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Abstract: The generalized hypergeometric functions in one and several variables and their natu-
ral generalizations appear in many mathematical problems and their applications. The theory of
generalized hypergeometric functions in several variables comes from the fact that the solutions of
the partial differential equations appearing in a large number of applied problems of mathematical
physics have been expressed in terms of such generalized hypergeometric functions. In particular, the
Kampé de Fériet function (in two variables) has proved its practical utility in representing solutions
to a wide range of problems in pure and applied mathematics, statistics, and mathematical physics.
In this context, in a very recent paper, Progri successfully calculated the 2F2 generalized hypergeo-
metric function for a particular set of parameters and expressed the result in terms of the difference
between two Kampé de Fériet functions. Inspired by his work, in the present paper, we obtain three
results for a terminating 3F2 series of arguments 1 and 2, together with a transformation formula of a

3F2(z) generalized hypergeometric function in terms of the difference between two Kampé de Fériet
functions. One application of this result is also provided. The paper concludes with six reduction
formulas for the Kampé de Fériet function. Of note, symmetry occurs naturally in the generalized
hypergeometric functions pFq and the Kampé de Fériet function involving two variables, which are
the two most important functions discussed in this paper.

Keywords: Gauss hypergeometric function; generalized hypergeometric function; unit argument;
Ramanujan’s summations; reducibility; Kampé de Fériet function

1. Introduction

The generalized hypergeometric function pFq[z] is defined by [1], (p. 404)

pFq

[
a1, a2, . . . , ap
b1, b2, . . . , bq

; z
]
=

∞

∑
n=0

(a1)n(a2)n . . . (ap)n

(b1)n(b2)n . . . (bq)n

zn

n!
,

where (α)n = α(α + 1) · · · (α + n− 1) = Γ(α + n)/Γ(α) is the Pochhammer symbol (or the
shifted factorial). Here p and q are nonnegative integers, and the parameters aj (1 ≤ j ≤ p)
and bj (1 ≤ j ≤ q) can have arbitrary complex values, with zero or negative integer values
of bj excluded. The sum converges for |z| < ∞ (p ≤ q), |z| < 1 (p = q + 1) and |z| = 1
(p = q + 1, and <(s) > 0), where s is the parametric excess defined by s = ∑

q
j=1 bj−∑

p
j=1 aj.

Symmetry occurs in the numerator parameters a1, a2, . . . , ap, and symmetry also occurs
in the denominator parameters b1, b2, . . . , bq of the generalized hypergeometric function

pFq

[
a1, a2, . . . , ap
b1, b2, . . . , bq

; z
]

.
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That means that every reordering of the numerator parameters a1, a2, . . . , ap of the
generalized hypergeometric function provides the same function, and every reordering
of the denominator parameters b1, b2, . . . , bq of the generalized hypergeometric function
produces the same function.

In the theory and application of hypergeometric and generalized hypergeometric
series, summation and transformation formulas play a very important role. In our present
investigation, we require Kummer’s second theorem [2], (p. 126), for the confluent hyper-
geometric function

e−z
1F1

[
a

2a
; 2z
]
= 0F1

[
−−

a + 1
2

;
z2

4

]
. (1)

Kummer [3] established this result from the theory of differential equations. Bailey [4]
gave a different proof using the two Gauss summation theorems for 2F1. From (1), it is
possible to deduce the two results recorded in [2], (p. 127)

2F1

[
−2n, a

2a
; 2
]
=

( 1
2 )n

(a + 1
2 )n

, (2)

and

2F1

[
−2n− 1, a

2a
; 2
]
= 0, (3)

for a nonnegative integer n.
The following result contiguous to (1) (written here in slightly different form), which

is a special case of a general result recorded in [5], ( 7.11.7 for n = 1, p. 579) viz

e−z
1F1

[
a

2a + 1
; 2z
]
= 0F1

[
a

a + 1
2

;
z2

4

]
− z

(2a + 1) 0F1

[
−−

a + 3
2

;
z2

4

]
. (4)

From this last result (4), it is possible to deduce the following two contiguous evalua-
tions recorded in [6]

2F1

[
−2n, a
2a + 1

; 2
]
=

( 1
2 )n

(a + 1
2 )n

, (5)

2F1

[
−2n− 1, a

2a + 1
; 2
]
=

( 3
2 )n

(2a + 1)(a + 3
2 )n

. (6)

In addition, from [6], we have

2F1

[
−2n, a
2a + 2

; 2
]
=

( 1
2 )n(

1
2 a + 3

2 )n

(a + 3
2 )n(

1
2 a + 1

2 )n
, (7)

where in (5)–(7), n is also a nonnegative integer.
In addition, the well-known quadratic transformation for the Gauss hypergeometric

function due to Kummer [3] is (see also [1], (15.8.13))

(1− z)c
2F1

[
a, c
2a

; 2z
]
= 2F1

[ 1
2 c, 1

2 c + 1
2

a + 1
2

;
(

z
1− z

)2]
, (8)

provided |z| < 1
2 and |z/(1− z)| < 1. Another form of this formula can be written by

setting z/(1− z) = −x to obtain

(1− x)−c
2F1

[
a, c
2a

;
−2x
1− x

]
= 2F1

[ 1
2 c, 1

2 c + 1
2

a + 1
2

; x2
]

. (9)
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Employing the beta-integral method for (9), Krattenthaler and Rao [7], (Eq. (3.4))
obtained the following hypergeometric identity

3F2

[
a, c, d

2a, 1− e + c + d
; 2
]
=

Γ(e− c)Γ(e− d)
Γ(e)Γ(e− c− d) 4F3

[ 1
2 c, 1

2 c + 1
2 , 1

2 d, 1
2 d + 1

2
a + 1

2 , 1
2 e, 1

2 e + 1
2

; 1
]

, (10)

provided c or d is a nonpositive integer.
In 2011, Choi and Rathie [8] obtained two results contiguous to (8), one of which is

given here:

(1− z)c
2F1

[
a, c

2a + 1
; 2z
]
= 2F1

[ 1
2 c, 1

2 c + 1
2

a + 1
2

;
(

z
1− z

)2]

− cz
(2a + 1)(1− z) 2F1

[ 1
2 c + 1

2 , 1
2 c + 1

a + 3
2

;
(

z
1− z

)2]
, (11)

provided |z| < 1 and |z/(1− z)| < 1. As discussed above, another form of this result is

(1− x)−c
2F1

[
a, c

2a + 1
;
−2x
1− x

]
= 2F1

[ 1
2 c, 1

2 c + 1
2

a + 1
2

; x2
]

+
cx

2a + 1 2F1

[ 1
2 c + 1

2 , 1
2 c + 1

a + 3
2

; x2
]

. (12)

Employing the beta-integral method for (12), Ibraim et al. [9] from Equation (11)
obtained the following identity

3F2

[
a, c, d

2a + 1, 1− e + c + d
; 2
]
=

Γ(e− c)Γ(e− d)
Γ(e)Γ(e− c− d)

{
4F3

[ 1
2 c, 1

2 c + 1
2 , 1

2 d, 1
2 d + 1

2
a + 1

2 , 1
2 e, 1

2 e + 1
2

; 1
]

+
cd

e(2a + 1) 4F3

[ 1
2 c + 1

2 , 1
2 c + 1, 1

2 d + 1
2 , 1

2 d + 1
a + 3

2 , 1
2 e + 1

2 , 1
2 e + 1

; 1
]}

, (13)

provided c or d is a nonpositive integer.
Very recently, by means of Kummer’s second theorem (1), Progri [10] from Equation (1)

expressed a certain 2F2 hypergeometric function as the difference of two Kampé de Fériet
double hypergeometric functions. The Kampé de Fériet function [11] is defined by

Fp:r,k
q:s,`

[
(aj) : (bj); (b′j)
(cj) : (dj); (d′j)

; x, y
]

=
∞

∑
m=0

∞

∑
n=0

(a1)m+n . . . (ap)m+n(b1)m . . . (br)m(b′1)n . . . (b′k)n

(c1)m+n . . . (cq)m+n(d1)m . . . (ds)m(d′1)n . . . (d′`)n

xmyn

m!n!
,

where the double sum converges

(i) For |x|, |y| < ∞ when p + r < q + s + 1, p + k < q + `+ 1;

(ii) For |x|, |y| < 1 (p ≤ q), |x|α + |y|α < 1 (p > q) when (14)

p + r = q + s + 1, p + k = q + `+ 1,

where α := 1/(p− q). Progri’s result then takes the form

e−z
2F2

[
a, b

2a, b + 1
; 2z
]
= F0:2;1

2:1;0

[
−−

1
2 b + 1

2 , 1
2 b + 1

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ;

z2

4
,

z2

4

]

− z
b + 1

F0:2;1
2:1;0

[
−−

1
2 b + 1, 1

2 b + 3
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ;

z2

4
,

z2

4

]
. (15)
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Symmetry occurs naturally in the Kampé de Fériet function defined by (14) for the
numerator parameters aj (j = 1 . . . , p), bj (j = 1 . . . , r), and b′j (j = 1 . . . , k) and also for the
denominator parameters cj (j = 1 . . . , q), dj (j = 1 . . . , s), and d′j (j = 1 . . . , `). Thus, the
generalized hypergeometric function pFq and the Kampé de Fériet function, which are the
most significant functions investigated in this research, exhibit natural symmetry.

The hypergeometric functions of one and several variables occur naturally in a wide
variety of problems in applied mathematics, physics (theoretical and mathematical), en-
gineering sciences, statistics, and operations research. There have been applications of
hypergeometric functions in one and several variables in such diverse fields as

(a) Statistical distribution theory related to beta, gamma, and normal distributions
(b) Communications engineering;
(c) Theory of Lie algebras and Lie groups;
(d) Integral transforms (including integral equations);
(e) Perturbation theory;
(f) Decision theory, etc.

These have been presented in detail in two texts [12,13] by Exton.
The rest of the paper is organized as follows. In Section 2, we derive three new and

general results for the terminating 3F2 series of argument 1 and 2. As special cases, we
recover the fresults recorded in [6]. In Section 3, we establish a new transformation formula
for the generalized hypergeometric function 3F2 expressed as the difference of two Kampé
de Fériet functions. Finally, in Section 4, we present six results for the reducibility of the
Kampé de Fériet function.

2. Three Results for the Terminating 3F2 Series

In this section, we establish three results for terminating 3F2 series asserted in the
following theorem:

Theorem 1. Let m be a nonnegative integer. Then, the following three results for terminating 3F2
series hold true:

3F2

[
−2m, a, b
2a, b + 1

; 2
]
=

( 1
2 )m(

1
2 b)m

(a + 1
2 )m(

1
2 b + 1)m

3F2

[
−m, 1, 1

2 − a−m
1
2 −

1
2 b−m, 1− 1

2 b−m
; 1
]

, (16)

3F2

[
−2m− 1, a, b

2a, b + 1
; 2
]

=
( 3

2 )m(
1
2 b)m(

1
2 b + 1

2 )m

(b + 1)(a + 1
2 )m(

1
2 b + 1)m(

1
2 b + 3

2 )m
3F2

[
−m, 1, 1

2 − a−m
1
2 −

1
2 b−m, 1− 1

2 b−m
; 1
]

, (17)

and

3F2

[
−m, 1, 1

2 − a−m
1− 1

2 a−m, 3
2 −

1
2 a−m

; 1
]
=

( 1
2 a + 1

2 )m(
1
2 a + 1)m

( 1
2 a− 1

2 )m(
1
2 a)m

. (18)

Proof. In order to establish (16) and (17), we proceed as follows. We write Progri’s result
(15) in the form

S := e−z
3F2

[
a, b

2a, b + 1
; 2z
]
= F1(z)−

zF2(z)
(b + 1)

, (19)

where, for j = 1, 2,

Fj(z) := F0:2;1
2:1;0

[
−−

1
2 b+ 1

2 j, 1
2 b+ 1

2 j+ 1
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ;

z2

4
,

z2

4

]
. (20)
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Expressing S in series form, we find

S =
∞

∑
m=0

∞

∑
n=0

(−1)m2n(a)n(b)n

(2a)n(b + 1)n

zm+n

m!n!
.

We replace m by m− n, using the result from [2], (p. 56)

∞

∑
n=0

∞

∑
k=0
A(k, n) =

∞

∑
n=0

n

∑
k=0
A(k, n− k),

together with the elementary identity (m− n)! = (−1)nm!/(−m)n, yields after some sim-
plification

S =
∞

∑
m=0

(−1)mzm

m!

m

∑
n=0

2n(−m)n(a)n(b)n

(2a)n(b + 1)nn!

=
∞

∑
m=0

(−1)mzm

m! 3F2

[
−m, a, b
2a, b + 1

; 2
]

.

Separating this last expression into even and odd powers of z, we finally obtain

S =
∞

∑
m=0

z2m

(2m)! 3F2

[
−2m, a, b
2a, b + 1

; 2
]
−

∞

∑
m=0

z2m+1

(2m + 1)! 3F2

[
−2m− 1, a, b

2a, b + 1
; 2
]

. (21)

Proceeding as above, using (α)m−n = (−1)n(α)m/(1− α−m)n, it is not difficult to
see that

F1(z) =
∞

∑
m=0

( 1
2 b)m(z2/4)m

(a + 1
2 )m(

1
2 b + 1)mm!

3F2

[
−m, 1, 1

2 − a−m
1
2 −

1
2 b−m, 1− 1

2 b−m
; 1
]

,

and

F2(z) =
∞

∑
m=0

( 1
2 b)m(

1
2 b + 1

2 )m(z2/4)m

(a + 1
2 )m(

1
2 b + 1)m(

1
2 b + 3

2 )mm!
3F2

[
−m, 1, 1

2 − a−m
1
2 −

1
2 b−m, 1− 1

2 b−m
; 1
]

.

Finally, the expressions for S, F1(z), and F2(z) may be substituted in (19). Then,
equating the coefficients of z2m and z2m+1 on both sides and using the identities

(2m)! = 22m( 1
2 )mm!, (2m + 1)! = 22m( 3

2 )mm!,

we obtain the results stated in (16) and (17).
For the derivation of (18), we put b = a − 1 into (16). Then, making use of the

summation (7), we at once obtain the result (18). This completes the proof of Theorem 1.

Remark 1. In (16) and (17), if we take b = 2a and make use of Vandermonde’s theorem

2F1

[
−m, a

c
; 1
]
=

(c− a)m

(c)m
,

for a nonnegative integer m, we obtain the known results (5) and (6), respectively.

Remark 2. If we let b→ ∞ in (16) and (17), then we recover the results (2) and (3), respectively.
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3. A New Transformation Formula

In this section, we establish a transformation formula asserted in the following theorem:

Theorem 2.. Let Z = z/(1− z). The following transformation formula holds true

(1− z)c
3F2

[
a, b, c

2a, b + 1
; 2z
]
= F2:2;1

2:1;0

[ 1
2 c, 1

2 c + 1
2

1
2 b + 1

2 , 1
2 b + 1

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; Z2, Z2

]

− cZ
(b + 1)

F2:2;1
2:1;0

[ 1
2 c + 1

2 , 1
2 c + 1

1
2 b + 1, 1

2 b + 3
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; Z2, Z2

]
, (22)

provided |z| < 1
2 and |Z| < 1.

Proof. In (15), we replace z by zt, multiply both sides by e−ttc−1 (with <(c) > 0), and
integrate the resulting expressions with respect to t over the interval [0, ∞). We then have

S =
∫ ∞

0
e−ttc−1

2F2

[
a, b

2a, b + 1
; 2zt

]
dt = S1 −

zt
b + 1

S2, (23)

where
Sj =

∫ ∞

0
e−(1−z)ttc−1Fj(zt) dt (j = 1, 2),

with Fj(zt) being the Kampé de Fériet functions defined in (20).
From [1], (16.11.7), the leading asymptotic behavior of the above 2F2 function is

O(t−a−1e2zt) as t → +∞ when | arg z| < 1
2 π, and O(t−γ) γ = min{|a|, |b|} as t → +∞

when 1
2 π ≤ | arg z| ≤ π. Consequently, the integral S converges when <(z) < 1

2 . Now,
expressing the 2F2 function as a series, changing the order of summation and integration
(justified by absolute convergence), and straightforwardly evaluating the gamma function
integral, we have

S = Γ(c) 3F2

[
a, b, c

2a, b + 1
; 2z
]

(|z| < 1
2 ). (24)

From (A3) in Appendix A, the asymptotic behavior of the Kampé de Fériet functions
appearing in S1 and S2 is O(ezt) (| arg z| ≤ 1

2 π) and O(ezt) ( 1
2 π < | arg z| ≤ π), respectively.

Consequently, the integrals S1 and S2 also require <(z) < 1
2 for convergence. Expanding

the Kampé de Fériet function in S1 in double series form (which converges for |zt| < ∞
by (14)) and proceeding as above, we obtain

S1 =
∞

∑
m=0

∞

∑
n=0

( 1
2 b)m(

1
2 b + 1

2 )m(z/2)2m+2n

( 1
2 b + 1

2 )m+n(
1
2 b + 1)m+n(a + 1

2 )mm!

∫ ∞

0
e−(1−z)tt2m+2n+c−1dt

=
Γ(c)

(1− z)c

∞

∑
m=0

∞

∑
n=0

( 1
2 c)m+n(

1
2 c + 1

2 )m+n(
1
2 b)m(

1
2 b + 1

2 )m

( 1
2 b + 1

2 )m+n(
1
2 b + 1)m+n(a + 1

2 )mm!

(
z

1− z

)2m+2n

=
Γ(c)

(1− z)c

{
F2:2;1

2:1;0

[ 1
2 c, 1

2 c + 1
2

1
2 b + 1

2 , 1
2 b + 1

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; Z2, Z2

]
,

where we have put Z := z/(1− z) (with |Z| < 1 by (14)) and have made use of the result
(c)2m+2n = ( 1

2 c)m+n(
1
2 c + 1

2 )m+n22m+2n. A similar treatment of S2 together with (24) then
yields the result stated in (22). The restriction <(c) > 0, necessary for the convergence of
the integrals in (23), can be removed by appeal to analytic continuation.

Remark 3. If we replace z by z/c in (22) and let c→ +∞, we recover Progri’s result (15).
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Remark 4. If we let b→ ∞ in (22) and note that

lim
b→+∞

F2:2;1
2:1;0

[ 1
2 c, 1

2 c + 1
2

1
2 b + 1

2 , 1
2 b + 1

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; Z2, Z2

]
= 2F1

[ 1
2 c, 1

2 c + 1
2

a + 1
2

; Z2
]

,

and

lim
b→+∞

F2:2;1
2:1;0

[ 1
2 c + 1

2 , 1
2 c + 1

1
2 b + 1, 1

2 b + 3
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; Z2, Z2

]
= 2F1

[ 1
2 c + 1

2 , 1
2 c + 1

a + 1
2

; Z2
]

,

we recover Kummer’s transformation (8).

As an application of the result in Theorem 2, by employing the beta-integral method,
we establish the identity asserted in the following theorem:

Theorem 3. If c or d = 0,−1,−2, . . . , then the following identity holds true:

4F3

[
a, b, c, d

2a, b + 1, 1− e + c + d
; 2
]

=
Γ(e− c)Γ(e− d)
Γ(e)Γ(e− c− d)

{
F4:2;1

4:1;0

[ 1
2 c, 1

2 c + 1
2 , 1

2 d, 1
2 d + 1

2
1
2 b + 1

2 , 1
2 b + 1, 1

2 e, 1
2 e + 1

2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; 1, 1

]

+
cd

e(b + 1)
F4:2;1

4:1;0

[ 1
2 c + 1

2 , 1
2 c + 1, 1

2 d + 1
2 , 1

2 d + 1
1
2 b + 1, 1

2 b + 3
2 , 1

2 e + 1
2 , 1

2 e + 1
:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; 1, 1

]}
. (25)

The result (25) also holds when a = −1,−2, . . ., subject to the convergence conditions
<(a + e− c− d) > 0 and <(b + e− c− d) > 0.

Proof. If we substitute Z = z/(1− z) = −x into the result (22), then we have

(1− x)−c
3F2

[
a, b, c

2a, b + 1
;
−2x
1− x

]
= F̂1(x) +

cx
b + 1

F̂2(x), (26)

where, for j = 1, 2,

F̂j(x) := F2:2;1
2:1;0

[ 1
2 c + 1

2 j− 1
2 , 1

2 c + 1
2 j

1
2 b + 1

2 j, 1
2 b + 1

2 j + 1
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; x2, x2

]
.

Now, we multiply both sides of (26) by xd−1(1 − x)e−d−1 (where we temporarily
assume <(e) > <(d) > 0) and integrate with respect to x over the interval [0, 1] to produce

∫ 1

0
xd−1(1− x)e−c−d−1

3F2

[
a, b, c

2a, b + 1
;
−2x
1− x

]
dx

=
∫ 1

0
xd−1(1− x)e−d−1 F̂1(x) dx +

c
b + 1

∫ 1

0
xd(1− x)e−d−1 F̂2(x) dx. (27)

When c = −m, m = 0, 1, 2, . . . , both the 3F2(x) and the Kampé de Fériet functions
F̂j(x) terminate. Then, the integral on the left-hand side of (27) becomes

m

∑
n=0

(−m)n(a)n(b)n(−2)n

(2a)n(b + 1)nn!

∫ 1

0
xd+n−1(1− x)e−d+m−n−1dx

=
Γ(d)Γ(e− c− d)

Γ(e− c)

m

∑
n=0

(−m)n(a)n(b)n(d)n2n

(2a)n(b + 1)n(1− e + c + d)n
,
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upon evaluation of the beta integral (subject to <(e) > <(d) > 0) followed by some routine
simplification. The sum in the above expression can then be identified with the 4F3 series
in (25). Expanding F̂1(x) in series form and carrying out the integration, we find∫ 1

0
xd−1(1− x)e−d−1 F̂1(x) dx =

Γ(d)Γ(c− d)
Γ(e)

×F4:2;1
4:1;0

[ 1
2 c, 1

2 c + 1
2 , 1

2 d, 1
2 d + 1

2
1
2 b + 1

2 , 1
2 b + 1, 1

2 e, 1
2 e + 1

2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; 1, 1

]
,

with a similar result for the integral involving F̂2(x). This then establishes (25) when c is a
nonpositive integer.

When a = −m, m = 1, 2, . . . we may proceed in a similar manner by interchanging
the order of summation and integration to find that the integral on the left-hand side of
(27) now results in the beta integral containing the factor (1− x)e−c−d−n−1, thus requiring
the condition <(e− c− d) > m or equivalently <(a + e− c− d) > 0. The treatment of the
integrals involving F̂j(x) is the same, except that as the resulting Kampé de Fériet functions
now no longer terminate, we need the conditions [14], Theorem 1

<(a + e− c− d) > 0, <(b + e− c− d) > 0, (28)

for convergence. The condition <(e) > <(d) > 0 may be removed by analytic continuation.
As the parameters c and d are interchangeable, the result (25) will also hold for d = −m.
This completes the proof of Theorem 3.

Remark 5. If we set b→ +∞ in (25), we recover the result (10).

4. Six Results for the Reducibility of the Kampé de Fériet Function

The six results for the reducibility of the Kampé de Fériet function to be established in
this section are given in the following theorem.

Theorem 4.. The following results hold true:

F0:1;1
2:0;0

[
−−

a + 1
2 , a + 1

:
:

a
−−

;
;

1
−− ; x, x

]
= 0F1

[
−−

a + 1
2

; x
]

, (29)

F0:1;1
2:0;0

[
−−

a + 1, a + 3
2

:
:

a
−−

;
;

1
−− ; x, x

]
= 0F1

[
−−

a + 3
2

; x
]

, (30)

F2:1;1
2:0;0

[ 1
2 a, 1

2 a + 1
2

b + 1
2 , b + 1

:
:

b
−−

;
;

1
−− ; x, x

]
= 2F1

[ 1
2 a, 1

2 a + 1
2

b + 1
2

; x
]

, (31)

F2:1;1
2:0;0

[ 1
2 a + 1

2 , 1
2 a + 1

b + 1, b + 3
2

:
:

b
−−

;
;

1
−− ; x, x

]
= 2F1

[ 1
2 a + 1

2 , 1
2 a + 1

b + 3
2

; x
]

. (32)

In addition, we have

F4:1;1
4:0;0

[ 1
2 c, 1

2 c+ 1
2 , 1

2 d, 1
2 d+ 1

2
a+ 1

2 , a+1, 1
2 e, 1

2 e+ 1
2

:
:

a
−−

;
;

1
−− ; 1, 1

]
= 4F3

[ 1
2 c, 1

2 c+ 1
2 , 1

2 d, 1
2 d+ 1

2
a+ 1

2 , 1
2 e, 1

2 e+ 1
2

; 1
]

, (33)

and

F4:1;1
4:0;0

[ 1
2 c+ 1

2 , 1
2 c+1, 1

2 d+ 1
2 , 1

2 d+1
a+1, a+ 3

2 , 1
2 e+ 1

2 , 1
2 e+1

:
:

a
−−

;
;

1
−− ; 1, 1

]

= 4F3

[ 1
2 c+ 1

2 , 1
2 c+1, 1

2 d+ 1
2 , 1

2 d+1
a+ 3

2 , 1
2 e+ 1

2 , 1
2 e+1

; 1
]

, (34)
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subject to the convergence conditions <(a + e− c− d) > 0 and <(2a + e− c− d) > 0 for general
parameter values.

Proof. To establish (29) and (30), we take b = 2a in Progri’s result (15) to find

e−z
1F1

[
a

2a + 1
; 2z
]
= F0:1;1

2:0;0

[
−−

a + 1
2 , a + 1

:
:

a
−−

;
;

1
−− ;

z2

4
,

z2

4

]

− z
2a + 1

F0:1;1
2:0;0

[
−−

a + 1, a + 3
2

:
:

a
−−

;
;

1
−− ;

z2

4
,

z2

4

]
. (35)

Comparison of (35) with (4) immediately establishes (29) and (30) upon replacing z2/4
by x. In the same manner, (31) and (32) can be established by comparison of (22) when
b = 2a with (11).

The results (33) and (34) can be established by comparison of (25) when b = 2a with
(13). Although derived for c or d = −m, m = 0, 1, 2, . . . , they can be extended by analytic
continuation to the general values of a ( 6= −m), c, and d provided the stated convergence
conditions hold; see also, (28).

The results from (29) to (34) can also be deduced from a general result mentioned in
Equation (32) from [11], (p. 28).

Remark 6. If we set b = 2a in (25) and make use of (33) and (34), we obtain the result (13).

5. Conclusions

In this paper, using a recent result of Progri, we obtained:

(a) Three new results for the terminating 3F2 generalized hypergeometric function of
arguments 1 and 2;

(b) A new transformation formula for a 3F2(z) generalized hypergeometric function. The
result has been expressed in terms of the difference between two Kampé de Fériet
functions;

(c) As an application, by employing the well-known beta integral method, an identity;
(d) Six reduction formulas for the Kampé de Fériet function.

We believe that the results established in this paper have not appeared in the literature
and represent a contribution to the theory of generalized hypergeometric functions of one
and two variables. It is hoped that the results could be of potential use in the area of applied
mathematics, statistics, and mathematical physics. All the results mentioned in the paper
were verified numerically using Mathematica.

Finally, since the results presented in the paper are general in character and generalize
and unify several results available in the existing literature, by employing three results for
the terminating 3F2 with arguments 1 and 2 presented in Theorem 1, we can further obtain
some new results. Similarly, we can use the results given in Theorems 2–4 to obtain several
new results. These results are under investigations and will form a subsequent paper in
this direction.
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Appendix A. Order Estimate for the Kampé de Fériet Functions in (23)

In this appendix, we estimate the order of the Kampé de Fériet functions appearing
in (23) as t→ +∞. For simplicity of presentation, we suppose that the parameters a and b
are real with b > 0. We first present integral representations for these two functions.

Lemma A1. The following integral representations when b > 0 hold true:

F0:2;1
2:1;0

[
−−

1
2 b + 1

2 , 1
2 b + 1

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; x, y

]

= b
∫ 1

0
vb−1

0F1

(
−

a + 1
2

; v2x
)

0F1

(
−
1
2

; (1− v)2y
)

dv,

and

F0:2;1
2:1;0

[
−−

1
2 b + 1, 1

2 b + 3
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ; x, y

]

= b(b + 1)
∫ 1

0
vb−1(1− v) 0F1

(
−

a + 1
2

; v2x
)

0F1

(
−
3
2

; (1− v)2y
)

dv.

Proof. The results follow by series expansion of the two hypergeometric functions with
the resulting integral evaluated as a beta function and use of the duplication formula for
the Pochhammer symbol.

Now,

0F1

(
−

a + 1
2

; v2x
)
= Γ(a + 1

2 )(v
√

x)
1
2−a Ia− 1

2
(2v
√

x),

where I is the modified Bessel function, and

0F1

(
−
1
2

; (1− v)2y
)
= cosh[2(1− v)

√
y], 0F1

(
−
3
2

; (1− v)2y
)
=

sinh[2(1− v)
√

y]
2(1− v)

√
y

.

Then, with x = y = τ2/4 and µ := a + 1
2 , we obtain

F1(τ) = F0:2;1
2:1;0

[
−−

1
2 b + 1

2 , 1
2 b + 1

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ;

τ2

4
,

τ2

4

]

= bΓ(a + 1
2 )
∫ 1

0
vb−1( 1

2 vτ)−µ Iµ(vτ) cosh[(1− v)τ] dv, (A1)

and

τ

b + 1
F2(τ) =

τ

(b + 1)
F0:2;1

2:1;0

[
−−

1
2 b + 1, 1

2 b + 3
2

:
:

1
2 b, 1

2 b + 1
2

a + 1
2

;
;

1
−− ;

τ2

4
,

τ2

4

]

= bΓ(a + 1
2 )
∫ 1

0
vb−1( 1

2 vτ)−µ Iµ(vτ) sinh[(1− v)τ] dv. (A2)

Since both Kampé de Fériet functions in (A1) and (A2) are functions of τ2, it follows
that it is sufficient to consider their behavior only in | arg τ| ≤ 1

2 π.
We are therefore led to consideration the of the integrals eτ J±(τ), where

J±(τ) =
∫ 1

0
vb−1 f (vτ) (1± e−2(1−v)τ) dv, f (ξ) :=

Γ(µ + 1)
( 1

2 ξ)µ
Iµ(ξ)e−ξ .
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From the well-known asymptotic behavior Iµ(ξ) ∼ eξ/
√

2πξ as |ξ| → ∞ in | arg ξ| <
1
2 π (and Iµ(ξ) = O(ξ−1/2) when arg ξ = ± 1

2 π), it is found that

| f (vτ)| < f (0) = 1 (a > 0), | f (vτ)| < 2µΓ(µ + 1)|τ|−a (a < 0),

as |τ| → ∞ with v ∈ [0, 1]. Hence, |J±(τ)| = O(1) (a > 0), O(τ−a) (a < 0) for |τ| → ∞ in
| arg τ| ≤ 1

2 π.
Consequently, the functions F1(τ) and τF2(τ) in (A1) and (A2) satisfy the order estimates

O(eτ) (a > 0), O(τ−aeτ) (a < 0), (A3)

as |τ| → ∞ in | arg τ| ≤ 1
2 π. In the sectors 1

2 π < | arg τ| ≤ π, the exponential factor in (A3)
is replaced by exp τ, where the bar denotes the complex conjugate.
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