Crook (2020) pro-
pose a survival model with a flexible parametric link and the inclusion of spatial
contagion effect to improve the forecasting of mortgage defaults in the UK.

There are several other applications in the context of credit risk forecasting.
These include forecasting the bankruptcy of corporates (Shumway, 2001; Duffie,
2005; Creal et al., 2014), estimating the expected loan profits at the time of
application (Ma et al., 2010), modelling the duration of foreclosures in mortgage
loans (Pennington-Cross, 2010), implementing a pricing model for a mortgage
lender (McDonald et al., 2010), to name a few.

In the following sections, we formally introduce survival analysis, the commonly
used assumptions and how the predictions are carried out under this approach
when TVCs are provided.

2.1.2 Hazard and Survival functions

In survival analysis, a time to event variable T is defined for a subject as the
time from a meaningful starting point, such as the origination of the credit, to
the occurrence of the event of interest, such as default, early repayment, etc.
Commonly in the follow-up of the subjects, there are censored cases where the
event of interest did not occur throughout the study or the subject dropped out
before the study ended (incomplete records). If the event is the default, for
example, this can happen when the customer is still repaying the credit by the
end of the study or closes the account before the end of the study. The censoring
time in these cases is defined as the time elapsed from the starting point to the
last available observation, and the time to event is known to be right-censored.
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Two other types of censoring can also arise; left and interval censoring. Left
censoring happens when it is known that the event occurred before some time
t, but the exact moment is unknown. Interval censoring, on the other hand,
appears when it is known that the event occurred within some interval T ∈ (t1, t2).
In this thesis, however, we focus on right censoring, and the reader is referred
to Chapter 3 of Kalbfleisch and Prentice (2002) for a thorough discussion on
censoring mechanisms.

The distribution function of T > 0 is represented by F (t) = P (T ≤ t), which is
the probability that the event occurs in time equal to or before t. Similarly,
the survival function is defined as S(t) = P (T > t) = 1−F (t) and describes the
probability of the event occurring at a time later than t.

If T is continuous, it can also be described by its probability density function
f(t) = dF (t)/dt = −dS(t)/dt or, more commonly, by the hazard function h(t)
which is a probability rate function that measures how probable it is that a
subject who has not evidenced the event before a time t, will do it at the next
instant. Formally,

h(t) = lim
δt→0

{
P (t≤ T < t+ δt|T ≥ t)

δt

}
= f(t)
S(t) =−dlnS(t)

dt . (2.1)

The following relationship is also met,

S(t) = exp
(
−
∫ t

0
h(u)du

)
, for 0< t <∞.

If T is discrete, i.e., T takes values on {ti|ti < ti+1, i= 1,2, . . .}, then its distribu-
tion can be described by a probability function f(ti) = P (T = ti), i = 1,2, . . ., or
by a hazard function as

h(ti) = P (T = ti|T ≥ ti). (2.2)

Observe that in the discrete case, the hazard function is a probability rather than
a probability rate as in the continuous case. The survival function S(t) =P (T > t)
follows

S(t) =
∏
i|ti≤t

(1−h(ti)),

which comes from applying the multiplication law of probability and can be
thought as if the subject survives longer than t, then it must survive each point
ti ≤ t with conditional probability P (T 6= ti|T ≥ ti) = 1−h(ti).
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2.1.3 The Cox Regression Model

Both Equations 2.1 and 2.2 condition on the subject not having committed the
event and having survived at t. We can also condition on covariates associated
with the subject. The most popular regression method that does that was pro-
posed in Cox (1972).

Assume the covariates for a subject is represented by a p-dimensional vector
zzzᵀ = (z1, z2, . . . , zp). If T is continuous, the Cox model assumes a parametric form
for the hazard ratio as follows

h(t;zzz)/h(t;zzz0) = exp(zzzᵀβββ), (2.3)

where h(t;zzz0), called baseline hazard function, is an unknown function for a
baseline level of zzz0 (e.g., zzz0 = 000) and βββ is a p×1 vector of unknown coefficients.

If T is discrete, then the Cox model can assume a parametric form for the ratio
of the odds of the hazard as follows

h(t;zzz)/(1−h(t;zzz))
h(t;zzz0)/(1−h(t;zzz0)) = exp(zzzᵀβββ). (2.4)

It can be shown that Equation 2.4 reduces to 2.3 if time is continuous by noting
that the discrete hazard in continuous form would be h(t;zzz)δt, with δt a time
interval. Replacing this term in Equation 2.4 and taking the limit as δt tends to
zero gives Equation 2.3 (see Cox, 1972; Stepanova and Thomas, 2002).

Because this method, in its continuous or discrete version, makes no assumption
of the nature of the baseline hazard function itself but only on the effects of the
covariates over the hazard, it is denoted as a semiparametric model.

In principle, the linear predictor zzzᵀβββ can be replaced with a more general ex-
pression to include interactions, time-varying covariates, time-varying coefficients
or any known function of the covariates. When the linear predictor is time-
independent, however, the expression in Equation 2.3 is referred to as Cox pro-
portional hazard model (Cox PH model). That comes from the fact that any
increase in a covariate is multiplicative to the hazard, and the effect will be the
same for all values of t. Similarly, Equation 2.4 is known as Cox proportional
odds model when the linear predictor is time-independent.

Since the Cox PH model is widely used, some authors refer to it just as the Cox
model and to the model that includes time-varying covariates (or effects of the
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covariates that are time-varying) as the extended Cox model or the Andersen-
Gill model (Kleinbaum and Klein, 2012; Rizopoulos, 2012), as it does not assume
that the hazard ratio is constant in time. However, to avoid confusion, we use the
term Cox model as in Kalbfleisch and Prentice (2002), i.e. to refer to the general
model that does not assume proportionality. If we do assume proportionality, we
will mention it explicitly. Moreover, throughout this work, we are interested in
the version of this method that includes time-varying covariates (TVCs) in the
linear predictor.

2.1.4 TVCs in Survival Credit Risk Models

Lenders collect customer data in a panel design, letting them incorporate time-
varying covariates (TVCs) into their risk models (Crook and Bellotti, 2010). The
inclusion of TVCs allows for predicting the event dynamically as more inform-
ation becomes available over time. By doing so, improvements in the accuracy
of the predictions and a better understanding of borrowers’ behaviour have been
obtained (Stepanova and Thomas, 2002; Djeundje and Crook, 2018; Dirick et al.,
2019; Calabrese and Crook, 2020). Two types of TVCs are commonly incorpor-
ated into the analyses: (1) the ones specific to the customer, such as spending
and repayment amounts, the outstanding balance, arrears in instalments, among
others, and (2) the ones that are not associated with a particular customer, such
as macroeconomic time series (interest rate, unemployment rate, etc.).

In terms of survival credit risk models, both types of TVCs have been used in
the literature. Stepanova and Thomas (2002), along with introducing a consist-
ent procedure for coarse-classifying the covariates in the Cox model, show that
including the interaction of time with the refinancing purpose of the loan gives
a more interpretable result. Moreover, Stepanova and Thomas (2001) by includ-
ing the monthly balance and the partial delinquency of the loan, show that the
Cox model is as good as the traditional logistic regression model in terms of
prediction performance, but also it enables one to estimate the profit from the
loans over time. Bellotti and Crook (2009a) study how the economic condition
over time affects the probability of default of credit card accounts by including
macroeconomic variables in the Cox model.

We can mention other works that have included TVCs when modelling the time to
event in the credit context. Leow and Crook (2014), for example, use repayment
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amounts, credit limits and outstanding balances along with intensity models to
estimate not just the default event but also the probability of transitioning to de-
linquency. In addition, Bellotti and Crook (2013) and Bellotti and Crook (2014)
show how to stress test credit card portfolios using simulated economic scenarios,
and Djeundje and Crook (2018) present a multi-stage delinquency model which
incorporates repayment amounts, credit limits, macroeconomic variables and ran-
dom effects into the survival function. More recently, Calabrese and Crook (2020)
introduced a model to predict the time to default for UK mortgages with spatial
effects and include TVCs such as the loan balance and the estimated property
value, among others, in addition to macroeconomic variables.

However, when it comes to TVCs specific to the borrowers, there is an important
distinction to make and few studies in the credit risk literature address it. TVCs
specific to the borrower could be exogenous or endogenous to the survival status
(see Kalbfleisch and Prentice, 2002, Ch. 6.3)1. Exogenous TVCs are those whose
future paths are not affected by the event’s occurrence but affect the outcome2. In
contrast, endogenous TVCs are variables whose path is influenced by the survival
status of the individual and therefore carry direct information on the time to
the event. As discussed in Section 2.1.5, this distinction is important because it
directly determines the appropriate approach.

2.1.5 Exogenous vs. Endogenous TVCs

Assume a sequence of observations {ys}s≤t coming from a generic TVC repres-
ented by {Ys}s≤t, for s= 1, . . . , t. Denote the survival time as T and represent it
by a sequence of indicator variables {Xs}s≤t such that (x1, . . . ,xt) = (0, . . . ,0,1)
if T = t, or (x1, . . . ,xt) = (0, . . . ,0,0) if T > t (censored). As mentioned above,
if Ys is exogenous its future path is not influenced by the survival status of the
individual. Formally,

p(yt̃|{xs,ys}s<t̃) = p(yt̃|{ys}s<t̃) for t̃= 2, . . . , t,

whereas if Ys is endogenous, that does not hold since the survival status affects
its future path. This distinction has implications for the parameter estimation,
as seen below.

1The terms exogenous and endogenous are also known as external and internal, respectively
(Rizopoulos, 2012).

2To this extend, note that all TVCs that are not specific to the borrower are exogenous.
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The joint probability of both stochastic process {Xs,Ys}s≤t can be written as

p({xs,ys}s≤t) = p(xt,yt|{xs,ys}s<t)×

×p(xt−1,yt−1|{xs,ys}s<t−1) · . . . ·p(x1,y1), (2.5)

where any term on the right-hand side follows

p(xt̃,yt̃|{xs,ys}s<t̃) = p(xt̃|yt̃,{xs,ys}s<t̃)p(yt̃|{xs,ys}s<t̃) for t̃= 2, . . . , t. (2.6)

In the exogenous case, the second term of the right-hand side of Equation 2.6
reduces to p(yt̃|{ys}s<t̃), which does not depend on the survival process, hence
Equation 2.5 follows

p({xs,ys}s≤t)∝ p(xt|yt,{xs,ys}s<t)p(xt−1|yt−1,{xs,ys}s<t−1) · . . . ·p(x1|y1),

where the joint probability is proportional to the standard multiplication of each
hazard function at t̃ formed by the conditional probability p(xt̃|yt̃,{xs,ys}s<t̃).
For the endogenous case though, that does not hold.

The consequence of including a TVC into a Cox model is that, for any individual,
the probability of surviving longer than time t given that we have measured the
TVC until t is a survival function when the TVC is exogenous, meaning that
the usual relationship between the hazard and survival functions holds. The
estimation is obtained by maximising the Cox’s partial likelihood (Cox, 1975).
However, when the TVC is endogenous, the probability of surviving longer than
t given that we have measured the TVC until t is equal to 1 (and is no longer a
survival function) since we know that the individual is still “alive” at t and will,
for sure, survive longer than t (see Kalbfleisch and Prentice, 2002, Ch. 6).

This mutual evolution between the survival data and the endogenous TVC dir-
ectly affects how the prediction and estimation are made. We can no longer rely
on the standard Cox procedure, which requires methodological alternatives. The
joint model approach we introduce in Section 2.2 addresses this problem by as-
suming conditional independence between Xt and Yt given an underlying random
effect U .

Examples of exogenous TVCs in the credit modelling context are the macroeco-
nomic variables such as the inflation rate, GDP, and unemployment rate (Bellotti
and Crook, 2009a), where their paths may influence the rate of default over time.
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Still, their future values are not affected by a loan’s default. Some examples of the
endogenous case are the spending and repayment amounts, outstanding balance
and arrears in instalments.

2.1.6 Prediction Framework

As seen above, the distinction between the type of TVCs included in the model
is relevant to the parameter estimation. Similarly, depending on the assumptions
used when modelling the survival data, there are direct implications for how
the predictions are made. Figure 2.1 illustrates the general setup faced when
we want to predict the probability of the event occurrence in the following ∆t
periods, given that the subject has survived the previous t periods. When a TVC
is included, we have also observed its records, represented by the star points in
the figure. The question is how we use the collected data to make the prediction.
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Figure 2.1: Historical measurements of a TVC until time t (left y-axis). The question is how
to estimate the probability of surviving at t+∆t given that we have observed this subject until
time t.

One standard procedure in the literature is to lag the TVCs by the period we
want to forecast. Figure 2.2 illustrates this procedure where the lagged values
are the points coloured in blue, and on the right y-axis is the estimated survival
probability with 95% credible intervals. In this way, if we want to predict the
probability of the event in the next 12 months (∆t= 12), we estimate the model
using the TVCs lagged in 12 months. Works that uses this procedure are, for
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example, Bellotti and Crook (2009a); Leow and Crook (2016); Djeundje and
Crook (2019a). However, this procedure has some drawbacks. First, it discards
the data corresponding to the first lagged values. In the example of a time horizon
of 12 months, the first 12 months are removed from the estimation. Moreover, by
using the lagged values in the estimation, we do not relate the paths of the TVCs
with the actual outcome. This desynchronisation might not be realistic when the
TVC changes significantly over a period shorter than the forecast time horizon.
In addition, since we need to define the time window of the prediction beforehand,
it limits the analysis to other time windows. That goes against the flexibility of
not depending on survival approaches’ predefined time window. Finally, if the
endogeneity between the TVCs and the survival process is significant, there is no
guarantee that by lagging the TVCs, the possible bias is cleared.
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Figure 2.2: Estimation of the probability of surviving at t+ ∆t given that we have observed
this subject until time t following the lagged values’ strategy.

Another alternative is to consider that our last record of the TVC is the most re-
liable one for future values. Hence, we carry this value throughout the prediction
window (Last Value Carried Forward, Rizopoulos, 2012, Ch. 3). Figure 2.1 shows
this procedure, where “future” values are coloured in orange, and the right y-axis
depicts the survival probability. The advantage of this procedure concerning the
one above is that we are not assuming any time window for the prediction in ad-
vance. Also, we do not need to discard information for the estimation. However,
preserving the last value as fixed for future values is not sensible when the TVC
changes considerably or we want to predict within a long-term horizon.
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Figure 2.3: Estimation of the probability of surviving at t+ ∆t given that we have observed
this subject until time t following the last value carried forward strategy.

Finally, a joint model framework is a third approach and the one we are concerned
about within this work. The basic idea is to learn the mutual evolution between
the survival and the TVC processes to predict their future values. Figure 2.4
illustrates this procedure, where the solid green line estimates the expected value
of the TVC and the dashed green line is the prediction. Again, the right y-axis
shows the estimated survival probabilities. This procedure, detailed in the next
section, can overcome the drawbacks of the last two methods. First, we are not
limited to a specific time horizon to make the predictions. Moreover, we use all
the available records and seize this information to make a prediction of the model-
based TVC. Finally, unlike the other two methods, the joint model approach can
handle the endogeneity among both processes.

2.2 Joint Models of Longitudinal and Survival

Data

2.2.1 Introduction

The joint model of longitudinal and survival data approach (joint models here-
after) has been a rapidly evolving field of statistical methodology (Wu and Carroll,
1988; Tsiatis and Davidian, 2004; Henderson et al., 2000; Rizopoulos, 2012). Most
of the literature on joint models comes from medical research where the interest
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Figure 2.4: Estimation of the probability of surviving at t+ ∆t given that we have observed
this borrower until time t following the joint modelling strategy.

lies in the association between the repeated measurements of a biomarker for a
patient and her survival time (Tsiatis et al., 1995). Still, the approach can be
applied in any area where the association between both processes is of interest.

This approach addresses the endogeneity problem by modelling both the time to
the event and the endogenous TVCs3, simultaneously. In addition to avoiding es-
timation biases by considering the mutual evolution of both processes (Wulfsohn
and Tsiatis, 1997; Tsiatis et al., 1995), it allows us to innately update survival
probabilities when new observations of the TVCs are collected (dynamic predic-
tion). Research in the medical context also shows that joint models increase the
accuracy of the derived predictions (Rizopoulos et al., 2014).

The standard joint model is formed by two sub-models, one for the survival data
and the other for the longitudinal outcome. Both are assumed to be conditionally
independent given a latent structure. The survival process is commonly modelled
by assuming a Cox model and a linear mixed-effects model for the longitudinal
part (Rizopoulos, 2012). The two sub-models are associated through a functional
form that could adopt many structures (see Hickey et al., 2016, for a detailed
discussion about different structures). A thorough review of this modelling ap-
proach can be found in Tsiatis and Davidian (2004), who clarifies the main as-
sumptions employed in the likelihood function. The textbooks, Rizopoulos (2012)

3To unify the jargon between the literature of joint models and credit risk, the endogenous
TVCs will also be termed here as longitudinal outcomes.
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and Elashoff et al. (2016), provide a comprehensive description of the technique,
its inference and possible extensions. In particular, the former contributes with
explicit applications programmed in the R software (R Core Team, 2021). Three
other textbooks, Fitzmaurice et al. (2008); Wu (2009); Ibrahim et al. (2001),
have specific chapters devoted to joint models. Moreover, Alsefri et al. (2020)
summarises recent developments and issues.

In the credit-related context, to the best of our knowledge, there is only one pa-
per that implements the joint model approach, Hu and Zhou (2019). Moreover,
the authors provide promising predictive results compared to traditional survival
models, strengthening the point for further studies. In Chapter 3, we offer a de-
tailed comparison between our approach and theirs. One of the main differences,
though, is that they assume time as continuous, while we consider it as discrete,
providing us with some advantages as described in Section 3.1.

2.2.2 Discrete-Time Joint Model

As we mentioned in Section 1.2, assuming that the nature of time is discrete in a
credit context is reasonable and commonly applied in related literature (Bellotti
and Crook, 2014; Calabrese and Crook, 2020; Wang et al., 2020). However, in
the literature on joint models, it is more typical to assume that survival time is
continuous. In any case, some works study the discrete version, as we described
below.

Albert and Shih (2010b) propose a two-stage approximation method for estim-
ation in which the discrete hazard is modelled on the probit scale, which was
extended later in Albert and Shih (2010a) to handle multiple longitudinal out-
comes. Jaffa et al. (2011), more interested in the longitudinal process rather than
the survival, introduce a joint model with bivariate longitudinal outcomes adjus-
ted by informative right censoring. The authors then extended the approach for
a high dimensional multivariate case (Jaffa et al., 2014). Furthermore, Barrett
et al. (2015) propose an exact likelihood inference when the discrete hazard ad-
opts a probit model by using distributional properties of the skew-normal family.
They also include an unobserved stationary Gaussian process in the longitudinal
model to bring more flexibility when the follow-up period is relatively long. Fur-
ther, Bacci et al. (2018) assume a logit model for the discrete process and consider
random intercepts in the longitudinal model to change over time according to an
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autoregressive process of order 1.

Assume there are N subjects and the time to default for subject i (i= 1, . . . ,N) is
represented by Ti ∈Z+. We want to model Ti in terms of time-invariant covariates
zzzi and a longitudinal outcome Yi,s that is observed at times s∈ {1,2, . . . , ti} where
ti is the time when either the event or the end of the follow-up happens. In theory,
the number of observed values for the longitudinal outcome can differ from the
survival times. However, throughout this thesis, we focus on equally spaced times
and no missing observations before ti (see Section 6.3 for a discussion in this
regard). Analogously to the notation introduced in Section 2.1.5, we represent
Ti as a sequence of binary indicators Xi,s which is 1 if the event happens at time
s and 0 otherwise. The standard assumption in the joint modelling approach is
that Xi,s and Yi,s are conditional independent given the random effects UUU i, i.e.
p({xi,s,yi,s}s≤ti) =

∫
p({xi,s}s≤ti|UUU i)p({yi,s}s≤ti|UUU i)p(UUU i)dUUU i and interest is now

turned on how to model each of the three elements of the integrand.

For the longitudinal part p({yi,s}s≤ti|UUU i), it is assumed that Yi,s can be described
by an underlying signal ηY i,s and mutually independent noise terms εi,s as Yi,s =
ηY i,s+εi,s. Further, denote as qqqi,s (s= 1,2, . . .) a vector of time-varying exogenous
covariates (it could also be fixed in time). The term ηY i,s can be decomposed into
fixed effects, qqqᵀi,sβββ1, and random effects, dddᵀi,sUUU i, where dddi,s is the design vector at
time s. This leads to the following mixed-effect model (Laird and Ware, 1982)

Yi,s = qqqᵀi,sβββ1 +dddᵀi,sUUU i︸ ︷︷ ︸
ηY i,s

+εi,s, s= 1, . . . , ti, (2.7)

where the subject-level random effects UUU i are assumed as mutually independent
and coming from a zero-mean multivariate Gaussian distribution of dimension r,
UUU i ∼Nr(0,Σ). The error terms are assumed normally distributed εi,s ∼N(0,σ2),
mutually independent and independent of UUU i.

For the survival part p({xi,s}s≤ti|UUU i) and following Allison (1982) discrete-time
formulation, the probability that the event occurs at ti is given by

p({xi,s}s≤ti|UUU i) =
ti∏
s=1

[pi,s]xi,s [1−pi,s]1−xi,s , (2.8)

where pi,s is the conditional probability that subject i will commit the event at
time s given both the random effects Ui and that it is “alive” at the beginning
of s, i.e. pi,s = P (Xi,s = 1|Ti ≥ s,UUU i) (this is analogous to the discrete hazard
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described in Section 2.1.2). Assuming, for instance, a logit link function as in
Cox (1972), we can include the covariates in the following way

pi,s = logit−1(νs+ zzzᵀi βββ2 +λf(UUU i, s)︸ ︷︷ ︸
ηXi,s

), (2.9)

where νs represents the baseline event time distribution. This term has been mod-
elled in different ways, for example, as a set of constants for s= 1,2, . . . (Allison,
1982), by cubic B-spline functions (Tutz and Schmid, 2016), or by random walk
models, to mention a few (see Chapters 3, 4 and 5). Moreover, βββ2 is the vector
of coefficients for the covariates zzzi and λ is the association parameter between
the survival and longitudinal processes. The function f relates both processes
through the random effects UUU i and, eventually, the time s. As mentioned be-
fore, f can adopt different structures (Hickey et al., 2016) but the standard one
corresponds to the linear predictor, i.e. f(UUU i, s) = ηY i,s (Rizopoulos, 2012).

2.2.3 Estimation via MCMC

Following the notation used so far, assume the observed survival data for sub-
ject i (i = 1, . . . ,N) is denoted as xxxi = {xi,s : s = 1, . . . , ti} and the longitudinal
measurements as yyyi = {yi,s : s= 1, . . . , ti}, and represent the complete set of obser-
vations by D = {yyyi,xxxi : i= 1, . . . ,N}4. The parameters to be estimated are those
associated with the fixed effects βββ1, the covariance matrix of the random effects
Σ, the variance of the error terms σ2, the discrete baseline νs and its eventual
hyperparameters τττν (depending on the modelling approach followed), the covari-
ate coefficients βββ2 and the association parameter λ. Denote the set of all these
parameters as Θ, thus the posterior distribution of Θ given D follows

p(Θ|D) = p(D|Θ)p(Θ)
p(D)

∝ p(D|Θ)p(Θ),
(2.10)

where p(D) is the marginal distribution of the data, p(Θ) is the prior distribution
and p(D|Θ) is the observation density, or likelihood (if the data are regarded as
fixed), of the joint model. For consistency with the literature, denote this last

4Note that all the previously mentioned covariates are also observed, but we intentionally
omit them to avoid notation overload.
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term as L(Θ|D) which can be decomposed as

L(Θ|D) =
N∏
i=1

∫
p(xxxi,yyyi|UUU i,Θ)p(UUU i|Θ)dUUU i

=
N∏
i=1

∫
p(xxxi|UUU i,Θ)p(yyyi|UUU i,Θ)p(UUU i|Θ)dUUU i,

(2.11)

where we have used the assumption of conditional independence between the
survival and longitudinal processes.

Moreover, by the Gaussian assumption on the random effects UUU i, the last term
of the integrand in Equation 2.11 follows

p(UUU i|Θ) = p(UUU i|Σ)

= (2π)−r/2 det(Σ)−1/2 exp
(
−UUUᵀ

i Σ−1UUU i/2
)
.

(2.12)

Additionally, by the assumption that the error terms are independent and zero-
mean Gaussian distributed, the second term of the integrand in Equation 2.11
can be expressed as

p(yyyi|UUU i,Θ) =
ti∏
s=1

p(yi,s|UUU i,Θ)

=
ti∏
s=1

(2πσ2)−1/2 exp
(
−(yi,s−ηY i,s)2/2σ2

)
,

(2.13)

where ηY i,s is the linear predictor described in Equation 2.7.

For the first term of the integrand in Equation 2.11 and following Equation 2.8
we write

p(xxxi|UUU i,Θ) =
ti∏
s=1

[pi,s]xi,s [1−pi,s]1−xi,s , (2.14)

where pi,s follows Equation 2.9 and if f(UUU i, s) = ηY i,s, then

pi,s = logit−1
(
νs+ zzzᵀi γγγ+ληY i,s

)
. (2.15)

Equations 2.12, 2.13, 2.14 and 2.15 completely specify the observation density in
Equation 2.11.

Conceptually, this model can be estimated by maximising the likelihood from
Equation 2.11, or the log-likelihood. Algorithms such as the Expectation Max-
imisation, Newton’s method or modifications of them with asymptotic approxim-
ations have been used in the literature (Rizopoulos, 2012). However, the Bayesian
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approach has some practical advantages in this context. First, asymptotic approx-
imations are not required since inference is based on the full posterior P (Θ,UUU |D),
where UUU is the total set of random effects. Moreover, the computational imple-
mentation does not need tailored procedures, for example, to compute standard
deviations, thus providing more flexibility when analysing different models’ spe-
cifications (see Ibrahim et al., 2001, for more details).

To perform the Bayesian inference, though, we need to define the prior distribu-
tions on the parameters p(Θ) (Equation 2.10). The specific ones used in this work
are described where appropriate. Some commonly used priors in this context are
noninformative uniform ones across each parameter’s domain for βββ1, βββ2, τττν , λ and
σ2. For the covariance matrix, Σ, one traditional prior is the inverse-Wishart dis-
tribution or less heavy-tailed ones as the LKJ distribution family (Lewandowski
et al., 2009).

There are several statistical programming languages available for Bayesian infer-
ence. The user needs to specify the proposed model’s data, likelihood, and priors
and find efficient parametrisation to avoid mixing problems and accomplishing
fast inference. Well-known languages are BUGS, JAGS, Pyro, TensorFlow Prob-
ability, PyMC3 and Stan, all publicly available. In Chapter 3, we implement
six models in Stan with the No-U-Turn Sampler (Hoffman and Gelman, 2014),
a faster extension to Hamiltonian Monte Carlo algorithm (HMC). In addition,
we can further increase inference speed by parallel sampling between and within
chains. Regardless, we realise that to scale the joint model approach to the mul-
tivariate case and sample sizes more in line with credit risk applications; we need
to find an alternative estimation approach which is the topic described below, in
Section 2.2.4.

2.2.4 Joint Model as Latent Gaussian Model

Simulation-based MCMC schemes are computationally expensive or even infeas-
ible for some applications with large D, which is often the situation seen in the
credit risk context. An alternative is to use the so-called integrated nested Laplace
approximation methodology (INLA, Rue et al., 2009). INLA is a deterministic
algorithm that provides accurate estimations of the posterior at a lower compu-
tational cost and is easily accessible through the R-INLA software package for R
(https://www.r-inla.org/). This methodology applies to models belonging to

https://mc-stan.org/
https://www.r-inla.org/
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the class of Latent Gaussian models (LGM), which is the case of joint models as
shown below.

Denote µµµ= (ηηηY ,ηηηX ,UUU,βββ1,βββ2,ννν) as the set of all the unobserved variables in the
joint model, where ηηηY and ηηηX corresponds to the complete set of linear predictors
described in Equations 2.7 and 2.9, each of them with ∑N

i ti elements. The
rest of the elements are latent variables and therefore µµµ is referred as a latent
field. Specifically, we assume the coefficients p(βββ1,βββ2) ∼ N(000, τ−1

βββ III) with τβββ a
precision parameter and III is the identity matrix of the corresponding dimension.
Similarly, we can assume that ννν is proportional to the normal Kernel p(ννν|τν) ∝
exp[−τν(νννᵀRνννν)/2], with Rν a defined structure matrix (Rue and Held, 2005).
Examples of models that can be specified in this way are the autoregressive and
random walk models (see Chapters 4 and 5). Moreover, from Equation 2.12, we
know that p(UUU i|Σ) ∼ N(000,Σ) and denote QUUU = Σ−1 the precision matrix of the
random effects.

Hence, µµµ is a latent field distributed as a zero-mean multivariate Gaussian with
precision matrix Q(θθθ1), with θθθ1 the corresponding set of hyperparameters. Al-
though the dimension of the matrix Q(θθθ1) can be very large, INLA takes ad-
vantage in terms of computation given the sparsity of the matrix (Rue et al.,
2009).

Furthermore, denote as θθθ2 the set of hyperparameters that have direct impact on
the observation density. Then, we reformulate the observation density from Equa-
tion 2.11 to the INLA notation. First, recall that p(xxxi,yyyi|UUU i,Θ) = p(xxxi|UUU i,Θ) ·
p(yyyi|UUU i,Θ), then each corresponding term can be written as

p(xxxi|UUU i,Θ) = p(xxxi|ηηηXi, θθθ2) =
ti∏
s=1

p(xi,s|ηXi,s, θθθ2)

p(yyyi|UUU i,Θ) = p(yyyi|ηηηY i, θθθ2) =
ti∏
s=1

p(yi,s|ηY i,s, θθθ2).

Note that each element of the observed data D, namely xi,s and yi,s, is associated
with one element of µµµ, in this case ηXi,s and ηY i,s, respectively. We can decom-
pose the observation density p(xxxi,yyyi|UUU i,Θ) as the product of the elements of the
observed data conditional to one element of the latent field, i.e. ∏2ti

s̃=1 p(Ds̃|µs̃, θθθ2),
with s̃ encoded accordingly.

Denote θθθ = (θθθ1, θθθ2) and assume for θθθ a prior p(θθθ). Thus, we have rewritten the
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model in the following form

(θθθ)∼ p(θθθ)

(µµµ|θθθ)∼N(000,QQQ(θθθ)−1)

ηj =
∑
i

cjiµi

(Dj |µµµ,θθθ)∼ p(Dj |ηj , θθθ).

(2.16)

The model described in Equation 2.16 is the type of model we can implement in
INLA. Therefore, we can use this fast inference algorithm to estimate the discrete
joint model.

For the sake of completeness, note that the posterior follows

p(µµµ,θθθ|D)∝ p(θθθ)p(µµµ|θθθ)
N∏
i=1

p(Di|µi, θθθ)

∝ p(θθθ)|QQQ(θθθ)|1/2 exp
−1

2µ
µµᵀQQQ(θθθ)µµµ+

∑
j

log{p(Dj |µj , θθθ)}
 .

Section 2.2.5 below details how the estimation is carried out.

2.2.5 Estimation with INLA

We are interested in the posterior marginals, p(µi|D) and p(θj |D), specified by

p(µi|D) =
∫
p(µi|θθθ,D)p(θθθ|D)dθθθ

p(θj |D) =
∫
p(θθθ|D)dθθθ−j .

(2.17)

The INLA methodology computes these marginals based on the Laplace approx-
imation (Tierney and Kadane, 1986). For p(θθθ|D) this follows

p(θθθ|D)∝ p(µµµ,θθθ,D)
p(µµµ|θθθ,D)

∣∣∣∣∣
µµµ=arbitrary

≈ p(µµµ,θθθ,D)
p̃G(µµµ|θθθ,D)

∣∣∣∣∣
µµµ=µµµ∗(θθθ)

:= p̃(θθθ|D),

where p̃G(µµµ|θθθ,D) is the Gaussian approximation to the full conditional and µµµ∗(θθθ)
its mode. A crucial step in the procedure is to further approximate the terms
p(µi|θθθ,D) by using the Laplace approximation one more time as

p(µi|θθθ,D)∝ p(µµµ,θθθ,D)
p(µµµ−i|µi, θθθ,D)

∣∣∣∣∣
µµµ−i=arbitrary

≈ p(µµµ,θθθ,D)
p̃G(µµµ−i|µi, θθθ,D)

∣∣∣∣∣
µµµ−i=µµµ∗−i(µi,θθθ)

:= p̃(µi|θθθ,D).

The approximations of integrals in Equation 2.17 are performed by the following
steps:
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1. Explore the hyperparameters joint posterior p̃(θθθ|D) in order to construct
a numerical integration grid {θθθw,∆w} for θθθ, where ∆w are integration
weights. The normalisation constants are also estimated in this step.

2. Approximate the marginal posterior density p(θj |D) through an interpola-
tion algorithm based on the constructed grid {θθθw,∆w} (see Martins et al.
(2013) for further details on the interpolation).

3. Construct p̃(µi|θθθw,D) for each w.

4. Approximate the marginal posterior p(µi|D) by ∑w p̃(µi|θθθw,D)p̃(θθθ|D)∆w.

This is the original INLA procedure, however other computational efficient modi-
fications for p̃(µi|θθθ,D) are also implemented in the R-INLA package and detailed
in Rue et al. (2009).





Chapter 3

Discrete-Time Joint Model with
Autoregressive Terms

This chapter is based on the manuscript Medina-Olivares et al. (2022a).

The chapter is organised as follows. Section 3.1 contextualises the discrete-time
joint model with autoregressive terms in the relevant literature and describes the
main contributions. Section 3.2 details the methodology for the proposed model
and how the inference and the individual survival predictions are performed and
assessed. Section 3.3 presents a simulation study considering different settings to
test the accuracy and computational load of the proposed inference procedure.
Section 3.4 presents the empirical results of the proposed model applied to a US
mortgage portfolio. The concluding remarks follow in Section 3.5.

3.1 Introduction

This chapter describes the discrete-time joint model with autoregressive terms,
how to perform its inference and the application that motivates it. Specifically,
we are interested in predicting the time to default in the presence of endogenous
time-varying covariates for fixed-rate US mortgages. We use the Single Family
Loan-Level Dataset from Freddie Mac that is publicly available. The default is
the event associated with the inability of a borrower to pay promptly. Although
the specific definition of default depends on the requirements of the local regulator
and the risk-averse nature of the financial institution in question, the Basel capital
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framework defines default as the moment at which the borrower is past due more
than 90 days in any credit obligation (BCBS, 2004). This is the standard baseline
definition used among practitioners and the one used here.

We make two contributions to the literature. First, to the best of our knowledge
is the first time that joint models for discrete survival data are empirically tested
in credit risk applications. When developing this project, no works in the credit
risk literature adopted a similar framework, which was part of our motivation to
pursue it, in addition to the success it had shown in medical research. A recent
study, though, Hu and Zhou (2019), implemented for the first time a joint model
for predicting defaults on a peer-to-peer dataset and early repayments on mort-
gage loans. The authors provide promising results which, from our perspective,
reinforce the importance of further investigations.

While Hu and Zhou (2019)’s work has similarities with ours in considering a joint
modelling framework, our proposal differs in several respects. From an application
standpoint, we predict different credit events using the same mortgage dataset.
The authors predict early repayments; in our case, we are interested in credit
defaults. That has implications for selecting the relevant longitudinal outcome1

and in analysing the results when, for example, a highly imbalanced class is
present, as when considering the event of default (see further details in Section
3.4).

From a methodological point of view, Hu and Zhou (2019) apply a joint model
assuming time as continuous, which is the common assumption in the joint model
literature (Lawrence Gould et al., 2015; Hickey et al., 2016) and in the available
software to fit them (Furgal et al., 2019). However, in credit risk analysis, we see
at least three reasons why discrete-time survival analysis should be preferred over
continuous-time. First, events are intrinsically discrete. As account records are
observed monthly, the events are defined based on these discrete observations.
For example, the event of default is defined as the time at which three payments
have been missed. A payment is missed if it has not been made by the billing date,
which is a specific day of the month. Therefore, in this case, the continuous-time
approach approximates an intrinsically discrete phenomenon (Tutz and Schmid,
2016). Second, in the monthly observed data, there are, and it is to be expected

1The authors decided to predict the early repayment because they could not find a significant
longitudinal outcome that relates to the default.
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that there will be, many events in the same month. The continuous approach
theoretically implies that there would not be, and various well-known methods
are needed to “solve” this inconsistency. However, further consideration is not re-
quired with the discrete-time assumption because tied events are handled without
problems. Finally, with the discrete-time approach, the probability estimations
when TVCs are included require simple summations over time points rather than
complex integrations (Bellotti and Crook, 2013). This makes the model less com-
putationally costly and, as shown in the application presented in Section 3.4, it
can scale to sample sizes with more than 285K observations (the dataset in Hu
and Zhou (2019) has 85k observations).

The second contribution we make relates to the treatment of the longitudinal
outcome. The standard way to handle subject heterogeneity in the literature on
joint models is by including subject-specific random effects (see Section 3.2). We
propose to reinforce this approach by also including autoregressive terms. This
decision is motivated by our data’s serial correlation and the possible implications
these additional terms have for prediction performance. The serial correlation
is measured by the empirical autocorrelation functions (ACF, see Pinheiro and
Bates, 2006) for two standard random effects specifications, namely, random in-
tercept and random intercept and slope (see Figure 3.1). In both specifications,
we see serial correlation, which supports the inclusion of autoregressive terms in
the longitudinal process. Furthermore, as we will see in the empirical results,
out-of-sample predictions can also be improved.

It is important to stress that including the autoregressive terms in the longitudinal
process is facilitated because the observations are equally spaced and indexed by
a discrete variable (time). If we would like, for example, to have a continuous-
time version of this model, we would first have had to generalise the discrete
autoregressive process to a similar continuous one, formulating the problem via
a high-order stochastic differential equation. Unfortunately, that is not so simple
in practice and, to the best of our knowledge, we are unaware of works that have
done it.

In total, we implement six models in the platform for statistical modelling Stan.
The first is a discrete survival model, which is our benchmark. The other five are
discrete joint models, all with different specifications for the longitudinal outcome
to analyse the importance of the random effects and the autoregressive terms in

https://mc-stan.org/
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Figure 3.1: Empirical autocorrelation functions for the longitudinal outcome. On the left is
the linear mixed-effect model with random intercept and, on the right, the linear mixed-effect
model with random intercept and slope.

the predictions. Before applying the models to the mortgage dataset, in Section
3.3, we perform a simulation analysis to study how the most complex specification
performs under different sample sizes. The results show the recovery of the actual
parameter values and no signs of convergence problems.

Using discrimination and calibration metrics, we compare the six models by a
five-fold cross-validation analysis for the mortgage dataset. The study exhibits
two remarkable aspects. First, the discrete joint models can improve the discrim-
ination compared to the traditional survival model. Second, this performance can
be further enhanced when an autoregressive term is included in the longitudinal
process, a difference that becomes even more pronounced as more historical data
are considered.

3.2 Methodology

3.2.1 Joint model with autoregressive terms

We use the same notation introduced in Section 2.2.2 for the discrete joint models,
i.e., assume that for borrower i= 1, . . . ,N we are interested in modelling the time
to default, denoted by Ti ∈ Z+, in terms of a vector of fixed covariates zzzi and a
longitudinal outcome Yi,s recorded at time points s= 1, . . . , ti. The last available
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observation at time ti is when either the default occurs or is right-censored. As
before, represent Ti as a sequence of binary variables Xi,s that takes the value of
1 if the borrower defaults at time s and 0 otherwise.

Note that the longitudinal process Yi,s from Section 2.2.2 is described by a pre-
dictor ηY i,s and independent error terms εi,s following Yi,s = ηY i,s + εi,s, where
ηY i,s is decomposed into fixed and random effects as ηY i,s = qqqᵀi,sβββ1 +dddᵀi,sUUU i, with
UUU i ∼ Nr(0,Σ). To include autoregressive terms, suppose now that Yi,s is also
described by an additional autoregressive structure of order p (see Hedeker and
Gibbons, 2006, Ch.7), then the longitudinal process can be extended to

Yi,s = qqqᵀi,sβββ1 +dddᵀi,sUUU i+
p∑
r=1

φrYi,s−r︸ ︷︷ ︸
η∗Y i,s

+εi,s, s= p+ 1, . . . , ti, (3.1)

where φr (r = 1, . . . ,p) represents the coefficient for the r-th autoregressive term.
Notice that with these additional terms, the longitudinal process is now correl-
ated with its history and also with the subject-specific random effects UUU i. This
might seem problematic from the inference perspective, however, as we described
in Section 3.2.2 below, the conditional dependence structure for Yi,s given the
random effects UUU i follows an autoregressive structure with conditional expecta-
tion equal to the new predictor η∗Y i,s and conditional variance σ2. This property
allows a parallel representation of the observation density, which we use to speed
up the MCMC sampling. In addition, to make the model well-specified, we as-
sume that no event happened in the first p observations, so each borrower has at
least p measurements.

For the survival process and following Equation 2.8, Section 2.2.2, we describe
the observed sequence of Xi,s (s= p+1, . . . , ti), conditional on the random effects
UUU i and on the past observed values of Yi, by2

p({xi,s}s≤ti|UUU i,{yi,s}s<ti) =
ti∏

s=p+1
[pi,s]xi,s [1−pi,s]1−xi,s . (3.2)

The discrete hazard probability pi,s = P (Xi,s = 1|{Xi,s∗ = 0}s∗<s,UUU i,{yi,s∗}s∗<s)
assumes a logit link function (Tutz and Schmid, 2016) as

pi,s = logit−1
(
νs+ zzzᵀi βββ2 +λff({yi,s∗}s∗<s,UUU i, s)︸ ︷︷ ︸

ηXi,s

)
, s= p+ 1, . . . , ti, (3.3)

2We denote the realisations of a random variable in lowercase.
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where νs is the baseline hazard function, βββ2 the coefficients for the time-fixed
covariates zzzi, λf the association parameter between both processes and f(·) the
function that relates them.

The terms νs are modelled with cubic B-spline functions (see Djeundje and Crook,
2018), this means that we represent νs =BBB(s)ᵀααα with BBB(s) the vector of B-spline
functions at time s and ααα the corresponding vector of coefficients. Moreover,
as noted before, the function f can adopt different structures (see Hickey et al.,
2016) such as the ones used in this work and detailed in Section 3.4. Different
structures of f will change the association parameter λ, so to avoid misleading
comparison, we explicitly state the f dependency.

3.2.2 Estimation

Denote the complete observational data as D = {yyyi,xxxi : i = 1, . . . ,N} with xxxi =
{xi,s : s = p+ 1, . . . , ti} and yyyi = {yi,s : s = 1, . . . , ti}. Then, the complete set of
parameters to estimate are Θ = {ααα,βββ111,βββ222,λf ,{φ},Σ,σ2} and the observation
density L(Θ|D) is specified as

L(Θ|D) =
N∏
i=1

∫
p(xxxi,yyyi|UUU i,Θ)p(UUU i|Θ)dUUU i

=
N∏
i=1

∫
p(xxxi|yyyi,UUU i,Θ)p(yyyi|UUU i,Θ)p(UUU i|Θ)dUUU i.

(3.4)

Let us now describe the three terms in the integral of Equation 3.4. Note that
the UUU i follows a Gaussian distribution hence the last term follows

P (UUU i|Θ) = P (UUU i|Σ)

= (2π)−r/2 det(Σ)−1/2 exp
(
−UUUᵀ

i Σ−1UUU i/2
)
,

(3.5)

where Σ is the covariance matrix of dimension r× r.

The second term, P (yyyi|UUU i,Θ), can be decomposed by the chain rule over its
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previous values in the following way

P (yyyi|UUU i,Θ) = P (yi,ti , ..,yi1|UUU i,Θ)

= P (yi,ti|yi,ti−1, . . . ,yi1,UUU i,Θ)P (yi,ti−1, . . . ,yi1|UUU i,Θ)

=
ti−p∏
s=1

P (yi,ti−s+1|yi,ti−s, . . . ,yi1,UUU i,Θ)P (yi,p, . . . ,yi1|UUU i,Θ)

∝
ti−p∏
s=1

P (yi,ti−s+1|yi,ti−s, . . . ,yi,ti−s−p+1,UUU i,Θ)

=
ti−p∏
s=1

(2πσ2)−1/2 exp
(
−(yi,ti−s+1−η∗Y i,ti−s+1)2/2σ2

)
,

(3.6)

where we have used that the error terms are normally distributed with conditional
variance σ2 and that yi,ti−s+1 (s = 1, . . . , ti− p) only depends on the previous p
lags. Moreover, the terms yi,p, . . . ,yi1 are not informative to the parameters and
η∗Y i,ti−s+1 is defined as in Equation 3.1.

The first term in the integral of Equation 3.4, P (xxxi|yyyi,UUU i,Θ), is conditionally
dependent on the history of the longitudinal process yyyi. This dependency relates
to the structure used for the link function f({yi,s∗}s∗<s,UUU i, s) (see Equation
3.2). For the case of f({yi,s∗}s∗<s,UUU i, s) = dddᵀi,sUUU i, for example, which is a stand-
ard structure in joint models (Hickey et al., 2016), we recover P (xxxi|yyyi,UUU i,Θ) =
P (xxxi|UUU i,Θ), as seen in Section 2.2. Yet, if f({yi,s∗}s∗<s,UUU i, s) = η∗Y i,s with η∗Y i,s
following Equation 3.1, then we cannot separate xxxi and yyyi as before, since the
event process now also depends on the previous p lag values of the longitudinal
process. Let us assume the latter as a generalisation case of the other. Thus,
following Equation 3.2 we write

P (xxxi|yyyi,UUU i,Θ) =
ti∏

s=p+1
[pi,s]xi,s [1−pi,s]1−xi,s , (3.7)

with pi,s (see Equation 3.3)

pi,s = logit−1
(
BBB(s)ᵀααα+ zzzᵀi βββ2 +λfη

∗
Y i,s

)
. (3.8)

Hence, the observation density L(Θ|D) (Equation 3.4) is fully specified by Equa-
tions 3.5, 3.6, 3.7 and 3.8.

The posterior distribution follows P (Θ|D)∝L(Θ|D)P (Θ) (Section 2.2.3). Thus,
to complete the Bayesian model specification we need to define the prior dis-
tributions on the parameters, P (Θ). Specifically, we consider noninformative



42 Chapter 3. Discrete-Time Joint Model with Autoregressive Terms

uniform priors for the parameters λf , βββ1, βββ2, {φ} and σ, defined across each
parameter’s domain. Moreover, for the B-spline coefficients, ααα, we assume a mul-
tivariate Gaussian distribution N(000, θ2

αααI), where θααα is a hyperparameter with a
half-Cauchy prior with a scale of 25. We found this parametrisation satisfactory
to avoid mixing problems for the spline coefficients. However, to check the ro-
bustness of the results presented in Section 3.4, we perform in Appendix A.5 a
robustness analysis using different priors. The study shows that the results are
consistent.

Finally, a common choice for the covariance matrix, Σ, is to use a prior that
belongs to the inverse Wishart’s family. However, we experienced that this choice
is not computationally efficient for the No-U-Turn Sampler (NUTS, Hoffman and
Gelman, 2014), the sampling algorithm we use. Hence, following the suggestion in
the platform’s documentation for statistical modelling Stan (Stan Development
Team and others, 2022), we decompose the covariance matrix as a correlation
matrix and a vector of variances and define priors over these elements. For the
correlation matrix, we use as a prior the LKJ distribution (Lewandowski et al.,
2009). This distribution is specified by a regularisation parameter k, where a
value of k= 1 represents a jointly uniform distribution over all possible correlation
matrices. For values k > 1, the mode of the distribution is the identity matrix
where the larger the k, the more sharply peaked is the distribution at the mode. In
our case, we use a value of k = 2, which was found to work well for our simulation
and application settings (see Appendix A.5 for further analysis). Furthermore,
we set noninformative uniform priors in the positive domain for the vector of
variances.

As mentioned before, we implement this and the other models specified in Sec-
tion 3.4 in Stan. The sampling algorithm we use is NUTS, regarded as a faster
extension of the Hamiltonian Monte Carlo algorithm (HMC).

3.2.3 Individual survival prediction

One of the advantages of the joint model approach is the dynamic prediction
framework that it offers. Since joint models capture the mutual evolution of the
survival and the longitudinal processes, we can exploit this learned relationship
and extrapolate it into the future. For example, suppose we are interested in pre-
dicting, for a borrower, the probability of not defaulting in the next 12 months.

https://mc-stan.org/
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In that case, we can predict the path of the longitudinal outcome in the corres-
ponding time window and get an estimation of the conditional probability given
this future scenario. That differs from what is commonly done in the literature
on credit risk, which is either to preserve the last observed value or to estimate
the survival model with lagged TVCs, as described in Section 2.1.6.

Let us formalise now how the dynamic predictions are performed. Assume we are
interested in predicting the default of a new borrower k not originally included
in the data D used to estimate the joint model. Moreover, consider that this new
borrower has not yet defaulted at least until time c and that we have collected,
along with the fixed covariates, the longitudinal outcome up to that point (this
commonly happens when loans are transferred between banks or when a customer
opens a new account with an open-banking platform provider, where some of its
historical data are shared). Denote these longitudinal records as yyyk = {yk,s : s=
1, . . . , c}. As noted before, our interest relies on estimating the probability of
survival for a time window ∆c in the future, given that we know the borrower
has survived up to time c. In other words, we estimate the conditional probability
of surviving time c+ ∆c > c (∆c ∈ Z+) given that the borrower has survived up
to time c. Mathematically, the expression follows P (Tk > c+ ∆c|Tk > c,yyyk,D)
but for readability purposes let us denote it as πk(c+ ∆c|c).

In order to estimate the expression πk(c+ ∆c|c), we need estimations of the
random effects of borrower k, denoted as UUUk. However, since this borrower is
not included in D, Equation 3.5 does not provide estimations for it. One option
to estimate UUUk is to rerun the procedure described in Section 3.2.2, this time
with a training set D that includes the historical data of the new borrower k, but
this would be computationally expensive and not feasible if we apply it for many
new borrowers coming at different times as is usually the case of credit-related
applications.

A faster and more convenient option is to approximate πk(c+ ∆c|c) using em-
pirical Bayes estimates for the random effects. This approximation procedure
is detailed in Rizopoulos (2012) for the continuous-time setting. We follow it
analogously for the discrete-time setting as explained below.

The conditional probability can be marginalised as

πk(c+ ∆c|c) =
∫
P (Tk > c+ ∆c|Tk > c,yyyk,Θ)P (Θ|D)dΘ, (3.9)
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where P (Θ|D) is the posterior distribution of the parameters given the sample
D, as described in Section 3.2.2 above. The first term of the integrand is the
marginalisation over the random effects that reads

P (Tk > c+ ∆c|Tk > c,yyyk,Θ) =
∫
P (Tk > c+ ∆c|Tk > c,yyyk,UUUk,Θ)

×P (UUUk|Tk > c,yyyk,Θ)dUUUk.
(3.10)

Therefore, πk(c+∆c|c) is specified by both Equations 3.9 and 3.10. The approx-
imation procedure is given by, first, approximating the integral of Equations 3.9 by
choosing a representative posterior point-estimate Θ̂ from P (Θ|D). Then, the es-
timation of the random effects are obtained by solving ÛUUk = argmaxUUU{logP (Tk >
c,yyyk,UUU |Θ̂)}. Finally, the first order approximation is given by πk(c+ ∆c|c) ≈
P (Tk > c+ ∆c|Tk > c,yyyk, ÛUUk,Θ̂), which in our discrete setting is given by

π̂k(c+ ∆c|c) = P (Tk > c+ ∆c|yyyk, ÛUUk,Θ̂)
P (Tk > c|yyyk, ÛUUk,Θ̂)

=
∏c+∆c
s=p+1(1− p̂k,s)∏c
s=p+1(1− p̂k,s)

=
c+∆c∏
s=c+1

(1− p̂k,s),

(3.11)

where p̂k,s follows the specification described in Equation 3.8. In addition, to
get standard error of Equation 3.11, we can estimate it through Monte Carlo
simulation schemes as proposed in Rizopoulos (2011) and Proust-Lima and Taylor
(2009).

3.2.4 Performance metrics

We evaluate the performance of the models presented in Section 3.4 under two
dimensions: discrimination and calibration. Discrimination measures the model’s
ability to distinguish between borrowers that defaulted versus those who did
not. However, the calibration measures how close or accurate the estimated
probabilities are to what really happens.

There are different metrics to assess the model in terms of its discrimination and
calibration capability. For discrimination, some common ones are the Area Under
the ROC curve (AUC) (Fawcett, 2006), the Kolmogorov-Smirnov statistic (KS)
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and the H-measure (Hand, 2009). For calibration, the Brier (Brier, 1950) and
Logarithmic scores (Winkler, 1969)3. However, in their standard specification,
these metrics do not control for right-censored cases and do not incorporate the
new information collected once the evaluation time changes. Hence, we use gen-
eralisations presented in the joint model literature to address censoring and the
dependence of the evaluation time. We adapt the notation for the discrete-time
case as follows.

For discrimination, we use the AUC. This metric corresponds to the area enclosed
by the curve formed by the proportion of correctly predicted events versus the
proportion of incorrectly classified events considering all possible threshold values.
The AUC ranges from 0.5 to 1, where a value of 0.5 represents a classifier that
is not better than one that assigns labels randomly, and a value of 1 is a perfect
classifier. Another interpretation of the AUC between evaluation times c and c+
∆c says that for any random pair of borrowers {i, j} the metric can be described
as (Hanley and McNeil, 1982)

AUC∆c
c = P (πi(c+ ∆c|c)< πj(c+ ∆c|c)|{Ti ∈ (c,c+ ∆c]}∩{Tj > c+ ∆c}),

where πi(c+ ∆c|c) follows Equation 3.9. Using this interpretation of the AUC
facilitates the inclusion of censored cases as proposed by Rizopoulos et al. (2017).
The way of doing it is to use model-based estimators of the censoring distribution
by counting the concordant pairs of borrowers as the following

ÂUC
∆c
c = ÂUC1(c,∆c) + ÂUC2(c,∆c) + ÂUC3(c,∆c) + ÂUC4(c,∆c), (3.12)

where each of these four AUC components is estimated over the four sets of
possible combinations of concordant pairs, Ω(l)

ij , l = 1,2,3,4, defined respectively
as

1. Ω(1)
ij : Borrower i experiences the default between times c+ 1 and c+ ∆c,

and borrower j survives longer than c+ ∆c,

2. Ω(2)
ij : Borrower i is censored between times c+ 1 and c+ ∆c, and borrower

j survives longer than c+ ∆c,

3. Ω(3)
ij : Borrower i experiences the event between times c+1 and c+∆c, and

borrower j is censored between times c+ 1 and c+ ∆c,
3It is also common to show calibration plots, but as a visualisation aid rather than a formal

metric.



46 Chapter 3. Discrete-Time Joint Model with Autoregressive Terms

4. Ω(4)
ij : Both borrower, i and j, are censored between times c+1 and c+∆c.

The estimates of the ÂUC l, for l = 1,2,3,4, are specified as

ÂUC l(c,∆c) =
∑N
i
∑N
j 6=i I(π̂i(c+ ∆c|c)< π̂j(c+ ∆c|c)) · I(Ω(l)

ij ) · ν̂(l)
ij∑N

i
∑N
j 6=i I(Ω(l)

ij ) · ν̂(l)
ij

.

I(·) is the standard indicator function, π̂i is an estimate of the conditional prob-
ability (Equation 3.11) and the terms ν̂(l)

ij account for the probability that the
pairs are comparable. Formally,

ν̂
(1)
ij = 1,

ν̂
(2)
ij = 1− π̂i(c+ ∆c|Ti),

ν̂
(3)
ij = π̂j(c+ ∆c|Tj),

ν̂
(4)
ij = (1− π̂i(c+ ∆c|Ti))π̂j(c+ ∆c|Tj).

The calibration in the survival context is commonly evaluated by the expected
error of predicting future events (Rizopoulos et al., 2017). Specifically, the general
expression of the expected prediction error can be written as

EPE(c+ ∆c|c) = E
[
L
(
Ni(c+ ∆c),πi(c+ ∆c|c)

)]
,

where the expectation is taken with respect to the distribution of event times.
The expression L(·, ·) represents the loss function. This can be what we have
mentioned above, i.e. the Brier score, and the Logarithmic score, among others.
The expression Ni(c+∆c) = I(Ti > c+∆c) indicates if the event did not happen
before c+ ∆c. Since we are measuring an error metric, we expect that lower
values mean better calibration performance.

To control for censoring in the framework above, we follow the proposal of Hende-
rson et al. (2002) that is specified as

ÊPE(c+ ∆c|c) = 1
n(c)

∑
i:Ti>c

[
Si(c+ ∆c|c) +Ei(c+ ∆c|c) +Ci(c+ ∆c|c)

]
, (3.13)

where n(c) represents the number of borrowers at risk at the beginning of time c
and each of the terms in the sum are as follows

Si(c+ ∆c|c) = I(Ti > c+ ∆c)L(1, π̂i(c+ ∆c|c))

Ei(c+ ∆c|c) = δiI(Ti ≤ c+ ∆c)L(0, π̂i(c+ ∆c|c))

Ci(c+ ∆c|c) = (1− δi)I(Ti ≤ c+ ∆c)
[
π̂i(c+ ∆c|Ti)L(1, π̂i(c+ ∆c|c))+

+ (1− π̂i(c+ ∆c|Ti))L(0, π̂i(c+ ∆c|c))
]
,
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where δi is the censor index of borrower i that takes the value of 1 if the borrower
defaults and 0 otherwise.

As mentioned above, there are different options for choosing the loss function L.
This work uses the Brier score (Brier, 1950) mainly due to its popularity. The
Brier score corresponds to the mean squared error between the prediction and the
true event status. Therefore, the estimate ÊPE(c+∆c|c) presented in Equation
3.13 measures the mean square deviation at a time c+ ∆c with historical data
collected until c.

In addition to ÊPE, Henderson et al. (2002) also propose to measure the expected
predicted error as an average over all the time points between c+ 1 and c+
∆c. This metric nicely summarises the calibration for the whole interval in the
following way

P̂E
∆c
c =

∑
i:c<Ti≤c+∆c δiw(c,Ti)ÊPE(Ti|c)∑

i:c<Ti≤c+∆c δiw(c,Ti)
, (3.14)

where w(c,Ti) = K̂M(c+ 1)/K̂M(Ti) are weights to compensate for the loss of
censored cases and K̂M(·) is the Kaplan-Meier estimator (Kaplan and Meier,
1958).

3.3 Simulation

We are interested in exploring how the MCMC scheme behaves under differ-
ent sample sizes when we estimate the discrete joint model with autoregressive
terms proposed in Section 3.2. For this, we generate three synthetic samples of
sizes 1,000, 5,000 and 10,000 borrowers, respectively, over a maximum of 36 peri-
ods, where each period represents a different month. The default rates for these
samples are 4.3%, 4.8% and 4.66%. The total number of borrower × time units
are 24,424, 124,184 and 245,789, respectively.

For illustrative purposes, in Figure 3.2 we show the number of defaults that
occurred in each duration time, considering the largest sample (10,000 borrowers).
For instance, at time 10, 14 borrowers defaulted, and at time 30, 11.

In the same vein, Figure 3.3 shows, also for the largest sample, all the simulated
paths of the longitudinal outcome. To facilitate the visualisation, we have high-
lighted ten borrowers who experience the default (dashed line in red) and ten
who do not (dotted line in blue). For this setting, observe how the trajectories of
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Figure 3.2: Distribution of events over time for simulated data with 10,000 subjects.

both types of borrowers are quite similar, especially at the beginning of the study.
We see similar behaviour in our application because the setup for the simulation
is precisely motivated by it (see Section 3.4). Although we will see that in the
application we investigate different specifications of the joint model’s link func-
tion f (see Equation 3.3), in this simulation study we focus on the link function
f({yi,s∗}s∗<s,UUU i, s) = η∗Y i,s with η∗Y i,s following Equation 3.1. This specification
corresponds to the most general one.
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Figure 3.3: Simulated longitudinal outcome over time. Ten subjects that experience the event
(dashed line) and ten that are censored (dotted line) are highlighted.
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The specification of the generated longitudinal outcome Yi,s is represented by
one fixed effect that plays the role of a general intercept and two random effects
for each borrower, namely, the intercept U0i and the slope U1i. In addition, we
include an autoregressive process of order one (p= 1), that is

Yi,s = β01 +U0i+U1is+φYi,s−1︸ ︷︷ ︸
η∗Y i,s

+εi,s

where we assume that (U0i,U1i)ᵀ ∼ N2(000,Σ) and εi,s ∼ N(0,σ2). Moreover, we
define the event process to depend on two covariates z1i and z2i that are fixed in
time. Formally,

pi,s = logit−1(νs+β12z1i+β22z2i+λfη
∗
Y i,s).

The baseline hazard terms νs are simulated from a cubic polynomial function so
that the overall default rate for the base reference is similar to those observed in
mortgage loan portfolios. In this case, we consider approximately a 3% default
rate over the 3-year horizon.

Once we have generated the data, we proceed to estimate the model via MCMC.
We implemented the model in Stan with the No-U-Turn Sampler. We sample
3 independent chains with overdispersed starting points for each of the three
simulation setups. Each chain has 4,000 and 2,000 iterations for the warm-up
and sampling periods, respectively. Regarding the general inference diagnosis,
none of the chains suffered from transitions that hit the maximum treedepth or
were divergent. Furthermore, the energy Bayesian fraction of missing information
(E-BFMI) was satisfactory for all transitions. In addition, all the estimated
parameters had acceptable effective sample sizes n̂eff, which plays a similar role
as the number of independent draws in the standard central limit theorem. Also,
they all showed satisfactory potential scale reduction factors R̂ which measures
the consistency between chains by quantifying the between-chain over the within-
chain variability. In summary, no problems were detected. Further details on the
general diagnosis and these metrics are presented in Betancourt (2017).

The final 6,000 sampling iterations per simulation setup (2,000 per chain) are
summarised in Table 3.1 by their means and 5%-95% posterior credible intervals
in addition to the true generating parameter values.

Even though the baseline hazard νs is generated from a cubic polynomial function,
we estimate it through cubic B-spline functions as described in Section 3.2.2. We
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N = 1,000 N = 5,000 N = 10,000

True Mean 5% 95% Mean 5% 95% Mean 5% 95%
β12 2.00 2.100 1.724 2.502 2.033 1.873 2.190 1.999 1.886 2.114
β22 1.00 1.056 0.733 1.389 0.984 0.859 1.110 0.941 0.854 1.028
λf 1.00 1.027 0.862 1.204 1.002 0.932 1.075 0.997 0.944 1.048
β01 -0.30 -0.320 -0.387 -0.255 -0.292 -0.318 -0.264 -0.289 -0.308 -0.270
φ 0.40 0.407 0.396 0.418 0.412 0.407 0.417 0.414 0.411 0.418
σ 1.00 1.001 0.993 1.009 1.000 0.996 1.003 1.003 1.000 1.005
σU0 1.20 1.196 1.141 1.252 1.170 1.146 1.194 1.154 1.138 1.171
σU1 0.05 0.049 0.046 0.052 0.048 0.047 0.049 0.049 0.048 0.050
ρU -0.20 -0.182 -0.246 -0.117 -0.179 -0.209 -0.150 -0.184 -0.205 -0.163

Table 3.1: Estimations of the joint model with an autoregressive term over the different
simulated samples.

use three internal knots at the 25th, 50th and 75th percentiles of the distribution
of the event times (see Figure 3.2). That implies 7 spline coefficients to estimate
since the degree of the functions is 3, we use 3 knots plus 1 coefficient due to
the intercept, i.e. ααα = (α0, . . . ,α6)ᵀ in Equation 3.8. We also explored other
configurations with different numbers of knots, but no major improvements were
obtained.

To illustrate how the baseline hazard is recovered for the whole time window,
Figure 3.4 shows the simulated baseline hazard in a solid black line and, for each
time point, the estimated 5-95% posterior credible intervals for the three settings.
It is worth mentioning that all effective sample sizes n̂eff of the αs are above 6000.
Note that the intervals of the three settings cover the true value, and when more
data are added, these are narrower, as expected. These results are in line with
other works that have used B-spline functions to specify the baseline hazard (e.g.
Djeundje and Crook, 2018; Bremhorst and Lambert, 2016).

Finally, and since the data generation process is known, one interesting question
to explore in this simulation study is to measure how significant the bias in
the parameter estimates is when we estimate a discrete survival model with the
longitudinal outcome included as it is observed. This specification is relevant
because it is a common practice in the credit risk literature when TVCs are
present. The results are shown in Appendix A.1. However, in the empirical
analysis conducted in Section 3.4, we cannot quantify the bias because we do not
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Figure 3.4: True baseline hazard νs (solid line) and the corresponding estimations for the
three sample size settings with their 5-95% posterior credible intervals.

know the actual data generation process. Still, we can compare the predictions
of each model.

3.4 Prediction of credit default in US mortgage

portfolio

3.4.1 Data

We are interested in predicting credit default for US fixed-rate mortgages. The
data provider is Freddie Mac, and the dataset we used is the Single Family Loan-
Level Dataset which is publicly available4. This dataset contains loan-level gran-
ularity with application covariates and monthly performance records. Freddie
Mac, since 1999, has been updating this dataset regularly, and for each vintage
year, they also provide a randomly selected sample of 50,000 loans which is the
one we use. In particular, we choose those that originated between October to
December 1999 and follow their performance for the next 36 months.

The final number of loans in our training sample is 10,399 that corresponds to
285,462 observations. At the time of this writing, to the best of our knowledge,
this is the largest sample size used in the literature on joint models. We use

4https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset

https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
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the common definition of default as the event when the borrower is 90 or more
days past due. The percentage of loans that experience the default corresponds
to 2.3% in the analysis period, and Figure 3.5 shows how they are distributed in
time.
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Figure 3.5: Distribution of the defaults over time for the training sample.

One of the challenges we faced in modelling default was to find a longitudinal out-
come that was statistically significant. This problem is also mentioned in Hu and
Zhou (2019) who, like us, use the Freddie Mac dataset and, not finding a variable
to predict default, decide instead to focus on prepayment. In our case, we create
a longitudinal outcome that nicely balances the scheduled repayments versus the
actual repayments. We use the difference between the implicit interest rate and
the fixed interest rate granted at origination, as described in the following.

Since we are provided with the loan amount, denoted as P0, the fixed interest
rate and the loan term, we can then calculate the original instalment amount A.
With this information, in addition to the observed unpaid principal balance Pt,
we can calculate an implicit interest rate i as shown in Equation 3.15. One direct
result of the implicit interest rate is that if the payments are made as scheduled,
then the implicit and the fixed interest rates are the same for all the periods.
Otherwise, if there exists any unscheduled flow, it will then be reflected in the
implicit interest rate.

Pt = P0(1 + i)t−A(1 + i)t
i

+ A

i
. (3.15)
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Figure 3.6: Evolution of the difference between the implicit and granted interest rate. Ten
borrowers that defaulted (red dashed line) and ten who are censored (blue dotted line) are
shown.

The final step to creating the longitudinal outcome is to take the difference
between the implicit and fixed interest rates. The evolution of this variable for all
the borrowers is shown in Figure 3.6. In that figure and for illustrative purposes,
we highlight ten borrowers who default in dashed red lines and ten who do not
in dotted blue lines. Note how the series either goes up or down in the first six
months. This happens because the data provider reports, for the first six months,
the current unpaid principal balance to the nearest $1000, which is consequently
transmitted in the calculation of the implicit rate (if the rounded number is above
or below the scheduled).

We described the predictor of the survival process in Equation 3.8 as the sum of
the contributions of the baseline hazard, the link function and the time-invariant
covariates. For the latter, we use the application covariates described in the
following. These covariates are also in line with other works that have used this
dataset (see Wang et al., 2020; Hu and Zhou, 2019)

• fico is a number summarising the borrower’s creditworthiness (credit score)
developed by FICO. Generally, the number disclosed is the score known at the
acquisition time and used to originate the mortgage.

• cltv is the loan-to-value ratio based on the original mortgage loan amount plus
any other mortgage loan amount divided by the mortgaged purchase price of
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the property.

• orig_upb is the original unpaid principal balance of the mortgage on the note
date.

• dti is the debt to income ratio. It corresponds to the borrower’s monthly debt
payments divided by the total monthly income used to underwrite the loan.

• n_borr is the number of borrowers obligated to repay the mortgage. Either
one borrower (= 0, 38% of the loans) or more than one (= 1, 62% of the loans).

• loan_purpose indicates whether the mortgage loan purpose is a refinancing
(= 0, 26% of the loans) or a purchase (= 1, 74% of the loans).

The descriptives statistics for the numeric covariates are shown in Table 3.2.
To facilitate the MCMC sampling in each training sample, we standardise these
covariates to have a zero-mean and standard deviation of 1 before estimation.

Covariate N Mean SD Q2.5% Q25% Q50% Q75% Q95%

fico 10399 710.70 52.50 619.00 672.00 716.00 753.00 786.00
cltv 10399 78.05 15.42 46.00 72.00 80.00 90.00 95.00
orig_upb∗ 10399 122.35 53.49 48.00 80.00 115.00 155.00 228.00
dti 10399 33.79 10.50 16.00 27.00 34.00 41.00 50.00

*1,000 USD.
Table 3.2: Descriptive statistics for numerical covariates.

We analyse the models by five-fold cross-validation to assess them in an out-of-
sample scenario, and we create each fold in such a way to preserve the overall
default rate, given that this rate is already low. The default rate and the number
of loans for each five-fold are shown in Table 3.3. Moreover, in Figure 3.7 we
show the corresponding Kaplan-Meier curves where we observe similar survival
behaviour.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

N DFR (%) N DFR (%) N DFR (%) N DFR (%) N DFR (%)
2036 2.50 2093 2.25 2092 2.15 2037 2.26 2141 2.15

Table 3.3: Number of loans (N) and default rate (DFR) per fold.
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Figure 3.7: Kaplan-Meier curves per fold.

3.4.2 Models and results

We estimate six different models denoted asM0, . . . ,M5. All of them use the same
application covariates in the survival process as described in Section 3.4.1. The
differences come from the assumptions made on the link function f (Equation
3.3) and longitudinal outcome structure (Equation 3.1). These are summarised
in Table 3.4.

Id Type R-E AR1 f(·) η∗Y i,s

M0 Survival - - Yi,s -
M1 Joint Int No U0i β01 +U0i

M2 Joint Int Yes U0i β01 +U0i+φYi,s−1

M3 Joint Int-slope No β01 +U0i+U1is β01 +U0i+U1is

M4 Joint Int-slope Yes β01 +U0i+U1is β01 +U0i+U1is+φYi,s−1

M5 Joint Int-slope Yes β01 +U0i+U1is+φYi,s−1 β01 +U0i+U1is+φYi,s−1

Table 3.4: Model specifications. Id is the model identifier, Type is survival or joint model,
R-E specifies the random effects used (intercept only or intercept and slope), AR1 if the model
has autoregressive term. f(·) is the link function, however, for the survival model is the observed
TVC (Equation 3.3). η∗Y i,s is the longitudinal predictor (Equation 3.1).

The first model M0 corresponds to a discrete survival Cox model in which the
longitudinal outcome, in our case, the interest rate difference, is included as
observed. In other words, there is no joint modelling between the survival and



56 Chapter 3. Discrete-Time Joint Model with Autoregressive Terms

the longitudinal processes, and the latter is regarded as exogenous TVC. This
specification is the standard assumption in credit risk literature when a survival
model is considered (see, for example, Crook and Bellotti, 2010; Bellotti and
Crook, 2013; Wang et al., 2020). As such, we treat M0 as our benchmark. The
other five models, M1 to M5, come from combining random intercept or random
intercept and slope with or without the autoregressive term, as detailed in the
table. This way, we better compare each component’s importance in the joint
model structure.

We perform five-fold cross-validation for each model specification with three in-
dependent chains for the MCMC sampling procedure. That is, we sample 90
posterior distributions in total since there are six specifications, each specifica-
tion is estimated for each of the folds, and each fold comprises three independent
chains. As in Section 3.3, the chains have a warm-up period of 4,000 iterations,
and 2,000 sampling draws.

In computational terms, since each chain is independent of the other, we imple-
ment them in parallel (between-chain parallelisation). In addition, we increase
the computational efficiency by adapting each likelihood specification to the re-
cently released feature of the CmdStan interface for within-chain parallelisation5.
Each chain run with 4 CPU cores of 16 GB of memory, and as a reference, one run
of 6,000 samples for the most complex model (M5) took 12 hours to finish. The
Edinburgh Compute and Data Facility (ECDF, http://www.ecdf.ed.ac.uk/)
provided the computational resources. Following the metrics mentioned in Sec-
tion 3.3, no problems were detected concerning the general diagnosis of the NUTS
sampler. That is, none of the transitions was divergent or hit the maximum
treedepth, all had satisfactory E-BFMI as well as the n̂eff and R̂ for all the para-
meters.

The summary of the parameter estimates for the six models using the final 6,000
samples (2,000 per chain) is shown in Table 3.5. In this table, we present the
results for one of the five folds (keeping fold one out in this case) since the oth-
ers are consistent. We first note that their 5-95% posterior credible intervals for
almost all parameters do not include 0. Second, there is strong evidence that
the autoregressive coefficient φ for models M2, M4 and M5 is significant. Fur-
thermore, the posterior means of the parameters associated with the application

5See https://mc-stan.org/users/interfaces/cmdstan.html

http://www.ecdf.ed.ac.uk/
https://mc-stan.org/users/interfaces/cmdstan.html
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covariates have somewhat similar estimates among the six models with agreeing
signs. For example, higher values of fico, meaning better creditworthiness, are
associated with a lower probability of default.

Moreover, the higher the loan to the purchase price (cltv), the higher the prob-
ability of default. A similar result is obtained for the debt to income ratio dti.
Suppose more than one borrower is responsible for paying the loan (n_borr). In
that case, we observe that the probability of default is also lower, and the same is
noted when the loan purpose is to purchase the mortgage instead of refinancing
it (loan_purpose). The exception comes from orig_upb estimated by model M4

where its credible interval does include 0 and its estimated mean drops 50% in
relation to the other models. In addition, the posterior samples of the associ-
ation parameter λf show differences among the specifications as expected since
the linking variables are not strictly comparable (for example, constant versus
linear tendency), but all the intervals are far from 0. Nevertheless, the signs are
all positive, which can be interpreted as if the level of the difference between
the implicit and the original interest rate increases, then also the probability of
default increases.

We measure the performance of the individual survival predictions under the dis-
crimination and calibration metrics described in Section 3.2.4. Both the ÂUC

∆c
c

(Equation 3.12) and the P̂E∆c
c (Equation 3.14) depend on the evaluation time c

and the forecast window ∆c. We study the predictions for the range of c ∈ [6,24]
and ∆c = 12 to analyse how the models behave when more information is col-
lected in time. For instance, if c = 6, we use the collected data until the sixth
month and predict the probability of default for months 7 to 18. Further, all
the predictions are made for the holdout fold, so the newly collected data are
not used for estimating the parameters of the models but rather to estimate the
random effects that serve the individual predictions as described in Section 3.2.3.

To compare the models against the benchmark (M0), we calculate the difference in
the ÂUC

∆c
c for all the values of c within their corresponding fold. Table 3.6 shows

the means and standard deviations of the difference in the AUC considering the
five folds. It is worth noting that since we are calculating the standard deviation
among the folds, we need to correct for overlapping training sets. To do so, we
include the additional correlation term detailed in Nadeau and Bengio (2000).
The first column of Table 3.6 corresponds to c, the number of months of known
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data for the out-of-sample borrowers. We observe that for c between 6 and 9,
models M1 and M2 outperform the benchmark in terms of discrimination for the
forecast window of 12 months but for larger c, both remain practically the same
to M0. Moreover, for c ≤ 13 there is not a great difference for models M3, M4

and M5 with respect to M0, however, for c ≥ 14, the discrimination increases
considerably, specially for M4, with an average increase of more than 0.1 in the
ÂUC

∆c
c .

In the same line, Table 3.7 shows the mean differences and standard deviations
of P̂E∆c

c with respect to M0, for the same range of c and forecast window. For
ease of viewing, all the values are scaled by 100. For c < 12, we observe that the
calibration metrics of the joint models are generally better than the benchmark,
particularly for models M4 and M5. For c ≥ 12, however, models M3 and M4

start to increase the expected predictive error in comparison to M0. Model M5

also increases the predictive error but not as much as models M3 and M4, which
can be seen as a good balance between improvement in discrimination without
affecting too much the calibration. Furthermore, models M1 and M2 recover the
same performance levels as the benchmark.

Models M3, M4 and M5 show better discrimination than the benchmark when
more historical information is collected, but the same is not valid in calibra-
tion. This discrepancy stems mainly from the fact that these data are highly
unbalanced, i.e. the number of defaults is considerably less than the number of
non-defaults. Under these circumstances, it could happen that any model, for
instance, that assigns a survival probability of 1 to all still has a relatively good
calibration, so it is essential to take this metric with caution and understand
where the major contributions come from.

Table A.3 in Appendix A.3 shows the 5-95% probability ranges estimated by each
model and separated by non-defaulters (value 0) versus defaulters (value 1). We
observe that, for c > 12, the joint models M3, M4 and M5 start to have a broader
range than the benchmark for both labels, which is also when the differences in the
calibration metric appear. In other words, the joint models can identify better
the defaulters versus the non-defaulters since they have better discrimination
performance and assign lower probabilities of surviving to the defaulters than
the benchmark. However, these models also assign lower probabilities to the
non-defaulters, and because of the large number of these cases in the data, the
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calibration is made worse.

To investigate to what extent the models are sensitive to class imbalance, we re-
estimate the modelsM0 (benchmark) andM5 (joint model with the autoregressive
term) by controlling the proportion of non-defaulters in the data. Appendix A.4
shows the results for two scenarios. The first randomly reduces the number of
non-defaulters so that 75% of the loans are non-defaulters, and the second has
an equal number of defaulters and non-defaulters. These results indicate that
the joint model’s relative calibration significantly improved compared to the Cox
model. The difference between them (∆P̂E12

c M5) for c≥ 15, is reduced in more
than 50% when compared to the results shown in Table 3.7.

3.5 Discussion

The inclusion of TVCs into survival credit default models is widely applied in
the literature to improve the predictions or enhance the understanding of why
borrowers default (Bellotti and Crook, 2009a, 2014; Dirick et al., 2019; Wang
et al., 2020; Calabrese and Crook, 2020). However, few works focus on distin-
guishing the type of variable included (see, for instance, Dirick et al., 2019; Hu
and Zhou, 2019), thus treating endogenous and exogenous variables equally. This
practice can lead to two main problems if the TVC is endogenous. First, from a
statistical standpoint, we might encounter biased parameter estimations (Section
2.1.5 and Appendix A.1). Second, from a forecast perspective, we lack a dynamic
prediction framework that takes advantage of the mutual evolution between the
TVC and the survival time, forcing the prediction to keep the last observed value
fixed or estimating the model with lagged values of the TVC (Crook and Bellotti,
2010; Bellotti and Crook, 2013; Wang et al., 2020).

To address the inclusion of endogenous TVCs into survival credit default models,
we explore the joint modelling approach and adapt it to handle features typical
of credit-related applications. First, to the best of our knowledge, this is the first
work that uses discrete-time joint models in the credit context. Second, from
a methodological angle, we propose an extended joint model that incorporates
autoregressive terms into the longitudinal outcome. We take advantage of the fact
that observations are equally-spaced and indexed by a discrete variable (time).
This extension is motivated by the autoregressive components seen in the data
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(see Figure 3.1) and how these additional terms could eventually improve the
accuracy of the predictions.

In total, we implement six models, a standard discrete survival model (M0) that is
our benchmark and five joint models (M1,M2,M3,M4,M5), all of them following
the Bayesian paradigm, coded in Stan and using CmdStan interface with within-
chain parallelisation feature (Stan Development Team, 2018). We study the most
general case of the implementations (M5) via simulation. The study shows a
satisfactory converging diagnosis for three independent sampling chains and true
value recovery for different sample sizes.

Furthermore, we apply all the models to US mortgage loan data and compare
them via cross-validation analysis. The empirical results show that the joint
models that assume the longitudinal outcome with only random intercepts, either
with or without an autoregressive term (M1 and M2, respectively), only improve
the discrimination measure compared to the benchmark when not much historical
information of the new borrowers is known. Yet, the other three joint models,
namely, M3, M4 and M5, show a more remarkable improvement in terms of dis-
crimination when more historical data are collected, especially M4 that includes
autoregressive correction in the longitudinal outcome.

In calibration, we see that when using the historical data up to the first year (12
months), the joint models are generally better than the benchmark. Moreover,
when more historical data are considered, models M1 and M2 preserve the same
calibration level as the benchmark. However, for modelsM3, M4 andM5 the cal-
ibration error grows in comparative terms. That is because these models estimate
posterior probability distributions with higher variability than the benchmark for
the non-defaulters. Given that these data are highly imbalanced, greater variabil-
ity in the probabilities is more detrimental to the overall quality of the calibration
in comparison to the benchmark. Nevertheless, when we control by the class im-
balance, we see that this difference is considerably reduced.

In this chapter, we include only one longitudinal outcome in the model with
only one autoregressive term in the implementations. A potential extension of
this work might be to consider a multivariate longitudinal case with different
autoregressive orders, where more complex payment patterns can be recognised
and included in the time-to-event prediction—for instance, being able to measure
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and incorporate correlations between the use of the credit card and the implicit
interest rate through a bivariate longitudinal model.

However, a significant drawback of this methodology is the computational cost
when standard estimation procedures are employed. Financial institutions typ-
ically estimate models on big sample sizes, on thousands or millions of data.
Suppose we want to explore more complex structures of joint models, such as
one with multiple longitudinal processes. If we scale the approach for real-life
applications, we might need to look for alternative estimation procedures faster
than MCMC schemes. That is what we study in Chapter 4 where we reformulate
the multivariate joint model approach to be estimated with the integrated nested
Laplace approximation (INLA) (Rue et al., 2009), a fast deterministic algorithm
for Bayesian inference.

To conclude, using joint models is a promising approach to credit-related applic-
ations in which we usually have a variety of endogenous TVCs that could bring
relevant predictive information. Likewise, we believe our extension to include
autoregressive terms in the longitudinal process can be further exploited to ex-
tract predictive behaviours and better understand the dynamic nature of credit
defaults.
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Parameter M0 M1 M2

Mean 5% 95% Mean 5% 95% Mean 5% 95%
fico -0.701 -0.819 -0.584 -0.698 -0.813 -0.583 -0.697 -0.816 -0.576
cltv 0.515 0.334 0.705 0.544 0.361 0.732 0.542 0.367 0.728
orig_upb -0.151 -0.294 -0.011 -0.183 -0.328 -0.037 -0.182 -0.323 -0.044
dti 0.152 0.025 0.284 0.165 0.033 0.292 0.166 0.041 0.294
n_borr -0.260 -0.513 -0.007 -0.268 -0.521 -0.019 -0.264 -0.510 -0.020
loan_purpose -0.977 -1.246 -0.697 -0.992 -1.268 -0.717 -0.987 -1.265 -0.713
λf 1.456 1.135 1.778 0.345 0.150 0.550 1.053 0.480 1.703
β01 -0.472 -0.495 -0.450 -0.206 -0.216 -0.195
σU0 1.209 1.193 1.226 0.504 0.496 0.512
σ 0.935 0.932 0.937 0.787 0.785 0.789
φ 0.587 0.584 0.591
Parameter M3 M4 M5

Mean 5% 95% Mean 5% 95% Mean 5% 95%
fico -0.700 -0.820 -0.581 -0.716 -0.842 -0.589 -0.701 -0.821 -0.581
cltv 0.517 0.337 0.705 0.477 0.290 0.667 0.516 0.333 0.703
orig_upb -0.156 -0.297 -0.015 -0.088 -0.233 0.060 -0.155 -0.300 -0.014
dti 0.151 0.018 0.282 0.150 0.016 0.282 0.152 0.021 0.283
n_borr -0.276 -0.536 -0.014 -0.288 -0.548 -0.029 -0.270 -0.527 -0.018
loan_purpose -0.969 -1.239 -0.695 -0.969 -1.248 -0.686 -0.971 -1.246 -0.696
λf 1.165 0.781 1.572 3.555 2.587 4.541 1.317 0.895 1.771
β01 -0.444 -0.465 -0.422 -0.278 -0.292 -0.264 -0.280 -0.294 -0.266
σU0 1.860 1.836 1.885 1.236 1.218 1.254 1.237 1.219 1.255
σ 0.734 0.732 0.736 0.706 0.704 0.708 0.706 0.704 0.708
φ 0.357 0.354 0.361 0.357 0.353 0.360
σU1 0.086 0.085 0.088 0.053 0.052 0.054 0.053 0.052 0.054
ρU -0.782 -0.790 -0.775 -0.810 -0.817 -0.803 -0.811 -0.818 -0.804

Table 3.5: Summary of the posterior distributions of each model’s parameters with fold one
kept out.
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∆ÂUC
12
c

Time(c) ÂUC
12
c M0 M1 M2 M3 M4 M5

6 0.732 0.068 (0.046) 0.067 (0.045) 0.021 (0.028) -0.010 (0.020) 0.021 (0.029)
7 0.750 0.050 (0.052) 0.050 (0.050) 0.014 (0.028) -0.024 (0.024) 0.013 (0.036)
8 0.796 0.025 (0.017) 0.025 (0.017) -0.003 (0.008) -0.059 (0.010) -0.013 (0.005)
9 0.792 0.010 (0.017) 0.010 (0.016) -0.008 (0.020) -0.034 (0.011) -0.005 (0.006)

10 0.791 0.004 (0.009) 0.004 (0.009) -0.012 (0.027) -0.012 (0.017) 0.007 (0.008)
11 0.799 0.001 (0.013) 0.001 (0.013) -0.008 (0.033) -0.013 (0.029) 0.011 (0.018)
12 0.790 0.009 (0.015) 0.008 (0.015) -0.011 (0.030) -0.032 (0.033) -0.003 (0.023)
13 0.794 0.005 (0.018) 0.004 (0.017) 0.006 (0.023) -0.009 (0.023) -0.011 (0.023)
14 0.778 0.002 (0.015) 0.002 (0.014) 0.041 (0.043) 0.042 (0.044) 0.000 (0.026)
15 0.785 -0.002 (0.013) -0.003 (0.013) 0.046 (0.040) 0.060 (0.040) 0.004 (0.030)
16 0.783 -0.006 (0.014) -0.007 (0.013) 0.050 (0.026) 0.075 (0.026) 0.006 (0.022)
17 0.779 -0.009 (0.012) -0.010 (0.011) 0.057 (0.036) 0.089 (0.033) 0.018 (0.033)
18 0.768 -0.008 (0.013) -0.008 (0.012) 0.066 (0.035) 0.105 (0.031) 0.029 (0.034)
19 0.767 -0.006 (0.011) -0.007 (0.011) 0.061 (0.031) 0.105 (0.028) 0.032 (0.031)
20 0.762 -0.009 (0.011) -0.009 (0.011) 0.060 (0.031) 0.111 (0.027) 0.035 (0.034)
21 0.774 -0.006 (0.011) -0.007 (0.010) 0.054 (0.038) 0.104 (0.033) 0.037 (0.039)
22 0.761 -0.006 (0.012) -0.006 (0.012) 0.069 (0.051) 0.123 (0.046) 0.055 (0.052)
23 0.750 -0.007 (0.010) -0.008 (0.009) 0.073 (0.049) 0.132 (0.045) 0.062 (0.052)
24 0.757 -0.016 (0.005) -0.016 (0.004) 0.062 (0.044) 0.124 (0.044) 0.053 (0.047)

Table 3.6: Mean difference of ÂUC
∆c
c (Equation 3.12) with respect to model M0 (Cox model)

and prediction window of 12 months (∆c= 12). The Time(c) column represents c, the known
history when making the prediction. The number in parentheses is the standard deviation of
the cross-validation analysis (corrected by the overlapping training sets). The largest increment
of the corresponding row is marked in bold.



64 Chapter 3. Discrete-Time Joint Model with Autoregressive Terms

∆P̂ E
12
c

Time(c) P̂ E
12
c M0 M1 M2 M3 M4 M5

6 0.367 -0.021 (0.009) -0.022 (0.009) -0.020 (0.008) -0.017 (0.008) -0.018 (0.008)
7 0.397 -0.019 (0.007) -0.020 (0.007) -0.018 (0.007) -0.017 (0.007) -0.017 (0.006)
8 0.428 -0.014 (0.008) -0.014 (0.009) -0.015 (0.009) -0.017 (0.009) -0.015 (0.009)
9 0.467 -0.010 (0.006) -0.010 (0.006) -0.009 (0.006) -0.014 (0.006) -0.011 (0.006)

10 0.487 -0.007 (0.004) -0.008 (0.004) 0.002 (0.007) -0.012 (0.004) -0.009 (0.004)
11 0.530 -0.006 (0.003) -0.006 (0.003) 0.032 (0.022) -0.008 (0.003) -0.007 (0.003)
12 0.590 -0.005 (0.002) -0.005 (0.002) 0.089 (0.022) 0.010 (0.007) -0.004 (0.002)
13 0.617 -0.003 (0.001) -0.004 (0.001) 0.168 (0.059) 0.071 (0.040) 0.002 (0.003)
14 0.680 -0.003 (0.001) -0.004 (0.001) 0.373 (0.135) 0.337 (0.131) 0.022 (0.013)
15 0.744 -0.002 (0.002) -0.002 (0.002) 0.516 (0.250) 0.671 (0.322) 0.054 (0.038)
16 0.805 -0.001 (0.003) -0.001 (0.002) 0.601 (0.315) 1.022 (0.471) 0.103 (0.073)
17 0.806 0.000 (0.003) -0.001 (0.003) 0.668 (0.357) 1.389 (0.605) 0.161 (0.108)
18 0.851 0.000 (0.003) -0.001 (0.003) 0.730 (0.368) 1.789 (0.710) 0.230 (0.141)
19 0.911 0.000 (0.003) 0.000 (0.003) 0.691 (0.364) 1.968 (0.807) 0.257 (0.162)
20 0.918 0.000 (0.004) -0.001 (0.003) 0.646 (0.342) 2.068 (0.885) 0.291 (0.173)
21 0.951 0.000 (0.004) 0.000 (0.004) 0.591 (0.258) 2.135 (0.762) 0.305 (0.150)
22 0.916 0.000 (0.004) 0.000 (0.004) 0.468 (0.245) 1.889 (0.810) 0.264 (0.155)
23 0.919 0.002 (0.002) 0.002 (0.002) 0.386 (0.138) 1.783 (0.610) 0.247 (0.103)
24 0.908 0.004 (0.002) 0.003 (0.003) 0.373 (0.127) 1.720 (0.553) 0.269 (0.116)

*For ease of visualisation, all values are multiplied by 100.

Table 3.7: Mean difference of P̂E
∆c
c (Equation 3.14) with respect to model M0 (Cox model)

and prediction window of 12 months (∆c= 12). The Time(c) column represents c, the known
history when making the prediction. The number in parentheses is the standard deviation of
the cross-validation analysis (corrected by the overlapping training sets). The largest reduction
of the corresponding row is marked in bold.



Chapter 4

Joint Model of Multivariate
Longitudinal Outcomes

This chapter is based on a manuscript submitted to a peer-reviewed journal and
is currently under “revise and resubmit”.

We presented the joint model with one longitudinal outcome in the previous
chapter. We were interested in including autoregressive terms and exploring
how this extension influences the model’s performance. Instead, this chapter
focuses on situations where we have more than one longitudinal outcome and
how this multivariate version can be efficiently estimated to scale it to credit-
related applications.

The chapter is organised in the following way. In Section 4.1, we contextualise the
contributions and present the relevant literature. Section 4.2 presents the joint
model with multivariate longitudinal outcomes and discrete survival time. We
also introduce the estimation procedure using INLA and our proposal to compute
the individual survival predictions. Moreover, in Section 4.3, we study how the
estimation via INLA methodology behaves under different scenarios through a
simulation study. In Section 4.4, we apply two multivariate joint models to predict
repayment behaviour in a German consumer loan portfolio and compare them
with standard approaches in credit risk analysis. A discussion concludes the
chapter.

65
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4.1 Introduction

As discussed earlier in Chapter 2, survival analysis is a convenient approach when
we are interested in predicting when the event will occur in the presence of cen-
soring. Survival analysis has been widely applied in the credit risk literature over
the years and remains an active area of research (see Banasik et al., 1999; Bellotti
and Crook, 2009a; Leow and Crook, 2016; Wang et al., 2020; Blumenstock et al.,
2022). However, there has been little effort to address how time-varying covari-
ates (TVCs) that are endogenous to the time of the borrower’s event should be
included in survival models. The standard practice is to include the observed val-
ues of these TVCs so that partial likelihood estimation can be carried out. This
practice, however, assumes that the stochastic nature of the TVCs can be disen-
tangled from the survival process. In other words, it treats them as exogenous,
which can lead to biased estimators (Kalbfleisch and Prentice, 2002; Rizopoulos,
2012), but also this practice lacks a prediction framework that accounts for the
mutual evolution between the TVCs and survival processes.

In addition, another common practice for incorporating TVCs in a survival model
and making predictions is to include them with their lagged values, which may
reduce the endogenous effect but incorporates other limitations. First, this prac-
tice forces us to remove the first lagged observations and therefore assumes that
there were no events in that period, hence inducing bias. This period is usually
12 months for credit risk applications. Second, since the event at a particular
time is related to observations in previous months, this relationship might not be
optimal for predictive purposes. And finally, the lag is usually decided regarding
the prediction window, limiting the analysis to other time horizons (Bellotti and
Crook, 2013)1.

We introduced joint models as a flexible and attractive alternative to not only
take care of the endogeneity problem that may exist but also because it presents
a natural dynamic prediction framework that does not have to make use of the
practices mentioned above (Wu and Carroll, 1988; Tsiatis and Davidian, 2004;
Henderson et al., 2000; Rizopoulos, 2012). However, we also noted that its flex-
ibility is highly constrained by its estimation cost, which is further increased if

1Strictly speaking, we could also predict beyond the prediction window by forecasting the
TVCs first, but this is precisely what joint models do without the need to have two separate
predictions.
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more data and covariates are considered. For this reason and the lack of adequate
software (Furgal et al., 2019), most of the joint model literature focuses on the
case with only one longitudinal outcome (Hickey et al., 2016) and or relatively
small datasets (Rizopoulos and Ghosh, 2011; Brown et al., 2005; Chi and Ibrahim,
2006).

In credit analysis, though, datasets are usually fairly large, in the order of mag-
nitude of ten thousand or one hundred thousand for practical applications. In our
empirical case shown in Section 4.4, for instance, we have approximately 60,000
observations. Moreover, common datasets have many time-fixed covariates re-
corded at the time of origination (e.g. amount of the loan, interest rate, term,
among others), and more than one TVC, for example, balance of the loan, num-
ber of instalments in arrears, among others. To study the full potential of joint
models in credit-related applications, we need fast inference methods that can
handle more than one TVC (multivariate) and can scale to large samples. Fur-
thermore, most joint models are implemented assuming time as continuous. Still,
loan data are typically delivered over discrete periods (e.g. monthly accounting
data), and many ties occur between events making the discrete-time version more
appropriate (Bellotti and Crook, 2013; Djeundje and Crook, 2019b).

The application that motivates this chapter corresponds to the prediction of when
and which borrower will repay its loan before the date agreed in the contract
and in the presence of endogenous TVCs. The prepayment risk concerns banks
since it results in unscheduled cash inflows and potential loss of interest. Hence,
implementing models that could accurately predict this risk can help banks in
their decision-making (BCBS, 2019). The dataset is provided by a bank and
involves consumer loans granted in Germany.

We present two methodological and two empirical contributions to the literat-
ure. From the methodological point of view, first, we propose a joint model for
bivariate longitudinal outcomes and discrete survival data using integrated nes-
ted Laplace approximations (INLA) (Rue et al., 2009), a deterministic algorithm
for Bayesian inference. We extend Van Niekerk et al. (2019) who use INLA to
estimate a joint model for the univariate case with continuous time. By using this
method, we suggest a faster estimation procedure that can effortlessly scale to
large datasets without compromising the accuracy of the estimates and that oth-
erwise would not be computationally feasible. We illustrate the implementation
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via simulation analysis that shows a satisfactory recovery of the true parameter
values. Second, we propose a methodology for individual survival predictions
using the Laplace method (Tierney and Kadane, 1986) that leads to more accur-
ate approximations than the empirical Bayes approach used in the joint model
literature (Rizopoulos, 2012).

From the empirical perspective, our first contribution is applying a multivariate
joint model approach in the credit risk context for the first time, particularly for
predicting the probability of full prepayment in a consumer loan portfolio. While
Hu and Zhou (2019) use joint models to predict early mortgage loan repayment
events and show performance improvements compared to survival models, the
authors consider only the univariate case, time as continuous and few predictive
time horizons in their analysis. Second, we show that these multivariate ap-
proaches result in better discrimination and calibration than the survival models
commonly used in the literature (Thomas et al., 2017).

4.2 Methodology

4.2.1 Multivariate joint model

For borrower i (i= 1, . . . ,N) we are interested in modelling the time to event Ti,
whose domain belongs to positive integer values, in terms of a vector of fixed
covariates zzzi and a set ofM longitudinal outcomes Y (m)

i,s (m= 1, . . . ,M) observed
at time s (s= 1, . . . ,T ).

We assume the length of the study is T , and we observe subject i until time
ti (i.e. ti ≤ T and s ∈ {1, .., ti}), at which point either the event happens, or it
is right-censored. In principle, the number of observed measurements for the
longitudinal outcomes can differ from the number of survival points. However,
we usually have correlative monthly observations in credit-related datasets with
no missing values. The reason is that the institution is responsible and interested
in keeping track of the credit performance. Therefore, we consider we have ti
measurements for each longitudinal outcome.

The m-th longitudinal outcome Y (m)
i,s is assumed as a noisy version of an un-

derlying latent predictor η(m)
Y i,s that can be decomposed into fixed and random

effects. The fixed effects are represented by qqq(m)ᵀ
i,s βββ

(m)
1 , where qqq(m)

i,s is a vector of
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longitudinal covariates measured at time s with corresponding coefficients βββ(m)
1 .

The random effects are ddd(m)ᵀ
i,s UUU i, where ddd(m)

i,s is the design vector at time s and UUU i
the corresponding borrower-specific random effects. This leads to the following
mixed-effect model (Laird and Ware, 1982) for each longitudinal outcome

(Y (m)
i,s |η

(m)
Y i,s, τ

(m))∼N(η(m)
Y i,s,1/τ

(m)), m= 1, ..,M

η
(m)
Y i,s = qqq

(m)ᵀ
i,s βββ

(m)
1 +ddd

(m)ᵀ
i,s UUU i,

(4.1)

where τ (m) is the precision of the error terms associated with the m-th longitud-
inal outcome. The random effects UUU i are assumed as mutually independent and
distributed as a zero-mean multivariate Gaussian distribution with r×r precision
matrix QUUU . Note that for the particular case of the mixed-effect “intercept-and-
slope” model, we write qqq(m)ᵀ

i,s βββ
(m)
1 = β

(m)
01 +s ·β(m)

11 and ddd(m)ᵀ
i,s UUU i = U

(m)
0i +s ·U (m)

1i

with UUU i = [U (1)
0i ,U

(1)
1i , . . . ,U

(M)
0i ,U

(M)
1i ]ᵀ.

For the survival process, and since we are interested in its discrete version, we keep
our representation of the survival points through a binary random variable Xi,s

that takes the value 1 if borrower i experiences the event at time s and 0 otherwise
(Allison, 1982). Hence, the last observation of the sequence for borrower i, i.e.
xi,ti (as before, we denote the realisations of a random variable in lowercase),
is equal to the event indicator. Considering the logit link between the binary
random variable Xi,s and the linear predictor ηXi,s, the discrete-time survival
follows

(Xi,s|Xi,s−1 = 0,ηXi,s)∼ Bernoulli(logit−1(ηXi,s))

ηXi,s = νs+ zzzᵀi βββ2 +
M∑
m=1

λ(m)f (m)(η(m)
Y i,s),

(4.2)

where νs represents the baseline discrete event time distribution. As we saw
previously in Chapter 3, this term is commonly represented by either fixed effects
or spline models (Tutz and Schmid, 2016; Djeundje and Crook, 2018). However, in
this work, we follow the smoothing approach from Lindgren and Rue (2008) that
is implemented in the INLA package (Rue et al., 2009)2. Specifically, we express
νs as a discrete time second-order random walk model which is a discretization of
a continuous time integrated Wiener process. This smoothing approach depends
on one hyperparameter τν that denotes the precision of the underlying Gaussian
white noise. Furthermore, βββ2 is the vector of coefficients for the fixed covariates
zzzi. λ(m) is the association parameter that links the m-th longitudinal outcome

2INLA package is hosted on http://www.r-inla.org/.

http://www.r-inla.org/
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with the survival process. The association function f (m)(·) takes as argument the
m-th latent linear predictor η(m)

Y i,s and returns some of its components or a function
of them. For example, a widely used version of the function f (m) is the identity
function, i.e. f (m)(η(m)

Y i,s) = η
(m)
Y i,s (see Hickey et al. (2016) for a comprehensive

review of different association functions f (m)).

4.2.2 Estimation

Denote the complete observed data as D= ({yyyi}i=1,...,N ,{xxxi}i=1,...,N ), where yyyi is
the complete history of the M longitudinal outcomes for the borrower i, i.e. yyyi =
{y(m)
i,s : s = 1, . . . , ti;m = 1, . . . ,M} and xxxi is the complete sequence of the binary

survival times for borrower i, i.e. xxxi = {xi,s : s= 1, . . . , ti}. From Section 4.2.1, the
unknown parameters are the coefficients of the longitudinal outcomes {βββ(m)

1 }, the
precisions of the error terms {τ (m)}, the precision matrix of the random effects
QUUU , the coefficients of the survival process βββ2, the association parameters {λ(m)},
the baseline hazard coefficients {νs} and the precision parameter τν .

As seen in Section 2.2, one crucial assumption in the joint model approach is the
conditional independence between the survival and longitudinal processes given
the random effects UUU i (Wu and Carroll, 1988; Wulfsohn and Tsiatis, 1997; Hender-
son et al., 2000; Tsiatis and Davidian, 2004). Thus, the observation density can be
easily formulated given the random effects and following, for instance, simulation-
based MCMC schemes to estimate the parameters. That is the strategy we follow
in Chapter 3. For the multivariate case, the generalisation is straightforward (see
Andrinopoulou et al., 2014).

However, this estimation strategy is already computationally expensive for the
univariate case or even infeasible for some applications with large sample sizes. A
faster and accurate alternative is to use the INLA methodology proposed by Rue
et al. (2009) and implemented in the INLA package for the R software. INLA
approximates the Bayesian inference on the class of Latent Gaussian models
(LGMs), as presented in Rue et al. (2009) (see Section 2.2.5). This class comprises
numerous well-known statistical models, for example, mixed-effects, dynamic, and
spatial-temporal models. Our multivariate joint model can also be formulated as
an LGM, as shown in Section 2.2.4 for the univariate case.
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Using the INLA notation presented in Section 2.2.4, we define the following terms

µµµ= ({ηηη(m)
Y i },{ηηηXi},{βββ

(m)
1 },{UUU i},{νs},βββ2)

θθθ1 = (θ
βββ

(m)
1
, τν , θβββ2 ,QUUU ,{λ

(m)})

θθθ2 = ({τ (m)})

where θ
βββ

(m)
1

and θβββ2 are hyperparameters for {βββ(m)
1 } and βββ2, respectively. Note

that with this notation, θθθ1 and θθθ2 correspond to the set of hyperparameters of
the latent field µµµ and likelihood, respectively.

Given the conditional dependency assumed in Equations 4.1 and 4.2, the joint
conditional density of D is p(D|µµµ,θθθ2) = ∏

j∈J p(Dj |µj , θθθ2), where p(·) denotes
either a probability mass function or a probability density, as appropriate for
each variable, and J corresponds to the set of indices for all observed values in
D, and it is coded so that each observation is associated with its respective linear
predictor η (see Section 2.2.5).

According to INLA methodology, the density of µµµ|θθθ1 is assumed as zero-mean
Gaussian with precision matrix QQQ(θθθ1). Denote θθθ = (θθθ1, θθθ2), then the joint pos-
terior distribution follows

p(µµµ,θθθ|D)∝ p(θθθ)p(µµµ|θθθ)
∏
j∈J

p(Dj |µj , θθθ)

∝ p(θθθ)|QQQ(θθθ)|1/2 exp
−1

2µ
µµᵀQQQ(θθθ)µµµ+

∑
j∈J

log{p(Dj |µj , θθθ)}
 .

However, we are not interested in explicitly estimating the joint posterior distri-
bution, but rather the posterior marginals, p(µj |D) and p(θj |D), specified by

p(µj |D) =
∫
p(µj |θθθ,D)p(θθθ|D)dθθθ

p(θj |D) =
∫
p(θθθ|D)dθθθ−j .

(4.3)

The INLA methodology computes these marginals based on the Laplace approx-
imation (Tierney and Kadane, 1986) over the terms p(θθθ|D) and p(µj |θθθ,D), as
detailed in Section 2.2.5.

To fully specify the estimation procedure, we need to define the priors of the
hyperparameters θθθ. In particular, we assume that the parameters {βββ(m)

1 } and
βββ2 have independent zero-mean Gaussian priors with precision matrix of θβββIII,
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where III is the identity matrix with the corresponding dimension for each set of
parameters and θβββ, a precision parameter, is equal to 0.01 (i.e. θ

βββ
(m)
1

and θβββ2 are
all equal to θβββ). Moreover, for the log scale of {τ (m)}, the precision parameters
of the error terms of the longitudinal outcomes, we assume weakly informative
log-gamma prior distributions with shape and scale parameters of 1 and 5×10−5,
respectively. The prior of the p×p precision matrix QUUU is assumed as a Wishart
distribution Wp(III,p(p+ 1)/2 + 1) which shows sensible results on the simulation
study (see Section 4.3).

Finally, for the prior of the hyperparameter τν that represents the precision of
the second-order random walk model, we assume a penalising complexity (PC)
prior as described in Simpson et al. (2017). The shape of this prior is defined
via the influence of the parameter on the latent process model, as measured by
the deviation from a base model with zero variance. The prior is specified by
choosing an upper α-quantile u for the standard deviation of the model, so that
P (τ−1/2

ν = σν > u) = α for the choice of α and u. We use a weakly informative
prior by choosing P (σν > 1) = 0.01, indicating a small probability for a large
standard deviation.

4.2.3 Individual survival prediction

We are interested in estimating how likely the full prepayment event is for a new
borrower k not included in the training data D. Analogous to Chapter 3, we
assume that we have collected the M longitudinal outcomes for this borrower up
to time c. Since we know with certainty that this borrower has not experienced
the event until at least c, our interest is in estimating the probability of surviving
to time c+ ∆c, with ∆c ∈ Z+, conditional on having survived to c. Denote the
set of observed measurements for the M longitudinal outcomes as yyyk = {y(m)

k,s :
s = 1, . . . , c;m = 1, . . . ,M}, then the conditional probability we are interested in
is the following

P (Tk > c+ ∆c|Tk > c,yyyk,D) =
∫
P (Tk > c+ ∆c|Tk > c,yyyk,Θ)p(Θ|D)dΘ, (4.4)

where Θ represents the set of parameters to estimate for the model specification
i.e. Θ = {{βββ(m)

1 },{νs},βββ2,{λ(m)}, τν ,QUUU ,{τ (m)}}, and p(Θ|D) the corresponding
posterior distribution. Note that we explicitly left the random effects of borrower
k, UUUk, out of Θ since k is not included in D, so we do not have estimation of them.
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However, as we will see below, to evaluate Equation 4.4 and take advantage of
the conditional independence assumption, we need to marginalised over UUUk. In
any case, Equation 4.4 does not have a closed form and needs to be numerically
estimated.

Monte Carlo simulation schemes have been proposed to estimate Equation 4.4
(Rizopoulos, 2011; Proust-Lima and Taylor, 2009). Yet, in credit-related applica-
tions, the interest is in estimating predictions for many out-of-sample borrowers,
and these simulation schemes are computationally expensive. Therefore, we pro-
pose the following procedure to approximate Equation 4.4.

The first step considers that we have already estimated the posterior distribution
of Θ, and we can rely on a point estimate denoted by Θ̂ (we use the posterior
mean). Thus, expression P (Tk > c+∆c|Tk > c,yyyk,Θ̂) can be further marginalised
over the random effects UUUk as follows

P (Tk > c+ ∆c|Tk > c,yyyk,Θ̂) =
∫
P (Tk > c+ ∆c|Tk > c,UUUk,Θ̂)

×p(UUUk|Tk > c,yyyk,Θ̂)dUUUk,
(4.5)

where P (Tk > c+ ∆c|Tk > c,UUUk,Θ̂) can be in turn written as

P (Tk > c+ ∆c|Tk > c,UUUk,Θ̂) = P (Tk > c+ ∆c|UUUk,Θ̂)
P (Tk > c|UUUk,Θ̂)

=
∏c+∆c
s=1 (1−pk,s)∏c
s=1(1−pk,s)

=
c+∆c∏
s=c+1

(1−pk,s),

with pk,s = logit−1(ηXk,s) and ηXk,s following Equation 4.2.

A first order approximation of Equation 4.5 is presented in Rizopoulos (2012)
who uses the empirical Bayes estimates for the random effects UUUk as follows

P (Tk > c+ ∆c|Tk > c,yyyk,Θ̂) = P (Tk > c+ ∆c|ÛUUk,Θ̂)
P (Tk > c|ÛUUk,Θ̂)

+O
(1
c

)

where ÛUUk = argmaxUUU{logP (Tk > c,yyyk,UUU |Θ̂)}. This is the approach we follow in
Chapter 3.

However, we can get a better approximation of the Equation 4.5 by using the
Laplace method introduced by Tierney and Kadane (1986). First note that
P (UUU |Tk > c,yyyk,Θ̂) can be expressed as P (Tk > c,yyyk,UUU |Θ̂)/P (Tk > c,yyyk|Θ̂) and
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the term P (Tk > c,yyyk|Θ̂) can be marginalised as
∫
P (Tk > c,yyyk,UUU |Θ̂)dUUU . This

lets us write the following expression

P (Tk >c+∆c|Tk >c,yyyk,Θ̂) =
∫
P (Tk > c+ ∆c|Tk > c,UUU,Θ̂)P (Tk > c,yyyk,UUU |Θ̂)dUUU∫

P (Tk > c,yyyk,UUU |Θ̂)dUUU
.

Define −c · hk(UUU) = log{P (Tk > c,yyyk,UUU |Θ̂)} and g(UUU) = P (Tk > c+ ∆c|Tk >
c,UUU,Θ̂). This brings us to the following

P (Tk > c+ ∆c|Tk > c,yyyk,Θ̂) =
∫
g(UUU)exp{−c ·hk(UUU)}dUUU∫

exp{−c ·hk(UUU)}dUUU . (4.6)

Since g(UUU) > 0, using the Laplace method (Tierney and Kadane, 1986), we can
approximate the last expression as

P (Tk > c+ ∆c|Tk > c,yyyk,Θ̂) = |Σ
∗|1/2 exp{−c ·h∗k(UUU

∗
k)}

|Σ̃|1/2 exp{−c ·hk(ÛUUk)}
+O

( 1
c2

)
(4.7)

where −c ·h∗k(UUU) = −c ·hk(UUU) + logg(UUU). The vectors UUU∗k and ÛUUk are the argu-
ments of the maxima of −h∗k(·) and −hk(·), respectively. Σ∗ and Σ̃ are the inverse
of the Hessians for h∗k and hk, respectively, evaluated at UUU∗k and ÛUUk.

Note also that we can recover the approach of Rizopoulos (2012) described as
the first-order approximation of Equation 4.6 by applying the Laplace method
separately in the numerator and denominator of Equation 4.6. Explicitly,∫
g(UUU)exp{−c ·hk(UUU)}dUUU∫

exp{−c ·hk(UUU)}dUUU = g(ÛUUk)(2π/c)p/2|Σ̃|1/2 exp{−c ·hk(ÛUUk)}[1 +O1(1/c)]
(2π/c)p/2|Σ̃|1/2 exp{−c ·hk(ÛUUk)}[1 +O2(1/c)]

= g(ÛUUk)
[
1 + O1(1/c)−O2(1/c)

1 +O2(1/c)

]

= g(ÛUUk) +O
(1
c

)

= P (Tk > c+ ∆c|ÛUUk,Θ̂)
P (Tk > c|ÛUUk,Θ̂)

+O
(1
c

)

Equation 4.7 provides a second-order approximation to the conditional probabil-
ity, hence is the procedure we follow in the calculations required by the perform-
ance metrics described below.

4.2.4 Performance metrics

We are interested in measuring the performance of the models by their ability to
differentiate borrowers who will prepay from those who will not (discrimination)
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and by their ability to estimate accurate probabilities (calibration). The metrics
we use for discrimination and calibration are similar to those described in Section
3.2.3. Below, we highlight only the most relevant aspects.

For discrimination, we use the concordance index (Harrell et al., 1982) in the
version introduced by Rizopoulos (2011) which we adapt here to the discrete
form as

C∆c
AUC =

∑
c
AUC∆c

c u(c), (4.8)

where u(c) is a weight function to account for the fact that not all time points
contribute the same. The choice of that function remains an open question. Rizo-
poulos (2011) proposes the use of u(c) = P (Ti > c)/∑tP (Ti > t), where P (Ti > c)
is the marginal survival probability that can be estimated with the Kaplan-Meier
estimator (Kalbfleisch and Prentice, 2002) and this is the approach that we also
follow.

Moreover, as described in Chapter 3, AUC∆c
c is the discrete-time dependent AUC

with censoring and is decomposed by the sum of four components ÂUC l(c,∆c)
(l = 1,2,3,4), each of them representing a possible pair combination between
censored and not censored borrowers (set of concordant pairs, represented by
Ω(l)
ij ) in the following way

ÂUC l(c,∆c) =
∑N
i
∑N
j 6=i I(π̂i(c+ ∆c|c)< π̂j(c+ ∆c|c)) · I(Ω(l)

ij ) · ν̂(l)
ij∑N

i
∑N
j 6=i I(Ω(l)

ij ) · ν̂(l)
ij

.

To shorten the notation, we have used π̂i(c+∆c|c) to denote the estimated condi-
tional survival probability P (Ti > c+ ∆c|Ti > c,yyyi,D) that follows Equation 4.4.
I(·) denotes the indicator function and the terms ν̂(l)

ij represent the probability
that the pairs are comparable.

For measuring calibration, we follow analogously to Equation 4.8 to assess the
overall calibration performance as

C∆c
EPE =

∑
c
ÊPE(c+ ∆c|c)u(c), (4.9)

where ÊPE is the estimation of the expected prediction error specified as (Hende-
rson et al., 2002)

ÊPE(c+ ∆c|c) = n(c)−1 ∑
i:Ti>c

{Si(c+ ∆c|c) +Ei(c+ ∆c|c) +Ci(c+ ∆c|c)} ,
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where n(c) is the number of borrowers at risk at time c, and the other three terms
inside the sum are defined as

Si(c+ ∆c|c) = I(Ti > c+ ∆c)L{1, π̂i(c+ ∆c|c)}

Ei(c+ ∆c|c) = δiI(Ti ≤ c+ ∆c)L{0, π̂i(c+ ∆c|c)}

Ci(c+ ∆c|c) = (1− δi)I(Ti ≤ c+ ∆c)
[
π̂i(c+ ∆c|Ti)L{1, π̂i(c+ ∆c|c)}+

+ (1− π̂i(c+ ∆c|Ti))L{0, π̂i(c+ ∆c|c)}
]
,

where δi is the event indicator and L(·, ·) represents the loss function. In this
chapter, we use the logarithmic score (Good, 1952) as the loss function instead
of the widely used Brier score because it is consistent with the use of likelihoods
(or log-likelihoods) to measure the models (Winkler, 1969).

4.3 Simulation

In this section, we perform a simulation study of the discrete multivariate joint
model with INLA presented in Section 4.2. The aim is to check how well the
proposed implementation works under different sample sizes. The simulated set-
ting is motivated by the application described in Section 4.4. It follows a joint
model with two longitudinal outcomes, both of which have a fixed intercept plus
random intercept and slope. The four random effects, two intercepts and two
slopes, are assumed zero-mean multivariate Gaussian distributed. Moreover, the
event process has an additional covariate, fixed in time, and the baseline hazard
rate is drawn from a cubic polynomial function. Formally, the generated data for
both longitudinal processes follows

(Y (m)
i,s |η

(m)
Y i,s, τ

(m))∼N(η(m)
Y i,s,1/τ

(m)), m= 1,2,

η
(m)
Y i,s = β

(m)
01 +U

(m)
0i +U

(m)
1i · s,

(U (1)
0i ,U

(1)
1i ,U

(2)
0i ,U

(2)
1i )ᵀ ∼N4(000,Q−1

UUU ),

where covariance matrix Q−1
UUU is parameterised via marginal precisions τU01 , τU11 ,

τU02 , and τU12 , and pairwise correlations ρ12, ρ13, ρ14, ρ23, ρ24, and ρ34. Formally,

Q−1
UUU =


1/τU01 ρ12/

√
τU01τU11 ρ13/

√
τU01τU02 ρ14/

√
τU01τU12

ρ12/
√
τU01τU11 1/τU11 ρ23/

√
τU11τU02 ρ24/

√
τU11τU12

ρ13/
√
τU01τU02 ρ23/

√
τU11τU02 1/τU02 ρ34/

√
τU02τU12

ρ14/
√
τU01τU12 ρ24/

√
τU11τU12 ρ34/

√
τU02τU12 1/τU12

 .
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Moreover, the corresponding event process follows

(Xi,s|Xi,s−1 = 0,ηXi,s)∼ Bernoulli(logit−1(ηXi,s)),

ηXi,s = νs+β12zi+λ(1)η
(1)
Y i,s+λ(2)η

(2)
Y i,s,

νs = c0 + c1s
1 + c2s

2 + c3s
3.

(4.10)

We simulate these data considering a maximum of 36 periods for three different
numbers of borrowers (500, 1,000 and 1,500) which correspond to 15,183, 30,187
and 44,971 observations, respectively. For illustrative purposes, in Figure 4.1 we
show how the simulated events are distributed over time for the sample with 1,500
borrowers.
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Figure 4.1: Time-events distribution for the simulated sample of 1,500 borrowers.

Similarly, Figure 4.2 shows the evolution in time for both simulated longitudinal
outcomes. To aid visualisation, we highlight, in dashed red lines, ten borrowers
that experienced the event and, in dotted blue lines, ten that are censored.

As noted in Equation 4.10, the baseline hazard rate νs is generated from a cubic
polynomial function. However, when estimating the model, we assume that νs has
a more flexible prior specification than a polynomial function, expressly, a second-
order random walk model (Lindgren and Rue, 2008). In Figure 4.3, we show the
true baseline hazard rate in solid black line (after the logistic transformation) and
the estimated 95% credible intervals for the three samples. We observe a good
fit for all three samples, and as we increase the sample size, the interval narrows
around the true value.
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Figure 4.2: Both longitudinal outcomes for the simulated sample of 1,500 borrowers. For
visual purposes, we highlight ten borrowers who experienced the event (dashed line) and ten
who are censored (dotted line).

Table 4.1 shows the true values of the parameters in the simulation setting and the
ones estimated under each sample size. We see a good recovery of the true para-
meter values for the three sample sizes and, similarly to the behaviour observed
in Figure 4.3, as the sample size increases, the credible intervals are narrower.

Finally, to show how precise and fast is the INLA methodology for our model in
comparison with an MCMC scheme, in Appendix B.1 we carry out a comparative
analysis. We show, among other settings, that the inference for N = 500 takes
more than 4 hours when performed by MCMC sampling. In contrast, INLA takes
less than 3 minutes using the same computational resources.

4.4 Repayment behaviour in German consumer

loans

This section presents the application that motivated our proposal of the joint
model of multivariate longitudinal outcomes and discrete survival data. In Section
4.4.1, we describe the data provided by a bank and the sampling strategy to
validate the performance out-of-sample and out-of-time. Moreover, in Section
4.4.2, we estimate and compare four models to study the advantages of different
specifications.
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Figure 4.3: Simulated baseline hazard (solid stepped line) and the estimated 95% credible
intervals for the three sample sizes.

4.4.1 Data

The complete dataset is formed by two different cohorts of consumer loans granted
by a bank. In the first cohort the loans were originated in April, 2012 and in the
second the loans were originated in August, 2015. Each cohort has 40 consecutive
months of performance. We use the first cohort as the training dataset and the
second as the out-of-time dataset.

The training dataset corresponds to 2,397 consumer loans with a total of 59,415
observations. The number of full prepayment events is 470 and its distribution
over time is shown in Figure 4.4. The first longitudinal outcome is the cumu-
lative sum of the ratio between the actual balance and the scheduled balance of
each loan. This longitudinal outcome accounts for how different the loan balance
is from originally scheduled. That gives early signals, for example, if the loan
is underpaid or overpaid. The second longitudinal outcome is an internal score
calculated by the bank (on a logarithmic scale), which measures the borrower’s
creditworthiness. Figure 4.5 shows the evolution of the two longitudinal out-
comes and, analogously to Figure 4.2, we have highlighted some borrowers that
experienced the full prepayment event (dashed line) and borrowers that do not
(dotted line). The rationale for choosing these two longitudinal outcomes is that
we would expect that a borrower who pays more than what is scheduled (slope
below from the diagonal in Figure 4.4) and whose internal score is high would
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N = 500 N = 1000 N = 1500

True Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%
β

(1)
01 -1.00 -1.02 -1.06 -0.98 -0.99 -1.02 -0.97 -1.00 -1.02 -0.98
β

(2)
01 1.00 0.98 0.94 1.02 0.99 0.96 1.02 0.99 0.97 1.01
β12 -0.50 -0.60 -0.71 -0.49 -0.49 -0.56 -0.41 -0.53 -0.58 -0.47
τ (1) 25.00 24.97 24.27 25.55 25.13 24.55 25.56 25.13 24.75 25.44
τ (2) 25.00 25.08 24.47 25.65 25.14 24.74 25.61 25.09 24.77 25.51
τU01 4.00 4.18 3.68 4.73 4.09 3.75 4.46 4.22 3.93 4.52
τU11 25.00 25.58 22.63 28.91 22.55 20.61 24.49 23.62 22.06 25.24
τU02 4.00 3.81 3.35 4.30 4.01 3.65 4.35 3.79 3.54 4.05
τU12 25.00 26.09 23.06 29.40 25.26 23.07 27.41 23.70 22.15 25.34
ρ12 -0.30 -0.20 -0.28 -0.11 -0.29 -0.35 -0.24 -0.25 -0.30 -0.21
ρ13 0.30 0.36 0.28 0.44 0.32 0.26 0.37 0.30 0.26 0.34
ρ14 0.30 0.24 0.15 0.32 0.30 0.24 0.35 0.28 0.23 0.32
ρ23 0.30 0.32 0.24 0.40 0.33 0.27 0.38 0.34 0.29 0.38
ρ24 0.30 0.32 0.23 0.39 0.29 0.24 0.34 0.30 0.26 0.34
ρ34 -0.30 -0.29 -0.37 -0.21 -0.26 -0.32 -0.20 -0.33 -0.38 -0.29
λ(1) 0.50 0.57 0.49 0.65 0.55 0.49 0.60 0.52 0.48 0.56
λ(2) -0.50 -0.55 -0.64 -0.47 -0.50 -0.56 -0.45 -0.48 -0.52 -0.44

Table 4.1: Estimations for the three simulation settings.

have a higher probability of paying the loan in full. This is further confirmed in
the empirical results.

To validate and compare the models described in Section 4.4.2, we perform a ten-
fold cross-validation analysis. For each validation set (out-of-sample), we assess
the performance in terms of the discrimination and calibration metrics described
in Section 4.2.4. Moreover, to assess the robustness of the results, we use the out-
of-time dataset mentioned above. This dataset corresponds to 2,516 borrowers
with a total of 65,928 observations and there are no overlapping times with the
data used in the cross-validation.

4.4.2 Models and results

In analysing a full prepayment dataset, a bank is particularly interested in under-
standing how precise the model is in predicting full prepayment. We estimate four
models to investigate the predictive power of the multivariate joint model frame-
work. The first is a discrete survival model where both longitudinal outcomes
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Figure 4.4: Distribution of the full prepayment events in time for the training dataset.

are included as standard TVCs (observed value), so no joint model framework
is used. We denote this model as Cox model3. This model relates the event at
month s with the last observation of the longitudinal outcomes. The limitation
is that when we are interested in predicting the probability of the event, for ex-
ample, at s+ 12, we assume the longitudinal outcomes remained constant and
equal to the last observed value throughout the prediction window.

The second model Cox_Lag is also a discrete survival model. The difference with
the Cox model is that the event at month t is now related to the observations
of the longitudinal outcomes lagged in 12 months. The lag responds to the time
window of interest in the predictions, so when we predict the probability of the
event at s+12, the model is already estimated to consider the observed values at
s. These two models, Cox and Cox_Lag, are the standard survival approaches in
credit literature when TVCs are present and, thus, are considered as our natural
benchmarks (see, for example, Gross and Souleles, 2002; Bellotti and Crook, 2013;
Wang et al., 2020; Calabrese and Crook, 2020).

The third and fourth models (JM1 and JM2, respectively) are both multivariate
joint models for discrete survival data. The only difference between them is in the
assumed correlations for the random effects. The JM1 model assumes a correla-
tion between the random effects belonging to each of the longitudinal outcomes
but no correlation between the random effects of different longitudinal outcomes.

3The model follows the discrete survival approach proposed in Cox (1972).
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Figure 4.5: Evolution of both longitudinal outcomes for the full prepayment dataset. For
visual purposes, we highlight borrowers that full prepaid the loan (dashed line) and borrowers
that are censored (dotted line).

The JM2 model assumes correlation within and between the random effects of
both longitudinal outcomes (fully correlated). This last setting investigates if
substantial improvements are gained when a more complex relationship between
the longitudinal outcomes is used.

Following the notation introduced in Section 4.2, we define Y (1)
i,s and Y (2)

i,s as the
cumulative ratio between the balances and the logarithm of the internal score,
respectively, at time s for borrower i. Moreover, we denote Xi,s as the bin-
ary variable that equals 1 if the borrower i fully prepays the loan at time s
and 0 otherwise. zzzi is the vector of time-fixed covariates for borrower i (for
more details about these covariates, see Appendix B.2) and νs is the baseline
hazard. The four models’ specifications of the event process follow (Xi,s|Xi,s−1 =
0,ηXi,s)∼Bernoulli(logit−1(ηXi,s)), the differences come in the assumed predictor
ηXi,s (Equation 4.2). Moreover, both longitudinal processes assume (Y (m)

i,s |η
(m)
Y i,s,

τ (m))∼N(η(m)
Y i,s,1/τ (m)) form= 1,2, therefore, we only need to describe the event

predictors to fully specify the models. These are the following

Cox. Discrete survival model with TVCs. The event predictor is described as
ηXi,s = νs+ zzzᵀi βββ2 +λ(1)y

(1)
i,s +λ(2)y

(2)
i,s .
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Cox_Lag. Discrete survival model with lagged TVCs. The event predictor is
described as ηXi,s = νs+ zzzᵀi βββ2 +λ(1)y

(1)
i,s−12 +λ(2)y

(2)
i,s−12.

JM1. Joint model not fully correlated. The event predictor is described as
ηXi,s = νs+zzzᵀi βββ2 +λ(1)(U (1)

0i +U (1)
1i ·s)+λ(2)(U (2)

0i +U (2)
1i ·s) and the corresponding

longitudinal processes as

η
(1)
Y i,s = β

(1)
01 +β

(1)
11 · s+U

(1)
0i +U

(1)
1i · s

η
(2)
Y i,s = β

(2)
01 +U

(2)
0i +U

(2)
1i · s

(U (1)
0i ,U

(1)
1i )ᵀ ∼N2(000,Q−1

UUU1
)

(U (2)
0i ,U

(2)
1i )ᵀ ∼N2(000,Q−1

UUU2
).

JM2. Joint model fully correlated. The event predictor has the same structure
as JM1. However, the assumption over the random effects in the longitudinal
outcomes is

η
(1)
Y i,s = β

(1)
01 +β

(1)
11 · s+U

(1)
0i +U

(1)
1i · s

η
(2)
Y i,s = β

(2)
01 +U

(2)
0i +U

(2)
1i · s

(U (1)
0i ,U

(1)
1i ,U

(2)
0i ,U

(2)
1i )ᵀ ∼N4(000,Q−1

UUU ),

with QUUU a dense matrix. We observe that the cumulative ratio has a linear
trend (see Figure 4.4), which explains the additional fixed effect term β

(1)
11 · s in

comparison with the internal score. Moreover, as we mention in Section 4.2, there
is flexibility in how we link the event and the longitudinal processes. We find that
linking them only through the random effects provides good performance, but this
is not a restriction of this general approach (see Hickey et al., 2016).

We show in Section 4.2.4 that the performance metrics depend on the pair of
evaluation times we choose (c and c+∆c denoted above). To make the comparison
less arbitrary, we evaluate the full range of available starting points (c= 12, . . . ,28)
with a fixed time window of 12 months (∆c= 12), commonly used in the industry.
Note that the starting point could have been c= 1, but the Cox_Lag model limits
the comparison due to the lagged observations.

In each validation fold we calculate the ÂUC and ÊPE metrics presented in
Section 4.2.4 for all the pairs of evaluation times {(c,c+ 12) : c = 12, . . . ,28}.
Then, we summarise the metrics for the different pairs of times by calculating
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C∆c=12
AUC and C∆c=12

EPE (Equations 4.8 and 4.9, respectively). Table 4.2 shows these
metrics where each row is a different fold, and the best performance out of the four
models is marked in bold. The last row is the average among the ten folds (Avg).
First, we observe that, in general terms, the multivariate joint models outperform
survival models in both discrimination and calibration metrics. Second, whenever
one of the survival models predicts more accurately than the joint models, the
difference in the metrics does not seem to be as significant as when we have the
opposite.

Cox Cox_Lag JM1 JM2

Fold C12
AUC C12

EPE C12
AUC C12

EPE C12
AUC C12

EPE C12
AUC C12

EPE

1 0.6081 0.5111 0.5874 0.3139 0.5853 0.3119 0.5869 0.3119
2 0.6352 0.4850 0.6240 0.4422 0.6125 0.4047 0.6135 0.4048
3 0.5504 0.4766 0.5499 0.3215 0.6053 0.3155 0.6051 0.3156
4 0.6156 0.4982 0.6301 0.3887 0.6228 0.3672 0.6191 0.3675
5 0.5523 0.5066 0.5170 0.3973 0.5416 0.3689 0.5408 0.3691
6 0.6136 0.7152 0.6741 0.3044 0.6996 0.3089 0.7009 0.3084
7 0.6459 0.4635 0.5850 0.2713 0.6716 0.2825 0.6764 0.2835
8 0.5944 0.5168 0.5976 0.3105 0.5995 0.3094 0.6016 0.3092
9 0.7076 0.4832 0.6890 0.3169 0.7702 0.3047 0.7703 0.3046
10 0.5721 0.5494 0.5653 0.3410 0.6178 0.3268 0.6195 0.3263
Avg 0.6095 0.5206 0.6019 0.3408 0.6326 0.3301 0.6334 0.3301

Table 4.2: Comparison of the discrimination (C12
AUC) and calibration (C12

EPE) metrics between
the four models for a prediction window of 12 months. Each fold number represents the val-
idation fold in the cross-validation analysis. The last row is the average (Avg) among the ten
folds, and the bold number is the best performance metric within each validation fold.

We perform a Bayesian correlated t-test (Benavoli et al., 2017) for both metrics
(C12

AUC and C12
EPE) in order to test the statistical validity of the differences shown

in Table 4.2. The test is correlated because the metrics in each fold are not
independent since we have overlapping training sets (Nadeau and Bengio, 2000).

Following the recent work Gunnarsson et al. (2021), we also consider two clas-
sifiers as practically equivalent when the mean difference of the metric is less
than 0.01 and define the Region of Practical Equivalence (ROPE) as the interval
[−0.01,0.01]. In Figures 4.6 and 4.7 we show the results for all combinations of
model pairs for discrimination and calibration, respectively. On the left side of
the figures are the reference models (A), and on top are the models we are com-
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paring to (B). For instance, we estimate that the Cox model has a probability of
0.44 of being better in terms of discrimination than the Cox_Lag model, a prob-
ability of 0.43 of being equivalent and only 0.13 of being worse. We also observe
that the joint models, in comparison to both survival models, are superior, and
there is no difference between the two joint models (ROPE-probability 1).
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Figure 4.6: Bayesian correlated t-test for the discrimination metric (C12
AUC). It shows a three-

by-three matrix of bar plots, where each plot compares the reference model named in row (A)
and the model we are comparing to in column (B). The bars represent the posterior probabilities
of the three possible decisions: A better than B (left bar in red), A practically equivalent to B
(centre bar in green) and B better than A (right bar in blue).

In terms of calibration (Figure 4.7), we see that the Cox model performs poorly
with respect to the three other models. When we compare the Cox_Lag model
against the joint models, we observe that the probability that these models have
the same calibration metrics is 0.45 and a probability of 0.54 in favour of the
joint models. Moreover, since we deliberately estimate the Cox_Lag model for
predicting in a 12-month window (unlike the joint models), we expect it to do
well in calibration. Still, the evidence suggests that this model is not better than
the joint models (probability of 0.01). Finally, we see no difference between the
two joint models (ROPE-probability 1).

So far, we have seen that the benchmarks cannot outperform the joint models
for a 12-month forecast horizon (∆c= 12) for different starting months (c). Still,
studying how these models behave when we vary the forecast horizon is also
interesting. For a fixed c we obtain the prediction for [c+ 1, c+ ∆c] for different
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Figure 4.7: Bayesian correlated t-test for the calibration metric (C12
EPE). It shows a three-by-

three matrix of bar plots, where each plot compares the reference model named in row (A) and
the model we are comparing to in column (B). The bars represent the posterior probabilities
of the three possible decisions: A better than B (left bar in red), A practically equivalent to B
(centre bar in green) and B better than A (right bar in blue).

values of ∆c. Figure 4.8 shows the average difference in the ÂUC with respect to
the Cox model for ∆c ranging from 3 to 24 months and c= 12, which is the first
period the Cox_Lag model can predict. In general, we observe that both joint
models have better discrimination for all time windows, a difference that is even
stronger for longer horizons.

Analogously to Figure 4.8, in Figure 4.9 we show the average difference in the
ÊPE with respect to the Cox_Lag model4. We observe that both joint models
have practically the same calibration metric (overlapping lines) and that for al-
most all horizons, this value is below (better) than the Cox_Lag level, especially
for longer horizons. It is not surprising that for ∆c = 12, the calibration of the
reference model is better than the joint models since it was estimated for this ∆c.
Still, this only includes c = 12, and we have shown above that this result does
not generalise when considering all c.

We next perform out-of-time data analysis to study the robustness of these results.
In practice, models are applied to new data at later periods than the ones used
in the construction stage. This, for example, happens when a bank is interested

4We discard the Cox model from this plot because its performance is considerably inferior
concerning the others.



4.4. Repayment behaviour in German consumer loans 87

Cox level

−0.025

0.000

0.025

0.050

0.075

5 10 15 20 25
Prediction window in months (∆c)

D
iff

er
en

ce
 in

 th
e 

A
U

C

Model

Cox_Lag

JM1

JM2

Figure 4.8: Average difference in the ÂUC with respect to the Cox model, for fixed c = 12
and variable ∆c.

in classifying new customers. We study and compare how these models perform
in an out-of-time scenario following a similar analysis to the previous one. We
could estimate a model per specification using all the training data, but since we
have already estimated ten models per specification, we use each to calculate the
out-of-time performance.

In Table 4.3 we show the results for each model. We note that none of the
traditional survival approaches can outperform the joint models, a result further
supported by the Bayesian correlated t-test shown in Figures 4.10 and 4.11 for
discrimination and calibration, respectively.

From these figures, we note that the survival models are practically equivalent
in terms of discrimination (ROPE-probability 1), but the Cox_Lag model out-
performs the Cox in terms of calibration. Moreover, both joint models have a
probability of 1 of being better than the survival models for both metrics, and
there is not much difference between them (ROPE-probability 1).

The discrimination and calibration performances for different time windows ∆c
are shown in Figures 4.12 and 4.13, respectively. We observe that both joint
models have better ÂUC than the survival models for basically all the horizons.
In calibration, we now see that for all the ∆c, the ÊPE for each joint model
is lower than for the Cox_Lag model. Also, the minimum difference is again
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Figure 4.9: Average difference in the ÊPE with respect to the Cox_Lag model, for fixed
c= 12 and variable ∆c.

obtained at ∆c= 12, and it increases for longer horizons.

4.5 Discussion

The joint modelling approach applied in the credit context is appealing compared
to traditional survival analysis. It allows us to incorporate potentially endogen-
ous TVCs and provide a dynamic prediction framework that correctly updates
once new information is collected. However, joint model estimations are com-
putationally intensive when maximum likelihood or MCMC schemes are used,
which is even more critical in large datasets with more than one endogenous
TVC (multivariate). That is commonly the case with credit-related applications.

In this chapter, we make two methodological and two empirical contributions.
First, we propose a fast and accurate joint model of bivariate longitudinal out-
comes and discrete survival data based on the INLA framework. We study this
model via simulation analysis. Second, we introduce a methodology for indi-
vidual survival predictions using the Laplace method that leads to more accurate
approximations than comparable approaches. From the empirical level, first, we
present a multivariate joint model in the credit risk literature, specifically for pre-
dicting the probability of full prepayment in a consumer loan portfolio. Second,
we show that for this particular application, the multivariate joint models out-
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Cox Cox_Lag JM1 JM2

Fold C12
AUC C12

EPE C12
AUC C12

EPE C12
AUC C12

EPE C12
AUC C12

EPE

1 0.5531 0.5030 0.5520 0.4001 0.5668 0.3755 0.5664 0.3761
2 0.5531 0.4573 0.5523 0.4025 0.5647 0.3761 0.5647 0.3766
3 0.5533 0.4639 0.5525 0.4118 0.5640 0.3749 0.5629 0.3755
4 0.5532 0.4756 0.5521 0.4079 0.5676 0.3763 0.5689 0.3755
5 0.5549 0.4917 0.5523 0.4082 0.5707 0.3749 0.5710 0.3751
6 0.5509 0.6729 0.5520 0.4005 0.5704 0.3770 0.5691 0.3767
7 0.5534 0.4816 0.5513 0.4016 0.5662 0.3759 0.5629 0.3754
8 0.5519 0.5097 0.5520 0.4069 0.5692 0.3766 0.5694 0.3761
9 0.5506 0.4970 0.5527 0.4020 0.5665 0.3752 0.5658 0.3754
10 0.5532 0.5274 0.5522 0.4293 0.5701 0.3762 0.5687 0.3765
Avg 0.5528 0.5080 0.5521 0.4071 0.5676 0.3759 0.5670 0.3759

Table 4.3: Comparison of the discrimination (C12
AUC) and calibration (C12

EPE) metrics between
the four models for a prediction window of 12 months. Each fold number represents the hold-
out fold when training the model. The predictions are made in the out-of-time dataset. The
last row is the average (Avg) among columns, and the bold number is the best performance
metric per row.

perform standard survival approaches in out-of-sample and out-of-time analyses.

As a new approach to credit risk modelling, many possibilities for future de-
velopment remain that we believe could further enhance its use. For example,
exploring the idea of including TVCs related to other credit products, such as
credit card transactions, and studying how that relates to the event of interest.
Conceptually, this is straightforward since we are not restricted to simultaneously
collecting the survival and longitudinal data. Although including a larger number
of measurements increases the computational cost, we believe the INLA approach
we propose here could be a viable path. Moreover, we could also study new link
structures between the event and longitudinal processes where the effect among
them changes depending on the stage of the credit. The joint models’ approach
offers the flexibility to explore these and other compelling topics.
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Figure 4.10: Bayesian correlated t-test for the discrimination metric (C12
AUC) shown as in

Figure 4.6 and applied to the out-of-time dataset.

0.99

00

1

00

1

00

1

00

1

00

0

1

0

Cox_Lag JM1 JM2

C
ox

C
ox

_L
ag

JM
1

A ROPE B A ROPE B A ROPE B

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Decision

P
ro

ba
bi

lit
y

Figure 4.11: Bayesian correlated t-test for the calibration metric (C12
EPE) shown as in Figure

4.7 and applied to the out-of-time dataset.
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Figure 4.12: Average difference in the ÂUC with respect to the Cox model, for fixed c= 12
and variable ∆c. Results from the out-of-time analysis.
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Figure 4.13: Average difference in the ÊPE with respect to the Cox_Lag model, for fixed
c= 12 and variable ∆c. Results from the out-of-time analysis.





Chapter 5

Spatio-Temporal Joint Models

In Chapters 3 and 4, we have studied the joint model approach with autoregressive
terms in the longitudinal sub-model and included more than one time-varying
covariate. Generally, both chapters introduce innovations more oriented towards
the longitudinal sub-model(s). In this chapter, however, we explore new ways of
improving the survival sub-model by incorporating spatial and spatio-temporal
effects in its predictor. The aim is to capture the survival effect due to the
evolution of the unobserved heterogeneity among borrowers in the same region.

The chapter is organised as follows. In Section 5.1, we introduce the relevant
literature on spatial and spatio-temporal effects to situate our contributions in
both the credit risk and the joint model context. In Section 5.2, we present
the spatio-temporal joint model (STJM) and describe how its estimation is per-
formed. Moreover, for model comparison purposes, we also introduce a new
implementation of the cross-validated Dynamic Conditional Likelihood (cvDCL
Rizopoulos et al., 2016) that can be nicely incorporated into our estimation frame-
work without requiring extensive additional calculations. In Section 5.3, we build
joint models to predict the time to full prepayment event on a US mortgage
portfolio and study how the inclusion of spatial and spatio-temporal effects can
improve the models’ performance. In Section 5.4 we conclude and comment on
further research.

93
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5.1 Introduction

The modelling of the survival time generally includes time-fixed and time-varying
covariates (TVCs). Along with this thesis, we have seen two main appealing
features of the joint modelling approach compared to the standard survival credit
risk model. Namely, when the TVCs are endogenous, joint models offer a sound
statistical procedure to handle the mutual evolution of the survival process and
the endogenous TVCs. In addition, by jointly modelling both the survival and
the TVCs, we encounter a natural prediction framework that does not rely on
lagged values or exogeneity assumptions as commonly done otherwise.

In previous chapters, we exploit joint models’ flexibility for modelling endogenous
TVCs. Here, we are instead interested in finding more flexible representations of
the survival predictor that may help us to explain the credit data better. Addi-
tionally, it is increasingly common to incorporate geographical information about
the borrower into the databases (Goodstein et al., 2017; Gupta, 2019; Calabrese
and Crook, 2020), giving way to models that also account for spatial clustering
and its variation in time. To this end, we propose a Bayesian hierarchical joint
model in discrete time that includes spatial and spatio-temporal effects in the
baseline hazard and aims to predict full prepayment events in US mortgages.
This approach captures the survival impact due to the evolution of the unob-
served spatial confounders among borrowers and lets us leverage information
across neighbouring areas.

A few studies in the realm of mortgage credit analysis include spatial dependency.
For example, Goodstein et al. (2017) by analysing a large mortgage dataset, and
after controlling for known default factors, establish the impact of the surrounding
areas in strategic mortgage default. That is when the borrower chooses to default
because the economic benefits of doing so outweigh its costs (unlike borrowers
who default because they have no other choice). In the same line, Guiso et al.
(2013); Towe and Lawley (2013) encounter strong evidence that social interactions
among neighbours influence the propensity of strategic default.

The spatial contagion in mortgage default has been acknowledged due to different
causes. For example, the reduction of the property’s value in the neighbourhood
can increase the default propensity (particularly those by choice). That property’s
value can be affected by the neighbourhood characteristics, such as increasing



5.1. Introduction 95

crime rate, vandalisation, etc., or even legislative reasons (Pence, 2006). On
the other hand, due to the increased defaults, banks might also limit the credit
options in those areas (e.g. renegotiation), deepening even more, the correlated
effect.

However, spatial contagion in credit risk has not been limited only to mortgages.
Calabrese et al. (2019), for example, include spatial dimensions to predict credit
default on SMEs in the UK. Medina-Olivares et al. (2022b) find that spatial de-
pendency can improve the performance of credit scoring models for microfinance
in China. Moreover, spatial contagion can also be found in events other than de-
faults. Gupta (2019) finds that early repayment activity in mortgage loans has a
significant spatial dependence that might be related to similar reasons as the ones
associated with the default. The author notes that from a borrower-driven point
of view, a decrease in property values can also decrease borrowers’ propensity to
seek new refinancing alternatives. Additionally, from a lender-driven perspective,
credit extensions or renegotiation can be reduced if banks estimate a drop in
property prices for some locations or other foreclosure externalities.

In the context of survival models with applications to credit risk, Calabrese and
Crook (2020) claim to be the first paper to present a survival model with spatial
contagion. They incorporate time and spatial-varying coefficients in a survival
model that predicts time to default in UK mortgage loans, showing better accur-
acy than relevant benchmarks. However, they overlook possible endogeneity in
the TVCs included in the model. And they do not present a prediction framework
that accounts for the future paths of these TVCs as the joint model approach
does.

As far as the joint model literature is concerned, Zhou et al. (2008) propose a joint
model in continuous time for modelling two linked time-to-event outcomes, assum-
ing a Weibull baseline distribution with spatially correlated frailties. Moreover,
the work of Ratcliffe et al. (2004) incorporates spatial clustering as univariate
independent random effects. More in the spirit of this work, Martins et al. (2016)
propose a joint model with spatial random effects for analysing AIDS data in
Brazil. They assume an intrinsic conditional autoregressive model (ICAR, see
Besag et al., 1991) as a prior distribution for the unobserved spatial effects, as
we also do in this work.
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We make four contributions to the literature. First, we introduce a discrete-
time joint model with a flexible baseline hazard that can handle spatial and
spatio-temporal interactions. We denote this model Spatio-Temporal Joint Model
(STJM). Second, to estimate this model in an extensive mortgage loans dataset,
we implement it using the INLA methodology (Rue et al., 2009). That lets us
scale the model to a dataset with a total of 2,559,056 observations, and as far
as we know, it is the largest one in the context of joint models at the time of
writing. Third, to compare different model specifications, we propose a new
implementation of the cross-validated Dynamic Conditional Likelihood (cvDCL,
see Rizopoulos et al., 2016)1 that uses already calculated quantities by the INLA
methodology, making its estimation computational convenient. And forth, we
apply the STJM to predict full prepayment events in US mortgage loans. We
show that the inclusion of the spatial components can consistently improve the
performance of the joint model for all the evaluation times considered. However,
we also found in our empirical analysis that the performance improvements are
less conclusive when including spatio-temporal effects on top of the spatial main
effects.

5.2 Methodology

5.2.1 Spatio-Temporal Joint Model (STJM)

Consider a total of N mortgage loans where the properties are distributed over A
areas. Each area a= 1, . . . ,A has a total of Na properties, i.e. ∑A

a=1Na =N . For
each mortgage loan i (i= 1,2, . . . ,N), the following characteristics are known: the
location ai ∈{1, . . . ,A}, the date when the loan is originated t0i , the event indicator
δi that takes the value of 1 if the full prepayment occurs and 0 otherwise, and the
time elapsed from origination of the loan to the last available observation ti ≤ T ,
where T corresponds to the duration of the study. We assume that at time ti
either the full prepayment happens (δi = 1), or the observation is right-censored
(δi = 0). We are also provided with a vector of time-fixed covariates zzzi, and
a loan-specific covariate collected at multiple points in time on a regular basis
(in our case, on a monthly basis), denoted by yi,s for s = 1, . . . , ti. This TVC

1The cvDCL is a cross-entropy estimate of the cross-validatory posterior predictive condi-
tional density.
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corresponds to our joint model framework’ longitudinal outcome. As used in the
previous chapters, we distinguish the realisations of a random variable in lower
case.

We aim to understand the relationship of these data in jointly modelling the time
to event Ti and the longitudinal outcome Yi,s up to a given endpoint for the i-th
loan associated with area ai. In the following, we describe the proposed approach
for the longitudinal and survival processes.

Longitudinal process

Following the notation introduced in Chapter 2, assume the longitudinal outcome
Yi,s is modelled by a mixed-effect model (Laird and Ware, 1982) where the pre-
dictor ηY i,s is structured by fixed effects, qqqᵀi,sβββ1, and random effects, dddᵀi,sUUU i. βββ1 is
the vector of coefficients related to the covariates qqqi,s and dddi,s is the design vector
related to the random effects UUU i of dimension r. Specifically,

(Yi,s|ηY i,s, τY )∼N(ηY i,s, τ−1
Y )

ηY i,s = qqqᵀi,sβββ1 +dddᵀi,sUUU i

UUU i|QUUU ∼Nr(000,Q−1
UUU ),

(5.1)

where τY is the precision parameter of the innovations. We assume that UUU i are
mutually independent among mortgage loans and distributed as a zero-mean mul-
tivariate Gaussian distribution with r× r precision matrix QUUU . We also assume
that observations within each loan are conditionally independent given the ran-
dom effects. Therefore, the random effects account for the correlation between
these different observations.

Survival process

Following the discrete-time survival formulation used in Chapter 2, we represent
the random variable Ti as the sequence of binary random variables Xi,s that
takes the value 1 if the loan i is fully prepaid at time s = ti and 0 otherwise.
Furthermore, we relate Xi,s with the predictor ηXi,s through a logit link function
as follows

(Xi,s|Xi,s−1 = 0,ηXi,s)∼ Bernoulli(logit−1(ηXi,s))

ηXi,s = νai,s+ zzzᵀi βββ2 +λ(dddᵀi,sUUU i),
(5.2)
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where νai,s is the baseline risk which varies with both time and space and extends
the entire discrete domain of ai ∈ {1, . . . ,A} and s ∈ {1, . . . ,T}. Moreover, βββ2 is
the vector of coefficients related to covariates zzzi and λ is the association parameter
between the survival time and the random effects dddᵀi,sUUU i. Therefore, the random
effects play an important role in both the longitudinal and survival processes.
In the longitudinal process (Equation 5.1), account for the correlation between
repeated measurements and, in the survival process (Equation 5.2), together with
λ, account for the degree of association with the longitudinal outcome.

Following Chang et al. (2013), which decompose the spatio-temporal effects addit-
ively for a survival model, we consider for our joint model νa,s = ν0 +vs+ua+δa,s,
where ν0 is the overall average, vs is the temporal main effect, ua is the spatial
main effect and δa,s is the spatio-temporal interaction. In the following, we de-
scribe the terms vs, ua and δa,s.

Temporal main effects (vs): Let us denote the vector of temporal effects as
vvv = (v1, . . . , vT )ᵀ. As in Chapter 4, we assume that these effects are represented
by a second-order random walk model (see Lindgren and Rue, 2008) which has
the following joint density

vvv|τv ∝ exp
−τv2

T∑
s=3

(vs−2vs−1 +vs−2)2


= exp

(
−τv2 v

vvᵀRvvvv
)
,

(5.3)

where τv is a precision parameter and the T ×T matrix Rv is the so-called struc-
ture matrix (Rue and Held, 2005) defined as (the zeros are not shown)

Rv =



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


.

Spatial main effects (ua): For the spatial effects uuu= (u1, . . . ,uA)ᵀ we assume
an intrinsic conditional autoregressive model (ICAR, see Besag et al., 1991) which
accounts for the fact that close areas might have similar repayment behaviour
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(see, for example, Calabrese and Crook (2020) for default prediction). The joint
density for the ICAR model is described as

uuu|τu ∝ exp
−τu2 ∑

a∼a′
(ua−ua′)2

 , (5.4)

where τu is a precision parameter and a ∼ a′ denotes that the two areas are
neighbours. There are many ways of defining a “neighbour” and ultimately will
depend on the application (Freni-Sterrantino et al., 2018). Here, we consider
the standard definition where two areas are regarded as neighbours if they share
a common border. Another notion of two connected areas, for example, can
be defined in terms of the distance between the centroids of these areas (e.g.
Goodstein et al., 2017; Medina-Olivares et al., 2022b). The exploration of different
ways to define neighbours, however, is beyond the scope of this chapter and the
reader is referred to Banerjee et al. (2014, Ch. 4) for further discussion on this
topic.

For this specification, the corresponding elements of the A×A structure matrix
Ru of Equation 5.4 are

(Ru)aa′ =


ma a= a′

−1 a∼ a′

0 otherwise,

where ma is the number of neighbours of area a. The interpretation of the ICAR
model is made more accessible from the full conditional density given by

(ua|uuu−a, τu)∼N
 1
ma

∑
a′:a∼a′

ua′ ,
1

τuma

 ,
where uuu−a represents the set of spatial effects without the area a. Hence, ua has
a local mean of ∑a′:a∼a′ ua′/ma, which is the average value of the spatial effects
from the neighbours, and a variance that is inversely related to the number of
neighbours ma. That means the more neighbours there are, the more certainty
there is of the effect.

Spatio-temporal interactions (δa,s): For the spatio-temporal interactions
δδδ = (δ11, . . . , δA1, . . . , δ1T , . . . , δAT )ᵀ we follow the approach from Clayton (1996),
and further detailed in Knorr-Held (2000), in which the structure matrix Rδ can
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be derived as the Kronecker product of the structure matrices from the temporal
and spatial main effects, i.e. Rδ =Rv⊗Ru. Then, the corresponding joint density
is (Schrödle and Held, 2011)

δδδ|τδ ∝ exp
(
− τδ2

T∑
s=3

∑
a∼a′

[
(δa,s−2δa,s−1 + δa,s−2)−

(δa′,s−2−2δa′,s−1 + δa′,s)
]2)

, (5.5)

where τδ is the corresponding precision parameter.

In the spatial literature, it is well-known that structured additive predictors
formed by Equations 5.3, 5.4 and 5.5 lead to identifiability problems (see, e.g.
Knorr-Held, 2000; Goicoa et al., 2018). Therefore, we must set constraints over
the random effects vvv, uuu and δδδ. To get appropriate identifiability constraints,
we follow Goicoa et al. (2018) who use reparametrisations over the structure
matrices Rv, Ru and Rδ using spectral decomposition. These reparametrisations
conduct to the following constraints: ∑T

s=1 vs = 0, ∑A
a=1ua = 0, ∑T

s=1 δa,s = 0 for
a= 1, . . . ,A and ∑A

a=1 δa,s = 0 for s= 1, . . . ,T .

5.2.2 Estimation

From Section 5.2.1 we know that the random effects UUU i are shared between the
longitudinal and the survival processes. We have also seen in Chapter 2 that
the main assumption in the joint model approach is that these two processes are
conditionally independent given the random effects (Wulfsohn and Tsiatis, 1997;
Henderson et al., 2000; Tsiatis and Davidian, 2004). Therefore, the joint distri-
bution of the observation variables yyyi = (yi1, . . . ,yi,ti)ᵀ and xxxi = (xi1, . . . ,xi,ti)ᵀ for
loan i conditional on the random effects is

p(yyyi,xxxi|UUU i,Θ) =
ti∏
s=1

p(yi,s|UUU i,Θ)p(xi,s|UUU i,Θ), (5.6)

where Θ represents the vector of parameters included in both processes. It follows
from Equation 5.1 that

p(yi,s|UUU i,Θ) =
(
τY
2π

)1/2
exp

(
−τY (yi,s−ηY i,s)2

2

)

=
(
τY
2π

)1/2
exp

(
−
τY (yi,s− qqqᵀi,sβββ1−ddd

ᵀ
i,sUUU i)2

2

)
,
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and from Equation 5.2

p(xi,s|UUU i,Θ) = [logit−1(ηXi,s)]xi,s [1− logit−1(ηXi,s)]1−xi,s

= [logit−1(νai,s+ zzzᵀi βββ2 +λ(dddᵀi,sUUU i))]xi,s

× [1− logit−1(νai,s+ zzzᵀi βββ2 +λ(dddᵀi,sUUU i))]1−xi,s .

Hence, the contribution of the i-th loan to the observation density is

p(yyyi,xxxi|Θ) =
∫
p(yyyi,xxxi|UUU i,Θ)p(UUU i|Θ)dUUU i

=
∫ ti∏
s=1

p(yi,s|UUU i,Θ)p(xi,s|UUU i,Θ)p(UUU i|Θ)dUUU i,
(5.7)

where p(UUU i|Θ) is as zero-mean multivariate Gaussian with precision matrix QUUU
(Section 5.2.1), i.e. p(UUU i|Θ) = (2π)−r/2|QUUU |1/2 exp

(
−UUUᵀ

iQUUUUUU i/2
)
.

Denote the complete set of observation variables as D = {yyyi,xxxi : i = 1, . . . ,N}.
The joint posterior distribution follows p(Θ|D) ∝ p(D|Θ)p(Θ), where p(D|Θ) =∏N
i p(yyyi,xxxi|Θ) is the overall observation density and p(Θ) the joint prior.

We could theoretically estimate this model specification with simulation-based
schemes as done in Chapter 3 for the joint model with autoregressive terms. As
we noted, this strategy is computationally expensive, or it might be even infeasible
for applications with big datasets. Furthermore, and in line with the estimation
strategy followed in Chapter 4, we propose to use the INLA methodology (Rue
et al., 2009). As mentioned earlier, INLA provides accurate estimations of the
posterior at a lower computational cost and is easily accessible through the R-INLA

software package for R (https://www.r-inla.org/). This methodology applies
to models belonging to the class of latent Gaussian models (LGM), a flexible
and widely used class of models. For example, most structured Bayesian additive
models are of this type (see Fahrmeir and Tutz, 1994; Gelman et al., 2013). The
STJM is also found in this class of models, as shown next.

Following Sections 2.2.4 and 4.2.2, we identify the latent field µµµ= (ηηηY ,ηηηX ,UUU,βββ1,

βββ2,ν0,vvv,uuu,δδδ) which is the set of unobserved variables in the STJM. The terms
ηηηY and ηηηX correspond to the predictors described in Equations 5.1 and 5.2, each
of them with ∑N

i ti elements, and because the rest of the elements are latent
variables, µµµ is referred as a latent field. Moreover, since we assume that µµµ follows
a zero-mean multivariate Gaussian distribution, µµµ is called latent Gaussian field
(Rue and Held, 2005).

https://www.r-inla.org/
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Concretely, we assume that the coefficients βββ1, βββ2 and ν0 follows a zero-mean
Gaussian distribution with precision matrix τfIII, with III the identity matrix of
the corresponding dimension and τf a precision parameter, commonly set as fixed
and close to zero in the model (large prior variance). Moreover, as mentioned
in Section 5.2.1, UUU i|QUUU ∼N(000,Q−1

UUU ) and the terms vvv, uuu and δδδ have priors with
Gaussian kernels (see Equations 5.3, 5.4 and 5.5, respectively). Hence, the preci-
sion matrix of the latent Gaussian field µµµ, which encompasses all the individual
precision matrices, is denoted as Q(θθθ1), with θθθ1 the corresponding set of hyper-
parameters. In our case θθθ1 = (τf ,QUUU ,λ,τv, τu, τδ). Although the dimension of the
matrix Q(θθθ1) can be very large, INLA takes advantage in terms of computation
given the sparsity of this matrix (Rue et al., 2009).

Furthermore, denote as θθθ2 the set of hyperparameters that have a direct im-
pact on the observation density, which in our case is made up only by the pre-
cision parameter τY . We can reformulate Equation 5.6 to the INLA notation
as p(yyyi,xxxi|UUU i,Θ) = ∏ti

s=1 p(Di(s)|µi(s), θθθ222), which makes the overall observation
density p(D|µµµ,θθθ2) =∏N

i
∏ti
s=1 p(Di(s)|µi(s), θθθ222) and, thus can be easily written as

p(D|µµµ,θθθ2) =∏
j∈J p(Dj |µj , θθθ222) by changing the corresponding indexes. This last

expression shows, as required by INLA methodology, that the observation density
is conditional independent (see Section 2.2.5).

Finally, denoting the complete set of hyperparameters as θθθ = (θθθ1, θθθ2), we recover
the same formulation described in Section 2.2.5. In other words, we see that the
STJM belongs to the class of latent Gaussian models, and we can then estimate
it with INLA. In particular, we are interested in the posterior marginals, p(µi|D)
and p(θj |D), specified by

p(µi|D) =
∫
p(µi|θθθ,D)p(θθθ|D)dθθθ

p(θj |D) =
∫
p(θθθ|D)dθθθ−j .

Refer to Section 2.2.5 to see how INLA methodology estimates these integrals.

5.2.3 Bayesian model selection with INLA

We are interested in selecting the model that best predicts the prepayment event
conditional that loan i has not prepaid up to a time point t. To distinguish which
model predicts better conditional on the collected observations, we follow the
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approach of Rizopoulos et al. (2016) and adapt it to both the INLA estimation
procedure and the STJM formulation, as described in the following.

The authors propose to choose the model that minimises the cross-entropy of the
cross-validatory posterior predictive conditional density of the survival outcome.
Concretely, assume that for modelMk ∈{M1, . . . ,MK} at time t, we are interested
in estimating p(Ti|Ti > t,yyyi(t),D−i,Mk) (also termed cross-validatory posterior
predictive conditional density of the survival outcome), where yyyi(t) is the set of
historical observations for the longitudinal outcome of loan i up to time t, i.e.
yyyi(t) = {yi,s : s≤ t}, and D−i represents the data omitting loan i. The best model
Mk̃, with k̃ ∈ {1, . . . ,K}, is considered the one that minimises the cross-entropy
E(− log{p(Ti|Ti> t,yyyi(t),D−i,Mk̃)}), where the expectation is taken with respect
to the model under which the data have been generated (this model does not need
to be part of the K models, as it happens in practice).

To account for the censored cases, Rizopoulos et al. (2016) propose to use the
available information and termed this estimate as the cross-validated Dynamic
Conditional Likelihood (cvDCL) defined as2

cvDCL(t) = 1
Nt

N∑
i=1
−I(Ti > t) log{p(Ti, δi|Ti > t,yyyi(t),D−i)}, (5.8)

where Nt is the number of loans at risk at time t, i.e. Nt =∑N
i=1 I(Ti > t).

As mentioned in Section 5.2.2, the INLA methodology estimates the posterior
marginals of the latent field µµµ and the hyperparameters θθθ. However, once the
model is estimated, INLA also allows generating samples from the approximated
posterior density. We propose to take advantage of this feature to calculate the
expression in Equation 5.8 through Monte Carlo integration, as shown below.

First, note that

p(θθθ|Ti, δi,Ti > t,yyyi(t),D−i)p(Ti, δi|Ti > t,yyyi(t),D−i)
p(Ti, δi|Ti > t,yyyi(t),D−i, θθθ)

= p(θθθ|Ti > t,yyyi(t),D−i),

2We omit the explicit notation on model k, but the conditional in the model is implicitly
assumed.
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and integration of this last expression with respect to θθθ leads to

p(Ti, δi|Ti > t,yyyi(t),D−i)−1 =
∫ p(θθθ|Ti, δi,Ti > t,yyyi(t),D−i)
p(Ti, δi|Ti > t,yyyi(t),D−i, θθθ)

dθθθ

≈
∫ p(θθθ|D)
p(Ti, δi|Ti > t,yyyi(t),D−i, θθθ)

dθθθ

≈
∑
w

p̂(θθθw|D)
p̂(Ti, δi|Ti > t,yyyi(t),D−i, θθθw)∆w.

(5.9)

The integration grid {θθθw,∆w} of θθθ is constructed by INLA when estimating the
model, where ∆w represents the integration weights (see Section 2.2.5).

Moreover, note that the denominator p(Ti, δi|Ti > t,yyyi(t),D−i, θθθw) follows

p(µµµ|Ti, δi,Ti > t,yyyi(t),D−i, θθθw)p(Ti, δi|Ti > t,yyyi(t),D−i, θθθw)
p(Ti, δi|Ti > t,yyyi(t), θθθw,µµµ)

= p(µµµ|Ti > t,yyyi(t),D−i, θθθw),

where µµµ is the latent field described in Section 5.2.2. Thus, integrating this last
expression with respect to µµµ gives

p(Ti, δi|Ti > t,yyyi(t),D−i, θθθw)−1 =
∫ p(µµµ|Ti, δi,Ti > t,yyyi(t),D−i, θθθw)

p(Ti, δi|Ti > t,yyyi(t), θθθw,µµµ) dµµµ

=
∫ p(UUU i,µµµ−UUU i|Ti, δi,Ti > t,yyyi(t),D−i, θθθw)

p(Ti, δi|Ti > t,yyyi(t), θθθw,UUU i,µµµ−UUU i)
dµµµ−UUU idUUU i

≈
∫ p(UUU i|Ti > t,yyyi(t), θθθw,µµµ−UUU i)p(µµµ−UUU i|D, θθθw)

p(Ti, δi|Ti > t,yyyi(t), θθθw,UUU i,µµµ−UUU i)
dµµµ−UUU idUUU i.

We use the notation µµµ = (UUU i,µµµ−UUU i)
ᵀ to separate the random effects UUU i that

strictly depend on the loan i from the rest of the parameters µµµ−UUU i .

Let µµµ(r,w)
−UUU i denotes the rth realisation of the approximated posterior sample with

r= 1, . . . ,R, then p(Ti, δi|Ti> t,yyyi(t),D−i)−1 from Equation 5.9, can be estimated
as

p(Ti,δi|Ti > t,yyyi(t),D−i)−1 ≈
∑
w

p̂(θθθw|D)
p̂(Ti, δi|Ti > t,yyyi(t),D−i, θθθw)∆w

≈
∑
w
p̂(θθθw|D)∆w

∫ p(UUU i|Ti > t,yyyi(t), θθθw,µµµ−UUU i)p(µµµ−UUU i|D, θθθw)
p(Ti, δi|Ti > t,yyyi(t), θθθw,UUU i,µµµ−UUU i)

dµµµ−UUU idUUU i

≈
∑
w
p̂(θθθw|D)∆w

 1
R

∑
r

∫ p(UUU i|Ti > t,yyyi(t), θθθw,µµµ
(r,w)
−UUU i )

p(Ti, δi|Ti > t,yyyi(t), θθθw,UUU i,µµµ
(r,w)
−UUU i )

dUUU i

 .
Furthermore, the integral can be calculated, for instance, with empirical Bayes
or the Laplace method (Tierney and Kadane, 1986). Whichever method is used
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to calculate the integral, denote this term as hi(θθθw,µµµ(r,w)
−UUU i |t). Hence, cvDCL(t)

can be estimated as

ĉvDCL(t)INLA = 1
Nt

N∑
i=1

I(Ti > t)×

× log
{∑
w
p̂(θθθw|D)∆w

[
1
R

∑
r
hi(θθθw,µµµ(r,w)

−UUU i |t)
]}
. (5.10)

To get an estimate of the Monte Carlo variance of Equation 5.10, we use what
is known as the Delta method (Ver Hoef, 2012). This method approximates a
function of random variables using a Taylor series expansion around the means.
In our case, we can identify the random variables as hiwr|t = hi(θθθw,µµµ(r,w)

−UUU i |t) which
are independent for all the loans i, the integration points w and the realisations r.
Denote miw|t = E(hiwr|t) and σ2

iw|t = Var(hiwr|t) and their estimations, respect-
ively, as m̂iw|t = 1

R

∑
r ĥiwr|t and σ̂2

iw|t = 1
R−1

∑
r(ĥiwr|t− m̂iw|t)2. Then, the first

order approximation of ĉvDCL(t)INLA as a function of the vector hhh|t = {hiwr|t}
around the vector of means mmm|t = {miw|t} is

ĉvDCL(t)INLA = g(hhh|t)≈ g(mmm|t) +
∑
i,w,r

(hiwr|t−miw|t)
∂g

∂hiwr|t

∣∣∣∣∣
hhh|t=mmm|t

. (5.11)

Note that by construction E(g(hhh|t)) ≈ g(mmm|t). Moreover, the partial derivative
terms follow

∂g

∂hiwr|t

∣∣∣∣∣
hhh|t=mmm|t

= I(Ti > t)
Nt

p̂(θθθw|D)∆w

R
∑
w p̂(θθθw|D)∆wm̂iw|t

.

We compute the variance of the expression in Equation 5.11. Given that the terms
hiwr|t are independent and using the partial derivative expression from above, it
follows that

Var(ĉvDCL(t)INLA)≈
∑
i,w,r

Var(hiwr|t−miw|t)

 ∂g

∂hiwr|t

∣∣∣∣∣
hhh|t=mmm|t


2

=R
∑
i,w

σ̂2
iw|t

 ∂g

∂hiwr|t

∣∣∣∣∣
hhh|t=mmm|t


2

= 1
N2
t R

∑
i

I(Ti > t)
∑
w σ̂

2
iw|t(p̂(θθθw|D)∆w)2

(∑w p̂(θθθw|D)∆wm̂iw|t)2 .

(5.12)

The estimation of cvDCL(t) follows Equation 5.10 and its variance Equation 5.12.
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Originally, Rizopoulos et al. (2016) propose to estimate the cvDCL(t) with pos-
terior samples from an MCMC simulation as detailed in Appendix C.1. In order
to compare how suitable our estimate is relative to the author’s, we perform a
comparison analysis for simulated datasets described in Appendix C.2.

5.3 Full prepayment prediction on US

mortgages

5.3.1 Data

We use the Single Family Loan-Level Dataset publicly provided by Freddie Mac3.
This mortgage dataset has loan-level granularity with application covariates and
monthly performance information and is periodically updated. The training data-
set includes the loans granted from June, 2015 to November, 2015 and followed
until December 2019, hence the maximum period of performance records per loan
is 4.5 years (54 months). This corresponds to 57,258 borrowers with a total of
2,559,056 observations. Out of these borrowers, 16,239 of them full prepaid their
mortgage loans during the study period. Figure 5.1 shows the distribution of the
full prepayment events in time.
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Figure 5.1: Distribution of the full prepayment events in time.

The time-fixed covariates included in the survival process and described in Equa-
3Visit https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset.

https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
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tion 5.2 by the vector zzzi are the following4

• cltv is the loan-to-value ratio based on the original mortgage loan amount plus
any other mortgage loan amount divided by the property’s purchase price.

• orig_upb is the original unpaid principal balance of the mortgage on the note
date.

• cnt_units denotes whether the mortgage is a one- (= 1, 93% of the loans),
or more than one-unit property (= 0, 7% of the loans).

• dti is the debt to income ratio. It corresponds to the borrower’s monthly debt
payments divided by the total monthly income used to underwrite the loan.

• int_rt is the interest rate given at the origination of the credit.

• term corresponds to the number of scheduled monthly mortgage payments. It
is divided between short-term loans, with terms less than or equal to 15 years
(= 0, 19% of the loans) and long-term loans, with terms greater than 15 years
(= 15, 81% the loans).

• loan_purpose indicates whether the mortgage loan purpose is a cash-out
refinance loan (= 0, 22% of the loans)5, no cash-out refinance loan (= N, 25%
of the loans) or purchase (= P, 53% of the loans).

• cnt_borr is the number of borrowers obligated to repay the mortgage. Either
one borrower (= 0, 48% of the loans) or more than one (= 2, 52% of the loans).

Table 5.1 shows descriptive statistics of the numeric covariates defined above. As
a pre-processing step, these variables are standardised to have a zero-mean and
standard deviation of 1.

Concerning the longitudinal outcome, we are interested in a variable that can be
simple and indicative of early repayments. For example, in Chapter 4, we saw
for a consumer loans dataset that those borrowers who have paid more than the
amount that was due are correlated with the prepayment event. For this mortgage
loan dataset, we follow the same rationale of looking for a candidate variable that
measures the distance between what was paid and what was due. Moreover, in

4See, for example, Wang et al. (2020); Hu and Zhou (2019) who use this dataset in similar
contexts.

5A cash-out refinance mortgage loan is a loan in which the use of the amount is not limited
to specific purposes.
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Covariate N Mean SD Q2.5% Q25% Q50% Q75% Q95%

cltv 57258 73.50 16.97 38.00 65.00 79.00 85.00 95.00
orig_upb∗ 57258 256.32 121.87 88.00 161.00 241.00 336.00 475.00
dti 57258 34.87 9.14 19.00 28.00 36.00 42.00 48.00
int_rt 57258 3.93 0.44 3.00 3.75 4.00 4.25 4.62

*1,000 USD.
Table 5.1: Descriptive statistics for numeric covariates in the dataset.

terms of simplicity, we are looking for a variable that can be described by a simple
functional structure, such as a linear relationship. This simplifies the longitudinal
structure and, therefore, the model estimation.

The following variable encompasses those above. Assume that for a generic loan,
we denote the interest rate given at origination as i with a monthly instalment
equal to A. Then, the sum of the total amount paid until time t, including
the capitalisation of the inflows, is A+A(1 + i) + . . .+A(1 + i)t−1. Since the
interest rate is commonly low, especially for mortgage loans (the 95% quantile for
our dataset is 4.62%, which is equivalent to a monthly interest rate of 0.0038%.
See Table 5.1), we can do a first-order Taylor series expansion of the previous
expression with respect to i around zero, which is simple At+At(t−1)i/2. Note
that for the first periods, the linear term of this expression dominates, which is
what we are looking for.

To make the longitudinal outcome more comparable among different loans, we
finally define the following variable yt =∑t−1

s=0(1+ i)s/T , where T is the length of
the study (54 months in our case), and it only has a scaling purpose. Note that
the following expression also holds for yt = (1+i)t−1

iT . If the total amount paid
by the borrower is greater than what it was due at time t, then the observed yt
should have a larger slope than the theoretical curve.

We use basic instalment relationships to calculate the observed yt concerning the
unpaid principal balance. Denote the original unpaid principal balance as P0, the
current unpaid principal balance at time t as Pt and the term of the loan as M ,
then an equivalent expression for yt is

yt = (P0−Pt)
P0

(1 + i)M −1
iT

.

Figure 5.2 shows the aforementioned longitudinal outcome for our dataset. To
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facilitate visualisation, we have highlighted in red dashed line loans that evidenced
the event of full prepayment, and in blue dotted line, loans that did not.
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Figure 5.2: Evolution of the longitudinal outcomes. For visual purposes, we highlight bor-
rowers who full prepaid the loan (dashed line in red) and borrowers that are censored (dotted
line in blue).

Regarding geographical information, properties are located in 8 states: New York,
New Jersey, Connecticut, Massachusetts, Rhode Island, Maine, New Hampshire
and Vermont. These states are divided into a total of 123 areas given by the first
three digits of the postcode. The number of loans distributed among these areas
is shown in the map depicted in Figure 5.3. In addition, Figure 5.4 indicates
the corresponding full prepayment rates, calculated as the total number of events
divided by the number of granted loans in each area. From this last figure,
although the rates include all events regardless of when they occurred, spatial
clustering is observed and can be considered a first check to support the inclusion
of spatial effects.

5.3.2 Models and results

Following the methodology described in Section 5.2.2, we estimate three specific-
ations of joint models. All three include the same time-fixed covariates described
in Section 5.3.1 and also the same structure of the longitudinal outcome (see
below). Rather the differences come from the assumed baseline terms νa,s (see
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Figure 5.3: Number of loans distributed by area.

Equation 5.2). Concretely, the longitudinal outcome follows

(Yi,s|ηY i,s, τY )∼N(ηY i,s, τ−1
Y )

ηY i,s = β01 +β11s+U0i+U1is

(U0i,U1i)ᵀ ∼N2(0,Q−1
UUU ),

(5.13)

where the covariance matrix Q−1
UUU is parameterised via marginal precisions τU0

and τU1 , and the pairwise correlation ρ01 as follows

Q−1
UUU =

 1/τU0 ρ01/
√
τU0τU1

ρ01/
√
τU0τU1 1/τU1

 . (5.14)

The mixed-effect model from Equation 5.13 is known as intercept-slope random
effects. This specification is justified by the fact that the longitudinal outcome
approximates a linear trend when the interest rate is low, as shown in Section
5.3.1. Moreover, the survival process for the three models follow

(Xi,s|Xi,s−1 = 0,ηXi,s)∼ Bernoulli(logit−1(ηXi,s))

ηXi,s = νai,s+ zzzᵀi βββ2 +λ(U0i+U1is),
(5.15)

where νai,s is the baseline risk. Table 5.2 describes the three models’ specification
for νa,s. Note that M1 is a joint model in discrete time, similar to the ones
estimated in Chapter 3 (univariate, without autoregressive terms). M2, however,
is new to the literature in the sense that, as far as we know, there is no study of a
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Figure 5.4: Full prepayment rate distributed by area.

joint model with spatial main effects in discrete time. The work of Martins et al.
(2016) can be seen as the closest one, which presents a joint model that includes
the spatial main effects in a Weibull survival sub-model. Finally, M3 is the model
that encompasses all the effects, that is, the temporal and spatial main effects as
well as the interactions.

Id Temporal Effects Spatial Effects S-T Interactions νa,s

M1 Yes No No ν0 +vs

M2 Yes Yes No ν0 +vs+ua

M3 Yes Yes Yes ν0 +vs+ua+ δa,s

Table 5.2: Specification of the joint models. M1 only includes the temporal effects in the
baseline hazard. M2 has both the temporal and spatial main effects, and M3 includes the
interactions among them apart from both main effects.

Table 5.3 shows the parameter estimates for the three models. We observe that
the parameters strictly associated with the longitudinal outcome, β01 and β11,
are consistent among M1, M2 and M3. However, we notice differences in the
covariates associated with the survival process. For instance, the coefficient re-
lated to cltv under the estimation of M1 is 0.301 and its 95% posterior credible
interval does not include zero. The positive sign suggests that the higher the
cltv, the greater the probability of prepaying in full. Yet, when estimated under
specifications M2 and M3, although the sign remains positive, the effect of this
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covariate decreases and is not as significant as before.

In the same line, we notice that the effect of dti for M1 shows a negative rela-
tionship with the prepayment. Similar results were found in Chapter 4 for the
consumer loans dataset. However, when we include the spatial effects, either with
M2 orM3, the relation of high dti with a low probability of full prepayment is not
entirely conclusive, even shifting the posterior marginals to the positive values.

For the other covariates, we found agreeing results among the three models. For
example, the original unpaid principal balance, orig_upb, shows a positive rela-
tionship with the prepayment, which is also supported by the prepayment models
from Chapter 4. Moreover, it is less likely to prepay in full if the mortgage is
more than one-unit property (cnt_units), if its term is longer than 15 years
(term_g15 ), if the number of borrowers is greater than 1 (cnt_borr2 ) or if the
purpose of the loan is to purchase rather than refinance (loan_purpose).
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The interest rate granted at origination, int_rt, is expected to play an essential
role in the decision of full prepayment since if the reference interest rates fall
compared to the one granted, it is more attractive to renegotiate the credit. As
seen in Table 5.3 for all three models, its effect is positive, which suggests that
the higher the interest rate given at origination, the greater the probability of full
prepayment. This has also been seen in Chapter 4. However, when we include
the spatial effects, we note that the associated coefficient also increases.

Regarding λ, the parameter that associates the random effects of the longitudinal
outcome and the survival process, we observe that the three models estimate a
significant positive effect, as expected since the more is paid off from what is owed,
the more likely it is to prepay in full. However, the magnitude of the estimate
differs among the models. The largest one is due to M1 with a mean of 0.201.
When we add the spatial main effects in M2, we see a decrease of the mean to
0.146. Yet, when we add the spatio-temporal interactions in M3, we observe a
value in between, with a mean of 0.171.

Furthermore, we obtained similar results among the three models regarding the
hyperparameters associated with the longitudinal outcome. Namely, the precision
of the innovations τY and the elements τU0 , τU1 and ρ01 of the precision matrix QUUU
(see parametrisation in Equation 5.14). However, the precision of the temporal
main effects τv changes among the three models. We see a mean of 3.004, 2.435
and 0.802 for models M1, M2 and M3, respectively. That raises the question of
how different the estimated temporal main effects for each model are. Figure
5.5 shows the estimated temporal main effects for the three models. Models M1

and M2 overlap for much of the study period, and M3 shows some differences, in
particular for the first periods, but, overall, the effect of the three models is fairly
comparable.

To compare the performance of the models, we follow the procedure described in
Section 5.2.3. We estimate the ĉvDCL(t)INLA (Equation 5.10) for six evaluation
times t, ranging from 12 to 42 months with an increment of 6 months. The
results are shown in Table 5.4 (we deliberately omit the word “INLA” to shorten
the notation). Nt is the number of borrowers at risk, and the values in brackets
are the estimates of Monte Carlo standard deviation derived from Equation 5.12.
It is worth noting that the metric value should be compared across the models for
one value of t, that is, all the values that belong to the same row since, between
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Figure 5.5: Temporal main effects estimated by the three models. The error bars represent
the estimated 95% credible intervals.

the rows, there is an evident overlap of datasets. From the table we observe
that both M2 and M3 outperform M1. Adding the latent spatial component can
increase the model’s performance for this dataset. However, when we compare
models M2 and M3, that is when we add on top of the spatial main effects, the
spatio-temporal interactions, the improvements are not as clear as before.

Nt M1 M2 M3

ĉvDCL(t= 12) 53963 1.4438 (5.69e-06) 1.4244 (1.03e-05) 1.4304 (5.72e-05)
ĉvDCL(t= 18) 51489 1.2231 (4.01e-06) 1.2143 (7.57e-06) 1.2165 (2.20e-05)
ĉvDCL(t= 24) 49607 1.0349 (3.58e-06) 1.0306 (6.91e-06) 1.0310 (1.35e-05)
ĉvDCL(t= 30) 47839 0.8472 (3.27e-06) 0.8450 (6.40e-06) 0.8448 (1.15e-05)
ĉvDCL(t= 36) 46059 0.6453 (2.91e-06) 0.6438 (5.68e-06) 0.6439 (1.08e-05)
ĉvDCL(t= 42) 44611 0.4656 (2.52e-06) 0.4644 (4.96e-06) 0.4648 (1.00e-05)

Table 5.4: Comparison of model performance. The value in brackets is an estimate of the
Monte Carlo standard deviation.

To further explore the analysis, we assign the overall ĉvDCL(t) to the corres-
ponding area and compare from which areas the major gains are obtained for
modelsM2 andM3 with respect to modelM1. Figure 5.6 shows two maps for the
segmented ĉvDCL evaluated at t= 12. The left one corresponds to the difference
betweenM2 andM1 (M2−M1), and the right one toM3−M1. From both maps,
we observe that the major contributions to the overall metric mainly come from
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the middle-left (west, Rochester area) and middle-right parts (east, Boston area)
of the maps. These differences are increased for model M2.

M2−M1 M3−M1

−0.0016
−0.0012

−0.0008
−0.0004

0.0000
cvDCL(t=12)

Figure 5.6: Difference between the ĉvDCL(t= 12) for models M2 and M3 with respect to M1

and segmented by area.

Moreover, when we choose a different evaluation time, for instance, t = 24 (see
Figure 5.7), now the contributions coming from the Rochester area are not as
important as for t = 12. Rather the differences come from areas of New Jersey,
New York City and Boston. Therefore, when we include spatial effects, we see that
the consistent improvements in the performance evaluated in different periods are
not exclusively attributed to a particular area.

5.4 Discussion

Chapters 3 and 4 show that the joint model approach has advantages over the
survival approaches commonly used for credit-related applications (Stepanova
and Thomas, 2002; Bellotti and Crook, 2014; Wang et al., 2020). In particular,
we have explored this approach’s flexibility to model one or more longitudinal
outcomes with different specifications. In this chapter, we keep exploring the
joint model flexibility, but now we focus on finding better representations of
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Figure 5.7: Difference between the ĉvDCL(t= 24) for models M2 and M3 with respect to M1

and segmented by area.

the survival predictor rather than in the longitudinal part. Concretely, we are
interested in including spatial and spatio-temporal effects in the baseline hazard
and studying how this can change prediction performance for a prepayment model
for US mortgages. This decision is supported, first, by the evidence that including
spatial effects in survival models can lead to better predictions (Calabrese and
Crook, 2020; Medina-Olivares et al., 2022b). And second, as we have mentioned
before, by jointly modelling the longitudinal and survival processes, we have an
appealing prediction framework for credit modelling.

In this chapter, we make four contributions to the literature. First, we present the
Spatio-Temporal Joint Model (STJM), a joint model formulated in discrete time
that includes a flexible baseline hazard in the survival predictor. This baseline
hazard is decomposed between temporal and spatial main effects and the interac-
tions among them. For this latter, we leverage the approach from Clayton (1996)
in which the structure matrix is built by the Kronecker product of the main ef-
fects structure matrices. Moreover, we follow the Goicoa et al. (2018) approach
to get appropriate identifiability constraints by using spectral decomposition over
the structure matrices.
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Second, to estimate the STJM in a large dataset, we formulate the model using
the INLA methodology (Rue et al., 2009) and implement it in the R-INLA package
(https://www.r-inla.org/). This implementation allows us to scale the model
to a dataset with 57,258 borrowers with 2,559,056 total observations. As far as
we know, this is the largest sample size used in a joint model application.

Third, we introduce a modified version of the cross-validated Dynamic Condi-
tional Likelihood proposed by Rizopoulos et al. (2016). Our version takes ad-
vantage of the estimations already performed by the INLA methodology, which
is not based on posterior MCMC samples as the original version, reducing compu-
tational costs. We compare the original and the proposed versions by a simulation
study that demonstrates adequate results (see Appendix C.2).

Fourth, we apply the proposed approach to predict the full prepayment event in
US mortgage loans. The analysis consists of three models that measure (1) only
the temporal main effect (M1), (2) the addition of the temporal and spatial main
effects (M2) and (3) the composition of both main effects plus their interactions
(M3). The parameter estimates generally agree between the three models. How-
ever, a notable difference comes from the covariate debt to income ratio dti (sum
of the borrower’s monthly debt payments divided by the monthly income). When
no spatial effects are included, the parameter estimate associates greater values
with a lower probability of prepayment, but this relation no longer holds when
we have the spatial component.

We also find that spatial effects can consistently improve the joint model’s predic-
tion performance for different evaluation times. Furthermore, we see that these
improvements are not strictly associated with a particular area when we compare
the performance evaluated at other times. However, when the spatio-temporal
interactions are included, the performance gains are less clear to the model that
does not have them.

This study yields exciting results and undoubtedly opens the way for further re-
search. For instance, to study the implications in both model estimation and
predictions when we include external TVCs in the survival process. Examples of
these TVCs are the macroeconomic variables, and the idea is to explore how the
changes in the general conditions of the economy affect the model performance.
This has been done previously in credit survival models (Bellotti and Crook,

https://www.r-inla.org/
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2009a; Djeundje and Crook, 2018; Dirick et al., 2019). Since these TVCs are ex-
ternal, we can assume that the occurrence of a particular event does not influence
their paths; therefore, no borrower-specific longitudinal model is needed for these
covariates. That can lead to a more general joint model framework that makes
the best of individual predictions, including the economic conjuncture.





Chapter 6

Concluding Remarks

6.1 Summary

Survival models are appealing for modelling credit events. Unlike classification
approaches, they can provide information about when the event is likely to occur.
Moreover, they present a flexible framework to include time-varying covariates
(TVCs) and censored observations. Similarly, the inclusion of TVCs has been
shown to improve prediction performance. However, the survival approaches
commonly used in this context cannot handle potential endogeneity in the TVCs
concerning the event. Also, they do not offer a prediction framework incorpor-
ating the synchronised mutual evolution between survival processes and TVCs.
As a result, the standard practices for building survival models for predictive
purposes are either to lag the TVCs with respect to the event’s occurrence or
to carry their last observations forward. Unfortunately, neither appears to be
optimal for prediction.

This thesis’s general objective addresses whether handling for potential endogen-
eity on the TVCs can improve the predictive performance in the survival context.
To this mean, we explore a new way to conduct survival analysis, assuming that
survival time and the endogenous TVCs (also termed longitudinal outcome) are
stochastic processes linked through a latent structure. Initially developed in med-
ical research, this novel approach is known as the joint model of longitudinal and
survival data. Although we can readily find analogies between medical and credit
risk applications, they have significant distinctions. Therefore, we propose a series

121
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of innovations to make the approach suitable for credit-related applications.

Specifically, these distinctions relate to the nature of survival time, the evolution
of the endogenous TVCs, scalability of the joint models to large samples and the
type of information available in credit data.

In terms of the nature of survival time, credit loan data are usually recorded every
month, and events, such as the default or the full prepayment, are defined based
on the realised payment on the billing date (e.g. end of the month), making the
time to event intrinsically discrete. That is not the case in medical applications,
where most literature assumes time as continuous. Moreover, we commonly have
performance variables in credit data, such as unpaid principal balance. These
records are expected to be highly correlated to the previous ones since we have
scheduled curves, and most borrowers comply with them. Therefore, any estim-
ated deviation from it can be used as an early warning of the probability of the
event occurring.

Regarding scalability, the standard estimation procedures of joint models are
computationally expensive. Hence, to apply these models in environments where
datasets are large and sometimes with more than one longitudinal outcome, we
need alternative ways both to estimate them and to make individual survival pre-
dictions. Finally, in credit datasets, access to variables such as the spatial location
of the borrower is not uncommon, and we can then leverage this information into
the modelling framework.

The contributions are developed in Chapter 3, 4 and 5.

In Chapter 3, we make two main contributions, one from an applied perspective
and the other methodological. In terms of application, we introduce joint model-
ling for discrete survival data in the credit context. Notably, we take advantage
of the flexibility of the approach and build five joint models to predict default
in US mortgages. The models have different specifications for the longitudinal
outcomes and the link function between both processes. From a methodological
point of view, we propose to include autoregressive terms in the longitudinal sub-
model. This innovation is motivated by the autocorrelation found in the data
and the predictive implications that these additional terms can have. We study
the proposed joint model via simulation, recovering the true parameter values for
different settings. The empirical results show that we can improve the model’s
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discrimination performance by including autoregressive terms.

In Chapter 4, we present four contributions: two methodological and two empir-
ical. From the methodological point of view, first, we propose a computation-
ally efficient implementation of a joint model with two longitudinal outcomes.
The model is framed using the INLA methodology, which allows us to scale it to
credit data environments. To illustrate the proposed implementation, we conduct
a simulation analysis showing satisfactory recovery of the true parameter values
considering different sample sizes. Second, we offer a methodology for individual
survival predictions based on the Laplace method. The proposal is theoretic-
ally more accurate than empirical Bayes techniques and, unlike simulation-based
approaches, is meant to be applied in situations where several out-of-sample in-
dividuals need to be evaluated.

From an empirical standpoint, we apply the multivariate joint modelling ap-
proach in credit literature for the first time. Specifically, we build predictive
joint models for full prepayment events aimed at consumer loans in Germany. In
addition, we show that the multivariate version can outperform traditional sur-
vival approaches in calibration and discrimination metrics in out-of-sample and
out-of-time settings.

In Chapter 5 we delve into finding better representation in the survival predictor
leveraging the spatial information at hand. To this extent, we make four con-
tributions. First, we introduce the Spatio-Temporal Joint Model (STJM), which
has a flexible baseline hazard decomposed into temporal and spatial main effects
and the interaction among them. Following Clayton (1996), we represent the
interaction as the Kronecker product of the main effects structure matrices. To
make the STJM well-posed, we set identifiability constraints derived from spec-
tral decomposition, as suggested by Goicoa et al. (2018). This approach allows us
to study the survival effect due to the spatio-temporal correlation between events
happening within nearby areas.

The second contribution relates to the scalability of the STJM implementation.
As in Chapter 4, we formulate the approach using INLA, which permits us to
apply it in a training sample of 57,258 borrowers, representing 2,559,056 obser-
vations, the largest in this context as far as we know.

Third, we introduce a new implementation of the cross-validated Dynamic Con-
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ditional Likelihood (cvDCL) proposed by Rizopoulos et al. (2016). The cvDCL
is a cross-entropy estimate of the survival outcome’s cross-validatory posterior
predictive conditional density and lets us compare the predictive performance
among different models. The advantage of our proposal is computational since
we do not rely on simulation-based schemes as originally introduced. Rather we
use the estimates already computed by INLA.

And finally, from an empirical perspective, we apply the STJM to predict full
prepayment in US mortgage loans, obtaining that the inclusion of spatial ef-
fects consistently improves the performance for different evaluation periods. In
contrast, the spatio-temporal interactions do not provide significant gains when
considering the main effects.

6.2 Limitations

Three limitations associated with the joint modelling approaches used throughout
this thesis are important to note.

First, we have seen that the estimation is computationally challenging compared
to standard survival approaches. The main reason, in the discrete survival case,
is the presence of random effects to represent the association between survival
and longitudinal processes1. Maximum likelihood estimations comprise the com-
putation of intractable integrals when marginalising over these terms (Equation
2.11), requiring numerical integration techniques. On top, we need additional
assumptions and computations to estimate standard deviations. On the other
hand, the Bayesian paradigm offers a flexible framework without the need for
asymptotic assumptions or highly customised estimation procedures. This path
allowed us to include autoregressive terms and different association structures,
as seen in Chapter 3. However, the inference is performed on the full posterior
distribution, increasing the parameter space (Θ and UUU). MCMC methods, such
as NUTS, are appropriate in these cases but are also computationally demanding,
especially in credit data environments.

Second, we rely on the INLA methodology to scale the joint modelling. As seen
in Section 2.2.5, INLA defines a large Gaussian latent field µµµ conditional on a

1In the continuous case, the survival function is an integral, rather than a simple multiplic-
ation, which adds additional numerical complexities (see Section 2.1.2).
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set of hyperparameters θθθ. For the INLA methodology to work well, the number
of hyperparameters should not be too large. As described, INLA builds an in-
tegration grid in the hyperparameter space; therefore, a larger-dimensional space
not only increases the computational burden but also makes approximating the
marginal posterior distributions based on a discrete grid more daunting. A direct
consequence of this limitation, for example, would be to implement joint models
including a more significant number of correlated random effects specific to the
borrower since we increase the dimension of the precision matrix (QUUU ). INLA
would currently allow us to consider normally distributed random effects with a
maximum dimension of 5. However, the results of Chapter 4 show that consid-
ering the correlation between random effects of different longitudinal outcomes
did not necessarily imply significant improvements. To this extent, one option is
if we wanted to include more TVCs in the specification of the model, each with
their corresponding borrower-specific random effects, we could constrain the hy-
perparameters of those corresponding correlations to be zero and hence reduce
the dimensionality.

And finally, in Section 2.1.2, we describe three types of censored observations
related to when the true event is known to have happened (left, interval or right-
censoring). That is an important distinction when specifying the proper survival
method. In our case, we have considered right-censoring, which is sensible for the
data at hand. However, another relevant consideration in survival contexts relates
to the censoring mechanism. We have assumed that censoring is non-informative
to the survival time, i.e. the reasons that some borrowers were censored at time
t are unrelated to the event. Informative censoring, on the other hand, happens
when borrowers withdraw from the study due to reasons related to the event.
An example of a situation where censoring would be informative in our context
is when the lender sells a portfolio to a third party that comprises several loans
close to default. In this case, the lender would selectively reduce the events, and
the validity of the statistical analysis obtained through a joint model would be in
check. Methods to deal with informative censoring in a joint model framework
have been proposed (Papageorgiou and Rizopoulos, 2021). Sensitivity analysis,
for example, emulates different scenarios for the association between censored
and event observations so that judgments can be drawn that are not solely based
on criteria subject to the observed data.
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6.3 Recommendations for future research

As a new methodological approach in the credit context, we envision several lines
of future studies.

In Chapter 3, we include autoregressive terms of order 1 in the application, ob-
taining improvements in discrimination compared to specifications that do not
have these terms. A natural route would incorporate higher-order terms or even
evaluate other specifications to address the same goal of handling serial correla-
tion and its implications in the predictions. Examples of alternative specifications
can be random walks of order 1 or 2, similar to those used to identify the baseline
hazard function in Chapters 4 and 5. As in the version of the joint model with
autoregressive terms, the temporal effects of each TVC associated with the bor-
rower would be thought of as a replication of a stochastic process with shared
hyperparameters, the same for the entire population and inferred from the data.
With their appropriate constraints, both random walk specifications are relat-
ively straightforward to implement with INLA. On the contrary, if we wanted to
assume that the TVCs of each borrower incorporate a process that does not share
the hyperparameters, INLA would be out of the choices due to the limitations
we mentioned above.

Moreover, in all three chapters, we assume that the effect between the longitudinal
and survival processes is represented by an association parameter λ and a function
of the longitudinal predictor (see Equation 2.9). However, there may be situations
where relaxing some of these assumptions or including terms that account for
additional effects make sense. For instance, when the strength of the association
between the TVCs and survival processes is considered time-dependent, i.e. λ(t).
Similar studies unrelated to joint models have been applied in the credit risk
literature (e.g. Djeundje and Crook, 2019a; Calabrese and Crook, 2020; Leow
and Crook, 2016). Some of the TVCs employed by the authors are potentially
endogenous but have not been treated as such. Therefore, it would be interesting
to investigate the value that joint models can bring in these circumstances. In the
joint model literature, this specification has been introduced for continuous-time
showing that the dynamic prediction can be improved (Andrinopoulou et al.,
2018). The authors estimate the model via MCMC. A genuine question will be
how well this approach scales to our needs or if we require alternative estimation
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procedures. INLA would not handle this sort of specification. However, a recent
promising method, inlabru (Bachl et al., 2019), extends the possibilities of INLA
to more general nonlinear predictors, such as in the case of the joint model with
a time-varying association parameter. The inlabru method adds a linearisation
step in the INLA estimation pipeline and is available through the R package
inlabru2.

The inlabru method would also allow us to include a more flexible link function,
such as asymmetric ones. When there is a rare event, such as the default in
mortgage loans (Chapter 3), it has been shown that we can underestimate the
probability of the event by using symmetric link functions, such as the logit
(Calabrese and Osmetti, 2013). Based on the extreme value theory, some authors
have proposed using the generalized extreme value (GEV) cumulative distribution
function (Calabrese et al., 2016) to model the tail of the response curve for values
close to 1 (rare event). The GEV distribution is flexible because it has a parameter
that controls the shape of the tail. In the context of survival analysis for credit
defaults, the GEV link function has shown better results than symmetric links
(Calabrese and Crook, 2020). The joint model with a GEV link function could
be, in principle, estimated through inlabru, where the parameter associated with
the GEV distribution can be estimated thanks to the linearisation step.

Another promising avenue of research is when we want to model multiple types of
events. For example, if we are interested in estimating the profit of a loan, we can
consider default and prepayment events as competing risks that affect the final
yield (Banasik et al., 1999; Bhattacharya et al., 2019). The traditional approach
is cause-specific and proposes separate hazard regressions, one for each cause and
considering the events associated with the other cause as censored observations.
However, we can use a joint model approach if we are interested in estimating the
association of endogenous TVCs with each cause (Huang et al., 2011; Rizopoulos,
2012).

In the same line of possible applications related to credit, we can design a joint
model for stress testing. Stress testing reckons the model’s estimations in scen-
arios that could lead to significant losses and are part of the Basel Accords require-
ments if the Bank wants to use internal models (BCBS, 2004). In this context,
we can think of a joint model that estimates the probabilities of default where the

2https://inlabru-org.github.io/inlabru/.
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evolution of the longitudinal processes is pushed to extreme scenarios. Moreover,
the joint modelling approach has no problem including exogenous TVCs, such
as macroeconomic variables, which are relevant when designing adverse economic
conditions (Wang et al., 2020). The estimation of the joint model with exogenous
TVCs follows similarly as already described in Section 2.2 with the exception that
zzzi now depends on time. Finally, as we mentioned in Section 4.5, lenders offer
various products whose performances are known over time. The use of these mul-
tiple sources of data is beneficial for prediction. However, when the frequency of
these records is different between products, the data are commonly aggregated,
losing valuable information. That is the case with transactional data used for
monthly timescale models. Nevertheless, the joint modelling approach does not
restrict us from using different time scales between both processes. Therefore,
we could eventually link information with a higher granularity in the monthly
prediction.



Appendix A

Discrete-Time Joint Model with
Autoregressive Terms

A.1 Estimation of Cox model for joint model

simulated data

We use the largest simulated data detailed in Section 3.3 (10,000 subjects) and
estimate a Cox model where the longitudinal outcome is included as observed
(see Table 3.4). We sampled from 3 independent chains with overdispersed start-
ing points, each with 4,000 and 2,000 iterations for the warm-up and sampling
periods. Following the same general diagnosis procedure described in Section 3.3
concerning the NUTS sampler, no problems were detected. Table A.1 summarises
the parameter estimations. For this model specification under these simulated
data, we observed that the 5%-95% credible intervals do not include the true
parameter value.

M0

True Mean SD 5% 95%
β12 2.00 1.780 0.061 1.681 1.878
β22 1.00 0.836 0.049 0.756 0.918
λf 1.00 0.752 0.024 0.713 0.792

Table A.1: Estimations of M0 (Cox) for the largest simulated sample.
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A.2 Comparing simulations with and without

autoregressive term

We are interested in quantifying the relevance of adding at least one autoregress-
ive term in the longitudinal outcome compared to the case with no autoregressive
terms. To do so, we perform two simulations analysis. The first one uses the same
simulated data from Section 3.3 (10,000 borrowers) and estimates a joint model
without the autoregressive term (φ = 0), which is analogous to the specification
M3 in the empirical analysis. We call this model M̃3. The second one simulates
data as if generated by a joint model without an autoregressive term and estim-
ates a joint model with an autoregressive term. We call this model M̃5. The
results are shown in Table A.2. We observed that for both models, despite being
misspecified for the data, the 5%-95% credible intervals of the parameters related
to the covariates of the event process include the true parameters. The differ-
ences come from the longitudinal part. We observed that M̃3 tries to compensate
for misspecification overestimating the fixed effect β01, the variability of the ran-
dom effects (σU0 and σU1) and the variability of the error terms (σ). However,
when the joint model generates the data without an autoregressive term, and we
estimate a joint model with an autoregressive term (M̃5), we observe that the
parameters related to the longitudinal outcome are closer to the true values.

M̃3 with data from M̃5 M̃5 with data from M̃3

True Mean SD 5% 95% True Mean SD 5% 95%
β12 2.00 1.989 0.070 1.873 2.107 2.00 2.086 0.084 1.949 2.225
β22 1.00 0.937 0.054 0.849 1.026 1.00 1.114 0.070 1.000 1.230
λf 1.00 0.990 0.032 0.937 1.043 1.00 1.021 0.051 0.939 1.105
β01 -0.30 -0.473 0.019 -0.505 -0.442 -0.30 -0.291 0.012 -0.311 -0.271
φ 0.40 0.00 0.008 0.002 0.004 0.011
σ 1.00 1.044 0.002 1.042 1.047 1.00 1.002 0.001 1.000 1.005
σU0 1.20 1.945 0.014 1.921 1.969 1.20 1.168 0.010 1.152 1.184
σU1 0.05 0.090 0.001 0.089 0.092 0.05 0.050 0.001 0.049 0.051
ρU -0.20 -0.196 0.011 -0.215 -0.177 -0.20 -0.175 0.013 -0.196 -0.154

Table A.2: Estimations of M̃3 (joint model without AR1) for data coming from M̃5 (left) and
estimations of M̃5 (joint model with AR1) for data coming from M̃3 (right).
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A.3 Survival probability ranges

Table A.3 shows the probability ranges (5-95%) for non-defaulters (value 0) and
defaulters (value 1) for the 6 estimated models.
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A.4 Calibration sensitivity analysis

Our interest is to investigate how sensitive the calibration of the joint model
M5 is to the class imbalance in comparison to the benchmark. To this end,
we perform a five-fold cross-validation analysis similar to the one described in
Section 3.4. Still, we now randomly reduce the non-defaulters proportion in
the training folds (down-sampling). We perform the analysis for two different
non-defaulters proportions, one corresponding to 75% of the loans and the other
to 50%. Table A.4 shows the mean differences and standard deviations of PE
with respect to M0 for the range of c and the forecast window of 12 months
for both class proportions. Although we observe that both models, M0 and
M5, are sensible to class imbalance showing improvements in their calibration
when compared to the results shown in Table 3.7, the joint model has reasonably
decreased the difference in the PE (∆P̂E12

c M5), especially for c≥ 15 where the
most significant differences were observed before.

A.5 Robustness checks

To study the robustness of the results shown in Table 3.5, we re-estimate the
model that has the most complex structure, M5, using different priors. We
keep the noninformative uniform priors for λf , βββ1, βββ2 and φ. Moreover, for
the covariance matrix Σ, we set the scale parameter of the LKJ distribution to
1, which corresponds to the uniform density over correlation matrices. In ad-
dition, for both variability terms, σ and θααα, instead of using a uniform and a
half-Cauchy priors, respectively, we use for both the inverse Gamma with shape
1 and scale 0.001, as suggested by Ibrahim et al. (2001, Ch.7). Recall that σ
is the standard deviation of the error terms (Equation 3.1) and θααα is the hy-
perparameter of the vector of B-spline coefficients ααα (Equation 3.8). That is
to say, instead of assuming θααα ∼ half-Cauchy(25) for ααα ∼ N (0, θ2

αααI), we assume
θααα ∼ inverse-Gamma(1,0.001). To illustrate how different these two distributions
are, Table A.5 shows various percentiles for each of them.

In Table A.6, under the name M5 and to facilitate comparison, we show again
the results of the parameters associated with model M5 from Table 3.5. Alos,
the results obtained using these new priors are found under the name of M̃5. We
observe that the parameter estimates remain consistent when using these different
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25%-75% 50%-50%

Time(c) P̂E
12
c M0 ∆P̂E

12
c M5 P̂E

12
c M0 ∆P̂E

12
c M5

6 0.354 -0.010 (0.006) 0.348 -0.005 (0.003)
7 0.384 -0.009 (0.006) 0.379 -0.004 (0.003)
8 0.418 -0.007 (0.006) 0.414 -0.004 (0.004)
9 0.458 -0.005 (0.004) 0.455 -0.003 (0.002)

10 0.481 -0.004 (0.003) 0.478 -0.002 (0.002)
11 0.523 -0.003 (0.002) 0.521 -0.001 (0.001)
12 0.584 0.000 (0.002) 0.582 0.002 (0.000)
13 0.611 0.005 (0.004) 0.609 0.007 (0.003)
14 0.673 0.029 (0.030) 0.670 0.021 (0.010)
15 0.737 0.067 (0.083) 0.734 0.040 (0.030)
16 0.797 0.110 (0.152) 0.796 0.061 (0.053)
17 0.798 0.165 (0.212) 0.797 0.089 (0.074)
18 0.845 0.217 (0.263) 0.842 0.117 (0.092)
19 0.905 0.237 (0.284) 0.903 0.124 (0.099)
20 0.912 0.255 (0.289) 0.910 0.132 (0.103)
21 0.946 0.250 (0.243) 0.946 0.131 (0.081)
22 0.913 0.220 (0.239) 0.914 0.110 (0.085)
23 0.914 0.184 (0.143) 0.914 0.099 (0.043)
24 0.904 0.200 (0.153) 0.905 0.110 (0.055)

*For ease of visualisation, all values are multiplied by 100.

Table A.4: Mean difference of P̂E
∆c
c (Equation 3.14) between modelsM5 andM0 for prediction

window of 12 months (∆c= 12) considering two down-sampling settings; 75% and 50% of non-
defaulters. The Time(c) column represents c, the known history when making the prediction.
The number in parentheses is the standard deviation of the cross-validation analysis.

prior distributions.

Likewise, in Table A.7 we show the results for the hyperparameter, θααα, and the
B-spline coefficients ααα. We can see that although there are differences between
the estimates of the hyperparameter θααα when using both priors, the results cor-
responding to the B-splines coefficients remain practically the same, which agrees
with the results in Table A.6.
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10% 25% 50% 75% 90%
Half-Cauchy(25) 3.95961 10.35534 25.00000 60.35534 157.84379
Inverse-Gamma(1,0.001) 0.00043 0.00071 0.00143 0.00344 0.00941

Table A.5: Comparison of percentiles between half-Cauchy with a scale of 25 and an inverse-
Gamma with shape 1 and scale 0.001.

Parameter M5 M̃5

Mean 5% 95% Mean 5% 95%
fico -0.701 -0.821 -0.581 -0.699 -0.820 -0.579
cltv 0.516 0.333 0.703 0.514 0.339 0.703
orig_upb -0.155 -0.300 -0.014 -0.154 -0.304 -0.012
dti 0.152 0.021 0.283 0.150 0.022 0.283
n_borr -0.270 -0.527 -0.018 -0.277 -0.528 -0.029
loan_purpose -0.971 -1.246 -0.696 -0.970 -1.243 -0.706
λf 1.317 0.895 1.771 1.316 0.901 1.750
β01 -0.280 -0.294 -0.266 -0.280 -0.293 -0.268
σU0 1.237 1.219 1.255 1.237 1.218 1.256
σ 0.706 0.704 0.708 0.706 0.704 0.708
φ 0.357 0.353 0.360 0.357 0.354 0.360
σU1 0.053 0.052 0.054 0.053 0.052 0.054
ρU -0.811 -0.818 -0.804 -0.811 -0.819 -0.803

Table A.6: Summary of parameter estimates of the model M5 using different prior distribu-
tions and with fold one kept out. To ease comparison, the three columns below M5 are copied
from Table 3.5 and the three below M̃5 are the new results.

Parameter M5 M̃5

Mean 5% 95% Mean 5% 95%
θααα 8.344 5.206 13.371 7.122 4.609 11.034
α1 -8.577 -9.605 -7.655 -8.534 -9.584 -7.638
α2 -8.047 -9.227 -6.880 -8.064 -9.193 -6.948
α3 -6.583 -7.475 -5.695 -6.550 -7.401 -5.713
α4 -6.245 -6.877 -5.617 -6.252 -6.870 -5.624
α5 -6.052 -6.893 -5.239 -6.051 -6.884 -5.244
α6 -6.209 -7.098 -5.350 -6.191 -7.053 -5.372
α7 -6.315 -7.051 -5.632 -6.318 -7.064 -5.657

Table A.7: Parameter estimates associated with the vector of B-spline functions of the model
M5 using different prior distributions and with fold one kept out.





Appendix B

Joint Model of Multivariate
Longitudinal Outcome

B.1 Comparison between MCMC and INLA es-

timations

This section aims to illustrate how fast and accurate the INLA methodology is
compared to an MCMC sampling scheme for the multivariate joint model presen-
ted in Chapter 4. To this extent, we implement the multivariate joint model
using the platform for statistical modelling Stan with the No-U-Turn Sampler
(NUTS Hoffman and Gelman, 2014), which is regarded as a faster extension to
Hamiltonian Monte Carlo algorithm. To assess convergence of the NUTS sampler,
we performed the sampling from 3 independent chains with overdispersed start-
ing points and, following the general diagnosis detailed in Betancourt (2017), no
convergence problems were detected.

For the simulation setting described in Section 4.3, we estimate the model via
MCMC and INLA using the same computational resources (6 CPU cores, each
with 4 GB of memory). We measure the times each procedure takes for different
numbers of simulated loans (N), ranging from 250 to 500. The times, in minutes,
are shown in Table B.1. We can observe that considering, for example, a sample
with 300 simulated loans, which is relatively small, the time required by the
MCMC estimation is more than 2 hours, whereas for the INLA version is less
than 2 minutes.
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N TMCMC(min) TINLA(min)
250 106.03 1.07
300 127.79 1.31
350 159.52 1.50
400 187.70 1.99
450 207.00 2.00
500 256.12 2.42

Table B.1: Time required, in minutes, for model estimation through MCMC and INLA
schemes as a function of the number of loans (N).

Moreover, for the biggest sample size simulated in this analysis (N = 500), we save
the marginal posterior distributions for each parameter in the simulation setting
(see Section 4.3) and estimate their credible intervals obtained by both imple-
mentations. The comparison of the 2.5%−97.5% credible intervals are shown in
Figure B.1. First, we notice that both implementations estimate intervals that
include the true parameter value for all the parameters in the simulation set-
ting. Second, both are fairly similar, evidencing and supporting the quality of
the Bayesian inference approximation performed by INLA for our model specific-
ation.
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ρ23 ρ24 ρ34 λ(1)

τb12 ρ12 ρ13 ρ14

τ(2) τb01
τb11

τb02

β0
(1) β0

(2) γ τ(1)

−0.55 −0.50 −0.45 −0.40
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MCMC

INLA
MCMC

INLA
MCMC

INLA
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Figure B.1: Credible intervals (2.5%−97.5%) obtained by the MCMC and INLA implement-
ations for each parameter in the simulation analysis. The solid vertical line corresponds to the
true parameter value.
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B.2 Time-fixed covariates distributions

Figure B.2 shows the distribution for the six fixed covariates provided: four con-
tinuous and two categorical. Due to data confidentiality agreements, not all
covariates can be named, and the x-axes of the plots are omitted. We also show
the parameter estimate sign next to the covariate name in parentheses. The signs
are consistent among all the estimated models. Note that the effect of age and
debt-to-income is negative for the probability of prepayment. However, the effect
is positive for the interest rate given at origination and the loan amount.
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Figure B.2: Distribution of the time-fixed covariates included in the survival model. For the
bank privacy concerns, some information is omitted. The sign in parentheses is the sign of the
parameters estimates.





Appendix C

Spatio-Temporal Joint Models

C.1 Estimation of cvDCL under MCMC scheme

In Section 5.2.3 we show how the cross-validated Dynamic Conditional Likelihood
(cvDCL) is estimated using the INLA methodology. Here, we describe how the
cvDCL is estimated with an MCMC sampling scheme. This is done for the sake of
completeness since in Appendix C.2 we compare numerically how different these
two approaches are using simulation analysis.

Recall from Equation 5.8 that the cvDCL is defined as

cvDCL(t) = 1
Nt

N∑
i=1
−I(Ti > t) log{p(Ti, δi|Ti > t,yyyi(t),D−i)},

where Nt =∑N
i=1 I(Ti> t) (the number of loans at risk at time t). It can be shown

that (see Rizopoulos et al., 2016, for further details)1

p(Ti, δi|Ti > t,yyyi(t),D−i)−1 ≈
∫ p(UUU i,ΘΘΘ|D)
p(Ti, δi|Ti > t,yyyi(t),UUU i,ΘΘΘ)dΘΘΘdUUU i, (C.1)

where ΘΘΘ is the set of all parameters as described in Section 5.2.2 and UUU i the
random effects for loan i. Let ΘΘΘ(g) and UUU (g)

i denote the gth realisation of the pos-
terior sample with g = 1, ...,G, then p(Ti, δi|Ti > t,yyyi(t),D−i)−1 can be estimated
by

p̂(Ti, δi|Ti > t,yyyi(t),D−i)−1 = 1
G

G∑
g=1

1
p(Ti, δi|Ti > t,yyyi(t),UUU

(g)
i ,ΘΘΘ(g))

.

1In that work, Equation C.1 is presented as an equality. We confirmed with the author that
there is an error and that it should be an approximation symbol instead.
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Hence, cvDCL(t) can be estimated as

ĉvDCL(t)MCMC = 1
Nt

N∑
i=1

I(Ti > t) log
 1
G

G∑
g=1

1
p(Ti, δi|Ti > t,yyyi(t),UUU

(g)
i ,ΘΘΘ(g))

 .
(C.2)

We estimate the variance of ĉvDCL(t)MCMC through batching (Carlin and Louis,
2000). This requires that a long run of G samples is divided into M successive
batches of size H (i.e. G = M ·H). For each batch m = 1, ...,M , we calculate
ĉvDCL(t)MCMC

m using itsH posterior samples and the variance is then the sample
variance of these M estimations.

C.2 Comparison cvDCL: MCMC and INLA

In this appendix, we analyse how different is the estimation of the cvDCL between
the MCMC and INLA procedures (Equations C.2 from Appendix C.1 and 5.10
from Section 5.2.3, respectively). To this end we, first, generate data from a
joint model that follows Equations C.3 and C.4 for the longitudinal and event
processes, respectively.

(Yi,s|ηY i,s, τY )∼N(ηY i,s, τ−1
Y )

ηY i,s = β01 +U0i+ (β11 +U1i)s,

(U0i,U1i)ᵀ ∼N2(0,Q−1
U ),

(C.3)

(Xi,s|Xi,s−1 = 0,ηXi,s)∼ Bernoulli(logit−1(ηXi,s))

ηXi,s = ν0 +vs+β12z1i+β22z2i+λ(U0i+U1is),

vs ∼RW2(τv).

(C.4)

Next, we estimate the ĉvDCL(t)MCMC and ĉvDCL(t)INLA, for different values of
t, assuming two different specifications of the joint model. The first specification
is the correct one, i.e. follows Equations C.3 and C.4. The second one omits the
second covariate in the event predictor, specifically, it is assumed that the linear
predictor of the event process is ν0 + vs + β11z1i + λ(U0i +U1is) (see Equation
C.4). This analysis not only allows us to compare the values of the cvDCL for
two distinct settings but also help us to measure how different the cvDCL is when
one specification explains the data better than the other one.

Table C.1 shows the results of the comparative analysis.
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Correct Specification

Nt MCMC INLA Lap INLA EB
ĉvDCL(t= 12) 424 2.5915 (6.80e-04) 2.5922 2.5778
ĉvDCL(t= 18) 347 2.4715 (6.75e-04) 2.4716 2.4679
ĉvDCL(t= 24) 183 2.3951 (8.66e-04) 2.3942 2.3930
ĉvDCL(t= 30) 85 2.1884 (1.63e-03) 2.1857 2.1864
ĉvDCL(t= 36) 36 1.7153 (4.22e-03) 1.7085 1.7115

Other Specification

Nt MCMC INLA Lap INLA EB
ĉvDCL(t= 12) 424 2.8023 (7.34e-04) 2.8027 2.7949
ĉvDCL(t= 18) 347 2.6893 (7.95e-04) 2.6890 2.6874
ĉvDCL(t= 24) 183 2.6037 (1.27e-03) 2.6027 2.6031
ĉvDCL(t= 30) 85 2.3634 (1.70e-03) 2.3598 2.3632
ĉvDCL(t= 36) 36 1.8390 (4.27e-03) 1.8305 1.8382

Table C.1: Comparison of model performance for simulated data and two different specifica-
tions.
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