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Abstract. Despite the rapid development of powerful supercomputers in recent years,

the human brain still has some abilities that outperform modern computers which

are based on the von Neumann architecture. The human brain is much more

energy efficient than state-of-the-art digital computers and can at the same time

perform complex tasks such as pattern recognition. The brain-inspired neuromorphic

computing paradigm is a promising path towards next generation analogue computers

with fundamentally different architecture. The building blocks of the human brain are

neurons with leaky integrate-and-fire mechanisms. In this work, using the advantage of

antiferromagnetic insulators, we propose a non-volatile spintronic-based neuron. In our

proposal, an antiferromagnetic domain wall in the presence of a magnetic anisotropy

gradient mimics a biological neuron with leaky and integrative properties. This single

neuron is controlled by polarized antiferromagnetic magnons, activated by either a

magnetic field pulse or a spin transfer torque mechanism. We propose that this single

neuron, based on antiferromagnetic insulators, is faster and more energy efficient than

other metallic ferromagnetic-based neurons.
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1. Introduction

Modern electronic digital computers are designed based on the socalled von Neumann

computing architecture. They rely on central processing units (CPU), built upon

complementary metal-oxide-semiconductor (CMOS) transistors [1]. In contrast to that,

inspired by the human brain and its complex neural network, novel energy efficient

analogue computing architectures with strongly interconnected processing elements have

been proposed that lead to the emerging technology of neuromorphic computing and

engineering [2–5].

The conventional CPU-based von Neumann computing architecture is faster than

the current state of the art neuromorphic computing, but the latter offers more energy

efficient data processing. To achieve even more energy efficiency as well as faster data

processing in neuromorphic computing architecture, it was proposed very recently that

neuromorphic principles may be implemented in spintronic-based nanodevices. This

leads to the emerging field of the neuromorphic spintronics [6]. In spintronic-based

nanotechnology, the intrinsic spin angular momentum of electrons, rather than their

charge, may be used for data storage and processing. The magnetic insulators that host

magnons and various topological magnetic textures are key ingredients for efficient data

processing and information storage [7]. Consequently, ubiquitous Joule heating arising

from electron scatterings in metals and semiconductors is avoided. Furthermore, recent

theoretical and experimental advances in spintronics have shown that antiferromagnetic

(AFM) systems have even much more advantages compared to their ferromagnetic

(FM) counterparts [8, 9]. The absence of parasitic stray fields, operating frequencies

in THz regime compared to GHz in FM systems, and their abundance in nature, make

AFM-based spintronics a promising candidate for hardware implementation of the next

generation of ultrafast, low-energy cost, and miniaturized non-volatile neuromorphic

chips [10–13].

Spiking neural networks (SNNs) are a class of neuromorphic computing architecture

that mimic human neural networks [14]. These spiking neural networks may support

energy efficient operation of deep neural networks. One of the most successful spiking

neural network models is the leaky integrate-and-fire (LIF) model [15]. This model

resembles the spiking behavior of a neuron at the onset of critical accumulating stimuli

and its slow decay to the equilibrium state until the next spike [16]. LIF may be used

as the building block of neuromorphic chips [17].

In this paper, we propose a non-volatile AFM-based single neuron with leaky

integrate-and-fire properties. The state of this neuron is encoded in the position of a

magnetic domain wall (DW), which is displaced by travelling magnons in the material.

Leaky behaviour is ensured by a nonuniform magnetic anisotropy profile.
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Figure 1: Schematic of a simple spiking neuron. Three spike trains or three synapses

lead to a spiking neuron Ξ. The spike trains are multiplied by weights wi and merged

before they get sent into Ξ. A non-linear function determines whether the neuron should

fire as a consequence of stimuli from its synapses. Figure inspired by [19].

2. Theory of Neural Networks

In this section, we briefly summarize the key elements and ingredients of SNN and LIF

single neuron models.

2.1. Spiking Neural Networks

A SNN takes the inspiration of human brain activity into computer science one step

further than other models of artificial neural networks, like feedforward neural networks

[18]. Information in this model is encoded as spike trains; c.f., binary information

coding, used in conventional computers. The network has an explicit time dependency

and the system is event-driven. We first give a brief mathematical description of the

SNN model. A generic spiking neuron Ξ is represented in Fig. 1. Let V be a finite

set of spiking neurons, connected by a set of E ⊆ V × V synapses. For each synapse

〈i, j〉 ∈ E between presynaptic neuron j and postsynaptic neuron i there is associated

a response function εij and a weight wij. The state variable of ith neuron, ui(t), is then

given by [15,18],

ui(t) = δ(t− t(f)i ) +
∑
j

∑
f

wijεij(t− t(f)j ) + u0. (1)

Here u0 is the equilibrium potential, i.e. the value of ui(t) when no stimuli has affected

the neuron and t
(f)
j indicates the firing times, where f is the label of each spike. In

general the firing time t = t
(f)
i of a neuron i is set when ui(t) reaches a threshold value
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Figure 2: Leaky integrate-and-fire circuit. A capacitor, C, and a resistor, R, are

connected in parallel. The voltage over the capacitor u(t) integrates the current input,

while it leaks to ground. When u(t) reaches a threshold value, a switch controlling the

input wire is flipped, stopping new currents into the system for a refractory period.

During the refractory period charge is completely depleted from the capacitor. Figure

inspired by [15].

uthreshold,

ui(t) = uthreshold ∧ sgn(ui(t)− u0)
dui(t)

dt
> 0

=⇒ t = t
(f)
i ,

(2)

where sgn(x) is the sign function and εij(t−t(f)j ) determines the response for postsynaptic

neuron i from stimuli from presynaptic neuron j. Once a spike is initiated, ui(t) is

immediately reset to u0. Equation 1 can therefore be used to model a human neuron:

after the action potential in a neuron has been raised and neurotransmitters have been

transferred, it relaxes back to its ground state until the next activation happens.

It is worth noting that Eq. (1) assumes no time delay as signals travel the synapses.

This could easily be added with a delay time for each synapse [20].

2.2. Leaky Integrate-and-Fire Neurons

The rather general Eq. (1) can be used to model a variety of neuron models. LIF

models are one of the most prominent neuron types [15]. It can be modelled by

a resistor–capacitor circuit (RC) circuit as shown in Fig. 2. The neuron voltage

corresponds to the capacitor voltage ui(t). The LIF model is described by a differential

equation,

τ
dui
dt

= −ui(t) +RIi(t), (3)

where τ = RC is the time constant of the RC circuit, and R and C are the resistance

and capacitance of the resistor and capacitor, respectively. The incoming current Ii(t)
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is,

Ii(t) =
∑
j

wij

∑
f

δ(t− t(f)j ). (4)

The weights wij determine the connection strength from presynaptic neuron j to

postsynaptic neuron i. The sum
∑

f is over all presynaptic spike times (f).

The purpose of the LIF model is to describe how the spiking neuron Ξ behaves as

a function of external stimuli, or captures the dynamics of the εij response function in

Eq. (1). The LIF model has a memory of previous inputs Ii(t), stored on the capacitor.

The resistor ensures that this memory only is short term. As before, a spike is fired

when ui(t) reaches a threshold value by Eq. (2). A generalization to a non-linear leaky

integrate-and-fire model gives

τ
dui
dt

= F (ui) +G(ui)Ii(t), (5)

where the functions F (ui) and G(ui) are arbitrary functions. It is worth noting that

Eq. (1) describes ui(t) as a function of time since the last input, while Eqs. (3) and (5)

are implicit equations.

3. Non-volatile Spintronic-Based LIF Neurons

In this section, we introduce our proposal for a non-volatile LIF neuron, implemented

with a magnetic DW in an AFM insulator.

3.1. AFM Model

We consider a two-sublattice AFM insulator nanoribbon, modelled by the following

potential-energy density for each sublattice,

Ui(mi,∇mi; r) =A(∇mi)
2 + 4Ahmi ·mj − µ0Msmi · h−Keasy(mi · eeasy)2

+Khard(mi · ehard)2 +Dmi · (∇×mi) + ηi
Dh

2
dh ×mj,

(6)

where i 6= j ∈ {A, B} refer to two AFM sublattices. Within a micromagnetic

framework [21, 22], all magnetic contributions in a unit cell with volume V0 are

averaged to a macrospin magnetic moment M , with a saturation magnetization value

Ms = |M |. The unit vector of magnetization direction is m = M/Ms. A and Ah

parameterize the AFM exchange stiffness and the homogeneous Heisenberg exchange

interaction, respectively, Keasy (hard) > 0 parameterizes single ion easy (hard) axis

anisotropy energy along the eeasy (hard) direction, h is the applied magnetic field, D is

the strength of the inhomogeneous bulk-type Dzyaloshinskii-Morya interaction (DMI)

while Dh is the homogeneous DMI along the direction dh with a sublattice-dependent

sign ηA(B) = +(−)1.

We assume the AFM insulator supports a rigid magnetic domain wall (DW) that

connects two uniform AFM domains, see Fig. 3. Within the collective coordinate
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Table 1: Numerical parameters used for micromagnetic simulations.

Quantity Value Unit

Length of AFM (Lx) 500 nm

Width of AFM (Ly) 20 nm

Height of AFM (Lz) 4 nm

Inhomogeneous exchange stiffness (A) 1 pJ m−1

Homogeneous exchange energy (Ah) −200 kJ m−3

Easy-axis anisotropy energy (Keasy) 20 kJ m−3

Hard-axis anisotropy energy (Khard) 10 kJ m−3

Saturation magnetization (Ms) 2.1 kA m−1

Gilbert damping parameter (α) 0.002 1

Inhomogeneous bulk DMI (D) 0–250 µJ m−2

Homogeneous DMI (Dh) 2 kJ m−3

Applied magnetic field frequency (ω) 62.5 rad ps−1

approximation [23], the position of the DW center is considered as a dynamical variable

XDW. In order to control the equilibrium position of DW center, the spatial profile of

the anisotropy energy density K can be tuned by electric field via voltage-controlled

magnetic anisotropy (VCMA) effect [24–28] or strain-induced magnetic anisotropy

[29–32]. We model a spatially varying anisotropy as,

K(x) = K0

[(
x

Lx

− 2

3

)2

+ 1

]
, (7)

where Lx is the length of the AFM nanoribbon along the x-direction. This magnetic

anisotropy profile creates a magnetic potential well along the x- direction with a

minimum value K0 at X0 = 2Lx/3. The AFM DW is at its minimum energy if the

DW center is placed at this minimum X0. If there is no spatial dependent magnetic

anisotropy, the system has translation invariance and AFM DWs have no preferred

equilibrium position. The spatial dependent of K(x) ensures that the AFM DW always

relaxes back toward its ground-state position X0 in the absence of stimuli, giving the

neuron a leaky behaviour.

3.2. AFM DWs as LIF Neurons

Our proposed system is schematically presented in Fig. 3. It consists of an AFM

insulator stripe, an injector (modelling the receptor of a human neuron) that excites

magnons in the AFM insulator via either a circularly polarized magnetic field pulse

or current-induced (anomalous) spin Hall torque mechanism [33, 34], and a detector

(modelling the transmitter). The detector measures the passing DW via inverse

(anomalous) spin Hall effect of the injected spin-pumping signal [33–37]. In a series
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of neuron networks, this detector or transmitter must be connected to the injector or

receptor of the following neuron. At a given set of material parameters and excitation

strength, the position of the detector determines the neuron threshold potential.

AFM DWs are 1D particle-like magnetic solitons that connect two magnetic

domains in magnetic materials. It was recently shown that the position of a DW in

an AFM insulator is controllable through magnon-DW interactions [38]. The position

of AFM DW may be used as a state variable for the LIF neuron, u(t) −→ XDW [39].

In the following, two generic magnetic geometries for possible implementation of

LIF neurons are investigated and compared, which we will call in-plane (IP) and out-

of-plane (OOP), referring to their magnetic ground-state orientation. In order to model

these two magnetic states using the potential energy density expression given by Eq.

(6), we set eeasy = êx and ehard = êz in IP case, while for OOP, we set eeasy = êz
and ehard = êx. Therefore, in the IP geometry, the magnetic ground state lies along

the direction of magnon propagation, i.e., the x axis, while in the OOP geometry, the

magnetic ground state is normal to the direction of magnon propagation. In both cases,

we assume the homogeneous DM vector lies parallel to the hard axis, dh ‖ ehard.

Figure 3: Schematic setup of the AFM-based single neuron proposal in the IP geometry.

There are two domains in the AFM stripe, represented by the Néel vectors in blue and

red. The two domains are connected by a DW texture in turquoise. On top of the AFM

stripe, an injector is placed at the left side as a source of magnons and two detectors

are placed right and left of the equilibrium position of the DW, the latter shown by X0.

4. Equation of Motions for AFM Systems

The dynamics of the normalized sublattice magnetic moments mi∈{A, B}(r, t), in

finite temperature, is given by the coupled stochastic Landau-Lifshitz-Gilbert (sLLG)

equations,

∂mi

∂t
= −|γe|µ0mi × (Hi +Hth

i ) + αmi ×
∂mi

∂t
+ T (r, t), (8)

with the electron gyromagnetic ratio γe, the vacuum permeability µ0 and the

Gilbert damping constant α. The sublattice-dependent effective magnetic field Hi =

−(µ0Ms)
−1δU/δmi, is given by the functional derivative of the total potential energy
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U [mA,mB; r, t] =
∫
dr
∑

i Ui(mi,∇mi; r). Finite temperature dynamics is captured

by adding an uncorrelated white noise effective magnetic field Hth
i (t), derived by

fluctuation-dissipation theorem [21]. The current-induced spin transfer torque and

magnetic field torque are denoted by T in the sLLG equation. T (r, t) is finite only

in the injector region and during the excitation period.

To solve coupled sLLG equations for our AFM system, we use the software Boris

Computational spintronics [22]. The list of parameters, used in the micromagnetic

simulations, is given in the Table 1.

5. Results

In this section, we show how our proposed non-volatie AFM-based LIF neuron works. As

we mentioned earlier, AFM DWs are displaced by AFM magnons that can be generated

by either magnetic field pulses or by (anomalous) spin Hall torque. We present the

results for both magnon excitation methods in the following subsections.

5.1. Magnon-Induced AFM DW Motion by Magnetic Fields

Magnetic field pulses may excite monochromatic AFM magnons with certain

polarizations. It was theoretically shown that these AFM magnons can displace AFM

textures in opposite directions depending on their polarizations, values of DMI, and the

Gilbert damping parameter [38,40,41].

Table 2: Four-stage protocol for magnon-induced DW movement, induced by a

transverse magnetic field pulse.

Stage Magnetic Field Pulse Polarization

Excitation 1
HIP (t) = (0, H0 cosωt,H0 sinωt)

HOOP (t) = (H0 cosωt,H0 sinωt, 0)
			

Relaxation 1 H0 = 0 -

Excitation 2
HIP (t) = (0, H0 sinωt,H0 cosωt)

HOOP (t) = (H0 sinωt,H0 cosωt, 0)
���

Relaxation 2 H0 = 0 -

In this part, first, we demonstrate the control of the AFM DW in our setup. To

do so, a four-stage protocol is run, see Table 2: In the first excitation stage, a small

amplitude transverse magnetic field pulse with circular polarization is applied in the

injector region to excite the AFM magnon eigenmodes in the magnetic layer. Afterwards,

the magnetic field pulse is turned off and the system may relax back to its ground state

in the first relaxation stage. Then, in the second excitation stage, the magnetic field

pulse is applied again but with the opposite helicity. Finally, it is turned off again in the

second relaxation stage. In Fig. 4, we present snapshots of magnon-induced AFM DW
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Figure 4: Snapshots of all-magnonic DW motion through an AFM-based neuron in the

IP configuration with magnetic field pulse excitation. In (a), the DW is at equilibrium

position XDW = X0, set by the magnetic anisotropy profile. Once a left-handed magnetic

field pulse with strength H0 is turned on, left-handed AFM magnons are excited at the

injector. As a result, the DW moves towards the magnon source, panels (b) and (c).

After switching the magnetic field off, the DW relaxes back to its equilibrium position,

panels (d) and (e). The illustrated movement corresponds to the first excitation stage

followed by the first relaxation stage in our protocol. We set D = 150 µJ m−2 in this

case.

motion in an IP geometry for one excitation followed by one relaxation stage: while the

magnetic field is turned on, the AFM DW travels from its equilibrium position (Fig. 4a)

towards the left (Figs. 4b and 4c). Once the magnetic field is turned off, it relaxes back

toward its equilibrium position (Figs. 4d and 4e).

By tuning the excitation strength and the distance of the detector from the magnetic

anisotropy minimum, one can set the threshold for the firing mechanism. Depending

on the strength of the DMI D, the DW surface can be tilted. This DMI-induced tilting

was also reported in ferromagnetic DWs [42].

5.2. Direction and amplitude of the DW displacement

In this part, we show that the movement of AFM DWs can be controlled by demand,

which makes them more flexible than their ferromagnetic counterpart. Besides the

excitation strength (here the magnetic field strength), the magnon helicity, and the

inhomogeneous DMI strength have a major impact on the DW displacement. In Fig. 5

the trajectory of the AFM DW center in the IP geometry (Fig. 5a) and OOP (Fig. 5b) is

shown during the four-stage protocol, see Table 2. The orange areas in the plots sketch

when and where the magnetic field pulse is applied while arrows indicate the helicity

of the magnetic field pulse. The color map refers to the strength of the inhomogeneous

bulk DMI, starting from dark blue for D = 0 and increasing over green to yellow

for D = 250 µJ m−2 (D = 200 µJ m−2) for the IP (OOP) geometry. Every single

line represents one DW trajectory at a given set of parameters. For example, at an

intermediate DMI strength, the dark green curve in the IP case (Fig. 5a), the DW

moves towards the injector during the first excitation stage (0–25 ps), then relaxes back
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Figure 5: DMI-dependent all-magnonic AFM DW movement. Left- and right-handed

AFM magnons are excited with polarized magnetic field pulses, see the orange area. In

the IP geometry (a) the direction and amplitude of the DW motion can be tuned by

DMI strength and the helicity of excited magnons. However, the direction of AFM DW

motion in the OOP geometry (b) is independent of the magnon helicity. The strength

of DMI is encoded by colors, from lowest D = 0 in blue to highest in yellow, see the

insets. In the insets, the maximal displacements of AFM DWs, Xmax
DW , are shown for

each excitation stage (crosses for the first and points for the second excitation stage).

to equilibrium position (35–50 ps), and in the second excitation stage with opposite

helicity the AFM DW is pushed away from the injector (50–75 ps) before relaxing back

to the equilibrium position again.

The first difference between the two cases is the helicity dependency of AFM DW

motion. The displacement of an AFM DW in the OOP geometry is insensitive to the

polarization of excited AFM magnon, while the displacement of an AFM DW in the IP

case is helicity dependent.

Figure 5 shows that in the OOP geometry, only the strength of the inhomogeneous

DMI determines the direction of the DW motion, but in the IP geometry, both the

strength of the inhomogeneous DMI and the helicity of the excited magnons set the

direction of AFM DW displacement.

The amplitude and direction of the maximum displacement of the AFM DW center,

Xmax
DW , show a complicated relation with inhomogeneous DMI strength, see the insets

in Fig. 5a and 5b. Recent theoretical studies have shown that, in the presence of

an inhomogeneous DMI, several torques and forces act on the AFM DW, and thus

the competition between them determines the direction and amplitude of the DW

displacement [38].
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5.3. LIF Behavior of AFM DWs

As we discussed earlier, biological neurons have LIF characteristics: if the input signal

(or the sum of input spikes) reaches a threshold, the neuron fires, and then relaxes back

to its ground state. In this part, we demonstrate that our proposed setup indeed can

mimic the LIF behavior. In Fig. 6a the time-dependent AFM DW position in the IP

geometry is shown, excited with three successive short magnetic field pulses. One single

pulse is not strong enough to move the AFM DW to the detector while three pulses can

move the DW toward the detector, where it triggers a spike in the read-out (see Fig. 6b,

more explanation in the next section). This is a demonstration of the integrative-and-

fire behavior of our proposed non-volatile spintronic-based neuron. The DW relaxes

back to its equilibrium position that represents the required leaky characteristic.

0 10 20 30 40
t [ps]

0

100

200

300

400

DW
 [n

m
]

detector

X0-

(a) Trajectory of the AFM DW

0 10 20 30 40
t [ps]

6

4

2

0

2
x [

GH
z]

(b) Spin-pumping signal at the detector

Figure 6: Leaky integrate-and-fire behavior of the all-magnonic AFM DW motion in

the IP geometry with a DMI strength of D = 150 µJ m−2. (a) The integration of three

separate pulses, denoted by orange areas, provides enough energy to pull the DW away

from its equilibrium position, denoted by the gray dashed line, to the detector, denoted

by the blue area. This is the realization of the integrate-and-fire characteristic of LIF

model. After the last pulse, the AFM DW relaxes back to the equilibrium position,

which represents the leaky behavior of the single neuron. (b) An impulse-like signal is

fired when the DW pass the detector. This spike, generated when the synaptic inputs

to the neuron reach a certain threshold value, represents the neuron action potential.

5.4. Electrical Readout of the AFM DW Position

A detector on top of the AFM stripe measures the passing of the AFM DW by converting

the spin-pumping signal, induced by AFM DW dynamics, to an electric voltage via either

the inverse spin Hall effect [43] or recently discovered the inverse anomalous spin Hall

effect [34]. In the former case, the detector is a nonmagnetic heavy metal and can only

measure the component of spin-pumping signal parallel to the interface. In the latter
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Figure 7: Electrical control of the AFM DW motion in the IP geometry. The orange

areas depict the injector region that excites magnons via spin transfer torque pulses with

two opposite spin torques, indicated by the arrow directions, at a finite temperature.

Each trajectory is computed from an ensemble average over ten realizations, and the

uncertainty environment represents the standard deviation. The equilibrium position of

DW at X0 is denoted by a horizontal gray dashed line.

case, the detector is a ferromagnetic metal with a strong spin-orbit coupling that can

measure different components of the spin-pumping signal.

The interfacial spin accumulation that arises from the DW-dynamics-induced spin-

pumping, is given by [35,44],

µ(t) := G↑↓r
〈 ∑
i=A, B

(
mi(t, r)× ṁi(t, r)

)〉
, (9)

where G↑↓r is the real part of the spin mixing conductance [45] and 〈...〉 denotes spatial

average over the detector interface region.

In Fig. 6b, the temporal evolution of the spin accumulation signal µx(t) is presented

for the IP geometry. In this example, as shown in Fig. 6a and described in the previous

section, an AFM DW is pulled towards the detector with several small pulses. At

the detector, the spin-pumping signal Eq. (9) is recorded over time. We subtract the

background signal caused by the pumped magnons to find the filtered spin pumping

signal arising from the AFM DW dynamics (blue curve). This signal clearly shows a

maximum at around t = 18 ps, which is when the AFM DW passes underneath the

detector.
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5.5. Magnon-Induced AFM-DW Motion by Spin Hall Torque

Depending on the application, it might be an advantage to have an artificial single

neuron that operates only electrically. To show our proposed setup has also all-electrical

functionality, we replace the incident magnetic field pulse with a spin torque that results

from a current-induced (anomalous) spin Hall torque in a non magnetic (magnetic)

heavy-metal lead on top of the AFM at finite temperature. Through the (anomalous)

spin Hall effect, a charge current in the injector is converted to a spin accumulation at the

interface of the heavy metal and the AFM insulator. A nonequilibrium spin density with

spin angular momentum along the easy-axis anisotropy may excite incoherent magnons

in the AFM insulator via an interfacial spin transfer torque at finite temperature [33,46].

The helicity of excited magnons is controlled by the charge current direction and

consequently the sign of the spin transfer torque.

Figure 7 represents the displacement of an AFM DW in the IP geometry. Similar

to the four-stage protocol used before, we run the following stages: After initialization

of the DW in its equilibrium position X0, the spin transfer torque is turned on for 25 ps

as the first excitation stage, and then turned off for the first relaxation stage. In Fig. 7

we see that the time interval between turning on the injector and the DW motion is

much bigger compared to the previous case, where magnons were excited by a magnetic

field, see Fig. 5. This is because the spin transfer torque excitation mechanism needs

time to build up enough magnons in the system.

In the second excitation stage, we change the sign of the spin accumulation and

thus spin transfer torque in the injector, which is equivalent to reversing the direction

of the charge current in the heavy metal layer. In Fig. 7, three AFM DW trajectories

for different inhomogeneous DMI strengths are shown. Since temperature is finite,

we perform an ensemble average for each AFM DW trajectory. The uncertainty

environment for each line represents the standard deviation of the data set. In the

absence of DMI (black line), the direction of spin accumulation does not have an impact

on the DW motion direction and the DW is pulled towards the injector in both cases.

This is consistent with our previous result for magnon-induced by magnetic field case

in which the direction of AFM DW motion was helicity independent in the absence of

inhomogeneous DMI. Turning the DMI on, however, leads to helicity dependent DW

motion.

6. Summary and Concluding Remarks

Brain-inspired neuromorphic computing and engineering mimic biological nervous

systems to overcome the von Neumann bottleneck. The building block of biological

neural networks is the single neuron. In this paper, we have proposed a non-volatile,

low-energy cost, and fast operating single neuron, which is based on a DW texture

in an AFM insulator with an anisotropy gradient. Our proposed AFM-based neuron

shows a leaky integrated-fire behavior, which is characteristic of biological neurons.
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This single neuron is activated by AFM magnons, which can be excited at the source

region by either magnetic field pulse or spin transfer torque mechanism. The source

region that injects magnons into the system resembles a dendrite in a nerve cell. Our

proposed single neuron has two detectors that act as transmitters and will be connected

to neighboring neurons. These transmitters resemble synaptic terminals of neurons.

In general, one can replace the AFM DW in our setup with topologically stable AFM

skyrmions as well. Synchronization and functionality of the connected single neurons

remain as an important open question that should be explored further theoretically and

experimentally in next studies.
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[20] Bohte S M, Kok J N and La Poutré H Neurocomputing (Amsterdam) 48 17 URL https:

//www.sciencedirect.com/science/article/pii/S0925231201006580

[21] Etz C, Bergqvist L, Bergman A, Taroni A and Eriksson O 2015 J. Phys. Condens. Matter 27

243202 URL https://iopscience.iop.org/article/10.1088/0953-8984/27/24/243202

[22] Lepadatu S J. Appl. Phys. 128 243902 URL https://aip.scitation.org/doi/full/10.1063/5.0024382

[23] Tveten E G, Qaiumzadeh A, Tretiakov O A and Brataas A 2013 Phys. Rev. Lett. 110 127208 URL

https://link.aps.org/doi/10.1103/PhysRevLett.110.127208

[24] Rana B and Otani Y 2019 Commun. Phys. 2 90 URL http://www.nature.com/articles/

s42005-019-0189-6

[25] Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam S N, Morisako A, Zhou Y

and Liu X 2018 Nano Lett. 19 353 URL https://doi.org/10.1021%2Facs.nanolett.8b03983

[26] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K and

Wang K L 2016 Nano Lett. 16 1981 URL https://doi.org/10.1021/acs.nanolett.5b05257
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