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A B S T R A C T

The transient response of elastomeric polymers is dependent on polymer composition, temperature and the
loading history. In particular, hysteresis, dissipation and creep are significant in the choice of material for
elastomer membrane wave energy converters. Natural rubber is a good candidate when looking for material
for a wave energy harvester since it has an excellent stretchability, is almost resistant to the environment in
which the harvester will be used and has good fatigue properties. The mechanical behaviour of the natural
rubber used in this work has been deeply characterised: the material resulted to have a very little hysteretical
behaviour (that is a very low energy dissipation during stretching) but also to show a strain-dependency,
stress softening, and relaxation at constant stretch. Low dissipation represents the best case scenario for
energy harvesting; in reality reinforcement of the material is required which adds to the dissipative behaviour.
Afterwards, an extended finite strain viscoelastic constitutive model is proposed that is calibrated analytically
to the experimental data to identify the relevant material parameters resulting in non-linear viscosity functions
in the evolution equations of the constitutive model. The model was able to capture the minimal dissipation
behaviour with good degrees of accuracy. Results are shown for a flexible membrane wave energy converter
under creep and cyclic loading. A parametric study is made comparing the experimentally characterised
polymer with different amounts of viscous dissipation. The response of the wave energy converter shows
that even minimal amounts of dissipation manifests itself into changes in the pressure–volume function and
reduction in energy capture through hysteresis. The new material model shows, for the first time, that the
control of internal pressure in wave energy membranes must take into account transient material effects.
1. Introduction

Natural rubbers, along with other elastomeric materials, are great
candidates for the emerging trend of flexible energy harvesting poly-
mers. Over the past decade, there has been a focus on optimising
energy harvesting devices by making use of structural flexibility. Large
membranes, for instance, can be employed in ocean energy harvesting
devices; see Collins et al. (2021, 2019) and Moretti et al. (2020) for
extensive reviews of flexible membrane-based energy harvesters. Wind
and tidal systems are able to utilise flexible blades comprised of de-
formable and rigid polymers, see Hoerner et al. (2021a,b) and Fu et al.
(2020). The primary reason for utilising flexible structures is to increase
the efficiency of energy harvesting while reducing structural loads to
improve the fatigue life and reduce the cost of the device. Natural
rubbers are the ideal candidate materials due to their unique qualities
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of high levels of stretchability, usable over a wide range of tempera-
tures, resistant to various degradation phenomena, and characterised
by a great fatigue resistance. Despite these excellent properties, their
mechanical behaviour is very nonlinear (physically and geometrically
nonlinear) and further complicated by some loading rate-sensitivity, an
hysteretical behaviour, as well a time dependent response under the
application of a constant strain (stress-relaxation) or of a constant stress
(creep response). In its most pure form, natural rubber has a very low
stiffness which makes it susceptible to structural instabilities, such as
limit points, bifurcations, and wrinkling (Patil, 2016; Bucchi and Hearn,
2013; Kanner and Horgan, 2007). Instabilities lead to an uncontrolled
deformation and ultimately catastrophic failure. This adds to design
control challenges as well as excessive material usages. Therefore,
one of the major challenges from a material design perspective is to
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tailor the mechanical properties in accordance with the loading regime
without compromising on the advantageous rubber properties. This can
be accomplished by using filler particles which are embedded in the
polymer matrix, thereby forming a rubber composite. Typical fillers
include carbon black and silica, but graphene and carbon nanotubes
are also being researched recently (Zhang et al., 2017; Wei et al.,
2018). The trade-off for an increase in the mechanical stiffness is ac-
companied by an increase in the energy dissipation due to interactions
between polymer chains and the filler particles. Excessive dissipation is
detrimental for energy harvesting since it dampens structural response.
Additionally, the fatigue life can be improved or decreased depending
on the filler content (Dong et al., 2014). The optimal amount of filler
for the stiffness with an acceptable viscoelastic response has not yet
been determined for the application of flexible membrane wave energy
converters (FlexWECs).

When constructing a structure, it is vital to develop a proper con-
stitutive model to simulate a variety of operation scenarios based
on a comprehensive experimental effort to characterise the material.
Hyperelasticity and viscous dissipative behaviour are the two fundamental
physical features of rubber-like materials that are of significance. Dur-
ing loading, most rubber-like materials manifest a nonlinear response
with a strain-induced softening followed by strain-induced hardening
at high strains. At low strains, polymer chains can readily slide over
one another, but at higher strains, these chains align, resulting in a
more stiff response. In the literature, constitutive models for rubber-like
materials are either phenomenological or micromechanical; Steinmann
et al. (2012), Marckmann and Verron (2006), Hossain and Steinmann
(2013), Hossain et al. (2015) and Dal et al. (2021) provide reviews
of various constitutive models. Micro-mechanical models use statistical
mechanics based on networks of idealised chain molecules, with real
physical characteristics that correspond to mechanical deformation,
whereas phenomenological models are based on polynomial functions
using strain invariants or principle stretches of strain tensors. Viscous
behaviour generated by chain entanglements is defined by time- and
rate-dependent features, such as hysteresis during loading–unloading,
stress relaxation at a constant strain and stress softening during cyclic
loading (Mullins, 1948; Bergström and Boyce, 1998; Miehe and Keck,
2000). To model the time-dependent aspect of stress, an appropriate
evolution equation is essential. For finite strain viscoelastic models,
two approaches have been used in the literature: integral-based mod-
els with stress-like internal variables and differential-based models
with strain-like internal variables. The works of Holzapfel (1996),
Lion (1997) and Kaliske and Rothert (1997) are some examples of
integral-based models; these models are essentially an extension of
small strain viscoelasticity. In contrast, differential-based models utilise
a multiplicative decomposition of the deformation gradient resulting
in an elastic and an inelastic parts for stress and strain variables, as
in the works of Lubliner (1985), Simo (1987), Reese and Govindjee
(1998) and Bergström and Boyce (1998). These models’ parameters
are determined through a series of experiments that capture rate-
dependent behaviour. Depending on the stress state of the loading
regime, the model can be decoupled in an analytical stress formulation
for uniaxial, biaxial, or shear stress states. These analytical equations
enable straightforward model calibration via a parameter identification
procedure. Kleuter et al. (2007), for example, provide a more generic
parameter identification framework for finite strain viscoelasticity.

Similar to the development of constitutive models for rubber-like
materials, there are concerted efforts to experimentally characterise
polymers in order to properly calibrate finite strain models, see Hossain
et al. (2012), Liao et al. (2020), Hossain and Liao (2020), Koprowski-
Theiß et al. (2011), Johlitz et al. (2010), Zhou et al. (2018), Koprowski-
Theiß (2011), Hossain et al. (2020) and Scheffer et al. (2015a). For
that, different strain energy functions with nonlinearities, both physical
and geometrical, must be considered depending on the polymer’s com-
plexity. For instance, Koprowski-Theiß et al. (2011) and Koprowski-
2

Theiß (2011) developed finite strain models of a cellular rubber with
nonlinear viscosity functions while Amin et al. (2006) identified non-
linear dependence of the viscosity in modelling the rate-dependent
response of natural and high damping rubbers through an extensive
analysis with experimental data obtained from the polymers. Very re-
cently, Hossain et al. (2020) utilised the multiplicative decomposition-
based approach with nonlinear evolution equations and nonlinear vis-
cosity functions for an additively manufactured (3D-printed) polymer.
In contrast to the works that explored the nonlinear viscosity functions
meeting experimental data, Hossain et al. (2012) characterised and
calibrated a one-dimensional constitutive model to a highly viscous
VHB polymer (3M, USA) using a micromechanically-motivated linear
finite strain evolution equation advocated by Linder et al. (2011). To
simulate three-dimensional geometries, it is imperative to implement
a constitutive model into a finite element framework. Various works
have compared models with experimental data and implemented finite
viscoelastic models in finite element analysis, Liu et al. (2019), Dip-
pel et al. (2015), Wang and Chester (2018), Scheffer et al. (2015a)
and Behnke et al. (2016). However, there are very limited efforts
that demonstrated the implementation of a finite strain viscoelastic-
ity model with nonlinear evolution equations embedded with com-
plex nonlinear viscosity functions. To the best of authors’ knowledge,
only Scheffer et al. (2015a) and Heng et al. (2021) demonstrated
numerical recipes to implement finite strain viscoelastic models with
consideration of nonlinear material viscosities. However, none of the
aforementioned works are based on analysing rigorous experimental
data obtained from polymers that demonstrated both geometrical and
material nonlinearities. Hence, the first aim of our contribution is to
develop a viscoelastic model with nonlinear evolution equations and nonlin-
ear viscosity functions followed by its numerical implementation in a finite
element framework that are directly derived from experimental data.

Computational and experimental studies of FlexWECs incorporating
polymeric membranes for three-dimensional geometries are limited in
the literature. For instance, Moretti et al. (2015) and Rosati Papini et al.
(2018) have conducted substantial research on electro-active wave en-
ergy converters. Therein, the authors discretise a coupled hyperelastic-
electromechanical model for circular and parallelogram membrane
geometries that is coupled to the suitable hydrodynamic boundary
conditions in a one-dimensional analytical formulation. Chaplin et al.
(2012) applied tube distensibility theory for membrane wave energy
geometries using tubular membranes. These models are simple with
constant elasticity, but do include dissipative effects through a hystere-
sis parameter. Bucchi and Hearn’s (2013) examination of the instability
of a tubular geometry employs Ogden and Yeoh’s hyperelastic strain
energy functions within a commercial finite element package taking
finite deformations regime into the modelling framework. Other studies
have assumed idealised structural deformations connected to hydrody-
namic modelling techniques, see Kurniawan et al. (2017) and Algie
et al. (2017). To the best of the authors’ knowledge, there is no
computational study of flexible materials ideally used in FlexWECs that
match time-dependent experimental data with viscoelastic constitutive
models. Hence, the second aim of the current manuscript is to perform
computational study on FlexWECs taking into account experimentally-
derived data obtained from viscoelastic polymers typically used in these
devices.

The literature is ubiquitous with studies on natural rubber (Bechir
et al., 2006; Kroon, 2010; Carleo et al., 2020; Anand, 1996; Le Saux
et al., 2011). As pointed out by Carleo et al. (2020) the majority of pre-
vious research works have focused on highly viscoelastic rate-sensitive
polymers. Natural rubbers are only rate-sensitive at medium and high
strain rates, which can be challenging to characterise under standard
test settings. In the current research, an unfilled natural rubber com-
pound that exhibits minimal viscoelasticity and is a suitable material
for energy harvesting devices is investigated. In Section 2, a full ex-
perimental campaign is conducted, beginning with loading–unloading
cyclic uniaxial tensile tests to evaluate the stretchability and hysteresis

of the material. Then, using various multi-cyclic loading regimes, the



European Journal of Mechanics / A Solids 98 (2023) 104895I. Collins et al.

m
p
f
1
t
f
m

2

d
c
u
1
t
b
s
p
a
a
t
t
T
o
d

2

R
m
w

Fig. 1. Dimensions in mm for ISO 37 Sample 2.
levels of stress softening (e.g., Mullins effect) are investigated. The
final component of the experiments is devoted to stress relaxation, with
various levels of strain considered. In Section 3, the constitutive mod-
elling framework based on the multiplicative decomposition approach
is presented, along with a one-dimensional formulation with lineari-
sation for parameter identification. The procedure for the parameter
identification is described in Section 4. Section 5 provides the details of
the implementation procedure for the material Jacobian in the implicit
ABAQUS Standard finite element solver using the ABAQUS UMAT
interface. The finite element model is validated against the analytical
theory. Section 6 is a case study of a viscoelastic membrane suitable for
energy harvesting, whereby the pressure–volume function is evaluated
over longer time-scales, as well as cyclic loading conditions which
represent real-world loading during energy harvesting.

2. Experimental characterisation of the viscoelastic behaviour

2.1. Specimen preparation

The compounds was first milled at 50 ◦C in a two-roll milling
achine in order to avoid any anisotropy and then cured in a com-
ression moulding press applying a pressure of 9.8 MPa, at 140 ◦C
or 45 min, according to suggestions by the material’s supplier. The
mm thickness cured sheets were cut with an ISO 37 sample die, where

he dimensions are provided in Fig. 1. Each sample was marked with
our equally spaced markers on the specimen’s gauge length for strain
easurements.

.2. Experimental set-up

Uniaxial tensile tests were performed on an Instron 5967
ynamometer with a load cell of 2 kN, equipped with a pneumatic
lamping system. All the tests were video recorded with a 10 megapixel
Eye camera UI-5490SE equipped with a photographic lens Nikon 28-
05. The video was post-processed using the ImageJ imaging software
o evaluate the applied strain: by the ratio between the actual distance
etween two marks in the gauge length and its value in the undeformed
pecimen the nominal strain was obtained. All tensile test results are
resented as the nominal stress/first Piola–Kirchhoff stress (i.e., the
pplied force divided by the initial undeformed cross-sectional area)
gainst the nominal strain. The strain rates, mentioned in this contribu-
ion, are the time derivative of the nominal strain. The repeatability of
he test using different samples influences the reliability of the results.
o achieve reproducibility of the test results, more than three samples
f each test condition are run, and an averaging technique is used to
etermine the best data set.

.3. Stretchability tests

To evaluate stretchability, the sample is stretched until failure.
ubbers can withstand high strains before breaking, Fig. 2 shows the
aximum elongation at break for EDS-35. A maximum strain of 744%
as reached and a corresponding ultimate tensile strength of 32.8 MPa.
3

Fig. 2. Stretchability of EDS-35 natural rubber: stress with respect to strain up until
the maximum strain of the material.

2.4. Loading–unloading cyclic tests

Cyclic tests have been carried out to evaluate the material’s hys-
teretical behaviour and its dependence on the strain rate. The material’s
dissipative behaviour, as a result of viscoelasticity, observed during
the unloading cycle as a reduction in the stress value for the same
strain as loading is referred to as hysteresis. In this experimental cam-
paign, three displacement rates were employed: 0.1, 1 and 10 mm/s
and the last one is close to the maximum displacement rate of the
dynamometer. They correspond to strain rates of 0.0024, 0.024, and
0.24/s, respectively. Fig. 3(a) shows the data spread for a loading–
unloading experiment at 350% showing excellent repeatability. The
rate dependency is shown in Fig. 3(b) which illustrates a minor rate-
dependence at room temperature for the studied strain rate range. As
reported in literature (Niemczura and Ravi-Chandar, 2011a,b,c; Carleo
et al., 2018) the dependence of natural rubber mechanical response on
the applied strain rate is significant at strain rates higher than 1.0/s.

To assess the degree of stress-softening exhibited by the rubber-like
material, various multi-cycle tests were performed. In Fig. 4(a), a single
specimen is stretched 5 times up to of 350%. As shown, the bulk of the
stress softening occurs during the first cycle, with subsequent cycles
exhibiting little changes in the stress response. In Fig. 4(b), the same
specimen is cycled 5 times at 5 strain amplitudes, equating to a total
of 25 cycles. For cycles below 200% strains, the softening is negligible,
even beyond that value, very little softening is observed. In Fig. 4(c),
a more pronounced softening can be observed at strains larger than
400%. The increased hysteretical behaviour is as a result of the so-
called strain-induced crystallisation where permanent changes to the
micro-structure occurs causing changes to the internal energy of system

(Le Cam, 2017; Huneau, 2011). Beyond 450%, the strain hardening
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Fig. 3. Single cycle loading–unloading.

Fig. 4. Multi-cycle loading–unloading experiments to quantify stress-softening behaviour.
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Fig. 5. Single-step stress relaxation experiments, note that stress with respect to time plots are staggered to allow for easier viewing of the overstress.
is also witnessed causing an exponential uptake in the stiffness, as is
common with biological tissues (Dal et al., 2022). For the purposes of
the application for this characterisation work, the remaining studies are
conducted up to 350%.

2.5. Stress relaxation tests

When a viscoelastic material is held at a constant strain for a period
of time, there is a corresponding reduction in stress until an equilib-
rium stress is reached, known as the stress relaxation. To evaluate this
relaxation behaviour, both single-step and multi-step stress relaxation
5

trials were conducted in the literature. In the single-step experiment,
the polymeric material is stretched at a very high rate, usually using
the machine limit, until the desired strain level is reached where it is
held for a period of time. The reduction in load measured in the sample
is monitored with respect to time. To grasp an initial understanding of
the amount of relaxation exhibited by the material, a twelve hour test
was performed at a strain level of 350% as shown in Fig. 5(a). After a
period of two hours, the stress relaxed to 82% of the peak value, with a
further relaxation to 79% after twelve hours. Relaxation will continue
to occur over multiple days, however, most of the stress relaxation

happens within first few minutes. Since the change is minimal after
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the first two hours, the remainder of the relaxation experiments are
performed up to two hours. Figs. 5(b) and 5(c) show the stress–strain
and stress–time plots for samples up to 350%, while Figs. 5(d) and
5(e) shows these plots for samples up to 700%. For the full range of
100–700% analysed, these equate to imposed deformation of 𝜀 = 1 and
= 7. The amount of reduction in the overstress (i.e., the difference

etween the maximum stress and the equilibrium stress) increases with
train amplitude: 6% and 30% for displacements of 𝜀 = 1 and 𝜀 = 7,
6

m

espectively. However, the bulk of this rise is seen between 𝜀 = 2.5 (9%
ecrease) and 𝜀 = 5 (28% decrease).

In real-world loading, the stress relaxation occurs at multiple times.
herefore, it is essential to evaluate the stress relaxation at multiple
trains. To complement the single-step data, a multi-step stress relax-
tion is performed at the same strain levels and strain rates. The main
ifference between experiments is the latter is performed only with a
ingle sample which is stretched and held over multiple strains. The
aterial is stretched to the first strain amplitude of 50% and held for
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two hours, then is stretched to the next strain amplitude instead of
unloading where the process is repeated until the final strain level is
reached. Figs. 6(a) and 6(b) show the stress–strain and stress–time plots
for up to 350%, while Figs. 6(c) and 6(d) shows these plots for up to
700%. The stress relaxation with respect to time has a similar trend
as the single-step relaxation experiments. The stress–strain plot for the
relaxed points is compared for single- and multi-step experiments in
Fig. 6(e). A good correlation is seen up to 300% which will be used for
calibration of the elastic part of the proposed viscoelastic model.

3. Constitutive modelling of viscoelasticity at finite strains

3.1. Kinematics

Rubber-like polymers are as considered as nearly incompressible
materials that undergo large deformations without a noticeable change
in volume. For modelling rubber-like materials, in finite strain the-
ory, the deformation gradient 𝐅 can be decomposed into isochoric
volume preserving) 𝐅iso and volumetric (purely volume change) 𝐅vol
omponents (Bonet and Wood, 1997; Holzapfel, 2000), i.e.,

= 𝐅iso𝐅vol (1)

he isochoric component can further be decomposed into a purely
lastic and a viscous parts, cf. Reese and Govindjee (1998, 1997), i.e.,

iso = 𝐅𝑗
𝑒𝐅

𝑗
𝑣 𝑗 = 1,… , 𝑁 (2)

here 𝑗 represents the number of Maxwell elements, analogous to small
train viscoelasticity.

.2. Strain energy function and stress tensors

The multiplicative decomposition of the deformation gradient re-
ults in an additive decomposition of the strain energy function. The
olumetric strain energy function 𝛹vol is represented in a displace-
ent/pressure mixed form to enforce the incompressibility condition,

.e., 𝛹vol = 𝑝(𝐽 − 1), where 𝑝 acts as a Lagrange multiplier. The
sochoric strain energy is further divided into 𝛹𝑒 elastic and 𝛹𝑣 viscous
epresenting the elastic and viscous strain energies that are a function
f the right Cauchy–Green tensor in which 𝐂 = 𝐅𝑇𝐅. The viscous
omponent is also a function of the multiplicative elastic component
f the right Cauchy–Green tensor, �̄�𝑒 = 𝐅𝑗,𝑇

𝑒 𝐅𝑗
𝑒, i.e.,

(𝐂) = 𝛹vol(𝐽 ) + 𝛹iso(�̄�); 𝛹iso(�̄�) = 𝛹𝑒(�̄�) +
𝑁
∑

𝑗=1
𝛹𝑣(�̄�, �̄�𝑗

𝑒) (3)

Following the dissipation inequality in Reese and Govindjee (1998,
1997), the second Piola–Kirchhoff stress (𝐒) is decomposed into vol-
umetric, elastic, and viscous components as

𝐒 = 𝐒vol + 𝐒𝑒 + 𝐒𝑣; 𝐒 = −𝑝𝐂−1 + 2
𝜕𝛹𝑒

𝜕�̄�
+ 2

𝑁
∑

𝑗=1

𝜕𝛹 𝑗
𝑣

𝜕�̄�
(4)

In order to capture the nonlinear curve experimentally observed for
the natural rubber under consideration, the elastic strain energy func-
tion proposed by Carroll (2010) is chosen since it shows remarkably
good performance with a wide range of hyperelastic experimental data
(Steinmann et al., 2012). It is a phenomenological model in which both
the first and the second invariants of the isochoric right Cauchy–Green
tensor are incorporated, i.e.,

𝛹𝑒 = 𝑎𝐼1 + 𝑏𝐼41 + 𝑐𝐼
1
2
2 (5)

where 𝐼1 is the first invariant, 𝐼2 is the second invariant, while 𝑎, 𝑏 and
𝑐 are material parameters. The fictitious second Piola–Kirchhoff stress
is the derivative of the isochoric strain energy relative to the isochoric
Cauchy–Green tensor, i.e., �̄� = 𝜕𝛹iso∕𝜕�̄�. The elastic component of the
tress is given as

̄ =
[

2𝑎 + 8𝑏𝐼3
] [

𝐼 𝐈 − �̄�
]

𝐼−1∕2
7

𝑒 1 𝐈 + 𝑐 1 2 (6)
or the viscous part of the strain energy function, a combination of
eoh (1993) and neo-Hooke strain energy functions are chosen for the
axwell elements based on the works of Scheffer et al. (2015a,b) and
ossain et al. (2020).

𝑣(�̄�, �̄�𝑗
𝑒) =

𝑁
∑

𝑗=1
𝛹 𝑗
𝑣 =

𝑠
∑

𝑗=1
𝛹 𝑗

yh,𝑣 +
𝑁
∑

𝑗=𝑠+1
𝛹 𝑗

nh,𝑣

=
𝑁
∑

𝑗=1
𝑐𝑗1

[

𝐼 𝑗1,𝑒 − 3
]3

+
𝑁
∑

𝑗=𝑠+1
𝑐𝑗2

[

𝐼 𝑗1,𝑒 − 3
]

(7)

where 𝑐𝑗1 and 𝑐𝑗2 are the material parameters for the Yeoh and the
neo-Hooke strain energy functions, respectively, and 𝐼 𝑗1,𝑒 is the first
invariant of �̄�𝑒, i.e., 𝐼 𝑗1,𝑒 = tr(�̄�𝑒) = tr(𝐅𝑗,−𝑇

𝑣 ...�̄�...𝐅𝑗,−1
𝑣 ). In order to find

the viscous component of the stress, i.e., �̄�𝑣 = 2𝜕𝛹𝑣∕𝜕�̄�, it is necessary
to utilise the relationship: �̄�𝑗

𝑒 = 𝐅𝑗,−𝑇
𝑣 �̄�𝐅𝑗,−1

𝑣

�̄�𝑣 = 2
𝜕𝛹𝑣

𝜕�̄�
=

𝑠
∑

𝑗=1
6𝑐𝑗1

[

𝐼 𝑗1,𝑒 − 3
]2

[

𝐂𝑗
𝑣
]−1 +

𝑁
∑

𝑗=𝑠+1
2𝑐𝑗2

[

𝐂𝑗
𝑣
]−1 (8)

ince �̄�𝑣 is a function of 𝐂𝑣 which is a time-dependent parameter,
n evolution equation must be required to provide an update of 𝐂𝑣.

thermodynamically-consistent nonlinear evolution equation is ex-
ressed as

̇ 𝑗
𝑣 = 4

𝜂𝑗
𝜕𝛹 𝑗

iso

𝜕𝐼 𝑗1,𝑒

[

𝐂 − 1
3

[

𝐂 ∶
[

𝐂𝑗
𝑣
]−1

]

𝐂𝑗
𝑣

]

(9)

Solving 𝜕𝛹 𝑗
yh,𝑣∕𝜕𝐼1,𝑒 and 𝜕𝛹 𝑗

nh,𝑣∕𝜕𝐼1,𝑒 results in two evolution equations:

�̇�𝑗
𝑣 = 12

𝜏𝑗1

[

𝐼 𝑗1,𝑒 − 3
]2 [

𝐂 − 1
3

[

𝐂 ∶
[

𝐂𝑗
𝑣
]−1

]

𝐂𝑗
𝑣

]

, 𝑗 = 1, 𝜏𝑗1 =
𝜂𝑗

𝑐𝑗1
(10)

�̇�𝑗
𝑣 = 4

𝜏𝑗2

[

𝐂 − 1
3

[

𝐂 ∶
[

𝐂𝑗
𝑣
]−1

]

𝐂𝑗
𝑣

]

, 𝑗 = 2,… , 𝑁, 𝜏𝑗2 =
𝜂𝑗

𝑐𝑗2
(11)

With the calculation of �̄�𝑣 defined, the elastic and viscous fictitious
stresses are added and converted to isochoric second Piola–Kirchhoff
stress through the projection tensor P = I − 1

3 (𝐂
−1 ⊗ 𝐂−1) where I =

𝛿𝑖𝑘𝛿𝑗𝑙 is the fourth order identity tensor. These equations provide the
building blocks for any finite element implementation discussed details
in Section 5.

�̄� = �̄�𝑒 + �̄�𝑣 ⇒ 𝐒iso = 𝐽−2∕3P ∶ �̄� (12)

nother important element is the so-called tangent operator which is
iven as the derivative of stress with respect to deformation

= 2 𝜕𝐒
𝜕𝐂

= 4 𝜕
2𝛹
𝜕𝐂2

(13)

due to the complex nature of stress, it is more convenient to perform
numerical tangent operation on 𝐒, i.e.,

C =
𝐒(𝐂 + 𝛥𝐂) − 𝐒(𝐂)

𝛥𝐂
(14)

The full details of the methodology is provided in Section 5.2.

3.3. One-dimensional formulations of the model

Since the experimental data presented in Section 2 is obtained under
uniaxial test conditions, all relevant constitutive equations presented
above must be decomposed to one-dimensional forms. It is possible to
perform a uniaxial reduction where stretches are applied in only one
direction, i.e. 𝜆1 = 𝜆 and two directions are unhindered. Following
the methodology illustrated in Steinmann et al. (2012), Hossain and
Steinmann (2013) and Hossain et al. (2015), the first Piola–Kirchhoff
stress for the Carroll model is given as

𝑃 =
[

2𝑎 + 8𝑏
[

2𝜆−1 + 𝜆2
]3 + 𝑐

[

1 + 2𝜆3
]−1∕2] [𝜆 − 𝜆−2

]

(15)
𝑒
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For the viscous derivation, to express stress in terms of the eigenvalues
𝜆2𝑒 of the elastic Cauchy–Green tensor 𝐂𝑒, it is convenient to push
forward to Cauchy stress through the relationship: 𝜎 = 𝑃𝜆. The
multiplicative procedure of the deformation gradient results in the
eigenvalue relationship of 𝜆𝑗 = 𝜆𝑗𝑒𝜆

𝑗
𝑣. The Cauchy stress for the one

dimensional model yields

𝜎𝑣 =
𝑠
∑

𝑗=1
𝑐𝑗1

[

2𝜆−1𝑒 + 𝜆2𝑒 − 3
] [

𝜆2𝑒 − 𝜆−1𝑒
]

+
𝑁
∑

𝑗=𝑠+1
𝑐𝑗2

[

𝜆2𝑒 − 𝜆−1𝑒
]

(16)

which may be pulled back to the first Piola–Kirchhoff stress for exper-
imental data calibration

𝑃𝑣 =
𝑠
∑

𝑗=1
𝑐𝑗1

[

2𝜆−1𝑒 + 𝜆2𝑒 − 3
] [

𝜆2𝑒𝜆
−1 − [𝜆𝑒𝜆]−1

]

+
𝑁
∑

𝑗=𝑠+1
𝑐𝑗2

[

𝜆2𝑒𝜆
−1 − [𝜆𝑒𝜆]−1

]

(17)

The corresponding evolution equations in Eqs. (10) and (11) are written
in one-dimensional form through the substitution of 𝜕𝛹𝑣∕𝜕𝐼1,𝑒 resulting
n

̇̄ 𝑗
𝑣 = 4

𝜏𝑗
[

𝜆2
[

𝜆𝑗𝑣
]−2 + 2𝜆𝑗𝑣𝜆

−1 − 3
]2 [

𝜆2[𝜆𝑗𝑣]
−1 −

[

𝜆𝑗𝑣
]2 𝜆−1

]

, 𝑗 = 1 (18)

̇̄ 𝑗
𝑣 = 4

3𝜏𝑗
[

𝜆2[𝜆𝑗𝑣]
−1 −

[

𝜆𝑗𝑣
]2 𝜆−1

]

, 𝑗 = 2, 3, 4 (19)

The internal variable ̇̄𝜆𝑗𝑣 is the derivative of the viscous stretch with
respect to time. Hence, it is necessary to time discretise this equation
through an unconditionally stable implicit Euler backward procedure,
for Eq. (18) this results in

[

𝜆𝑗𝑣
]𝑛+1 =

[

𝜆𝑗𝑣
]𝑛 + 4

𝜏𝑗
[

𝜆2
[

𝜆𝑗𝑣
]−2 + 2𝜆𝑗𝑣𝜆

−1 − 3
]2 [

𝜆2[𝜆𝑗𝑣]
−1 −

[

𝜆𝑗𝑣
]2 𝜆−1

]

,

(20)

where [∙]𝑘 = [∙](𝑡𝑘) and 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛. This equation is solved through
Newton–Raphson iterative solver in which the first Piola stress is a

unction of time.

. Parameter identification and model validation

In this section, the material parameters for the equations in Sec-
ion 3.3 are identified using the built-in least squares curve fitting
unction lsqcurvefit in Matlab. The identification of material
arameters is a multi-step process, firstly the elastic parameters are
dentified which are then fed into a viscoelastic parameter identifica-
ion keeping the hyperelastic parameters frozen. The final stage is to
alidate the model by modifying the strain rate and load range and to
ompare against a different experimental data-set.

.1. Elastic material parameter identification

The goal of an elastic parameter identification is to remove the
iscoelastic effects from the material and to capture only the elastic
ehaviour. This can be achieved through finding the fully relaxed
quilibrium points of the material. There are three possible method-
logies: (1) relaxed points from a single-step stress relaxation, (2)
elaxed points from a multi-step stress relaxation, or (3) monotonic
uasi-static loading, i.e. loading at an extremely slow strain rate, see
min et al. (2006), Johlitz et al. (2007) and Hossain et al. (2012).
erein, the data is fitted using multi-step relaxation experiments. As
entioned earlier, to capture the nonlinear response of the natural

ubber, the Carroll hyperelastic model is chosen since it offers excellent
odelling capabilities of most rubber-like materials at very large strains

Steinmann et al., 2012; Hossain and Steinmann, 2013). The elastic fit
s shown in Fig. 7(a) showing close alignment to all the data points.
8

he identified elastic parameters a, b and c are given in Table 1.
Table 1
Elastic parameters identified using equilibrium data only.

a [MPa] b [MPa] c [MPa]

0.19 2.9×10−7 0.17

4.2. Viscoelastic material parameter identification

The remaining time-dependent viscoelastic parameters 𝑐𝑗1, 𝑐𝑗2, and
𝜏𝑗 need to be identified. For that, a strain of 350% was chosen since
t shows the nonlinear response whilst not reaching the exponential
ardening phase as shown in Fig. 4(c). The viscous fitting procedure
ses the previously identified elastic parameters. The viscous time-
ependent parameters are then identified through a fitting procedure
hich evaluates different coefficient values until the fitting tolerance is

eached. For the first fitting, constant values of 𝜏1 and 𝜏2 were chosen.
he model failed to capture an accurate response beyond 150% strains,
ue to nonlinearity of the viscosity at higher strain values. Therefore,
nonlinear function was introduced for the Yeoh component of the
odel shown in Eq. (21). The Frobenius norm of the deformation tensor
𝐃‖ multiplied by trace of the Cauchy–Green tensor 𝐂 results in an up-
ake in the viscosity as the strain evolves. With this function introduced,
he model was able to capture a single strain rate of 0.24/s successfully.
t is noted that the number of Maxwell elements required is a ‘trial and
rror’ process until a desirable fit is achieved. Since this material has
elatively low hysteretic behaviour, it was found that one Yeoh and one
eo-Hooke elements were sufficient to adequately capture the material
issipation. This model was validated against two other strain-rates
f 0.024 and 0.0024/s as illustrated in Fig. 7(b). The model was not
ble to capture these lower strain-rates, it is speculated due to the low
train-rate dependency, the parameters are sensitive to the 𝛥𝑡 value.
herefore, another nonlinear parameter 𝜏13 is embedded in Eq. (21). An
xponential function utilising the Frobenius norm of the rate of change
f the deformation gradient ‖�̇�‖ acts as a compensation parameter
or this low strain rate dependency. To identify the k coefficients, a
ogistic regression analysis was performed whereby several 𝜏13 values
ere modified at different strain rates to achieve the desired material

esponse, shown in Fig. 8(a). The resulting viscosity is both stretch
evel and strain rate-dependent which is shown in Fig. 8(b). The neo-
ookean 𝜏2 parameter was kept constant as it modifies the dissipation
elow 150% and having minimal effect on high strain behaviour. The
odel was then simultaneously run at three strain levels resulting in
reasonable fitting with experimental data as shown in Fig. 8(c). As

he viscoelasticity is minimal, i.e. the rate-dependency, for the case
f this material, achieving a good fit with the experimental data is
hallenging. The strain-rate compensation parameter 𝜏13 introduced
ere does give reasonable results for strain values between 10−5 and
/s. The correlation could be improved by incorporating additional
onlinear parameters in the 𝜏11 function. Note that the viscoelastic
ompensation could not be increased beyond a certain threshold due
o unstable numerical values with respect to strain rate. Performing the
arameter identification at lower strain levels would ensure an easier
itting process, however the model would then only be validated for this
ower strain level range. All the model parameters are given in Table 2.
inally, the nonlinear viscosity functions are given as

𝜏11 = 𝜏11 +
[

𝜏12 + 𝜏13 exp(−𝑘13‖𝐃‖)
]

[tr𝐂 − 3]2 ,

𝜏13 = 𝑘12exp(−𝑘13‖�̇�‖) + 𝑘14exp(−𝑘15‖�̇�‖) + 𝑘16exp(−𝑘17‖�̇�‖)
+ 𝑘16exp(−𝑘17‖�̇�‖)

(21)

which, in the case of uniaxial deformation, result in

𝜏11 = 𝜏11 +
[

𝜏12 + 𝜏13 exp(−𝑘11�̇�∕𝜆)
] [

𝜆2 + 2𝜆−1 − 3
]2 ,

𝜏13 = 𝑘12exp(−𝑘13|�̇�|) + 𝑘14exp(−𝑘15|�̇�|) + 𝑘16exp(−𝑘17|�̇�|)
+ 𝑘16exp(−𝑘17|�̇�|)

(22)
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Fig. 7. Parameter identification for elastic and viscoelastic models using constant 𝜏13 value.
Fig. 8. Nonlinear viscosity parameter identification using strain rate-dependent data.
4.3. Model validation: loading–unloading data

The material parameters identification procedure illustrated in Sec-
tions 4.1 and 4.2 are based on strain values of 350%. The model is now
9

validated at different strains values to understand the accuracy over a
range of loading regimes. The strain-hardening phase occurs at strains
above 200%. The goal of the validation was to see if the model was

able to adequately capture the behaviour in the strain-softening phase
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Table 2
Viscous parameters identified using strain rate-dependent data.
𝑐1 [MPa] 𝜏11 [s] 𝜏12 [s] 𝑘11 [s] 𝑘12 [s] 𝑘13 [s]

3 × 10−2 10 3 0.1 72.04 37.88

𝑘14 [s] 𝑘15 [s] 𝑘16 [s] 𝑘17 [s] 𝑐3 [MPa] 𝜏2 [s]

546.8 276.3 8.393 8.297 2 × 10−1 4

Fig. 9. Viscoelastic model validation at four strain levels between 50%–200% at strain
rate of 0.024∕s.

at relatively lower strains. Fig. 9 shows the validation of four different
strain levels: 50, 100, 150 and 200% at a strain rate of 0.024/s, showing
good correlation. The goodness of fit for all strain ranges and rates
investigated is shown in Table 3. It is shown that the model performs
best at intermediate strain rates and strains, i.e. 0.024/s and 100%–
200%. Outside of these values the goodness of fit reduces, although
still performs reasonably well.

4.4. Model validation: stress relaxation data

Another form of validation is through the stress relaxation experi-
ments. Six strain amplitudes are validated from 50% to 300%, these are
given in Figs. 10(a) and 10(b). The model shows a good correlation for
low strain amplitudes, however the accuracy decrease beyond 150%;
witnessed as an over-estimation in the overstress and equilibrium point.
10
Table 3
Goodness of fit (𝑅2) for strain ranges and rates investigated during an
loading–unloading simulation.

Strain range [–] Strain rate [/s] 𝑅2

50 0.024 0.9344
100 0.024 0.9841
150 0.024 0.9951
200 0.024 0.9907
350 {0.0024, 0.024, 0.24} {0.9513, 0.9647, 0.9568}

Table 4
Goodness of fit (𝑅2) for 6 strain levels during stress relaxation simulations.

Strain level [–] 𝑅2

50 0.7871
100 0.8549
150 0.9243
200 0.9378
250 0.9298
300 0.8851

The goodness of fit is shown in Table 4, like the loading–unloading
experiments, the optimum model range is at the intermediate strain
levels of 100%–200%.

5. Finite element implementation

The constitutive equations presented in Section 3 have now been
incorporated into a commercial finite element solver for the solving
of three-dimensional geometries. Since the one-dimensional simplifica-
tions in Section 4 no longer apply, calculating the non-linear evolution
equation that does not have any closed-form (analytical) solution is one
of the more difficult aspects of incorporating it in the finite element
method; a technique overview is provided in Section 5.1. As this
model is solved numerically, the resulting stress and stiffness matrices
must therefore be numerically determined. The user is responsible for
providing ABAQUS UMAT with the spatial stress and Jacobian update
with the method given in Section 5.2. This numerical implementation
must be validated against analytical formulations in order to ensure its
accuracy. Hence three strain rates are validated against the analytical
simulations in Section 5.3.

5.1. Solving the evolution equation

The key aspect of a viscoelastic model is the viscous stress con-
tribution 𝐒𝑣 which is dependent on the viscous Cauchy–Green tensor
𝐂𝑗 . As shown in Eqs. (10) and (11), the calculation 𝐂𝑗 requires time
𝑣 𝑣
Fig. 10. Single-step stress relaxation for 2 h model validation.
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Fig. 11. Single element uniaxial boundary condition; initial and maximum deformation
shown.

discretisation; therefore a suitable mechanism for updating these evo-
lution equations must be proposed. In Scheffer et al. (2015a), the
unconditionally stable Euler backward method (EBM) is utilised at each
(Gauss) integration point to solve the evolution equation. The compu-
tational cost of running Newton–Raphson iterations involving fourth
and second order tensors is the major downside of this method. There
have been proposed solutions to simplify the issue. For instance, Shutov
et al. (2013) considered the uni-modularity of tensors, which enables
the closed-form representations of evolution equations. However, that
effort was successful only for simple evolution equations resulting from
neo-Hookean-type energy functions appearing in the viscous part of the
total energy function. A similar technique is further applied by Landgraf
et al. (2015) in an effort to obtain a more sophisticated generalised
evolution equation containing first invariant components. They showed
it is possible to reduce the model to a single scalar Newton–Raphson
process. However, the approach devised by Landgraf et al. (2015)
is not implemented into a finite element solver. Hence, the current
study extended the method of Landgraf et al. (2015) into ABAQUS
UMAT, enabling the selection of any first invariant-based viscoelastic
model for complex polymer viscoelasticity at a minimal computational
cost without involving complicated fourth and second order tensors’
calculations at every Gauss point. Ultimately, this yields a versatile
viscoelastic framework which can utilise any highly nonlinear evolution
functions. Using similar notation, the unimodularity of a tensor is
defined as �̄� = (det(𝐀))−1∕3 𝐀. The update for

[

𝐂𝑗
𝑣

]𝑛+1
is set as equal

to the Euler backward method unimodular tensor
[

𝐂𝑗
]𝑛+1

, resulting
11

𝑣 𝐸𝐵𝑀
in

[

𝐂𝑗
𝑣
]𝑛+1 =

[

𝐂𝑗
𝑣

]𝑛+1

𝐸𝐵𝑀
=
(

det
(

[

𝐂𝑗
𝑣
]𝑛+1
𝐸𝐵𝑀

))−1∕3
[

𝐂𝑗
𝑣
]𝑛+1
𝐸𝐵𝑀 (23)

Now consider applying the Euler backward method to Eq. (9) and
substitution into Eq. (23) which yields

[

𝐂𝑗
𝑣
]𝑛+1
𝐸𝐵𝑀 =

[

𝐂𝑗
𝑣
]𝑛 +

{

4𝛥𝑡
𝜂𝑗

𝜕𝛹𝑣

𝜕𝐼1𝑒

[

�̄� − 1
3

tr
(

(

𝐂𝑗
𝑣
)−1

⋅ �̄�
)

𝐂𝑗
𝑣

]

}𝑛+1
(24)

As is shown in Shutov et al. (2013), Eq. (24) can be rearranged such
that

[

𝐂𝑗
𝑣

]𝑛+1
is removed from the right hand side (RHS) of Eq. (24),

allowing for the expression

[

𝐂𝑗
𝑣
]𝑛+1 =

[

𝐂𝑗
𝑣

]𝑛
+
{

4𝛥𝑡
𝜂𝑗

𝜕𝛹𝑣

𝜕𝐼1𝑒
�̄�
}𝑛+1

(25)

where the overline definition (.) is expressed in Eq. (23). If the deriva-
tives of 𝜕𝛹 𝑗

nh,𝑣∕𝜕𝐼1,𝑒 and 𝜕𝛹 𝑗
yh,𝑣∕𝜕𝐼1,𝑒 are substituted in Eq. (25), this

results in two time discretised evolution equations, where neo-Hooke
is

[

𝐂𝑗
𝑣
]𝑛+1 =

[

𝐂𝑗
𝑣

]𝑛
+
{

4𝛥𝑡𝑐2
𝜂𝑗

�̄�
}𝑛+1

=
[

𝐂𝑗
𝑣

]𝑛
+
{4𝛥𝑡

𝜏𝑗
�̄�
}𝑛+1

(26)

which can be solved in a single step. Now consider the Yeoh energy
function that can be written as

[

𝐂𝑗
𝑣
]𝑛+1 =

[

𝐂𝑗
𝑣

]𝑛
+

{

12𝛥𝑡𝑐1(𝐼
𝑗
1𝑒 − 3)2

𝜂𝑗
�̄�
}𝑛+1

=
[

𝐂𝑗
𝑣

]𝑛
+

{

12𝛥𝑡(𝐼 𝑗1𝑒 − 3)2

𝜏𝑗
�̄�
}𝑛+1

(27)

Since 𝐼 𝑗1𝑒 is dependent on 𝐂𝑗
𝑣, it is necessary to perform some Newton–

Raphson iterations of this scalar term to solve. If one is to consider that
𝐼 𝑗1𝑒 = 𝐈 ∶ �̄�𝑒, then through some algebra given in Liu et al. (2019), it
is possible to show that 𝐼 𝑗1𝑒 = �̄� ∶ 𝐂𝑗

𝑣. With that definition, taking the

inverse of
[

𝐂𝑗
𝑣

]𝑛+1
and performing the double contraction with respect

to �̄� on both sides of Eq. (27) yields

[

𝐼 𝑗1𝑒
]𝑛+1

=

⎡

⎢

⎢

⎢

[

𝐂𝑗
𝑣

]𝑛
+

{

6𝛥𝑡(𝐼 𝑗1𝑒 − 3)2

𝜏𝑗
�̄�
}𝑛+1⎤

⎥

⎥

⎥

−1

∶ �̄�𝑛+1 (28)
⎣ ⎦
Fig. 12. Finite element implementation validation against analytical model prediction.
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c

Fig. 13. Mesh refinement results using 4 surface element and 3 stack combinations. The results are based on the pole displacement and stress, where the pole is referred to the
entre point of the membrane in the initial configuration.
Fig. 14. Boundary conditions for a circular disc membrane, showing the coordinate system and 𝛱 spline used in the following figures. 𝑦 is in the plane of the membrane, 𝛱 is
in the 𝑥𝑧 vertical plane.
Eq. (28) can be solved through the function

𝑓
(

[

𝐼 𝑗1𝑒
]𝑛+1

)

=
[

𝐼 𝑗1𝑒
]𝑛+1

−

⎡

⎢

⎢

⎢

⎣

[

𝐂𝑗
𝑣

]𝑛
+

{

6𝛥𝑡(𝐼 𝑗1𝑒 − 3)2

𝜏𝑗
�̄�
}𝑛+1⎤

⎥

⎥

⎥

⎦

−1

∶ �̄�𝑛+1

=
[

𝐼 𝑗1𝑒
]𝑛+1

−
[

(

det
(

[

𝐂𝑗
𝑣
]𝑛+1
𝐸𝐵𝑀

))−1∕3
[

𝐂𝑗
𝑣
]𝑛+1
𝐸𝐵𝑀

]−1
∶ �̄�𝑛+1

(29)
12
with a new update for
[

𝐼 𝑗1𝑒
]𝑛+1

∗
, Eq. (27) can be directly updated

through a substitution.

5.2. Stress and tangent operators update

The total fictitious stress is summed and converted to isochoric
stress in Eq. (12), then the volumetric stress is added in Eq. (4). For
ABAQUS Standard, the stress has to be provided as a Cauchy stress
in Voigt notation 𝝈 and the material Jacobian in a Jaumann format
voigt



European Journal of Mechanics / A Solids 98 (2023) 104895I. Collins et al.

c

u

𝝈

A
n

𝐅

T

𝝉

Fig. 15. The influence of membrane orientation on the membrane shape and creep behaviour after two hours.
T
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∇
. The second Piola–Kirchhoff stress is converted to the Cauchy stress
sing the following relation

= 𝐽−1𝐅𝐒𝐅𝑇 (30)

s per the procedure proposed in Miehe (1996), the calculation of a
umerical tangent by perturbing the deformation gradient is

𝜖(𝑘𝑙) = 𝐅 + 𝜖
2
[

𝒆𝑘 ⊗ 𝒆𝑙𝐅 + 𝒆𝑙 ⊗ 𝒆𝑘𝐅
]

, 𝜖 = 1 × 10−10 (31)

he Kirchhoff stress is calculated with and without perturbation

𝜖(𝑘𝑙) 𝜖(𝑘𝑙) 𝜖(𝑘𝑙) 𝜖(𝑘𝑙)
13

(𝐅 ) = 𝐽 𝝈 , 𝝉(𝐅) = 𝐽𝝈 (32)
he spatial Jaumann tangent moduli as per the requirement for an
BAQUS UMAT is then calculated as

∇
= 1

𝐽𝜖
[

𝝉𝜖(𝑘𝑙)(𝐅𝜖(𝑘𝑙)) − 𝝉(𝐅)
]

(33)

5.3. Finite element implementation validation

The finite element implementation was validated using a single el-
ement uniaxial test condition with the same input material parameters
as in the analytical model, see Fig. 11 for the deformed and undeformed
states of the element. The model was validated at three different strains
rates in a loading–unloading test, and comparison to the analytical
model is shown in Fig. 12(a). Additionally, three stress relaxations tests
were performed, shown in Fig. 12(b). Both test confirmed successful
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Fig. 16. The influence of membrane pre-strain on the creep behaviour after two hours.
implementation of the model in an ABAQUS UMAT resulting in an
excellent correlation with analytical forms.

6. Pneumatic cell FlexWEC case study

The pneumatic cell was selected as a case study after evaluating the
categorisation for flexible wave energy converters offered by Collins
et al. (2021). The response of a flexible membrane is a fairly complex
issue with various nonlinear features, including anisotropy and biaxial
behaviour of the membrane material. As a result, an idealised quasi-
static analysis of a circular membrane was selected and assessed under
various loading circumstances anticipated during operation, including
long-term creep and cyclic loading. This work’s objective was not to
mimic the high-fidelity fluid–structure interaction that happens during
operating conditions, but rather to examine the influence of the non-
linear transient features resulting from viscoelastic dissipation on the
pressure–volume function of the membrane. Future works will con-
sider the high fidelity fluid–structure interaction with the possibility
of coupling to the viscous dissipative membrane.

6.1. Boundary conditions

An idealised circular membrane was chosen and evaluated under
various loading conditions expected during its operation. The mem-
brane is one metre in diameter with a thickness of ten centimetres.
The global boundary conditions applied to the membrane are shown
in Fig. 14. For the case studies conducted in this paper, the membrane
is rotated 40◦ relative to the 𝑥-axis, resulting in a non-uniform pressure-
loading distribution. Then a pre-strain is applied to the membrane. In
order to avoid any significant stress concentrations, a fictitious clamp
boundary condition is proposed, whereby the membrane is bonded to a
rigid material which has rotational degrees of freedom. The internal air
and external hydrostatic pressures are applied simultaneously to each
side of the membrane surface where the pressure-differential is kept to
a minimum. The membrane is inflated and deflated by increasing and
decreasing the internal air pressure. The membrane spline 𝛱 is used
for figures in Sections 6.2 and 6.3. The material modelling framework
14

was implemented for continuum based element problems since it offers
the best flexibility for performing the analysis. The drawbacks of these
elements is the potential for artificial shear locking in large bending
problems. Therefore it is necessary to perform a mesh refinement study.
Due to the near incompressibility, i.e. 𝑣 ≈ 0.5, the hybrid element
C3D8H is considered since it includes an additional degree of freedom
that determines the pressure stress in the element directly (Abaqus,
2014). Since the studied problem is under plane stress conditions, the
optimum element would be a shell/membrane element, see Fehervary
et al. (2020) for details on UMAT implementation. However, due to
the greater flexibility for solving different analyses, the full three-
dimensional UMAT implementation is considered here. An automatic
mesh refinement algorithm was created in Python to change the
number of seeds at each partition of the membrane. Two parameters
were modified: the number of surface elements and the number of
elements in the thickness direction. Refer to Fig. 13 in for the results
of the mesh refinement study.

6.2. Creep test

If a membrane is inflated and maintained at a constant pressure, the
creep will over time. Using these simulations, the influence of viscoelas-
ticity on the long-term pressure–volume (P–V) function is simulated.
During these simulations, four independent variables were altered: the
orientation of the membrane, the submersion depth, the amount of
pre-strain applied, and the viscoelastic characteristics of the membrane
material. Using various submersion depths and orientations, the effect
of the pressure differential across the membrane surface is explored.
Below is a summary of the conclusions from these simulations.

6.2.1. Influence of boundary conditions
Three membrane orientations at a depth of one and three metres

are compared; with internal pressures ranging from 11–15 kPa and
31–36 kPa, respectively. The averaged positive pressure-differential for
the inflation of these analyses is given in Fig. 15. Due to the equal
hydrostatic pressure acting on the membrane surface, the inflation is
fully symmetric for orientation 0◦. As the membrane is rotated around
its centre, the non-uniform hydrostatic pressure alters the membrane’s

◦
shape. As demonstrated in Fig. 15b for 40 , when a greater pressure
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Fig. 17. Influence of material parameters on creep behaviour showing before and after positions at a depth of 3 m, pre-strain of 25% and orientation of 40◦.
is applied to the bottom region of the membrane, the membrane pole
position shifts relative to the rotation angle. As the pressure-differential
is increased, the amount of creep increases after two hours. This is as
a result of the higher stresses induced in the membrane. For an uneven
shape, this concentrates around the pole of the membrane.

Another area to consider is the amount of pre-strain in the mem-
brane; 25% and 50% are studied here at a depth of three metres as
shown in Fig. 16. For a total internal pressures of 31–34 kPa (equiva-
lent to a positive pressure-differential of 0.5–3.5 kPa), the amount of
creep after two hours for the two pre-strains examined is significantly
different. Firstly, the membrane deflection is larger at higher pre-strain
values, and secondly, the membrane creep is greater. Since the strain
and, thus, the stress are greater for 50%, this corresponds to an increase
in the creep behaviour. It is also expected that the increased surface
area for pressure to act on a thinner membrane material causes the
greater membrane deflection.
15
6.2.2. Influence of viscoelastic parameters
As pointed out in the experimental and numerical contributions of

this work, the EDS-35 compound exhibits very low amounts of vis-
coelasticity as desired for energy harvesting. To understand the effect
of viscoelasticity on the creep membrane behaviour, an additional set
of simulations are run using greater contributions for the viscous part
(�̄�𝑣). Refer to Table 5 for details of the parameters analysed which starts
with EDS-35, then ranges from a low to a high viscosity. All of these
creep tests were done at an orientation of 40◦ relative to the water’s
surface, a pre-strain of 25% and a internal pressure of 36 kPa; shown in
Fig. 17. For this applied pressure, the baseline EDS-35 with little viscous
behaviour exhibits negligible changes in the creep behaviour. There
are notable increases in the creep behaviour as the viscosity increases.
Since the elastic parameters are constant throughout all four studies, all
final membrane shapes, i.e. after the material has completely relaxed,
are identical as expected. The main difference is the initial starting
point of the analyses, since the added viscosity increases the overall
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Fig. 18. Limit point instability of membrane as result of creeping with respect to time.
stiffness of the material initially. These tests beg the question of what
initial inflation pressure is necessary to get to the desired relaxed re-
sponse after several hours. Basing the operational characteristics solely
on pole displacement may require significant pressure compensation
with respect to time. This model includes the physical relaxation effect
that is the creep over a short timespan, i.e. a few hours, until the
equilibrium strain has been reached. The reality is that creep continues
indefinitely throughout the operation, albeit at a lower rate than the
initial physical relaxation effects (Mostafa et al., 2009; Oh and Kim,
2017). Long term creep as a result of degradation processes is not
studied here, but it is something which should also be considered over
longer time-scales of operation.
16
6.2.3. Influence on membrane instability

The change of P–V function highlights the risk of basing membrane
displacement on hyperelastic parameters. For the EDS-35 material pa-
rameters, using a slightly higher pre-strain of 50% and inflating to a
pressure of 36 kPa, the membrane passes the limit point stability as
shown in Fig. 18. The membrane initially reaches a pole displacement
of 0.89 m, over a period of 30 s, then it creeps to a pole displacement
of 1.14 m, at which point the membrane begins to reach to the critical
pressure for the material. In the next eight seconds, the pole displace-
ment increases to 1.62 m, the volume of air within in the membrane
doubles in 38 s, resulting in a catastrophic failure.
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Fig. 19. Cyclic inflation for EDS-35 with a pre-strain of 50%.
Table 5
Viscous material parameters studied for membrane creep and dynamic simulations
where m denotes the number of Maxwell elements. Note that the nonlinear relaxation
parameter 𝜏yh

𝑣 was kept constant for all materials. Starting from left to right, the
material parameters correspond to EDS-35, low viscosity, medium viscosity and high
viscosity.

Viscous parameter

𝑐yh
𝑣 {0.03, 0.1, 0.2, 0.4} MPa

𝑐nh
𝑣 {0.2(1m), 0.05(3m), 0.14(3m), 0.24(3m)} MPa

𝜏yh
𝑣 {𝜏11 = 10, 𝜏12 = 3, 𝑘11 = 0.1, 𝑘12 = 72.04, 𝑘13 = 37.88,

𝑘14 = 546.8, 𝑘15 = 276.3, 𝑘16 = 8.393, 𝑘17 = 2.297} s (all)

𝜏nh
𝑣 {4(1m), 100(3m), 100(3m), 100(3m)} s

6.3. Cyclic test

The influence of the time-dependent material response is studied in
an oscillating load case which mimics a real-world FlexWEC operational
loading. This is an idealised case, whereby the inertial aspects of the
dynamics are ignored, i.e. the added mass and damping matrix terms
are not considered. Instead, just the influence of the time dependent
stiffness matrix is studied under these quasi-static conditions.

6.3.1. Membrane deflection
During the inflation and deflation of the membrane, the material

exhibits cyclic relaxation. Two simulations are run using different
levels of viscous dissipation shown in Figs. 19 and 20, where the solid
and dashed line represents the membrane shape for the inflation and
deflation part of the cycle, respectively. For the EDS-35 parameters,
the membrane is cycled with a sinusoidal pressurisation range of 27 to
33 kPa and a period of 7 s. It can be seen as softening of the material
results in a minor change of deflection from 0.44 to 0.46 m, see Fig. 19.
Increasing the viscosity to the ‘high viscosity’ studied in Section 6.2,
results in more significant changes in the membrane deflection; 0.28 to
0.40 m, see Fig. 20. The membrane presents a different shape due to the
increase in the internal pressure range from 22 to 38 kPa. Like the creep
tests, the added stiffness from the viscosity component of the model is
removed with time and loading regime. The membrane displacement
and volume with respect to time is shown in Fig. 22(a). The amplitudes
gradually get larger as time evolves for all materials.
17
6.3.2. Membrane hysteresis and phase-lag
As for the hysteretical behaviour, this is showcased in Fig. 21. Under

this Neumann boundary condition, the hysteresis is relatively small
but noticeable. This is true for both EDS-35 and the high viscosity
parameters. As the material relaxes, this equates to smaller levels of
hysteresis as time evolves. The phase-lag between the applied pressure
and volume is compared for the high viscosity material at a 22 to
38 kPa pressure range, shown in Fig. 22(b). The phase-lag is minimal
as a result of viscoelasticity. It is expected the inertial aspects from the
fluid will dominate the phase-lag aspects of the operation which are
not considered here.

7. Conclusion

In this article, three linked scientific stages are described. Firstly, a
minimally dissipative unfilled natural rubber has been extensively ex-
perimentally characterised by various viscoelastic tensile test methods.
The results of these experiments have been used to define a material
(analytical) model and implemented in a finite element framework
using nonlinear viscoelastic evolution laws. The final aspect of this
work considered a submerged elastomeric membrane which represents
the interesting new energy harvesting application of natural rubbers.
The response to creep and cyclic tests with four materials, specifically,
the identified material parameters as well as the response of three
additional materials with higher levels of viscous dissipation have been
predicted. Several conclusions can be drawn:

• A low dissipative polymer was chosen as part of the study since
it offers a good baseline for further additional material analy-
sis involving advanced filling solutions. It was found that un-
filled natural rubber materials have limited rate-dependency but
still show hysteresis and stress relaxation behaviour that cannot
be discarded completely. It is expected the rate-dependency is
greater at higher strain rates than the ones conducted in this
study.

• The viscoelastic framework provided here is scalable, being able
to not only capture polymers with a minimal viscous response but
all also polymers with a high viscous response. This modelling
framework can therefore be used to benchmark a wide range of
future potential materials for FlexWEC applications.

• In the case studies presented here, even a low dissipative polymer
has considerable nonlinear effects of interest to the application
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Fig. 20. Cyclic inflation for high viscosity with a pre-strain of 25%.

Fig. 21. Volume with respect to pressure up to 4 cycles for EDS-35 and high viscosity simulations.
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Fig. 22. Volume with respect to time for all materials studied.
studied. Creep behaviour can result in membrane instabilities
occurring due to the changing stiffness with respect to the un-
loaded membrane material. In dynamic settings, time-dependent
dissipative effects are observed proving that it cannot be ignored
for calculating power capture.

urther works should calibrate the material at a wider range of strain
ates under biaxial conditions to have more accurate predictions for
his rate-dependency and dissipation behaviour. Importantly, the model
an now be used to understand more clearly the stress response within
lexible energy harvesting systems. This will support efforts for the
evelopment of sustainable sources of energy in the future.
19
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